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A B S T R A C T   

We evaluated the fire severity and recovery process of the Latroon dry forest in Jordan following the 2003 fire. A 
series of multi-temporal Landsat-ETM + data and the delta normalized burn ratio (dNBR) were used to map the 
fire severity immediately following the fire and 1,5,9,13 and 17 years after. In addition, combined field morpho- 
physiological measurements, unmanned aerial vehicle (UAV) were also used in 2020 to assess the forest re
covery. Landsat-dNBR images revealed that about 65% of the forest was burned in 2003. In 2020, about 90% of 
the burned area recovered to condition before fire. UAV means were similar to ground measurement data across 
the severity classes and over the tested species. Landsat-dNBR images showed that most moderate and highly 
severe burned area in 2003 had recovered in 2020 but ground measurements showed that the severely burned 
area trees were significantly shorter (p < 0.001) than those from the moderate severity across the studied species. 
Therefore, Landsat-dNBR did not detect tree height changes. While UAV can potentially estimate the tree height, 
Landsat-ETM+ (near-infrared, chlorophyll; shortwave-infrared, water status) hold promise for estimating the 
physiology of the canopy. Overall, different remote sensing levels are required to track different kinds of changes 
in the recovered forests.   

1. Introduction 

Forest fires are a significant disturbance variable in terrestrial eco
systems on a global scale and contribute extensively to the budgets of 
several greenhouse gases including CO2 and CH4 (Langenfelds et al., 
2002; Van Der Werf et al., 2010). Severe wildfires negatively impact 
water, environmental resources and human life, specifically 
socio-economic factors (Quintano et al., 2019). In addition, forest fires 
may cause: irreparable damage to the environment and atmosphere, 
long-term negative impact on global warming, and extinction of rare 
species of the flora and fauna (Alkhatib, 2014). Fire severity depends on 
vegetation health (e.g. leaf moisture content, transpiration and chloro
phyll content), community composition, climate, weather conditions 
and topography (Cansler and McKenzie, 2014; Gibson et al., 2020; 
Hammill and Bradstock, 2006; Keeley and Syphard, 2016). Climate 

change is expected to intensify fire impacts on natural ecosystems 
(Keeley and Syphard, 2016). Therefore, monitoring and predicting fire 
activities is prerequisite to understand our changing climate, specifically 
global warming (Van Der Werf et al., 2010; Wei et al., 2020). In addi
tion, modeling forest fires can reduce the response time, the potential 
damage and the cost of firefighting (Alkhatib, 2014). 

Fire mapping provide authorities a temporal and spatial overview of 
fire severity in order to orient management and future planning. It also 
plays a key role in advancing climate change and ecological studies 
(Flannigan et al., 2009; Gibson et al., 2020). Modeling forest fires re
quires historical and spatial scale analyses that associate annual fires to 
climate variation, understanding of how temperature and rainfall 
interact to control fire severity, and fuel structure (Keeley and Syphard, 
2016). However, traditional monitoring and modeling of forest fires 
requires intensive human and material resources and might be 
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inaccurate. Interestingly, remote sensing can upscale the spatial analysis 
and potentially capture accurate relationships between climate and fires 
(Keeley and Syphard, 2016). Advanced sensing technologies such as 
remote sensing are increasingly used for fire monitoring recently 
because it provides an overview of long-term spatio-temporal overview 
of active fires over long period (Wei et al., 2020). In addition, 
remotely-sensed data can upscale plant physiological responses to large 
area (Othman et al., 2014, 2021). In fact, the newer generation of 
remote sensing platforms (e.g. unmanned aerial vehicle, UAV) are now 
offering high spatial/temporal resolution, many opportunities for 
fine-scale ecological mapping and are capable of capturing new imagery 
at daily return intervals (Arnett et al., 2015). In south-eastern Australia, 
the combined used of Sentinel-2 images and a random forest model 
successfully mapped fire severity (Gibson et al., 2020). The accuracy 
percentage for the unburnt and extreme severity class was higher than 
95%, while the low and moderate severity classes ranged from 70% to 
85%. Trees moisture content is one of the essential factors affecting 
ignition and spread of wildfire. Trees sap (water) has strong absorption 
features in the shortwave infrared (SWIR) spectrum, which provide a 
sensing basis for direct estimation of live fuel moisture content (Yebra 
et al., 2013). 

Accurate burn severity estimates are critical for post-fire manage
ment. The burn severity variable integrates both direct fire effects 
(vegetation depletion) and ecosystem responses (vegetation regenera
tion) (Veraverbeke et al., 2011). Multispectral remote sensing data such 
as spectral indices-based are becoming essential for burned area and 
burn severity mapping because they provide accurate and consistent 
information about the fire activity, extent and severity (Chuvieco et al., 
2002; Quintano et al., 2019; Veraverbeke et al., 2011). In this context, 
most work on post-fire losses are derived from Landsat and Sentinel-2 
surface reflectance data, mainly because of their adequate spatial and 
temporal resolutions (Filipponi, 2019; French et al., 2008). The 
normalized burn ratio (NBR) has been linked to vegetation moisture 
content by combining the near infrared (NIR) and SWIR wavelengths. 
Shortwave infrared spectrum regions are associated with water status of 
plants (Othman et al., 2014, 2015). In addition, the difference between 
pre- and post-fire images (delta NBR, dNBR) has been recognized as a 
standard method to estimate the burn severity from remotely-sensed 
data (Quintano et al., 2019; Veraverbeke et al., 2011). The dNBR 
consider the short-term impact (preliminary assessment) of fire from an 
immediate post-fire NBR (difference between pre-fire NBR and the im
mediate post-fire NBR) and the long-term impact (extended assessment) 
from post-fire NBR image a year or more after a fire (Quintano et al., 
2019). In sum, the dNBR can provide bi-temporally differenced infor
mation about the burn severity which has proven to be valuable for 
obtaining detailed information over specific fires (Veraverbeke et al., 
2011). 

Jordan has long, dry, hot summers, and relatively short cold winters. 
Forests in Jordan cover 800 km2 or less than 1% of the total area of 
Jordan. The Jerash and Ajloune forests account for more than 50% of 
these forests. This area hosts about 190 km2 of the southernmost native 
Pinus halepensis forest in the world and the last remaining stand of old 
pine forest in Jordan (Al-Eisawi, 2012). Even in such fragmented and 
small pine forest areas, rural communities still appreciate forest eco
systems. Previous research elucidated the social-ecological system of 
forests in Jordan (Shishany et al., 2020, Al-assaf et al., 2014). These 
studies emphasized the social dimension that reflects the relation be
tween the forest and people, where forests are recognized for their 
financial contribution by providing provisioning services (i.e wood, and 
non-wood products as grazing, medicinal and edible plants), and cul
tural services (i.e. recreation, tourism) (Al-Assaf et al., 2016; Al-assaf 
et al., 2014). Shishany et al. (2020) highlighted the relational values of 
forest and people in Jordan, and how people are an important compo
nent in forest management plans, which depend on their raised aware
ness of the sustainable forest ecosystem. 

Forest fires due to hot dry climate and illegal logging are the main 

threats to Jordanian forests. In 2019, more than 200 fires were reported 
by the Forestry Department in Jordan. In addition, authorities encounter 
huge challenges to mitigate the impact of forest fires and orient their 
efforts due to the difficulties of accurately estimating the actual area 
exposed to fire directly after the fire incidence as well as the recovery 
rate of burned spots. Satellite images are an ideal dataset to examine the 
extent and impact of forest fires (Arnett et al., 2015). Vegetation indices 
derived using surface reflectance images are widely used because those 
indices normalize the magnitude of change between the multi-temporal 
images (adjust the variation in spectral levels) and are associated with 
the variation in structural and physiological plant processes including 
gas exchange, chlorophyll, leaf area and water status (Gao, 1996; Huete 
et al., 2002; Othman et al., 2014, 2015, 2019, 2021; Tadros et al., 2020). 
However, for successful mapping of fire/burn severity, recovery status 
and consequently forest health, combined field sampling and satellite 
surface reflectance data of burn condition is essential (French et al., 
2008). On August 28, 2003, the Latroon Mountain forests, Jerash, Jor
dan experienced a severe fire which damaged most trees on this 
mountain. The regeneration is still under progress. However, no reliable 
data quantifying the total area, severity or recovery process of this 
burned area is currently available. We believe that remote sensing data 
from Landsat ETM+ (2003–2020) coupled with UAV and ground 
physiological measurements (2020) can provide an overview of forest 
fire severity in 2003, the recovery process as well as the forest status 
after 17 years of fire incidence. The objective of this study was to esti
mate the historical burn extent and severity in Latroon Mountain dry 
forest using Landsat-dNBR images between 2003 and 2020 as well as the 
regeneration percentage. In addition, the current forest status (2020) 
was evaluated using Landsat-dNBR images, UAV images and ground 
physiological measurements (gas exchange, canopy temperature and 
chlorophyll content index). 

2. Materials and methods 

2.1. Study area 

The study was conducted at Jerash (Latroon Mountain), Jordan 
(32◦17′32.71′′ N, 35◦49′09.87′′E, elevation ranges from 1030 to 1130 m 
above sea level). Mean annual precipitation ranged from 250 to 400 
mm. The mean annual maximum temperature ranges from 20 to 28 ◦C 
and the minimum temperature ranges from 10 to 15 ◦C. The study area 
covers an area of 30 ha (Fig. 1). The main vegetation species Arbutus 
andrachne, Quercus coccifera, and Pinus halepensis. In the summer of 2003 
(August 28, 2003), several large wildfires of unknown cause struck 
Jordanian forests. The fires were the worst natural disaster of the last 
decades in Jeresh, specifically the Latroon Mountain. The fires 
consumed more than 60% of the vegetation. 

2.2. Image acquisition, pre-processing, and classification 

Surface reflectance data from Landsat ETM+ was used to detect 
vegetation cover change before fire incidence on August 28, 2003 and 
the regeneration process thereafter, from October 2003 to August 2020. 
ETM + images dates were: one month before the fire (July 2003), one 
month after fire (October 2003), one (August 2004), five (August 2008), 
nine (August 2012), thirteen (August 2016) and seventeen (August 
2020) years after the forest fire. We selected the August time to ensure 
that only shrubs and trees are captured in the images. At springtime 
(March–April), the area is normally covered with grasses as well as 
shrubs and trees. These grasses die around June–July and after that only 
shrubs and trees are detected. 

Cloud-free Landsat ETM + images were downloaded from the 
EarthExplorer website. Landsat ETM + collection 2, level 2 were used. 
Those images (surface reflectance climate data records) are atmo
spherically corrected, available for free, and they are a reliable source 
for change detection studies, especially for vegetation (Othman et al., 
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2018; Sawalhah et al., 2018). Geo-referencing was conducted using 
Environment for Visualizing Images (ENVI) 5.0 (Research Systems, 
Boulder, Colorado, USA). In addition, radiometric correction was 
applied using the Fast Line-of-sight Atmospheric Analysis of Spectral 
Hypercubes (FLAASH) algorithm in ENVI to normalize the different 
Landsat datasets. In FLAASH, Rural Aerosol model was used and the 
visibility was set to 40 km. Burned area and the recovery spots were 
identified using NBR (Equation (1)). 

NBR=
(NIR − SWIR)
(NIR + SWIR)

(1) 

Where NIR is band 4 in ETM+ and SWIR is band 7. The difference 
between the pre-fire and post-fire NBR obtained from the images is used 
to calculate the delta NBR (dNBR or ΔNBR), which then were used to 
estimate the burn severity. The dNBR classification scheme of Landsat 
ETM + datasets (UNOOSA, 2021) for the study area is found in Table 1. 

2.3. Aerial imaging system 

An Unmanned Aerial Vehicle (UAV) with a digital camera (Zen muse, 
Z30; Germany) on board was used to obtain post-fire surface reflectance 
images on the blue, green, red bands at high spatial resolution (10 cm) 
(Fig. 2). The flight was carried out in September 2020. A series of aerial 
images (~400 images) for the mountain were acquired and processed 
using Pix4D software. The products obtained from the Digital Surface 
Model (DSM), Digital Terrain Model (DTM) and orthorectified image. 

The images dataset was acquired with the quad copter UAV (M210 V2, 
Da-Jiang Innovations, China). The UAV flight height was 70 m and 
images were collected at a 70% overlap. For horizontal accuracy of the 
flight, six ground control points were determined and linked to image. 

2.4. Tree physiological measurements 

Tree height, gas exchange (photosynthesis Pn, stomatal conductance 
gs, and transpiration E), leaf and canopy temperatures and chlorophyll 
content index (SPAD) were determined during the summer time, July
–August 2020. Physiological measurements were conducted between 
10:00 a.m. and 1:00 p.m. and synchronized with the UAV and satellite 

Fig. 1. Location of the Latroon Mountain study area in Jerash, Jordan.  

Table 1 
The dNBR classification scheme of Landsat ETM + datasets for the 
study area. Burn severity levels obtained by calculating delta 
Normalized Burn Ratio (dNBR), (UNOOSA, 2021).  

dNBR range Fire severity level 

− 0.5–0.1 Un-burned, enhanced regrowth 
0.1–0.25 Low severity 
0.25–0.45 Low to moderate severity 
0.45–0.65 Moderate to severe 
0.65–1.3 High severity  

Fig. 2. Unmanned Aerial Vehicle (UAV) system, M210 V2 quad copter with a 
Zen muse digital camera onboard. The UAV camera acquire images on the blue, 
green, red bands at high spatial resolution (10 cm) at 70 m flight height. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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overpass date. All measurements were in moderate and high severity fire 
plots that occurred in 2003 and identified using the Landsat-dNBR im
ages. Gas exchange measurements and leaf temperature were deter
mined using a portable photosynthesis system (LI-6400XT; LI-COR, 
Lincoln, NE, USA) and following the procedures of Othman et al. (2014). 
Gas exchange measurements were from two sun-exposed and 
fully-mature leaves. Light intensity was set to track ambient photosyn
thetically active radiation, area of chamber head to 6 cm2, flow rate to 
500 μmol s− 1, temperature in the cuvette to ambient air and reference 
CO2 to 400 μmol (Leskovar and Othman, 2021). The chlorophyll content 
index was determined using a chlorophyll meter (CCM-200 plus; 
Opti-Science, NH, USA) and canopy temperature measured using 
infrared thermometer (568, Fluke Corporation, Everett, WA, USA). The 
detector CCM-200 plus analyzes the ratio of two wavelengths to deter
mine chlorophyll con-centration index. The index is not the content of 
chlorophyll a, b or total. Plant height for the three species were deter
mined and compared to those derived using aerial images (DSM, DTM). 
Seven trees (per species) from the moderate-severe and high severity 
classes (42 trees in total) were selected for measurements. The selected 
trees were from the pixels classified as moderate-severe or highly severe 
in the 2003 dNBR image and low severity in the 2020 dNBR image. Our 
objective was to assess if the different severity classes identified in the 
2020 dNBR image showed the same patterns as the UAV data and field 
measurements. 

2.5. Graphing and statistical analysis 

The analysis of variance (ANOVA) and the Tukey’s HSD test (P ≤
0.05) in SAS (Version 9.4 for Windows; SAS Institute, Cary, NC) were 
used to identify differences between dNBR levels for physiological 
measurements. ArcMap (Version 10.2 for Windows; ESRI, Redlands, CA) 
was used to generate the study maps and to calculate the total burned 
area. Sigmaplot (Version 10.0 for Windows; Systat Software, San Jose, 
CA) was used to graph the ground measurement results, 2020. 

3. Results 

3.1. Assessment of forest fire severity and recovery using landsat ETM +
data 

Landsat-dNBR images revealed that the total area of moderate and 
high severity dNBR classes were zero in July 2003, one month before fire 
(Fig. 3, Table 2). The dNBR image in July 2003 was derived using two 
NBR-Landsat images captured immediately before fire. Because the 
vegetation changes in the area within the month (prior to fire) was 
limited, the NBR values for both images were approximately similar and 
therefore the dNBR was close to zero. One month after fire (October 
2003), Landsat-dNBR images revealed that about 65% of the Latroon 
Mountain was burned. About 8% of the forest was severely burned 
(dNBR, 0.65–1.3), 14.8% moderate to severe (dNBR, 0.45–0.65), 19.5% 
low to moderate and 22.4 of the forest area were within the low severity 
fire dNBR class (Table 2). The 2020 Landsat-dNBR image revealed that 
the forest had potentially recovered (Fig. 3). The moderate and severe 
class areas (dNBR, 0.25–1.3) disappeared. However, at that date (17 
years after the fire), about 9% of those burned lands were within the low 
severity class (dNBR, 0.1–0.25). 

3.2. Tree morphology and physiological assessment 

The current status of the forest was assessed through the tree 
morphology (plant height) and physiology (Pn, E, gs, leaf and canopy 
temperatures, and chlorophyll content index) in September 2020. In the 
burned area, the same tree and shrub species were found after 17 years 
of fire (2020). The dominate tree species in Latroon mountain in 2020 
were Arbutus andrachne, Pinus halepensis and Quercus coccifera while 
Cistus incanus was the main shrub. 

Tree height from ground measurements were compared to those 
from the UAV data. The morpho-physiological results were also linked to 
Landsat-dNBR results. Plant height was estimated by overlaying the 
DSM and DTM obtained with the UAV over the burned area (moderate 
and high severity classes, dNBR, 2003 image) (Fig. 4). Tree heights from 
the burned area were compared to ground measurements (Fig. 4). The 

Fig. 3. Fire severity classes for Latroon Mountain before and after the forest fires classified from Delta Normalized Burn Ratio (dNBR) images derived from Landsat 
ETM + imagery. 
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vegetation height captured in the DTM and DSM ranged from 0.3 m 
(shrubs) to 12 m (Pine trees) across the study area. Tree heights in 2020 
from the area burned in 2003 were between 2 and 10 m depending on 
plant species and burn severity. 

Plant height from ground measurements and UAV data are presented 
in Fig. 5. Trees from severely burned areas ( Landsat-dNBR, 2003) had 
lower heights than those from the moderate severity class across the 
studied species. In both datasets tree heights in the moderate-severe 
class was about 35%–40% higher than high severity class for Arbutus 
andrachne, 125%–135% for Pinus halepensis and 100%–115% for Quercus 
coccifera (Fig. 5). Ground measurements mean were often higher (3%– 
9%) than the UAV estimates. However, tree height derived from UAV 
data and ground reference measurements were statically similar in both 
severity classes (moderate-severe, high severity) and across plant spe
cies, Arbutus andrachne, Pinus halepensis and Quercus coccifera. 

Leaf and canopy temperatures from moderate and high severity 
Landsat-dNBR classes were similar across all three species (Fig. 6 a and 

b). However, Arbutus andrachne leaf temperature was significantly lower 
than Pinus halepensis in the moderate-severe dNBR plots (Fig. 6 c). In 
addition, the bare soil temperature (the average of shaded and sunny 
areas) was significantly higher than the leaf and canopy temperature 
(Fig. 6 d). Mean temperature for bare soil was 42.1 ◦C, leaf 34.5 ◦C and 
canopy (1 m far from tree) was 26.4 ◦C. 

Gas exchange (Pn, gs and E) and chlorophyll content index from 
moderate and high severity plots were inconsistent or not significant 
across species (Fig. 7). Although the chlorophyll content of Arbutus 
andrachne in the moderate-severe class were lower than the high 
severity class, the same plot had higher gs and E and similar Pn compared 
to high severity plots. However, Pn (μmol m− 2 s− 1) and chlorophyll 
content index were higher than 15 across plant species and in both dNBR 
burned classes (Fig. 7). 

Table 2 
Burn severity classes for Latroon Mountain before and after the forest fires classified from Delta Normalized Burn Ratio (dNBR) images derived from Landsat ETM +
imagery.    

Un-burned Low severity Low to moderate severity Moderate to severe High severity 

Year Coverage (0.0–0.1) (0.1–0.25) (0.25–0.45) (0.45–0.65) (0.65–1.3) 
2003 (1 month before fire) Area (ha) 18.7 0.3 0.0 0.0 0.0  

% 98.6 1.4 0.0 0.0 0.0 
2003 (1 month after fire) Area (ha) 6.7 4.2 3.7 2.8 1.5  

% 35.2 22.4 19.5 14.8 8.1 
2004 (1 year after fire) Area (ha) 8.5 4.1 4.1 2.3 0.0  

% 45.2 21.4 21.4 11.9 0.0 
2008 (5 years after fire Area (ha) 7.9 6.8 4.2 0.0 0.0  

% 41.9 35.7 22.4 0.0 0.0 
2012 (9 years after fire) Area (ha) 11.4 5.9 1.7 0.0 0.0  

% 60.0 31.0 9.0 0.0 0.0 
2016 (13 years after fire) Area (ha) 11.3 7.1 0.5 0.0 0.0  

% 59.5 37.6 2.9 0.0 0.0 
2020 (17 years after fire) Area (ha) 17.8 1.1 0.0 0.0 0.0  

% 94.3 5.7 0.0 0.0 0.0  

Fig. 4. (A) Digital Terrain Model (DTM), (B) Digital Surface Model (DSM) and (C) orthorectified image obtained with a UAV was overlaid with the burned area in 
2003 (D) to derive tree height. (E) Landsat-dNBR image for 2003 and 2020 were overlaid to identify the best trees for ground measurements. 
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4. Discussion 

4.1. Assessment of forest fire severity and recovery using landsat ETM +
data 

Wildfire is an essential mechanism for Earth ecosystems and forest 
regeneration (Amos et al., 2019; De Santis and Chuvieco, 2007). How
ever, those fires can lead to massive devastation to ecosystems as well 
human socio-economic factors (Amos et al., 2019). In fact, forest fires 
have substantial impact on greenhouse gas emission and ecosystem 
production (Sannigrahi et al., 2020). Therefore, accurate, consistent, 
and timely burn severity records are necessary for planning, managing 
and restoration after forest fires (Amos et al., 2019). However, wildlife 
fires are often located in areas far from human residence and observa
tion and in most cases the access to forest fire regions is both difficult 
and dangerous (Amos et al., 2019). Forest supervisors need reliable 
techniques to evaluate post-fire recovery and delineate management 
activities across the area, which might be highly expensive and 
resource-consuming in terms of data gathering (Fernández-Guisuraga 
et al., 2019). In this context, remote sensing approaches enable the 
collection of environmental data over a large scale with low input efforts 
(Fernández-Guisuraga et al., 2019; Othman et al., 2014). Remote 
sensing using satellite and airborne sources can provide a 
multi-temporal (rapid), inexpensive (free of charge, less labour), and 
consistent overview of vegetation (Amos et al., 2019; Othman et al., 
2014, 2018). In this study, Landsat ETM + images were used to estimate 
fire severity and the recovery process (Table 2 and Fig. 4). Landsat 
sensors provide coarser spatial resolution compared to high spatial and 
temporal resolution sensors but may offer several advantages over those 
hyper spatial sensors, including wider spectrum coverage, specifically in 
the SWIR region (Arnett et al., 2015; Wulder et al., 2008). Tree moisture 
content and water potential represent the water status of the plant and 
their values are perquisite for remote sensing of spatial and temporal 
variations of live fuel moisture content (Othman et al., 2014, 2018; 
Yebra et al., 2013). Changes in live fuel moisture content have both 
direct (liquid water absorption, SWIR bands) and indirect (pigment and 
structural changes, NIR bands) impacts on spectral reflectance (Yebra 
et al., 2013). Water status in trees has a direct effect on spectral 

reflectance through the absorption of radiation within the NIR and SWIR 
spectral regions, 970, 1200, 1450, 1940, and 2500 nm (Othman et al., 
2014, 2015; Yebra et al., 2013). Overall, the Landsat program provides a 
continuous and valuable record of vegetation (chlorophyll content, 
water status, cover density) for more than 50 years at no cost (Othman 
et al., 2021; Sawalhah et al., 2018; Wulder et al., 2008). Those forest 
health variables can be linked to forest fires. 

Landsat-dNBR for the pre and post fire of Latroon forest showed 
clearly the extent and the severity of burdened area as well as the re
covery process during the study period, 2003–2020. Although the 
ground measurements (2020) of chlorophyll and gas exchange were 
inconsistent across the burned area, the Landsat-dNBR images showed 
that the moderate and severely-burned area (2003) did not fully 
recovered (Fig. 3). This imply the usefulness of using Landsat-dNBR data 
for detect the forest fire extent and severity. The most suitable way to 
assess wildfire severity using Landsat sensors images is by discrimi
nating unburned and burned pixels according to their NBR pre-/post-fire 
difference values, dNBR (Escuin et al., 2008). Vegetation indices such as 
normalized difference vegetation index (NDVI), enhanced vegetation 
index (EVI) normally detect immediate post fires because those indices 
are sensitive to the greenness of the plants (chlorophyll) but the accu
racy of those indices decreases in parallel with forest recovery (Chen 
et al., 2011; Escuin et al., 2008). For example, after the fires in Black 
Hills National Forest, South Dakota, in 2000, the Landsat-NDVI, EVI and 
NBR of pre- and post-fire were correlated with 66 field-based composite 
burn index (CBI) plots for 7 years (Chen et al., 2011). The differences of 
NDVI and EVI between the pre-fire years was highly correlated with CBI 
in first two years after fire (0.7<r < 0.86) but decreased significantly 
thereafter (0.2<r < 0.7). Interestingly, the delta dNBR (deference of 
NBR between pre and post fire) had consistently good correlation 
(0.6<r < 0.82) with CBI scores across the study period (2000–2007). 
Amos et al. (2019) found that the visible region of the electromagnetic 
spectrum from Sentinel-2A was not well suited to discriminate burned 
from unburned land cover but NBR produced the best results for 
detecting burnt areas. The dNBR proved to be the most efficient 
remotely sensed index for assessing burn severity in Peloponnese forests, 
Greece, followed by delta Normalized Difference Moisture Index 
(dNDMI) and delta NDVI (dNDVI) (Veraverbeke et al., 2011). The 

Fig. 5. Tree height of Arbutus andrachne, Pinus halepensis and Quercus coccifera from ground measurements and unmanned aerial vehicle (UAV) in September 2020. 
Moderate and high severity class plots were determined using the Landsat-dNBR image of 2003. Different letters above bars and within species indicate significant 
differences in tree height according to Tukey’s HSD test (P ≤ 0.05). 
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coefficient of determination for between field-based Geo Composite 
Burn Index and dNBR was 63%, dNDMI was 48%, and dNDVI was 46% 
(Veraverbeke et al., 2011). 

In this study, Landsat-dNBR images for pre and post fire of Lantron 
Mountain showed that about 65% of the forest was burned. The severity 
analysis of the images showed that more than 20% of the forest was 
extremely damaged (dNBR, 0.45–1.3). Those burned spots (moderate 
and highly severe burned area) required about 4 years to partially 
recover from that damage. In fact, after 17 year of fire, 2020, the 
Landsat-dNBR data showed that about 24% of the moderate and 
severely burned area in 2003 which estimated by 23% of the forest are 
not fully recovered to the same condition before fire (Table 2). The slow 
recovery rate could be attribute to the dry climate in Jerash, Jordan. 
Jarash, including Dibeen and Latroon Mountain forests is the driest part 
of the world in which the Pinus halepensis are known to grow naturally, 
with an average annual rainfall of about 400 mm (RSCN, 2015). 
Considering the slow recovery results (Landsat-dNBR) due to fragile 
environment, intensive legislation and management laws should be 
applied to protect this species (Pinus halepensis) in this area which 
represent the southeastern geographical limit of this forest type 

worldwide (RSCN, 2015). 

4.2. Forest status using ground morphophysiology, UAV and landsat 
datasets 

Although UAV slightly underestimated the tree height (less than 
9%), UAV means were statistically similar to ground measurement data 
across the severity classes and over the tested species (Fig. 5). UAV 
measurements of tree height tended to be lower than the actual values 
(Kameyama and Sugiura, 2020). However, the deviation from the 
ground measurement is not significant (Balenović et al., 2015). Overall, 
our results were consistent with previous studies. While satellite sensor 
images are widely used for forest fire assessments, they might show 
some weaknesses. It may take too long to obtain imagery of the burned 
area because the temporal resolution is not controlled by the user, cloud 
cover in the imagery, and the spatial resolution could be insufficient to 
capture small features (Pérez-Rodríguez et al., 2020). Nowadays, only 
Sentinel-2 images (20 m spatial resolution) are available at good tem
poral resolution (5 days revisit frequency) with no charges. In this 
context, UAVs equipped with high spatial resolution cameras may assist 

Fig. 6. Canopy, leaf temperature and bare soil (average of shady and sunny area) temperature of Arbutus andrachne, Pinus halepensis and Quercus coccifera. Moderate- 
severe and high severity plots were determine using the Landsat-dNBR image, 2003. Different letters above bars indicate significant differences in tree height ac
cording to Tukey’s HSD test (P ≤ 0.05). 
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in these situations especially when flight timing is critical. UAVs offer 
higher spatial and temporal resolution and offer many opportunities to 
map fine scale forest attributes and examine the impact of fire on forests 
(Pérez-Rodríguez et al., 2020). High resolution (RGB, visible spectrum) 
cameras coupled with Structure from Motion and multi-view stereopsis 
techniques are usually used in UAV- photogrammetric projects to pro
duce high quality DSM, DTM and mosaic orthorectified images (Car
vajal-Ramírez et al., 2019; Fonstad et al., 2013; Furukawa et al., 2010). 
The assessment of burn severity patterns using Probabilistic Neural 
Networks algorithms (PNN) based on field data and (20 cm) image 
products derived from a UAV correctly classified 84.3% of vegetation 
and 77.8% of soil burn severity levels (Pérez-Rodríguez et al., 2020). 
However, if the post-fire day is cloudy, even UAV images are not useful 

as consequence of the different solar illumination conditions. Overall, 
UAV hold promise for identifying plant morphology, specifically the tree 
height. 

To assess the sensitivity of Landsat-dNBR data, seven trees from three 
species were selected from the moderate-severe (0.45–0.6) and high 
severity (0.65–1.3) classes. Those trees were selected from the pixels 
where high severity-burned trees converted to the low severity class in 
2020 in the dNBR images (Fig. 4 E). In 2020, most moderate-severe as 
well as high severity class areas converted to low severity class (dNBR 
0.1–0.25). This mean that trees height of either the low-moderate and 
severe classes ( Landsat-dNBR, 2003) which converted to the same class 
in 2020 is expected be similar. While the Landsat-dNBR image in 2020 
classified those pixels (moderate or high severity, 2003) into the same 

Fig. 7. Gas exchange (photosynthesis, sto
matal conductance, and transpiration) and 
chlorophyll content index (SPAD) of Arbutus 
andrachne, Quercus coccifera, and Pinus 
halepensis leaves from moderate-severe and 
high severity plots identified using the 
dNBR-Landsat image one month after fire 
incidence (October 2003). Needle leaf shape 
restricted the SPAD measurements of Pinus. 
Different letters above bars indicate signifi
cant differences between treatments ac
cording to Tukey’s HSD test (P ≤ 0.05).   
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severity category, ground reference measurements and UAV data 
revealed that the tree height of those plots (similar class according to 
dNBR, 2020) was extremely different (Figs. 3 and 5). For example, Pinus 
halepensis trees from the severely-burned area in 2003 was more than 4 
m shorter (deference in height 135%) than low-moderate plots accord
ing to ground and UAV results (Fig. 5). Overall, Landsat-dNBR did not 
detect the prolonged morphological (plant height) changes accurately 
after forest fire. This result is expected because Landsat sensors as other 
optical systems (if not in stereoscopic pair) do not allows to detect tree’s 
height. 

Changes in leaf pigment concentrations, such as chlorophyll, pro
duce changes in visible and NIR reflectance and co-vary with live fuel 
moisture content (Yebra et al., 2013). In this study, the chlorophyll 
content index and Pn were inconsistent across fire severity class. How
ever, their values were within the acceptable levels across fire severity 
and species. Although canopy temperature was similar across dNBR 
classes, Arbutus andrachne had lower leaf temperature than Pinus hale
pensis. Higher leaf temperatures in Pinus halepensis than Arbutus 
andrachne could partially explain the high flammability behavior of pine 
trees compared to other species. In addition, bare soil temperature was 
59.5% higher than canopy temperature. This result highlight the 
important of vegetation cover in mitigating the weather conditions, 
specifically temperature. 

Time series remote sensing indices for post-fire studies are some
times unrealistic and biased due to the saturation issues of vegetation 
indices which lead to an underestimation of the forest successional 
stages and an overestimation of the forest recovery rate (Chu et al., 
2016). In addition, the use moderate spatial resolution sensors such as 
Landsat (30 m) to delineate small details in the burned areas could be 
controversial. For example, in our study, the recovery assessment of the 
forest fire across the study period 2003–2020 required detailed infor
mation about the canopy diameter and height. Those data are available 
using Landsat sensor images. The assessment of burn severity across 
Mediterranean forest in Vesuvius National Park, Italy using 
medium-spatial resolution satellite imagery (Landsat-8 and Sentinel-2A) 
and field data revealed a very low agreement (0.15 < K < 0.21) between 
the burn severity class obtained from field-based indices (Composite 
Burn Index (CBI) and its geometrically modified version CBI) and dNBR 
derived from satellite sensor data (Saulino et al., 2020). Therefore, 
coupling medium-spatial resolution satellite imagery and field-based 
data is necessary to detect burn severity across Mediterranean forests. 
Coarse special resolution images from satellite sensors could lower the 
accuracy results especially small burdened areas. Arnett et al. (2015) 
assessed the usefulness of using the RapidEye (5 m) constellation and 
Landsat (Thematic Mapper TM, and Operational Land Imager OLI (30 
m) for detection small low severity fires in Western Canadian forest. EVI, 
NBR, and Soil Adjusted Vegetation Index (SAVI) derived from both 
sources were correlated with field reference data (simple burn index). 
Although all correlations between the ground and satellite sensors 
indices were significant (p < 0.01), overall accuracy was substantially 
varied across sensors. The RapidEye provided much more spatially 
detailed estimates of tree damage. Compared to Landsat (30 m), the high 
spatial resolution sensor (RapidEye, 5 m) had the potential to map fine 
scale forest attributes and resolve fire damage at the individual tree 
level. However, RapidEye does not have spectral information in the 
SWIR (water bands). This is important because the shortwave spectrum 
provides substantial information about water status in trees (Othman 
et al., 2014, 2015). Tree water status pre- and post-fire link to forest 
health and canopy temperature. It is therefore essential to understand 
the causes of fires as well as the regeneration process. Worldwide, 
Landsat and Sentinel images are the only free of charges, moderate 
temporal and spatial sensors that cover the SWIR spectral region. 

5. Conclusions and policy implications 

Overall, forest fires in Jordan have a long-lasting negative impact. 

Due to the climatic conditions, the recovery process can prolong to de
cades. In this study, Landsat-dNBR images revealed that the Latroon 
forest experienced a severe forest in August 2003 which lead to potential 
damage of 62% of the forest. Although recent Landsat-dNBR image 
(2020) classified moderate and high severity burned area that occurred 
in 2003 into the same severity category, ground reference measurements 
and UAV data revealed that the tree height of those plots (similar class 
according to dNBR, 2020) was extremely different, especially for Pinus 
halepensis; trees from the severely-burned area in 2003 were 135% 
shorter than the low-moderate plots according to ground and UAV re
sults. Overall, Landsat-dNBR did not detect the prolonged morpholog
ical (plant height) changes accurately after forest fire. Remote sensing 
from Landsat ETM + coupled with ground measurements and UAV data 
has the potential to improve our forest fire assessment by mapping fine 
scale forest attributes and examining the physiology of trees such as 
chlorophyll content and plant water status. While UAV can potentially 
estimate the tree height, surface reflectance data from Landsat sensors 
(NIR, vegetation greenness and density, SWIR, water status) hold 
promise for estimating the physiology of the canopy. 

Trends and projections of climate change in Jordan require new in
terventions and policies to mitigate and adapt to the causative factors for 
forest fires. More specifically, to: (1) control the development in the fire- 
prone ecosystems (reducing hazards from buildings and utilizing forests) 
and introduce the participatory management option to suppress in
cidences, as people must be prepared for taking actions for controlling 
the early phase of fires, (2) establish an inventory of forest types and 
status according to historically high frequency, and low-to moderate- 
severity fire regimes, and the assessment of forests survived of past high- 
fire periods for mapping potential fire locations for different types of 
forests, (3) set-up financial mechanisms for alleviating forest fires 
through preparing and executing efficient forest management plans that 
involve comprehensive rehabilitation and restorations activities. 
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