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Abstract: We discuss a computational model that describes stabilization of 
percept choices under intermittent viewing of an ambiguous visual stimulus at 
long stimulus intervals. Let 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑇𝑇𝑜𝑜𝑜𝑜 be the time that the stimulus is off and 
on, respectively. The behavior was studied by direct numerical simulation in a 
grid of (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, 𝑇𝑇𝑜𝑜𝑜𝑜) values in a 2007 paper of Noest, van Ee, Nijs, and van Wezel. 
They found that both alternating and repetitive sequences of percepts can appear 
stably, sometimes even for the same values of 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑇𝑇𝑜𝑜𝑜𝑜. Longer 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, however, 
always leads to a situation where, after transients, only repetitive sequences of 
percepts exist. We incorporate 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑇𝑇𝑜𝑜𝑜𝑜 explicitly as bifurcation parameters 
of an extended mathematical model of the perceptual choices. We elucidate the 
bifurcations of periodic orbits responsible for switching between alternating and 
repetitive sequences. We show that the stability borders of the alternating and 
repeating sequences in the (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, 𝑇𝑇𝑜𝑜𝑜𝑜) -parameter plane consist of curves of limit 
point and period-doubling bifurcations of periodic orbits. The stability regions 
overlap, resulting in a wedge with bistability of both sequences. We conclude by 
comparing our modeling results with the experimental results obtained by Noest, 
van Ee, Nijs, and van Wezel. 
Key Words: ambiguous visual stimulus, percept switching, periodic orbit, 
bifurcation 

INTRODUCTION 

Neural mechanisms in our brain have evolved to efficiently process 
visual stimuli that we encounter in our daily life, such that it leads to useful 
behavior (Gibson, 1979). With optical illusions and ambiguous stimuli these basic 
neural mechanisms can be probed and studying these illusions can help us better 
understand brain functioning and perception (e.g. Aks & Sprott, 2003; Gregson, 
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2004; Klink, van Wezel & van Ee, 2012; Stewart & Peregoy, 1983; Ta’eed, Ta’eed 
& Wright,1988; Tong, Meng & Blake, 2006). For ambiguous stimuli, such as, for 
instance, the Necker-cube (Necker, 1832), different percepts may exist depending 
on the problem’s parameters and under certain circumstances two (or sometimes 
more) percepts may coexist for the same parameters.  

Intermittent Stimulation of Bistable Stimuli, the Noest et al. Model 

We specifically focus on the phenomenon that intermittent stimulation 
with ambiguous stimuli leads to stabilized percepts when the time between 
subsequent stimuli 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 is long enough (Klink, van Ee, Nijs, Brouwer, Noest, & 
van Wezel, 2008; Maier, Wilke, Logothetis & Leopold, 2003; Noest, van Ee, Nijs, 
& van Wezel, 2007; Pearson & Clifford, 2004). When 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 is short, the percept 
continually switches from one to the other percept, i.e., the percept alternates.  

In Noest et al., (2007), the authors discuss a neural explanation of the 
stabilization of percept choices under intermittent viewing of an ambiguous visual 
stimulus. They consider the following system (for ease of applicability we use the 
readable notation of MATLAB): 

𝑋𝑋1′ = (𝑆𝑆𝑆𝑆𝑖𝑖𝑚𝑚 − (1 + 𝐴𝐴1) ∗ 𝑋𝑋1 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∗ 𝐴𝐴1 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∗ 𝑆𝑆(𝑋𝑋2))/𝑡𝑡𝑡𝑡𝑡𝑡, 
𝑋𝑋2′ = �𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − (1 + 𝐴𝐴2) ∗ 𝑋𝑋2 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∗ 𝐴𝐴2 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∗ 𝑆𝑆(𝑋𝑋1)� 𝑡𝑡𝑡𝑡𝑡𝑡,          ⁄  (1) 
𝐴𝐴1′ = −𝐴𝐴1 + 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎 ∗ 𝑆𝑆(𝑋𝑋1), 
𝐴𝐴2′ = −𝐴𝐴2 + 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎 ∗ 𝑆𝑆(𝑋𝑋2), 
with four variables, X1, X2 (neural activity of population for percept 1 and 2 
respectively), and A1, A2 (adaptation term for population 1 and 2 respectively) 
and  four fixed parameters a = 5 (adaptation strength), b = 4/15 (fixed baseline 
activity), g = 10/4 (cross-inhibition strength) and t = 1/50 (time constant of 
adaptation term).  

The primes represent first-order derivatives with respect to time. The 
primary dynamical variables 𝑋𝑋1, 𝑋𝑋2 are the ``local fields” corresponding to the 
percept-related components of the activity of the population of neurons that 
encode the two competing percepts, indicated by 1 or 2, respectively. To each 
primary variable, an adaptation variable is associated, called 𝐴𝐴1 and 𝐴𝐴2, 
respectively. In the local field interpretation, these correspond to the (averaged 
and scaled) gating variables of the neurons. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the amplitude of the stimulus. 
𝑆𝑆(𝑋𝑋1) is a sigmoidal function of 𝑋𝑋1, zero for negative values of 𝑋𝑋1, and equal to 
𝑋𝑋12/(1 + 𝑋𝑋12) for nonnegative values of 𝑋𝑋1. It represents the (averaged and 
scaled) firing rate of the neurons that contribute to the local field 𝑋𝑋1. The value 
of 𝑆𝑆(𝑋𝑋2) is defined in the same way. A different choice of the sigmoid function 
accompanied by a change of the system parameters 𝛼𝛼, 𝛽𝛽, 𝛾𝛾, does not influence the 
qualitative behavior of Eq. 1. 

Line 1 of Eq. 1 specifies how 𝑋𝑋1 integrates the stimulus with its 
adaptation variable 𝐴𝐴1 and the subtractive cross-inhibition 𝑆𝑆(𝑋𝑋2). The adaptation 
𝐴𝐴1 has two possible actions, inhibitory when 𝑋𝑋1 > 𝛽𝛽, or 𝑋𝑋1 < 𝐴𝐴1 𝛽𝛽/(1 + 𝐴𝐴1), 
and excitatory in the other cases. Line 2 of Eq. 1 is, of course, the dual of Line 1. 
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The adaptation dynamics in lines 3 and 4 of Eq. 1 is modeled by the standard 
“leaky integrator”. From the value of 𝜏𝜏, it is clear that 𝑋𝑋1, 𝑋𝑋2 are ``fast” variables 
of the system while 𝐴𝐴1, 𝐴𝐴2 are ``slow”.  
              In Noest et al. (2007), the authors consider a 128 𝑏𝑏𝑏𝑏 128 grid of points 
in (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, 𝑇𝑇𝑜𝑜𝑜𝑜) -space. For each point, they simulated the system with the stimulus 
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 in Eq. 1) alternatingly switched off during a time 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 and on during a time 
𝑇𝑇𝑜𝑜𝑜𝑜. The eventual behavior (after transients) varies with the choice of 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 and 
𝑇𝑇𝑜𝑜𝑜𝑜 but also depends on the initial values of the state variables.  

Figure 1 shows three projections of the stable behavior computed by time 
integration for 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 = 0.2 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑇𝑇𝑜𝑜𝑜𝑜 = 0.8 𝑠𝑠𝑠𝑠𝑠𝑠 (after a transient). We note that the 
behavior is periodic with period 2(0.2+0.8)=2 sec, and the time evolution shows 
an alternating sequence, i.e., after each on/off cycle (with period 0.2+0.8=1 sec) 
the percept switches from one (where 𝑋𝑋1 dominates) to the other (where 𝑋𝑋2 
dominates). 

Figure 2 shows three projections of a stable periodic orbit computed by 
time integration for 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 = 0.6 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑇𝑇𝑜𝑜𝑜𝑜 = 0.8 𝑠𝑠𝑠𝑠𝑠𝑠 (after a transient). We note that 
the period is 0.6+0.8=1.4 sec, and the time series shows a repeating percept, i.e., 
during each ``on”- period, 𝑋𝑋2 is larger than 𝑋𝑋1. (For a different choice of the 
initial values of the state variables it could be that the percept 𝑋𝑋1 is larger than 
𝑋𝑋2). 

For some parameter values, there is bistability, i.e., the behavior after the 
transient can be stably alternating or repeating, depending on the initial values of 
the state variables. An important observation in Noest et al. (2007) is that for fixed 
𝑇𝑇𝑜𝑜𝑜𝑜, increasing 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 stabilizes the behavior, i.e., it leads to a situation where the 
percept is the same whenever the stimulus switches on (but may still depend on 
the initial state). 
                                             Problem Description 

For a better understanding, it is essential to know for which values of 
(𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑇𝑇𝑜𝑜𝑜𝑜) the behavior is eventually alternating, repeating, or could be one of 
the two, depending on the initial values of the state variables. Since the state space 
is four-dimensional, it is not feasible to perform these simulations in each point 
of a four-dimensional grid in each of the 128 𝑏𝑏𝑏𝑏 128 grid points in (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑇𝑇𝑜𝑜𝑜𝑜)-
space. Moreover, this would not lead to a global understanding of why the 
behavior changes at certain parameter values. Therefore, we need a different and 
more global approach that focuses on the (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑇𝑇𝑜𝑜𝑜𝑜)-parameter values separating 
the domains with alternating, repeating, and bistable behavior. We will show that 
bifurcation theory and methods can be applied to understand this behavior better 
as has been suggested by previous studies. 

                                                   METHOD 

Equation 1 constitutes an example of a continuous dynamical system of 
the general form 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑥𝑥, 𝛼𝛼),     𝑥𝑥, 𝑓𝑓 ∊ 𝑅𝑅𝑛𝑛 , ∊ 𝑅𝑅𝑚𝑚 ,                           (2) 
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Fig. 1. Alternating stable periodic orbits computed for 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0.2, 𝑇𝑇𝑇𝑇𝑇𝑇 = 0.8.  
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Fig. 2. Repeating stable periodic orbits computed for 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0.6, 𝑇𝑇𝑇𝑇𝑇𝑇 = 0.8. 
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with state vector 𝑥𝑥, parameter vector 𝛼𝛼, and 𝑓𝑓 a sufficiently smooth function (in 
Eq. 1 𝑛𝑛 = 𝑚𝑚 = 4). The behavior of the solutions to such systems may 
qualitatively (not only quantitatively) depend on the parameter 𝛼𝛼, which we can 
be elucidated using bifurcation theory, an advanced topic in mathematical 
analysis, see, e.g., Kuznetsov (2004). In practice, applying bifurcation theory to 
specific situations requires numerical methods, except in simple artificial cases. 

MatCont Software 

The numerical bifurcation analysis of Eq. 2 requires a dedicated software 
package. For this purpose, we developed MatCont (Govaerts et al., 2019) as a 
MATLAB continuation toolbox. It is a successor package to LINBLF (Khibnik, 
1990) and CONTENT (Kuznetsov & Levitin, 1997). Earlier versions of MatCont 
and their functionalities were described in Dhooge, Govaerts & Kuznetsov 
(2003), and Dhooge, Govaerts, Kuznetsov, Meijer & Sautois (2008). The inner 
workings and details of the functionalities of the new GUI (from MatCont7.1 on) 
are described in Neirynck (2019). 

The MatCont GUI environment is freely available from www. 
sourceforge.net/p/matcont. The kernel of this software is a numerical continuation 
code that allows studying the variation of a dynamical object (e.g., a periodic 
orbit) under variation of one or more parameters.  

Bifurcation analysis usually starts with stable equilibria and periodic 
orbits, also referred to as limit cycles. One can find both by time integration of the 
system, see the MatCont manual (Govaerts et al., 2019, §6.2 and §7.4). Using 
numerical continuation varying a single system parameter, one can detect and 
study local codimension-1 bifurcations, i.e., limit points and Hopf points for 
equilibria, or limit points of cycles, period-doubling and Neimark-Sacker (torus) 
bifurcation points for periodic orbits. Further continuation of these codimension-
1 bifurcations under variation of two system parameters leads to the detection and 
study of the codimension-2 bifurcation points; there are 5 codimension-2 types of 
bifurcations of equilibria and 11 types for periodic orbits. With MatCont, one can 
study these bifurcations numerically and perform many related tasks. Bifurcation 
curves are defined by systems of equations that include bifurcation conditions.  

Each computed curve contains several special points, including the first 
point, the last point, and bifurcation points, but one may also define other entities 
as special points. A notable example of this is the case of an orbit where we 
identify a Select Cycle object as a special point. It allows us to start up the 
continuation of periodic orbits from an orbit computed by time integration. The 
user can choose the number ntst of test intervals to control the number of time 
intervals used in the approximation of the periodic orbit. On each interval, the 
periodic orbit is approximated by a polynomial (default degree 4). In this paper, 
we will always choose ntst=60. 

http://www.sourceforge.net/p/matcont
http://www.sourceforge.net/p/matcont
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RESULTS 

Our approach is to approximate the intermittent stimulus application by 
a continuous system with a periodic forcing with period 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑇𝑇𝑜𝑜𝑜𝑜. Therefore, 
we include 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑇𝑇𝑜𝑜𝑜𝑜 as new parameters in the system. The new system has 
six state variables 𝑋𝑋1, 𝑋𝑋2, 𝐴𝐴1, 𝐴𝐴2, 𝑌𝑌1, 𝑌𝑌2, and seven parameters, namely α, β, γ, 
τ, 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, 𝑇𝑇𝑜𝑜𝑜𝑜, expp. For ease of applicability, we use the readable notation of Matlab 
in such a way that the text can be copied directly into MatCont: 

𝑆𝑆1 = (X1^2)/(1 + X1^2)/(1 + exp(−expp ∗ X1)), 
𝑆𝑆2 = (X2^2)/(1 + X2^2)/(1 + exp(−expp ∗ X2)), 
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 2 ∗ 𝑝𝑝𝑝𝑝/(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇), 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1/(1 + exp (−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ (𝑌𝑌1 − cos (2 ∗ 𝑝𝑝𝑝𝑝 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇/2/(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + Ton)) ))), 
𝑋𝑋1′ = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − (1 + 𝐴𝐴1) ∗ 𝑋𝑋1 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∗ 𝐴𝐴1 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∗ 𝑆𝑆2)/𝑡𝑡𝑡𝑡𝑡𝑡, 
𝑋𝑋2′ = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − (1 + 𝐴𝐴2) ∗ 𝑋𝑋2 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∗ 𝐴𝐴2 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∗ 𝑆𝑆1) 𝑡𝑡𝑡𝑡𝑡𝑡,   ⁄           (3) 
𝐴𝐴1′ = −𝐴𝐴1 + 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎 ∗ 𝑆𝑆1, 
𝐴𝐴2′ = −𝐴𝐴2 + 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎 ∗ 𝑆𝑆2, 
𝑌𝑌1′ = −𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∗ 𝑌𝑌2 + 𝑌𝑌1 ∗ (1 − 𝑌𝑌1^2 − 𝑌𝑌2^2), 
𝑌𝑌2′ = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∗ 𝑌𝑌1 + 𝑌𝑌2 ∗ (1 − 𝑌𝑌1^2 − 𝑌𝑌2^2), 

The MatCont panels are described in Neirynck (2019, Ch. 5). To 
introduce Eq. 3 in MatCont, one starts by clicking Select/System/New in the main 
MatCont panel. Then Eq. 3 can be copied directly into the big input field in the 
System window. The system will be called ``PerceptSwitch”, and we let the 
Matlab symbolic toolbox compute the derivatives of order 1 to 3.  

The auxiliary variables 𝑆𝑆1, 𝑆𝑆2 in Eq. 3 approximate the sigmoid 
functions 𝑆𝑆(𝑋𝑋1), 𝑆𝑆(𝑋𝑋2) from Eq. 1, respectively. The new state variables 𝑌𝑌1, 𝑌𝑌2 
implement the periodic forcing. Their equations in Eq. 3 are decoupled from the 
other state variables, and one quickly sees that their stable behavior (after a 
transient) is a periodic orbit of the form 𝑌𝑌1 = cos(𝜔𝜔𝜔𝜔 + 𝑃𝑃) , 𝑌𝑌2 = sin(𝜔𝜔𝜔𝜔 + 𝑃𝑃) 
with a time shift P that depends only on the initial values of 𝑌𝑌1, 𝑌𝑌2. The period of 
the orbit is 𝑇𝑇 ≔ 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑇𝑇𝑜𝑜𝑜𝑜 , so the angular velocity is 𝜔𝜔 ≔ 2 𝜋𝜋

𝑇𝑇
. We have also 

introduced an additional parameter 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 to the system ``PerceptSwitch” in the 
equations for 𝑆𝑆1, 𝑆𝑆2, and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. By increasing its value, the smooth functions for 
𝑆𝑆1, 𝑆𝑆2, and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 in Eq. 3 converge to the non-analytical step sigmoid functions 
as used in Noest et al. (2007). In our computations, we use 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 60. When 
𝑌𝑌1, 𝑌𝑌2 evolve along the unit circle, then 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is alternatingly close to zero during 
a time  𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 and close to one during a time 𝑇𝑇𝑜𝑜𝑜𝑜, see Fig. 3 for this behavior (after 
a transient). The stimulus term 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 thus acts as an on/off switch for the periodic 
forcing of subsystem Eq. 1 in Eq. 3.  

With this setup, we can approximate in MatCont the computations in 
Noest et al. (2007) without having to integrate the system in Eq. 1 intermittently 
over time intervals 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑇𝑇𝑜𝑜𝑜𝑜 with Stim=0 and Stim=1, respectively. Instead, 
we compute orbits of ``PerceptSwitch” to reproduce (after a transient) Fig.1 and 
Fig.2. With the choice 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 60, the final behavior for (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, 𝑇𝑇𝑜𝑜𝑜𝑜) = (0.2,0.8) is 
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visually indistinguishable from the one in Fig.1, and for (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, 𝑇𝑇𝑜𝑜𝑜𝑜) = (0.6,0.8) it 
is indistinguishable from the one in Fig. 2. 

 
Fig. 3. The time evolution of Stim for  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0.4, 𝑇𝑇𝑇𝑇𝑇𝑇 = 0.8 after a transient. 

 MatCont allows us to study the transition changes based on the theory 
and numerics of codimension 1 and codimension-2 bifurcations of periodic orbits 
(Kuznetsov 2004; De Witte, Della Rossa, Govaerts, & Kuznetsov, 2013). We will 
not need to repeat computations on a grid. Instead, we will compute boundaries 
of regions in the (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, 𝑇𝑇𝑜𝑜𝑜𝑜)-plane where a particular type of behavior exists 
directly as curves of codimension-1 bifurcations of periodic orbits.  

We use the Select Cycle functionality mentioned above to study the 
stability regions of repeating and alternating periodic orbits. We start the 
continuation of limit cycles from the stable limit cycles in Figs. 1 and 2 varying 
𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜. Using the branch switching functionalities of MatCont, we construct the 
bifurcation diagram in (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, 𝑇𝑇𝑜𝑜𝑜𝑜)-space in Fig. 4 as follows. The first step is to 
continue the (alternating) periodic orbit starting from the one presented in Fig. 1 
for increasing values of 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜. MatCont detects an LPC (limit point of cycles) when 
the continuation path meets the right green boundary curve of the wedge. A 
particular phenomenon here is that MatCont detects the LPC points also as branch 
points of cycles (BPC); this is due to the periodic forcing of the ``PerceptSwitch” 
system, see also De Witte (2013), section 6.3; we can ignore this phenomenon for 
our purposes. 

From the detected LPC point, we start the continuation of LPC points 
forward and backward to trace the right boundary curve. To the right of this curve, 
there are no alternating periodic orbits.  

Next, starting from the (repeating) periodic orbit at (0.6,0.8) presented in 
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Fig. 2 and decreasing 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, MatCont detects another LPC when the continuation 
path meets the left boundary of the wedge. From the detected LPC point, we can 
start the continuation of LPC points forward and backward (i.e., trace the green 
part of the left boundary of the wedge) until it detects an LPPD point (a 
codimension-2 bifurcation of limit cycles). The lower (blue) part of the left 
boundary of the wedge can be traced similarly by starting from a stable repeating 
orbit at (0.4,0.4). Decreasing 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, we encounter a period-doubling (PD) 
bifurcation of limit cycles. A PD (or flip) bifurcation can generically appear on 
one-parameter curves of periodic orbits or fixed points of maps. Continuation 
starting from the PD point results in the (blue) period-doubling bifurcation curve 
containing a generalized period-doubling point (GPD, another codimension-2 
bifurcation of limit cycles). The parameter values of the LPPD point are 
(0.41416,0.60659) and the GPD point is at (0.29837,0.34146). Interestingly, 
the stability regions of alternating and repeating orbits overlap in the wedge 
shown in Fig. 4.  
 

 
Fig. 4. The wedge of bistability of alternating and repeating periodic orbits. Green: 
Curve of limit points of cycles. Blue: Curve of period-doubling bifurcations of 
cycles. 

DISCUSSION 

To conclude, we note that for the experimentally relevant part of (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, 
𝑇𝑇𝑜𝑜𝑜𝑜)-plane with 𝑇𝑇𝑜𝑜𝑜𝑜 between 0.5 and 0.9, there is considerable overlap of Fig. 4 
with Fig. 3c in Noest et al. (2007). In Noest et al. (2007), the zones with alternating 
percepts (blue) or repeating percepts (red) are pronounced. There is a small 
intermediate zone, though, with ill-defined behavior and seemingly irregular 
boundaries, which one may expect if both the alternating and repeating percepts 
are stable there so that for the same initial values of the state variables slightly 
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different values for 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑇𝑇𝑜𝑜𝑜𝑜 can lead to different percept sequences.  
The situation is presented more clearly in Fig. 4. The curves of 

codimension-1 bifurcations divide the (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, 𝑇𝑇𝑜𝑜𝑜𝑜)-plane into three regions. In the 
leftmost region, the only stable limit cycle exhibits the two percepts alternatingly. 
In the rightmost region, only the repeating percepts are stable. Finally, in between 
in the wedge, both types of stable limit cycles coexist. On the boundaries, stable 
limit cycles lose their stability either by a limit point of cycles bifurcation or by a 
period-doubling bifurcation.  

Though the irregular zone in Noest et al. (2007) has no precise 
boundaries, it is straightforward to check that it lies in our wedge of bistability. 
For example, for 𝑇𝑇𝑜𝑜𝑜𝑜 = 1/√2 , we find the irregular zone lies near 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜=0.4583, 
while the left LPC is at 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜=0.43936, and the right one is at 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜=0.48481. Our 
methods are equally applicable to other perceptual models with time-dependent 
stimuli, e.g., Jayasuriya and Kilpatrick (2012), though their model does not 
exhibit stabilization. 

With the approach that we have presented in this paper, it is not clear 
what the underlying biological mechanisms are of the different components of the 
model. However, our analysis makes predictions that could be tested in future 
human psychophysical studies, for instance, a more detailed analysis of percepts 
for different 𝑻𝑻𝒐𝒐𝒏𝒏 durations might reveal the more complicated boundaries that we 
predict from our modeling study.  
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