What is the Point: Formal Analysis and Test Generation for a Railway Standard

Mark Bouwman', Djurre van der Wal?, Bas Luttik!, Mariélle Stoelinga?, and Arend Rensink?

L Formal System Analysis Group, Eindhoven, University of Technology, The Netherlands.
E-mail: {m.s.bouwman, s.p.luttik} @tue.nl

2 Formal Methods & Tools Group, University of Twente, The Netherlands.
E-mail: {d.vanderwal-1, arend.rensink, m.i.a.stoelinga} @utwente.nl

EULYNX is an EU-level collaboration between railway infrastructure managers to standardize signaling interfaces.
The main goal of EULYNX is to provide, on an EU scale, a modular and flexible railroad architecture where
components can easily be exchanged. This also opens the market for specialized manufacturers that do not supply
the full range of control assets, but only single components.

Related to EULYNX is FormaSig, an effort to establish the safety of the EULYNX standard with mathematical
rigor. In particular, one of the main objectives of FormaSig is to translate the entire EULYNX standard from the
semi-formal language SysML to the formal language mCRL2. The resulting mCRL2 models will subsequently be
checked for important safety requirements and used for automated testing of actual EULYNX systems.

This paper presents a first case study in this direction, focusing on the EULYNX Point interface, which we have
converted to an mCRL2 model. We have also derived nine safety requirements, which have all been automatically
compared with the mCRL2 model. Finally, we have used the mCRL2 model to test an industrial simulator of the

EULYNX Point interface fully automatically.

Keywords: Formal analysis, mCRL2, Railway systems, SysML, Test automation.

1. Introduction

EULYNX? is an initiative involving more than
ten European railway infrastructure managers to
reduce the cost and installation time of signaling
equipment. This is done through standardization
of the interfaces between the interlocking — the
central device that controls most of the signaling
infrastructure — and field elements, such as sig-
nals, points, and level crossings: under the new
paradigm, the interlocking communicates over an
IP network with an object controller that steers
the field element (see Figure 7). The standard-
ization efforts should improve the interoperability
between components from different suppliers, and
thus lead to a significant reduction of the life cycle
costs of signaling systems.

For obvious reasons, infrastructure managers
are eager to include EULYNX to their system de-
velopment cycle, during which EULYNX-based
systems will be rigorously validated and verified
through a multitude of methods. Such methods
can be described as informal, static, dynamic,
or formal (Debbabi et al., 2010), but despite a
significant amount of research into the application
of formal methods in the area of safety-critical
railway systems (Fantechi, 2013) (Fantechi et al.,

2https://www.eulynx.eu

2014) (Basile et al., 2018) — focusing on the logic
of the interlocking, in particular (James et al.,
2014) (Haxthausen and Peleska, 2015) (Bonacchi
et al., 2016) — only informal, static, and dynamic
methods can be argued to be firmly integrated in
contemporary design procedures. The EULYNX
project presents an opportunity to resolve obsta-
cles to formal methods being deployed more fully,
which has evolved into FormaSigb, a collabora-
tion between academia (Eindhoven University of
Technology, University of Twente) and railway
infrastructure managers (ProRail, DB Netz AG).
In FormaSig, we use formal techniques to ad-
dress two major concerns that we identified for in-
frastructure managers: (i) the possibility of weak-
nesses in the EULYNX standard — whether they
be ambiguities or violated safety requirements —
that persist until the production stage; and (ii)
the task of testing EULYNX-based systems for
conformance to the EULYNX standard, which is
laborious and error-prone when performed man-
ually. The approach of FormaSig is inspired by
Bouwman et al. (2019), in which the model of
an interlocking in the formal language mCRL2
(Bunte et al., 2019) was used for both automated
requirement checking with the mCRL2 toolkit and

bFormal Methods in Railway Signaling Infrastructure Stan-
dardization Processes

Proceedings of the 30th European Safety and Reliability Conference and

the 15th Probabilistic Safety Assessment and Management Conference

Edited by Piero Baraldi, Francesco Di Maio and Enrico Zio

Copyright (© ESREL2020-PSAM15 Organizers.Published by Research Publishing, Singapore.

ISBN: 978-981-14-8593-0; d0i:10.3850/978-981-14-8593-0_4410-cd 921

Proceedings of the 30th European Safety and Reliability Conference and
the 15th Probabilistic Safety Assessment and Management Conference

EULYNX standard
in SysML (see §2.1)

A

translation

properties
(see §5)

Model-checking
with mCRL2 (see §2.2)

formal model
in mCRL2 (see §2.2)

Model-based testing
with JTorX (see §2.3)

implementation

do the properties hold
(if not, why not)?
yes/no

Fig. 1.

automated testing with JTorX (Belinfante, 2014).
In order to make the approach accessible to for-
mal non-experts, we extend it with a translation
from the semi-formal EULYNX specifications to
mCRL2, which is done manually at the current
stage of FormaSig but should ultimately become
an automated process. An overview of the ap-
proach can be found in Figure 1.

This paper presents an early case study, in
which we applied the FormaSig approach to the
EULYNX interface for the Point subsystem in
order to discover the more nuanced challenges of
the FormaSig project. Among other things, this
resulted in the exposure of several weaknesses in
EULYNX standard (such as when events that are
triggered by one system component are observed
by another system component), of which we no-
tified the responsible parties. In the big picture,
this paper contributes to the body of research into
applying formal methods in the railway industry.
Notable of our work is that (i) the derived formal
models are used for both verification and auto-
mated testing, (ii) a railway standard is analyzed
rather than a railway system, and (iii) formal mod-
els are derived directly from specifications that are
composed in a semi-formal language.

Our paper is organized as follows: the basics
of the EULYNX standard, the mCRL2 toolkit,
and model-based testing are explained in Sec-
tion 2; we give an overview of the EULYNX
Point interface in Section 3; Sections 4 to 7 de-
scribe the different components of the case study
— namely formalization, requirement elicitation,
formal verification, and model-based testing — and
the discussion, conclusions, and future work can
be found in Sections 8 and 9.

2. Preliminaries

This section explains the basic concepts behind
the EULYNX standard, the mCRL2 toolkit, and
model-based testing.

does the implementation
conform to the model?
yes/no

FormaSig setup. The formal model is used for property analysis and for implementation testing.

2.1. The EULYNX standard

EULYNX defines the interfaces of ten crucial
signaling systems, ranging from level crossings
to other nearby interlockings. The interfaces
are defined primarily with a custom (still ma-
turing) variant of the graphical semi-formal lan-
guage SysML°. SysML — which stands for ‘Sys-
tems Modeling Language’ — is a popular systems
engineering modeling language that is closely re-
lated to the ubiquitous Unified Modeling Lan-
guage (UML). SysML defines nine different di-
agram types, several of which are extended ver-
sions of UML diagram types, and two of which
are relevant to our case study.

Internal block diagrams (IBDs) are used to
show which data can be communicated to other
components of a system. This is done by draw-
ing components as blocks and by drawing data
that is consumed/produced by those blocks as in-
ward/outward ports on the borders. A connection
from an outward port to an inward port means that
the data that is produced by the former is con-
sumed by the latter. Figure 2 shows an example.

The behavior of a block is defined in EULYNX
by one or more state machine diagrams, which
is the second diagram type in EULYNX. State
machine diagrams — or simply ‘state machines’ —
make use of states that are connected by arrows
that define behavior (transitions). Such behavior
is only enabled when its transition starts at the
currently active state, but there is also exit/entry-
behavior, which is executed when a state becomes
active/inactive. ~ States can also contain other
states, and multiple contained states can be active
simultaneously if they belong to different parallel
regions of the containing state.

Component behavior itself is expressed with

ASAL, the Atego Structured Action Languaged.

‘https://www.omg.org/spec/SysML/
dhttps://support.ptc.com/help/modeler/r9.
0/en/index.html#page/Integrity_Modeler$%
2Fsysim%2FSySim_Atego_structured_action_
language.html%23

Proceedings of the 30th European Safety and Reliability Conference and
the 15th Probabilistic Safety Assessment and Management Conference

Interlocking

P1_pos
Iyl
i)

iy y!
)

Msg_Point_Position

Subsystem - Point

PM pos
Iry!
UL

Fig. 2. Example internal block diagram. ‘Subsystem - Point’
exposes its ‘Msg_Point_Position” data to the ‘Interlocking’
component; the ‘Interlocking’ component references the in-
coming data as ‘P1_pos’. There is also an unconnected port,
‘PM_pos’; this port is either connected to a block in another
internal block diagram, or it defines a connection with the
system environment.

The choice for ASAL is EULYNX-specific:
SysML does not give an explicit behavioral lan-
guage. ASAL is a mostly straightforward impera-
tive programming language, including conditional
statements, while loops, and basic operations on
Booleans, integers, and strings. See Figure 3 for
an example.

[No_END_posiTION |

after(10s) 1 v

(MOVING LEFT |
Lentry/MotoriDirection ="left" ’

when(PM_pos == "left")

when(PM_pos == "right")
A

([Lerr | RIGHT |

Fig. 3. Example state machine. Initially, the component is
in the ‘NO_END_POSITION’ state, moving to the ‘MOV-
ING_LEFT” state at an arbitrary moment. Upon entering the
new state, ‘Motor_Direction’ (an outward port of the block)
is set to a new value. Once there, the component waits until
‘PM_pos’ changes to “left” or “right”, moving to the ‘LEFT’
or ‘RIGHT’ state, accordingly. It will not wait longer than 10
seconds, however, because then the ‘after(10s)’ event forces
the component back to the ‘NO_END_POSITION’ state.

2.2. mCRL2

mCRL2 is a formal modeling language with an
associated toolset. It has an exact mathematical
interpretation — making it suitable for describing
a system with the precision that is required for
requirement verification — and it can be used from

both the command-line interface and from a user-
friendly GUI.

start_movement _left .)
= N arrive_left

- arrive_right
timeout

Fig. 4. Example of an LTS. The arrow without a label or
source state points to the initial state. From this LTS it can
be inferred that after starting a movement, either a timeout can
occur (after which a new movement may be initiated) or we
arrive at some position (the one we were moving towards or
not).

The semantics of mCRL2 is based on labeled
transition systems (LTSs), which consist of states
and labeled transitions between those states. An
example of an LTS is shown in Figure 4. Since
an LTS is an explicit representation of all possible
behaviors of a system, in practice it often has a
huge — or even infinite — number of states and
transitions. mCRL2 provides tools that assist with
this problem.

Before requirements of a system can be verified
with mCRL2, they must first be expressed in the
so-called modal i-calculus (Kozen, 1983), which
just like mCRL2 has a precise LTS-based interpre-
tation. The mCRL2 toolkit can subsequently be
used to check whether a yi-calculus formula holds
for a given mCRL?2 model (it provides a counter-
example when this is not the case; see Figure 1).

2.3. Model-based testing

Model-based testing is a technique for auto-
matically generating, executing, and evaluating
tests (Tretmans, 1996) (Haxthausen and Peleska,
2015). Its main prerequisite is the availability of
a system model in the form of an input/output-
LTS, or IOLTS: an extension of an LTS in which a
distinction is made between inputs (by convention
given names that end with a ‘?”) and outputs (with
names that end with a ‘!”). Figure 5, for example,
shows an input-output transition system similar to
the LTS from Figure 4.

Tests that are generated from an IOLTS are
essentially decision trees that track which stimuli
(°?’) are sent to a system and which responses (‘!”)
are expected. Branches always end with a pass or
fail verdict: when a test reaches a pass verdict,
it terminates (and another test can begin); when a
test reaches a fail verdict, the tested system does
not conform to the model, and testing is typically
stopped altogether.

Proceedings of the 30th European Safety and Reliability Conference and
the 15th Probabilistic Safety Assessment and Management Conference

start_movement _left?

.

timeout!

Fig. 5. Example of an IOLTS. It has one input, namely
start_-movement_left?, and two outputs, namely arrive_left!,
and timeout!.

<

arrive_left!,

rrive_right!,

timeout!

fail

7

start_movement left?

}

D

arrive_[eﬁ_/ rrive_right !
pass fail
timeout!
arrive_left!,
C arrive_right!,

timeout!

fail

start_movement_left?

4
‘ f/‘

¥

arrive_left!,

timeout! arrive_right!

F

pass fail

Fig. 6. Example of a test that could have been generated from
the IOLTS from Figure 5, depicted as a decision tree.

Figure 6 depicts the decision tree of a test for
the IOLTS in Figure 5. At the start of this tree, one
input is accepted and all outputs are rejected; then,
arrive_left! and timeout! are accepted (but only
arrive_left! ends the test) whereas arrive_right! is
rejected; and after timeout!, the behavior can be
tested a second time. Note that if we were to use
the decision tree to test a system that is described
by the LTS in Figure 4 (ignoring missing ‘?” and
’1”), the system would receive a fail verdict if it
would move along the arrive_right transition (but
this does not necessarily happen).

In this paper, we use the model-testing tool
JTorX (Belinfante, 2014), which supports test
generation for mCRL2 models.

3. Case study: Point

A point is a common railway element that makes
it possible to split one railway track into two
railway tracks — or, conversely, to merge two

railway tracks into one railway track. Typically,
a point is implemented with two rails that are
moved laterally between two end positions (left
and right) by the motors of one or more point
machines. Depending on the end position of the
point — which is detected by sensors — one of
the two branching railway tracks is the current
destination/origin track of an approaching train.

Under EULYNX, a field element such as a point
is controlled by an object controller: a component
that manages a field element locally, communi-
cating with the interlocking (the central computer
that controls the signaling equipment in an area)
with a specific communication interface that is in-
dependent of the underlying implementation (see
Figure 7). In other words, EULYNX specifies
the interaction between the interlocking and the
object controller, and not how the object controller
should interact with its field element.

Interlocking logic

EULYNX
scope

€

Point machine

Fig. 7. Scope of the EULYNX point interface specification.

The EULYNX point interface specification is
divided into a generic part and a specialized part:
the former is the same for all field element types
and includes behavior for situations such as con-
nection start, incoming instructions, power loss,
and timeouts; the latter describes the actual steer-
ing of the point and the reporting of its position.
The two parts are mutually dependent: the special-
ized part can access the current connection status,
for example, and the generic part is notified when
the specialized part has transmitted its status to the
interlocking.

The EULYNX point interface specification con-
sists of 12 blocks and 131 communication chan-
nels that are distributed over five internal block
diagrams. The behavior of these blocks is defined
by nine state machine diagrams with a total of
64 states (between three and 13 states per state
machine). Note that not all ports in the internal
block diagrams are connected: the core interlock-
ing logic, for example, is part of the environ-
ment, meaning that the position of the point is
sent to the environment without specifying what
the interlocking logic does with that information.

Proceedings of the 30th European Safety and Reliability Conference and
the 15th Probabilistic Safety Assessment and Management Conference

Unconnected input ports are assumed to always be
able to receive a message, such as a request from
the interlocking logic to move the point.

4. Formalization of the Point interface

In order to unlock the potential of verification
and model-based testing, the SysML model of
the Point interface needs to be converted to a
formal model, or formalized, as shown in Figure
1. Formalization of a system that is specified in
SysML is not a new challenge, by itself, including
the development of tools for editing and analyzing
SysML models (Linhares et al., 2007) (Debbabi
et al., 2010) (Pétin et al., 2010) (Pedroza et al.,
2011) (Pétin et al., 2010) (Chouali and Ham-
mad, 2011) (Morkevicius and Jankevicius, 2015).
Based on our estimation of existing work, how-
ever, there is no research into the dialect of SysML
that is used in EULYNX, and we could not find a
formalization in a format that is suitable for both
model-checking and model-based testing (such as
mCRL2). Developing a new formalization has
therefore become part of our enterprise.

The decision of the EULYNX initiative to use
the semi-formal language SysML for its specifica-
tions has advantages, such as its inviting imagery
and expressiveness, but for us it also means that
we are occasionally forced to make subjective
choices in our interpretation. UML/SysML in-
tentionally leaves the behavior of event buffers of
state machines unspecified, for example; and the
action language of EULYNX, ASAL, lacks a for-
mal semantics completely, forcing us to consider
whether or not sequences of ASAL instructions
can be interrupted by incoming events from other
state machines (which we permit in order to max-
imize the potential for unintended interactions).

We justify our interpretation as much as possi-
ble through discussions with experts in the railway
signaling domain and by consulting the litera-
ture on other SysML formalizations (interestingly,
these do not always align). In addition, we refer-
enced literature on available semantics (Lilius and
Paltor, 1999) (Varr6, 2002) (Ober et al., 2011),
algorithms (Gnesi et al., 2004), and overviews of
ambiguities, contradictions, and underspecifica-
tions (Fecher et al., 2005).

To obtain a formal model we manually trans-
lated the state machine diagrams and the internal
block diagrams to an mCRL2 model such that
each state machine is represented by a parallel
component in the mCRL2 language and each flow
from the internal block diagrams is defined as
a communication channel. The mCRL2 model
therefore combines the behaviors of all state ma-
chines and all of their interactions.

5. Requirement elicitation for the Point
interface

To assess the quality of the EULYNX standard we
intend to verify requirements on all the execution
paths of the system. Because of the safety-critical
nature of railway signaling systems, such require-
ments should go beyond checks for reachability
and deadlock-freedom. Eliciting these more ad-
vanced requirements is an explicit concern of the
FormaSig project.

A challenge in formulating more advanced re-
quirements is that the prerequisite knowledge is
mostly split between the academic partners of
FormaSig and the infrastructure managers: the
former only possess the skills to formulate formal
requirements, and the latter only possess the sig-
naling domain knowledge. To overcome this chal-
lenge, we adopted an iterative process of require-
ment elicitation. Each iteration started with some
initial requirements in natural language, which we
refined based on feedback from interviews with
signaling experts. We then attempted to verify the
refined requirements with mCRL2, resulting in a
better understanding of their context and mean-
ing, and possibly resulting in even more refined
requirements. We translated these requirements
back to natural language, and interviewed signal-
ing experts again.

For example, the following requirement was
derived from an interview with a signaling expert:
“The object controller may only instruct the point
machines to move when this is commanded by the
interlocking.” In order to formalize this require-
ment in p-calculus, it had to be expressed in terms
of events, and so we added that “a movement
command from the interlocking allows the object
controller to initiate a movement to a certain posi-
tion until either a timeout occurs or when the end
position is reached”. When checking the mCRL?2
model for this requirement, however, we found a
counterexample in which the interlocking sends
two movement commands for opposing end posi-
tions in a row; we resolved this issue by allowing
the movement until “either a timeout occurs, the
end position is reached, or a movement command
for the opposing position is received”, instead.
With this addition the requirement holds.

In total, we formulated nine requirements,
seven relating to generic behavior and two specific
for point behavior.

6. Formal verification of the Point
interface

Once we have a formal model, we can use formal
verification techniques to check the quality of the
model and, by extension, the specification. To
this end, we used the mCRL2 toolkit to verify the
elicited requirements. The number of states in the
LTS of the model containing both the generic and

Proceedings of the 30th European Safety and Reliability Conference and
the 15th Probabilistic Safety Assessment and Management Conference

point specific behavior, turned out to be huge (in
excess of 5 billion states). We got around this by
splitting the mCRL2 model into two models: one
containing the generic behavior and one contain-
ing only the point interface behavior. We were
able to check all requirements using these two
models.

The statespace induced by the model containing
only the point specific interface behavior con-
sists of 1.518.070.128 states and 12.819.240.064
transitions. The two relevant requirements both
hold, which took a week to verify. The statespace
induced by the model containing only the generic
interface behavior consists of 32.971.396 states
and 332.333.594 transitions. Checking the seven
relevant properties took 162 minutes, one property
does not hold, all others do.

The mCRL2 toolset provided a counterexample
for the property that does not hold: a part of
the statespace that violates the requirement. This
counterexample showed that a specific sequence
of messages could lead to a deadlocked state: a
state of the system after which no further be-
havior is possible. Further analysis revealed the
cause of the deadlock. SysML does not pre-
scribe how event buffers should be implemented
and neither does EULYNX. Event buffers, which
contain messages sent by other state machines,
are assumed to be of fixed size in our model and
can hence be full. The counterexample showed
a situation where two state machines with a full
buffer want to send something to each other. Since
the buffers are full, these send actions cannot take
place and the state machines will infinitely wait on
each other to empty their buffer.

7. Model-based testing of the Point
interface

The mCRL2 model combining generic field el-
ement behavior and Point-specific behavior was
used to perform tests with JTorX on a third-party
simulator that was derived from the same SysML
diagrams. The mCRL2 model was customized
to hide communications that are internal to the
simulator and can hence not be observed during
testing.

JTorX generates tests on-the-fly (online test-
ing), but we chose to use offline test generation
instead. This made it possible for us to re-use
pregenerated test suites during the development
of the test execution code, avoiding the time that
JTorX requires for test generation (between 5 and
15 minutes for generating a sequence of ~100 test
steps). Because JTorX does not support offline
test generation directly, we used AutoHotkey®,
a framework for automated interaction with the
MS Windows GUI. Our AutoHotkey script ap-
plies stimuli by simulating keyboard and mouse

®https://www.autohotkey.com/

inputs to JTorX’s GUI, and it extracts responses by
requesting the contents of control elements from
the operating system and by determining the color
of pixels at specific positions. Figure 8 gives an
overview of the script’s architecture.

mCRL2 | Ips2torx
model —> JTorX

available
X inputs/outputs

randomly selected
stimulus/response

AutoHotkey script »| test

Fig. 8. Test generation setup.

Just like the test generation itself, we execute
the generated tests with an AutoHotkey script; see
Figure 9 for its setup. As a consequence of the
offline test generation, the script may encounter
an output in the contents of the simulator GUI that
is accepted, but for which there is no subsequent
behavior defined; in such cases, the AutoHotkey
script terminates — prematurely, as it were — pro-
ducing a pass verdict. It is also possible that
outputs appear simultaneously in the simulator
GUI but exist as separate outputs in the model; this
has been resolved by capturing simulator outputs
in a buffer and consuming them on demand.

simulator

A

stimulus responses

Y

does the simulator
> conform to the test?
yes/no

test » AutoHotkey script

Fig. 9. Test execution setup.

For this paper, we generated 82 tests of ~ 100
steps from the PDI/Point mCRL2 model and ex-
ecuted them. Test generation took ~ 10 minutes
on average; test execution took ~ 24 minutes
on average. The third-party simulator eventually
passed all of the tests, although several iterations
of test execution were required before the model
and the simulator were properly integrated (the
model assumed that the point would start in ‘no
end position’, for example, whereas the simulator
could also be in the ‘left’ or ‘right’ end position).

A third of all tests (24 out of 82) terminated
prematurely with a pass verdict, completing about
half of their test steps on average (note that the
impact on the usefulness of our manner of test
generation is limited because the mCRL2 model
of the EULYNX point is fairly predictable: it does

Proceedings of the 30th European Safety and Reliability Conference and
the 15th Probabilistic Safety Assessment and Management Conference

not contain many diverging paths that produce
different outputs for the same input).

8. Discussion

The case study in this paper is a step towards
using unambiguous formal models to improve
EULYNX standards and test delivered compo-
nents, as shown in Figure 1. In this section we
will reflect on the lessons learned, potential short-
comings and remaining challenges.

Let us begin by discussing the formalization.
Firstly, as mentioned in Section 4, SysML con-
tains a number of ambiguities. By choosing a
specific interpretation of SysML and translating to
a formal language, these ambiguities are no longer
present. If the translation is also automatic, a
unique unambiguous interpretation can be associ-
ated with each SysML model. However, whether
our choices are consistent with the interpretations
of signaling experts is uncertain, and requires fur-
ther research.

Secondly, EULYNX defines all communica-
tion between state machines as asynchronous and
buffered. Asynchronous communication is real-
istic for communication between, for example,
the interlocking and the field element. However,
in the case of communication between state ma-
chines within the same system other forms of
communication — e.g. shared variables — might
also be realistic; this would reduce the total num-
ber of states, making verification easier.

Finally, our models do not contain an aspect
of time. A number of the requirements that we
elicited are related to time: under certain condi-
tions some output must be produced quickly. We
verified these requirements by checking whether
the desired output is produced within a finite num-
ber of steps in the model. It would be desirable to
check the stronger requirement of whether the de-
sired output is always produced within a specific
time frame. At the moment, the EULYNX SysML
models lack necessary information on the duration
of events, such as the time it takes for a message
to reach its destination.

Our approach of eliciting and formalizing re-
quirements requires back and forth translation be-
tween natural language and the modal p-calculus.
Moreover, the final formal requirements cannot be
read by signaling experts. The process of eliciting
requirements would benefit from an intermediate
requirements format: a (visual) format close to
SysML from which a modal p-calculus formula
can be derived automatically. This would make
formal requirements accessible to signaling ex-
perts.

With regard to the model-based testing in our
case study, we mainly consider the performance
of the test generation and test execution. Test gen-
eration took fairly long, although from the litera-
ture we surmise that this underperformance is not

representative, and there are several changes that
we could make to our test environment in order to
resolve this (we may currently be running a non-
optimally compiled version of the 1ps2torx
tool, for example). Test execution is also time-
consuming. Naturally, this could be alleviated
in the case of a simulator by integrating the test
environment directly at source code level, but we
should anticipate that tests with live systems may
be similarly sluggish, meaning that randomly gen-
erated tests may have to be abandoned in favor of
more targeted testing methods.

Finally, we have not yet quantified the effec-
tiveness of our proof-of-concept test setup. Our
thoughts on how to proceed on that front can be
found in the next section.

9. Conclusions and future work

We have shown that it is feasible to formalize
EULYNX SysML models to mCRL2 and to sub-
sequently perform verification and model-based
testing. This case study has helped us to gain in-
sights into the semantics of SysML and the ASAL
action language and how they can be translated to
mCRL2.

Future work of FormaSig will be directed at
streamlining the application of formal methods in
the context of EULYNX and making it more ac-
cessible for signaling engineers. The goal of For-
maSig is that, eventually, formal methods will be
applied to all interfaces standardized in EULYNX.

This will partly be achieved by automating the
translation from SysML to mCRL2, which will
eliminate the time needed to construct and main-
tain mCRL2 models by hand as well as prevent
human translation errors. A likely challenge with
an automated translation is that it might be more
difficult to abstract from details to reduce the size
of the state space. We will also put effort into
translating counterexamples to SysML sequence
diagrams, and finding a notation for requirements
that can be understood by signaling experts and
which is unambiguous enough to be directly trans-
lated to a modal p-calculus formula. To do so,
we are considering visual requirements languages
with a formal semantics in the literature, such as
Live Sequence Charts (Brill et al., 2004).

We also plan to investigate ways to improve our
test setup. One possibility is to deploy coverage-
based testing (Briones et al., 2006) (van den Bos
and Tretmans, 2019), which is a model-based test-
ing method in which tests are generated with the
aim to reach all transitions in a model. We should
also provide an indication of the thoroughness of
our test methods, for example by using mutant
testing (Jia and Harman, 2010) (counting the num-
ber of tests/steps that is required on average in or-
der to determine that an incorrect implementation
does not conform to a model).

Proceedings of the 30th European Safety and Reliability Conference and
the 15th Probabilistic Safety Assessment and Management Conference

Acknowledgements and disclaimer

FormaSig and this work (by extension) are fully
funded by DB Netz AG and ProRail; at the same
time, the vision illustrated in this article is not part
of the strategy of DB Netz AG or ProRail, but
reflects the personal views of the authors.

References

Basile, D., M. H. ter Beek, A. Fantechi, S. Gnesi,
F. Mazzanti, A. Piattino, D. Trentini, and
A. Ferrari (2018). On the industrial uptake
of formal methods in the railway domain. In
International Conference on Integrated Formal
Methods, pp. 20-29. Springer.

Belinfante, A. (2014). JTorX: Exploring Model-
Based Testing. Ph. D. thesis, University of
Twente, Enschede, Netherlands.

Bonacchi, A., A. Fantechi, S. Bacherini, and
M. Tempestini (2016). Validation process for
railway interlocking systems. Science of Com-
puter Programming 128, 2-21.

Bouwman, M., B. Janssen, and B. Luttik (2019).
Formal modelling and verification of an in-
terlocking using mCRL2. In Proceedings of
FMICS 2019, pp. 22-39. Springer.

Brill, M., W. Damm, J. Klose, B. Westphal, and
H. Wittke (2004). Live sequence charts: An
introduction to lines, arrows, and strange boxes
in the context of formal verification. In In-
tegration of Software Specification Techniques
for Applications in Engineering, pp. 374-399.

Briones, L. B., E. Brinksma, and M. Stoelinga
(2006). A semantic framework for test cov-
erage. In Proceedings of ATVA, pp. 399-414.
Springer.

Bunte, O., J. E. Groote, J. J. A. Keiren,
M. Laveaux, T. Neele, E. P. de Vink, W. Wes-
selink, A. Wijs, and T. A. C. Willemse (2019).
The mCRL2 toolset for analysing concurrent
systems - improvements in expressivity and us-
ability. In Proceedings of TACAS 2019, Part 11,
pp. 21-39.

Chouali, S. and A. Hammad (2011). Formal
verification of components assembly based on
SysML and interface automata. Innovations in
Systems and Software Engineering 7(4), 265—
274.

Debbabi, M., F. Hassaine, Y. Jarraya, A. Soeanu,
and L. Alawneh (2010). Verification and
Validation in Systems Engineering: Assessing
UML/SysML Design Models. Springer Science
& Business Media.

Fantechi, A. (2013). Twenty-five years of formal
methods and railways: What next? In SEFM
2013 Collocated Workshops, Revised Selected
Papers, pp. 167-183.

Fantechi, A., F. Flammini, and S. Gnesi (2014).
Formal methods for railway control systems.
Int. J. Softw. Tools Technol. Transf. 16(6), 643—
646.

Fecher, H., J. Schonborn, M. Kyas, and W. P.
de Roever (2005). 29 new unclarities in the
semantics of UML 2.0 state machines. In Pro-
ceedings of ICFEM 2005, pp. 52-65.

Gnesi, S., D. Latella, and M. Massink (2004). For-
mal test-case generation for UML statecharts.
In Proceedings of ICECCS, pp. 75-84. IEEE.

Haxthausen, A. E. and J. Peleska (2015). Model
checking and model-based testing in the rail-
way domain. In Formal Modeling and Verifi-
cation of Cyber-Physical Systems, pp. 82—121.
Springer.

James, P, F. Moller, N. H. Nga, M. Roggen-
bach, S. A. Schneider, and H. Treharne (2014).
Techniques for modelling and verifying railway
interlockings. STTT 16(6), 685-711.

Jia, Y. and M. Harman (2010). An analysis and
survey of the development of mutation test-
ing. IEEE transactions on software engineer-
ing 37(5), 649-678.

Kozen, D. (1983). Results on the propositional -
calculus. Theoretical computer science 27(3),
333-354.

Lilius, J. and I. P. Paltor (1999). Formalising UML
state machines for model checking. In Inter-
national Conference on the Unified Modeling
Language, pp. 430—444. Springer.

Linhares, M. V., R. S. de Oliveira, J.-M. Farines,
and F. Vernadat (2007). Introducing the mod-
eling and verification process in SysML. In
IEEE Conference on Emerging Technologies
and Factory Automation, pp. 344-351. IEEE.

Morkevicius, A. and N. Jankevicius (2015). An
approach: Sysml-based automated require-
ments verification. In International Sympo-
sium on Systems Engineering (ISSE), pp. 92—
97. IEEE.

Ober, I, I. Ober, I. Dragomir, and E. A. Abous-
soror (2011). UML/SysML semantic tunings.
Innovations in Systems and Software Engineer-
ing 7(4), 257-264.

Pedroza, G., L. Apvrille, and D. Knorreck (2011).
AVATAR: A SysML environment for the formal
verification of safety and security properties. In
International Conference on New Technologies
of Distributed Systems, pp. 1-10. IEEE.

Pétin, J.-F., D. Evrot, G. Morel, and P. Lamy
(2010). Combining sysml and formal methods
for safety requirements verification.

Tretmans, J. (1996). Test generation with inputs,
outputs and repetitive quiescence. Software-
concepts and tools 17(3), 103-120.

van den Bos, P. and J. Tretmans (2019). Coverage-
based testing with symbolic transition systems.
In D. Beyer and C. Keller (Eds.), Tests and
Proofs, Cham, pp. 64-82. Springer Interna-
tional Publishing.

Varrd, D. (2002). A formal semantics of UML
statecharts by model transition systems. In
International Conference on Graph Transfor-
mation, pp. 378-392. Springer.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

