
Automation in Construction 129 (2021) 103817

Available online 20 June 2021
0926-5805/© 2021 Elsevier B.V. All rights reserved.

Vision-based method of automatically detecting construction video 
highlights by integrating machine tracking and CNN feature extraction 

Bo Xiao a, Xianfei Yin b, Shih-Chung Kang a,* 

a Department of Civil and Environmental Engineering, University of Alberta, Edmonton T6G 1H9, Canada 
b Department of Construction Management and Engineering, University of Twente, Enschede, the Netherlands.   

A R T I C L E  I N F O   

Keywords: 
Video highlight detection 
Keyframe extraction 
Object tracking 
Deep learning 
Productivity analysis 

A B S T R A C T   

Automatic analysis of construction video footage is beneficial for project management tasks such as productivity 
analysis and safety control. However, construction videos are usually long in duration and only contain limited 
useful information to engineers, while the storage of video data from construction projects is challenging. To 
obtain and store useful video footage systematically and concisely, this research proposes a vision-based method 
to automatically generate video highlights from construction videos. The proposed approach is validated through 
two case studies: a gate scenario and an earthmoving scenario. In experiments, the proposed method has ach
ieved 89.2% on precision and 93.3% on recall, which outperforms the feature-based method by 12.7% and 
17.2% on precision and recall, respectively. Meanwhile, the proposed method reduces the required digital 
storage space by 94.6%. The proposed approach offers potential benefits to construction management in terms of 
significantly reducing video storage space and efficiently indexing construction video footage.   

1. Introduction 

Cameras have emerged as an important piece of equipment in con
struction management, widely used for remote monitoring of job sites. 
In surveying 142 construction experts, Bohn and Teizer [1] identified 
that construction cameras can efficiently reduce project budgets in terms 
of communication, resource management, and site security. Indeed, 
construction videos contain important visual information that can serve 
multiple purposes in project management, such as crew productivity 
evaluation [2], material logistics management [3], and safety control 
[4]. As such, systematic storage of construction video footage is critical 
with respect to the retrieval, analysis, and documentation of construc
tion activities throughout the project life cycle. 

Despite offering a range of potential benefits, the use of raw con
struction video footage is challenged in two notable respects. First, 
retrieval of the desired information from unstructured construction 
video footage is time-consuming and labor-intensive because construc
tion videos have a long duration and only a few clips contain useful 
project information [5]. In this regard, some owners and engineers un
derestimate the value and utility of construction videos due to the dif
ficulty of browsing these videos. Second, the sheer volume of video 
footage generated from continuously recording construction sites can 

become unmanageable. For instance, a one-hour video in 1080p reso
lution necessitates approximately 2 GB of digital storage space. 
Assuming one camera streams 3000 h in a one-year construction project, 
6000 GB of space is required for storing this footage. As such, many 
project managers prefer to delete videos at one- or two-week intervals, 
resulting in a loss of video records that may be of some value for future 
reference. 

Construction videos contain a significant number of redundant 
frames that can be potentially eliminated without losing the relevant 
project management information [6]. For example, the footage captured 
during non-working hours has negligible value for management pur
poses. Even in working hours, most video clips are useless when project 
progress is slow. By removing these unnecessary frames, processed video 
can replace the raw construction videos for productivity analysis, lo
gistics management, and safety control. By attaching the time stamp and 
content information (e.g., objects and activities), the condensed video 
can be stored economically, more easily indexed, and efficiently 
retrieved for project management purposes. 

Video highlight detection is a technology refers to the process of 
creating a summary of important video clips from the original video, and 
the generated video highlights should have three properties including 
minimum repetition, representativeness, and diversity [7]. The video 
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highlights allow users to obtain certain perspectives of a video without 
having to view the raw footage in its entirety. This technology has 
enjoyed success in the entertainment field (e.g., sports highlights and 
films) [8]. In construction, video highlight detection can be used to 
“distill” the raw construction videos and help project managers to 
quickly understand the salient developments at a given job site. 
Generally, highlight detection methods select keyframes based on image 
feature changes and then combine clips around keyframes to produce 
video highlights. However, for three reasons in particular, these feature- 
based methods are not able to efficiently detect construction video 
highlights: (1) construction videos have frequent illumination changes, 
which decrease the highlights detection performance; (2) keyframes in 
construction cannot be simply defined as the frames with image features 
change rapidly; and (3) video highlights are expected to be interpretable 
and flexible for construction management. 

To address these issues, this paper proposes a vision-based method to 
detect video highlights from construction videos. The proposed method 
explores the context information from videos by tracking construction 
machines, and then selects object keyframes by analyzing the content 
information as prescribed by pre-defined construction rules. In parallel, 
convolutional neural networks (CNN) are employed to extract features 
from each frame, while the feature keyframes can be selected by 
calculating the feature changes. As such, the object keyframes and 
feature keyframes can be processed to produce video highlights. By 
combining the context and feature information, the proposed method 
can generate accurate and representative video highlights to replace the 
original raw construction video footage. This research is expected to 
help project managers to efficiently retrieve and economically store 
their job site video footage. 

2. Literature review 

This section presents a review of the literature related to the detec
tion of video highlights in construction video footage. First, work related 
to the use of video recording to monitor construction sites is introduced. 
Second, the state-of-the-art of video highlight detection methods is 
reviewed, addressing both the mechanism and the various applications 
that have been reported. Finally, a comprehensive review of the progress 
made with respect to applying video highlight detection in construction 
engineering is presented. 

2.1. Video monitoring in construction 

Video monitoring of sites has become increasingly popular in con
struction management in recent years, as it allows project managers to 
monitor the status of their job sites remotely [9]. Compared with other 
monitoring technologies (e.g., GPS, radio frequency identification, laser 
scanner), the use of cameras offers the advantages of lower cost, simple 
installation and maintenance, and larger monitoring range [10]. Cam
eras can also reduce project budgets in terms of communication, 
resource planning, and site security [1]. In these respects, cameras are 
versatile tools in construction engineering for delivering high-quality 
and more economical projects. 

Construction video footage contains important visual information 
that can be used for productivity analysis, safety management, and 
carbon footprint monitoring [11]. For instance, Roberts and Golparvar- 
Fard [12] proposed an end-to-end framework to calculate excavator 
productivity based on video footage of earthmoving operations. To 
facilitate site safety, Chi and Caldas [13] tracked construction machines 
from videos to prevent potential collisions. To minimize environmental 
impact during construction, Heydarian et al. [14] benchmarked the 
carbon footprint of construction machines in earthmoving projects using 
a vision-based method. Besides the abovementioned benefits, con
struction videos are naturally easily understood and interpreted by 
humans, and are widely adopted as a form of official project docu
mentation [15]. However, with the increasing use of video monitoring in 

construction, the efficient storage and use of the large volumes of video 
footage that result from video monitoring of sites has emerged as an 
important challenge in construction research. 

2.2. Video highlight detection methods 

Video highlight detection methods have been researched and used in 
various applications, including sports highlights, film industry, and 
video surveillance [16]. For example, Merler et al. [17] developed 
multimodal excitement features to generate video highlights from a golf 
tournament (2017 Masters) and two international tennis tournaments 
(2017 Wimbledon and U.S. Open), where the results having been closely 
aligned with the official video highlights. Wang et al. [18] proposed a 
contrastive attention module as the feature representations to produce 
trailers from full-length movies. Kumar and Shrimankar [19] have 
proposed a novel deep learning method to extract video highlights from 
multi-view surveillance videos. Furthermore, Kumar et al. [20] have 
introduced the self-organizing map into the video highlights detection in 
video surveillance. 

A typical video highlight detection method extracts features from 
raw videos and then selects keyframes by analyzing changes in the 
feature space across frames. The video clips around keyframes, usually 
several seconds, are combined to produce the video highlights for users 
[8]. Feature extraction and keyframe selection are the main focuses in 
the computer vision community. A large number of features have been 
studied for the task of video highlight detection. For example, Laganière 
et al. [21] integrated the spatio-temporal Hessian matrix to collect 
image features for video highlight detection. Liu et al. [22] adopted the 
scale-invariant feature transform (SIFT) to identify the boundary of 
video highlights. The deep neural network has also emerged as a 
promising method for extracting features from images by learning from 
human-created datasets. Mahasseni et al. [23] employed the long short- 
term memory network (LSTM) to summarize video highlights. Hussain 
et al. [24] have integrated the CNN and bi-directional LSTM for video 
summarization using cloud platform for computationally intensive 
processing. Following this, in an advanced research, Hussain et al. [25] 
implemented a CNN based video highlights detection method on the 
Internet-of-things platform. Kumar and Shrimankar [26] have adopted 
CNN technology to detect video highlights from multi-view videos. 
Kumar [27] has integrated CNN and optimal local alignment strategy for 
video highlights detection on the cloud. 

Keyframes are a set of representative frames in videos that define the 
quality of the video highlights. One approach in this regard has been to 
calculate the Euclidean distance of every two continuous frames. The 
keyframes can then be identified as the points in the video footage where 
feature distance changes rapidly [28]. Furthermore, researchers have 
investigated the feasibility of using machine learning techniques (e.g. 
clustering, boosting, and graph networks) for keyframe selection. For 
instance, Kumar and Shrimankar [19] have integrated the AdaBoost 
[29] for keyframe selection for surveillance videos Mundur et al. [30] 
developed a keyframe selection method based on Delaunay clustering. 
Kumar [31] has proposed a keyframe selection method based on the 
similarity graph. Kumar and Shrimankar [32] have integrated the scale- 
free network for keyframe selection in video highlights detection. Other 
studies have employed a method of selecting keyframes by ranking all 
frames with a pre-defined importance score, such as entropy [33], 
context prediction score [8], or influence metric [34]. Table 1 summa
rizes the information of the existing state-of-the-art methods in terms of 
the published year, methodology mechanism, and evaluation results. 

2.3. Video highlight detection in construction 

Video highlight detection is an effective solution for reducing 
redundant video footage [6] and manual inspection effort [44] in con
struction management. By filtering raw videos, the generated video 
highlights usually occupy around 10% of the original storage space, 
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making it more feasible to document the entire construction lifespan 
without an unreasonable digital storage burden [45]. In current prac
tice, engineers must engage in the time-consuming process of manually 
browsing entire construction videos in order to observe what is 
happening on a job site in a specific time period. Moreover, the common 
practice of having multiple cameras monitoring one construction site 
adds to the workload of manual inspection [46]. By using video high
lights, project managers can conveniently browse major activities 
occurring on the job site. 

The video highlights detection in construction scenarios is different 
from general scenarios (e.g., entertainment videos, sport videos, and 
films) in terms of: (1) the visual characteristics of construction videos are 
special. Construction videos have more unexpected illumination 
changes than general videos (e.g., entertainment videos) because most 
construction projects are in an outdoor environment; (2) the definition 
of keyframes in construction videos is special. The keyframes in con
struction videos should be selected according to the needs of project 
management instead of simply defined as frames where visual features 
change dramatically; and (3) the usages of construction video highlights 
are special. The video highlights in construction are used for docu
mentation and inspection purposes instead of simply for watching. 
Therefore, video highlights in construction are expected to be search
able, manageable, and filterable. 

Researchers have put a significant amount of effort into developing 
video highlight detection methods to accommodate construction video 
characteristics. For instance, Chen and Wang [47] developed 
construction-specific color, texture, and gradient features for extracting 
keyframes from videos. The developed methods were tested on four 
construction videos, and the experimental results suggested that color 
features generally outperform gradient and texture features. However, 
that study focused on exploring image features and did not utilize the 
content information of construction videos. Ham and Kamari [48] pro
posed a content-based keyframe selection method for construction 
videos captured by drones that scores frames individually based on the 
spatial composition of the identified objects. However, their method was 
designed for drone videos, whereas it cannot be directly applied to 
videos captured by fixed-position cameras. 

2.4. Research gaps and objectives 

The related works indicate that video highlights detection methods 
have achieved huge success in the computer vision community. Most 
existing methods extract features from videos and then select keyframes 
by evaluating feature changes across frames. The gaps of existing 
methods and the objectives of this research have been presented in this 
section. 

2.4.1. Research gaps 
Three research gaps have been identified in applying existing 

feature-based methods to detect video highlights in construction 
scenarios. 

• The performance of existing methods needs to be improved. Unex
pected illumination changes in construction videos decrease the 
performance of feature-based methods. Meanwhile, the feature- 
based methods define the keyframes as frames where visual feature 
changes dramatically, which is not related to construction manage
ment. As consequence, the detected highlights produced by existing 
methods are less precise.  

• Existing methods lack interpretability. For feature-based methods, it 
is not clear how the video highlights can help to construction man
agement. And video highlights detected by existing methods are not 
searchable. For example, in a construction project, the managers 
would like to inspect all video highlights related to excavators, while 
this need cannot be met because the feature-based methods are 
lacking interpretability.  

• Existing methods lack flexibility. In the same construction scenario, 
the requirements of video highlights can be different depends on the 
project stages. For example, for surveillance videos in a construction 
gate, the video highlights are required to focus on excavators and 
dump trucks in the earthmoving stage. As the project progressing, 
the video highlights are required to focus on concrete mixer trucks in 
the rebar stage. This kind of flexible needs is difficult to be achieved 
by feature-based methods. 

2.4.2. Research objectives 
To fill above gaps, this study explores the potential of rule-based 

Table 1 
Summary of existing video highlights detection in computer vision.  

Highlights detection 
study 

Published 
year 

If supervised 
learning 

Mechanism of methodology Evaluation results 

Metric Testing dataset Results 

Zhang et al. [35] 2016 Yes Integrating LSTM + determinantal point process F1 
score 

SumMe [36] 4.18% 
TVSum [37] 58.7% 

Mahasseni et al. [23] 2017 No Integrating GAN + summary-length, diversity, and keyframe 
regularization 

F1 
score 

SumMe 39.1% 
TVSum 51.5% 
Open Video [38] 72.8% 
VSUMM [39] 60.1% 

Kumar and Shrimankar 
[19] 

2018 No Integrating CNN + AdaBoost F1 
score 

Lobby [40] 88.8% 
Office [40] 86.7% 
BL-7F [40] 86.4% 

Muhammad et al. [33] 2018 No Integrating CNN + memorability prediction + entropy score 
calculation 

F1 
score 

VSUMM 76.0% 

Jiao et al. [41] 2018 Yes Integrating CNN+ 3D attention module+ ranking module mAP YouTube Highlights 
[42] 

68% 

SumMe 62% 
Kumar [31] 2019 No Integrating CNN + similarity graph+ highly connected sub- 

graphs 
F1 
score 

Open Video 64.9% 
VSUMM 52.4% 

Kumar and Shrimankar 
[32] 

2019 No CNN + scale-free network F1 
score 

Open Video 63.3% 
VSUMM 51.5% 

Xiong et al. [43] 2019 Yes CNN + paired-wise loss mAP YouTube Highlights 56.4% 
TVSum 56.3% 

Wang et al. [18] 2020 No 3D CNN + CO-attention mAP YouTube Highlights 69.1% 
TVSum 62.8% 

Kumar [27] 2021 No CNN + local alignment strategy F1 
score 

Lobby 89.4% 
Office 91.9% 
BL-7F 88.7%  
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methods in video highlights detection in construction scenarios. The 
research objectives are two-fold:  

• Developing a vision-based video highlights detection method that 
has sufficient performance in construction scenarios. The proposed 
method explores both context and feature information for selecting 
keyframes from construction videos. The video highlights produced 
by the proposed method are expected to be interpretable and flexible 
to accommodate practical needs in construction management.  

• Developing construction rules for keyframe selection. The developed 
rules should extract keyframes related to site safety, productivity 
analysis, and logistics management. The construction rules are 
considered as “blueprint”, which can be easily customized, 
expanded, and implemented by project managers in individual 
projects. 

3. Proposed methodology 

A vision-based method for automatically detecting construction 
video highlights is introduced and described in this section. The pro
posed method consists of five main modules: machine tracking, rule- 
based keyframe selection, CNN feature extraction, similarity evalua
tion, and video editing. 

3.1. Overall framework 

The overall framework of our approach is depicted in Fig. 1. As 
shown in the figure, two types of keyframes are involved in generating 
video highlights: object keyframes and feature keyframes. Object key
frames are the frames that contain important construction management 
information related to continuous activities (e.g., machines accessing 
the working zone). Feature keyframes are the frames where the image 
feature changes significantly because of scene changes (e.g., camera 
zooming, edited changeover, task changes). In this research, the object 
keyframes are used to distill the important information from video clips 
in which construction machines appeared, while the feature keyframes 
are used to identify notable developments on the site by scanning the 
entire video. 

First, the input video is processed by the machine tracking module to 
produce the tracking results, including machine categories, machine 
identification (ID), and the corresponding pixel locations of machines at 
each individual frame. A multiple object tracking method, called con
struction machine tracker (CMT), is adopted for the tracking module. 
The tracking results are stored in a database, and can be conveniently 
processed by structured query language (SQL). Then, a rule-based 
method is used to select object keyframes by applying pre-defined 
construction rules in analyzing the tracking results. These rules are 
deployed to explore the working zone, working status, and working 
interaction information of construction machines. For feature keyframe 
selection, the ResNet50 CNN is employed to extract high-level features 
from all frames of the input video. The features across frames are eval
uated using cosine similarity to select the keyframes that represent scene 
changes. Finally, object keyframes and feature keyframes are combined 
together in the video editing module to remove the duplicated key
frames and generate the video highlights. The individual modules are 
introduced in detail in the following subsections. 

3.2. Machine tracking 

The machine tracking module tracks construction machines from the 
input video sequences in order to generate information such as machine 
categories, IDs, and pixel locations. Tracking construction objects is 
challenging because of the dynamic environment, occlusions, and illu
mination changes. A robust tracking method that produces precise 
bounding boxes of construction machines is the foundation of the object 
keyframe selection. As mentioned above, CMT [49] is adopted for this 
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purpose because of its robust performance in construction scenarios. 
CMT was developed specifically for tracking construction machines in 
complex environments, and it has achieved high tracking robustness 
(93.2% in multiple-object tracking accuracy) and high processing speed 
(20.8 frames per second) in experiments. 

An overview of the CMT method is provided in Fig. 2. As shown in 
the figure, images, after being resized to 416 × 416 pixels, are processed 
by the deep learning detector, YOLO-v3 [50]. Then, the detection results 
across frames are associated by Intersection over Union (IoU) and image 
hashing features. According to the association results, the CMT formu
lates the tracking problem into a linear assignment problem that 
matches each individual detection bounding box in the current frame 
with a bounding box in the previous frame. Finally, the linear assign
ment problem is solved by the Jonker-Volgenant algorithm [51] to 
produce the tracking results. 

The use of an annotated image dataset is crucial for training the 
YOLO-v3 detector. In the present research, the Alberta Construction 
Image Dataset (ACID) [52] is adopted. ACID contains ten types of con
struction machines: excavator, compactor, dozer, grader, dump truck, 
concrete mixer truck, wheel loader, backhoe loader, tower crane, and 
mobile crane. It is also important to track commuter cars in some con
struction scenarios (e.g., construction gate scenario); as such, we 
randomly select 2000 car images containing 3895 car objects from the 
COCO dataset to combine with ACID for training purposes. 

A database is created to store the tracking results. The table contains 
nine attributes: frame number, time stamp, if_tracked, machine cate
gory, machine ID, cx, cy, w, and h. The frame number attribute indicates 
the sequencing of the current frame, and the time stamp attribute shows 
the time of the current frame in the video, accurate to the second. 
Meanwhile, the if_tracked attribute is a Boolean value that indicates 
whether any machine has been identified in the frame. If there is a 
machine object in the current frame, the type of machine and its ID 
number will be stored in the machine category attribute and the ma
chine ID attribute, respectively. The cx and cy attributes indicate the 
pixel coordinates of the centroid point of the bounding box, while the w 
and h attributes refer to the width and height of the machine bounding 
box, respectively. By using database, the tracking results can be orga
nized in a structured format within the database and conveniently 
analyzed by the rule-based keyframe detection module. 

3.3. Rule-based Keyframe detection 

The purpose of this module is to select object keyframes by inte
grating predefined construction rules and tracking results. Three types 
of construction rules are proposed—working zone rule, working status 
rule, and working interaction rule—where Table 2 summarizes the 
definition and target of each rule. 

3.4. Working zone rule 

Working zone control is important for site safety and resource lo
gistics in construction management. For instance, there is a risk of col
lisions between machines and pedestrians when machines access the 
working zone in some scenarios (e.g., road maintenance construction). 
The time stamp of machines accessing the working zone also indicates 
the actual scheduling information that can be compared with the plan
ned schedules for logistics management purposes. Therefore, the frames 
that feature interested machines entering or leaving the working zone 
are selected as keyframes in the present study. 

Eq. 1 shows the judgement criterion underlying the working zone 
rule, where AABCD is the area of the working zone polygon ABCD, Pi is the 
pixel location of the machine object’s central point in frame i, and fr is 
the frame rate of the video. Connecting the location of the central point 
at the current frame, i, and the location at frame i − fr can generate a 
segment PiPi− fr. If the segment PiPi− fr has more than 0 intersections with 
the polygon area AABCD, frame i is selected as the keyframe. Fig. 3 shows 
an example of application of the working zone rule. In Fig. 3(a), segment 
PiPi− fr has no intersection with the working zone ABCD and should be 
ignored for keyframe selection. In Fig. 3(b), the dump truck is entering 
the working zone, while segment PiPi− fr has one intersection with the 
working zone ABCD. Therefore, this frame should be selected as a key
frame based on the working zone rule. 

Count
(
PiPi− fr ∩ AABCD

)
> 0 (1)  

3.5. Working status rule 

Identification of the frames that contain working status changes of 
construction machines is an essential task for productivity analysis, as 
this information can be used to automatically calculate the machine 
idling time and efficiency factor. The working status rule selects key
frames in which the status of the interested machine changes from idling 
to working or from working to idling. This rule is only interested in the 
machine status changes occurring in the working zone (i.e., the centroid 
point of the machine object must be in the working zone). When a 
machine is idling, it should be noted, the pixel location of this object 
may change slightly because of the tracking bounding box precision. 

The judgement criterion underlying the working status rule at frame i 
is defined as per Eq. 2, where cxi and cyi represent the x and y co
ordinates of the central point of the machine object, respectively, fr is 
the video frame rate, and k ∈ N. Eq. 2 calculates the average distance 
between the central points in the current frame, i, and the previous 
frame, i − 1, in fr continuous frames. When the average distance is 
greater than d1, the machine status is considered to be “working”. The 
machine status is “idling”, meanwhile, if the average distance is less than 
d2. When the average distance is between d1 and d2, the current frame 
indicates the machine is in transition between working and idling status, 
and as such it should be selected as a keyframe. The variables d1 and d2 
are threshold values and need to be set for the given construction 
scenario. 

d1 >
1
fr

∑

k∈(i− fr,fr]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(cxk − cxk− 1)
2
+ (cyk − cyk− 1)

22
√

> d2 (2) 

Fig. 2. Overview of CMT method.  

Table 2 
Summary of predefined construction rules.  

Rule name Rule definition Rule target 

Working zone 
rule 

Any frame that contains interested 
machines entering or leaving the 
working zone should be considered a 
keyframe. 

Site safety and 
logistics 
management 

Working status 
rule 

Any frame that contains machine 
working status changes between 
working and idling in the working zone 
should be considered a keyframe. 

Productivity analysis 

Working 
interaction 
rule 

Any frame that contains extensive 
overlap between cooperating machines 
in the working zone should be 
considered a keyframe. 

Site safety and 
productivity analysis  

B. Xiao et al.                                                                                                                                                                                                                                     



Automation in Construction 129 (2021) 103817

6

3.6. Working interaction rule 

A high level of interaction between two construction machines is 
often indicative a meaningful moment with respect to crew productivity 
analysis and safety monitoring. For example, high overlap between the 
excavator and the dump truck in earthmoving represents a loading ac
tivity, which can be used for cyclic productivity calculation. High 
overlap between two dump trucks, meanwhile, may signify a potential 
collision and may be of interest for safety alerting purposes. In our 
research, the working interaction rule selects keyframes by analyzing 
the overlap between two interested construction machines in the 
working zone. To apply the working interaction rule, the IoU between 
two machine objects, m and n, at the frame i is calculated by means of Eq. 
3, as illustrated in Fig. 4. If the average IoU in fr continuous frames (see 
Eq. 4) is greater than threshold a (k ∈ N), the current frame is considered 
a keyframe. Fig. 5 shows an example of an application of the working 
interaction rule. In Fig. 5(a), the excavator and the dump truck are 
overlapping. If these two machines are in the working zone and the 
average IoU is greater than a, this frame should be selected as the object 
keyframe. In Fig. 5(b), the excavator and the dump truck have no in
teractions, so this frame will not be selected as a keyframe. 

IoU(m, n) =
Area(m) ∩ Area(n)
Area(m) ∪ Area(n)

(3)  

1
fr

∑

k∈(i− fr,i]

IoU(mk, nk) > a (4) 

To apply the abovementioned rules successfully in construction 
scenarios, two strategies need to be considered: (1) each type of 

construction rule should be considered a “blueprint”, where several in
dividual rules can be generated by changing the interested classes of 
machines (for example, two working interaction rules can be generated 
in the earthmoving scenario, where one focuses on the excavator and 
dump truck and another focuses on the wheel loader and dump truck); 
and (2) it is not necessary to apply all three types of construction rules to 
the same construction scenario. The procedure for generating individual 
rules consists of four steps: selecting the type of construction rule, 
defining the working zone, selecting the interested construction ma
chines, and setting up threshold values (if needed). The keyframes 
detected by each individual rule are simply combined together and 
inputted to the video editing module. 

3.7. CNN feature extraction and similarity evaluation 

The CNN feature extraction and similarity evaluation are employed 
to detect feature keyframes. In the present study, feature keyframes are 
used for two purposes: (1) to represent video clips that have no machine 
objects; and (2) as an addition to object keyframes in video clips that do 
have machine objects, since feature keyframes are more effective than 
object keyframes for describing scene changes (e.g., camera zooming, 
moving, and length transition). Compared with manually designed 
features, such as SIFT, CNN has been shown in previous studies to be 
more effective in representing construction images [53–55]. 

In CNN feature extraction, all frames in the construction video are 
processed with the CNN neural networks to produce feature vectors for 
the purpose of representing original frames. In this research, the 
ResNet50 neural network [56] is employed for feature extraction due to 
its excellent performance in computer vision applications. The ResNet50 
has 50 layers of neural networks for implementing the residual block, 

(a) ignored frame (no intersection) (b) keyframe (intersection with working zone)

Fig. 3. Example of keyframe selection applying the working zone rule.  

Fig. 4. Illustration of Interaction over Union (IoU).  
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where the residual block is defined as per Eq. 5. 

y = F (Х)+Х (5)  

where Х is the input feature map, F (Х) is the feature map processed by 
the stacked layers, and y is the output feature map of the residual block. 

As shown in Fig. 6, the residual block is a “shortcut connection” that 
adds the outputs of the stacked layer F (Х) to the input feature map Х, 
where this residual learning solves the gradient vanishing problem in 
training the deep neural networks. In the CNN feature extraction mod
ule, all frames of the input video are first resized into 224 × 224 reso
lution. The resized frames are then inputted to the ResNet50, which has 
been pretrained on the ImageNet dataset [57] for forward propagation. 
A vector with dimensions of 2048 × 1 can then be extracted from the 
flatten layer as the output of this module. 

The purpose of the similarity evaluation module is to select feature 

keyframes based on the average feature similarity AS(i) at each frame. 
To calculate AS, we firstly define the similarity S(a,b) of two frames (i.e. 
a and b) as the cosine similarity [58] of their corresponding feature 
vectors (as shown in Eq.6). 

S(a, b) =
v(a)v(b)

′

‖v(a) ‖‖v(b) ‖
(6)  

where v(a) and v(b) are the feature vectors processed by ResNet50 for 
frame a and frame b, respectively, and ‖v(a)‖ is the norm of vector v(a). 

Then, the average feature similarity AS(i) at frame i (defined in Eq.7) 
is calculated as the average similarity between the feature vectors of the 
current frame i and the frame (i − fr) in one continuous second where k 
∈ N. 

AS(i) =
1
fr

∑

k∈(i− fr,i]

S(k, k − fr) (7) 

If AS(i) is smaller than threshold value s, the current frame i is 
considered to be a feature keyframe. Here, the smaller the value of s that 
is adopted, the fewer feature keyframes will be detected. In construction 
videos, continuous frames usually have high similarity because con
struction activities change in a relatively gradual manner. In the present 
case, the threshold s, at just 0.9, is relatively small. Because the role of 
the similarity evaluation module is to detect significant feature changes 
resulting from scene changes. 

3.8. Video editing 

The function of the video editing module is to produce video high
lights based on detected object keyframes and video keyframes. This is 
carried out in two steps: redundancy removal and video concatenation. 
It should be noted that the detected object keyframes and feature key
frames are intervals of sets of frames rather than discrete frames. The 
object keyframes can be represented as Tobject = {[s,e]1, [s,e]2,…, [s,e]i}, 
where [s,e]i is a time interval of keyframes, and s and e are the start- and 
end-frame number of the time interval, respectively. It is possible that 
the time interval may have only a few frames due to tracking errors. As 
such, any time intervals that have fewer than five frames (e − s < 5) are 
first removed. To generate useful and understandable video highlights, 
each video clip should be several seconds in length at a minimum in 
order for users to understand what is occurring in the highlight. In 
consideration of this, we expand the time interval [s,e]i to [s′,e′]i as per 
Eq. 8. This equation calculates the median frame of the time interval [s, 
e]i and then finds the n seconds before and after the central frame as the 
basis for determining the new time interval, where the present research 
assigns n a value of 2. After this step, all time intervals have the same 
length of 4fr. It is possible that the different construction rules will locate 
adjacent, overlapping, or identical keyframes. In other words, many 
time intervals in Tobject are redundant and will need to be removed. For 
two continuous time intervals, we remove the first interval [s′,e′]i if si+1

′

− si
′ ≤ fr. If two continuous time intervals are close to one another (2n ×

fr > si+1
′ − si

′ > fr), they are merged to a new interval [si
′ − n × fr,ei+1

′ +

n × fr]. The same process is conducted with respect to the feature key
frames Tfeature. 

[s
′

, e′ ]i =
[
floor

(s+ e
2

)
− n× fr , floor

(s+ e
2

)
+ n× fr

]

i
(8) 

The processed Tobject and Tfeature can then be used to produce video 
highlights by extracting the corresponding frames from the original 
construction video and concatenated these frames together. It should be 
noted that the object keyframes and feature keyframes may be over
lapping. In the present study, overlapping frames between object key
frames and feature keyframes are not removed. Instead, all object 
keyframes and feature keyframes are retained in the final video high
lights, annotating each keyframe with different colors of symbols. Users 
are thereby able to recognize whether a given video highlight frame 

(a)

(b)

Fig. 5. Example of keyframe selection using working interaction rule.  

Fig. 6. Illustration of residual block.  
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belongs to object or feature keyframes. 

4. Implementation and case studies 

This section describes the implementation of the proposed method. 
To validate its feasibility, two case studies have been conducted: a 
construction gate case and an earthmoving case. 

4.1. Implementation 

The proposed method is programmed in Python 3.6, and the Opencv 
library is adopted for the video I/O. In the CMT tracker, the backbone 
detector YOLO-v3, originally programmed in C, is implemented via 
Python wrapper with an acceleration of CUDA 9.0 and Cudnn 7.0. 
Meanwhile, the rule-based keyframe selection module is built using the 
SQLite-Python library, whereas the construction rules are implemented 
using SQL queries. The ResNet50 is implemented using the Pytorch li
brary, while the cosine similarity is built using the scikit-kearn library. 
For video editing, the Moviepy library is employed to generate the final 
video highlights.The proposed method is tested in an Ubuntu 18.04 64- 
bit system environment. 

For the hardware configuration, the proposed method is tested on a 
computer with a NVIDIA GTX 1080Ti graphics card, 11 GB memory, an 
Intel Core i9-7920×@2.90 Hz CPU with 12 cores, and two 32 GB 
memory cards. The processing speed when implementing the proposed 
method is approximately 7 frames per second. It should be noted that the 
graphics card specifications affect the speed of executing YOLO-v3 and 
ReNet50. As such, the processing speed can be increased by upgrading to 
an advanced graphics card or implementing parallel programming. 

4.2. Case study 1: construction gate 

In case 1, the proposed method was tested on construction video 
footage captured from a gate specifically for machine traffic, with dump 
trucks, concrete mixer trucks, dozers, and cars all appearing in this 
footage. The construction gate scenario was adopted as a case study in 
this research for two reasons: (1) construction gate video footage con
tains important information about what equipment is present on the 
construction site at a given time (i.e., timestamped arrivals and de
partures of construction machines), which is crucial for construction 
gate control; and (2) the need for video highlights is particularly 
pressing for gate scenarios since almost all construction gates feature 
cameras capturing large volumes of raw video footage. 

4.2.1. Experimental setup 
Three gate videos capturing footage of the same construction gate 

were used in the experiment. The relevant information regarding the test 
videos (video duration, resolution, frame rate, and number of high
lights) is summarized in Table 3. Fig. 7 shows example images for each 
test video. Three test videos corresponding to different times of day, i.e., 
morning, afternoon, and evening, were captured in order to investigate 
the feasibility of the proposed method under different illumination 
conditions. 

To evaluate the performance of the proposed method, the ground 
truth video highlights in each test video had to be manually annotated. 

Of course, the annotation of video highlights is an inherently subjective 
task since there is no absolute definition of what constitutes a highlight. 
However, construction engineers are likely to share similar points of 
view with regard to what constitutes a useful video highlight of con
struction site footage for construction management purposes based on 
their experience, knowledge, and intuition. In our research, five grad
uate students majoring in construction management were invited to 
manually identify highlights from construction video footage. Their 
annotations of these highlights consisted of a time stamp of the highlight 
and a short description (e.g., “From 27:01 to 27:05: A dump truck exits 
the gate and turns right”). A two-step strategy was implemented for 
video highlights annotation: (1) each participant was asked to find the 
video clips in which machines access the construction gate, the camera 
working state changes, or unusual activities occur, or other clips they 
think may be highlights. (2) the author of this research manually 
browses the video highlights annotated by all participants to decide the 
final video highlights as ground truth. The annotated video highlights 
were then used to assess the proposed method. 

Table 3 
Specifications of test videos for construction gate case.   

Duration 
(minutes) 

Video 
Resolution 

Frame rate 
(fps) 

Number of 
highlights contained 

Gate- 
Video1 

60 1920 × 1080 12 20 

Gate- 
Video2 

60 1920 × 1080 12 19 

Gate- 
Video3 

60 1920 × 1080 12 14  

(a) Gate-Video1 (captured in the morning)

(b) Gate-Video2 (captured in the afternoon)

(c) Gate-Video3 (captured in the evening)

Fig. 7. Example images from test videos in construction gate case.  
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In case 1, the working zone rule and working status rule were 
applied, with the detailed configurations of these two rules summarized 
in Table 4. The working zone rule was applied to detect video highlights 
featuring machines accessing the gate. Machines suddenly stopping in 
the gate area, meanwhile, signified potential highlights that could be 
detected by the working status rule. 

To validate the feasibility of the proposed method, we removed the 
machine tracking module and the rule-based keyframe detection module 
from the proposed method as the baseline. The baseline method retained 
the same CNN feature extraction module, similarity evaluation module, 
and video editing module as those in the proposed method. In the 
baseline method, however, the threshold s in the similarity evaluation 
module was set at 0.95, a higher value of s than that employed in the 
proposed method, in order to produce more video highlights. Fig. 8 
shows the framework of the baseline method. 

4.2.2. Evaluation metrics 
Following the protocols set out in previous work [35], precision, 

recall, and F1 score are employed as the evaluation metrics in the pre
sent study, where A denotes the video highlights generated by the pro
posed method, and B denotes the annotated ground truth video 
highlights. Precision, meanwhile, is the measurement of how accurate 
the highlight detection method is (see Eq. 9), while recall measures how 
effective the highlight detection method is in identifying the correct 
highlight clips according to Eq. 10. The F1 score is the harmonic mean of 
precision and recall as defined in Eq. 11. 

Precision =
Number of correct highlight clips
Number of highlight clips in A

(9)  

Recall =
Number of correct highlight clips
Number of highlight clips in B

(10)  

F1 = 2×
Precision× Recall
Precision+ Recall

(11)  

where the correct highlight clip is decided by the temporal intersection 
of union (TIoU) between the generated highlight clip a (a ∈ A) and the 
ground truth highlight clip b (b ∈ B), as expressed in Eq. 12. Fig. 9 il
lustrates the process of computing TIoU. If the value of TIoU is greater 
than 0.5, the highlight clip a is considered to be a correct highlight clip. 

TIoU =
duration (a) ∩ duration(b)
duration (a) ∪ duration(b)

(12)  

4.2.3. Experimental results 
Table 5 illustrates the experimental results in terms of precision, 

recall, F1 score, and the number of correct highlights. The proposed 
method achieved 87.7% on precision, 94.3% on recall, and 90.8% on F1 
score on average, which is 13.8% higher on precision, 14% higher on 
recall, and 14.1% higher in terms of F1 score compared to the baseline 
method. Meanwhile, the proposed method detected 1.4 more correct 
video highlights from each video compared to the baseline method. The 
experimental results indicate that the proposed method is more robust 

and precise than the feature-based highlight detection method with 
respect to the construction gate scenario. 

In the testing, three videos represented different illumination con
ditions (i.e., morning, noon, and evening). It was found that the per
formance of the proposed method is stable (around 90% of F1 score) in 
dealing with different illumination conditions. In contrast, the baseline 
method achieved F1 scores of 82%, 79.1%, and 69%, respectively, for 
the three test videos. The baseline method was shown to be less effective 
in dealing with the night-time illumination condition (Gate-Video3) 
because the feature-based highlight detection method was sensitive to 
illumination variations. The proposed method adopted object keyframes 
by tracking construction machines from videos, while the machine 
tracking module was built upon deep learning object detection. There
fore, the proposed method was found to be more robust than the feature- 
based method in detecting construction video highlights. 

4.2.4. Video highlights for construction gate control 
In construction management, gate control is a critical factor in 

achieving project success. Construction machines should access the gate 
at the scheduled time to complete their construction tasks, and the 
timestamp of machines accessing the gate should be recorded. Con
struction video highlights can serve the gate control purpose by 
providing video records and corresponding time stamp. Table 6 shows 
the actual number of instances of machines accessing the gate in the raw 
video, the number of instances of machines accessing the gate contained 
in the video highlights, and the accuracy of the three test videos. In case 
1, the three test videos showed 48 records of machines accessing the 
gate, while 45 access records were found to be contained in the detected 
video highlights, resulting in an accuracy of 93.8%. This result indicates 
that the video highlight detection method is reasonably effective for 
construction gate control, and that the generated video highlights can be 
useful as a form of project documentation for future reference. 

4.3. Case study 2: earthmoving 

Case study 2 focused on earthmoving, where the proposed method 
was tested on video footage of an excavator working with several dump 
trucks. Earthmoving refers to a range of activities that involve exca
vating soil or rock and moving it to another part of the site, fundamental 
activities in all types of construction (e.g., residential building, roads, 
tunnels). 

4.3.1. Experimental setup 
In case 2, the proposed method was tested on a 40-min earthmoving 

video with a resolution of 1280 × 720 and a frame rate of 30 fps. In the 
video, a Volve EC210BLC excavator (bucket payload of 2.1 loose cubic 
yards (LCY)) works with several dump trucks in an outdoor construction 
environment and completes several earthmoving cycles. In each cycle, 
the excavator digs soil and loads it into a dump truck. After the dump 
truck is fully loaded, it moves away and another dump truck approaches 
the excavator for the next cycle. 

The earthmoving video footage was manually annotated to obtain 
the ground truth video highlights by following the same procedure 
described in reference to the construction gate case (i.e., annotators 
were required to find the video clips of the excavator loading the dump 
truck, a change in status of the excavator, or any clips that may be of 
interest for construction management purposes). Through this process, 
115 video clips were identified as video highlights in this case study. As 
with the other case, the feature-based highlight detection method was 
adopted as the baseline method to test the earthmoving video footage. 
The configuration of the baseline method was the same as in case 1. 

In the earthmoving case, the working zone rule, working status rule, 
and working interaction rule were applied for detecting object key
frames. The details of these rules are summarized in Table 7. It should be 
noted that the working zone rule and working status rule only target the 
excavator, since the excavator is the major construction machine in this 

Table 4 
Construction rules applied to construction gate case.  

# of 
rule 

Rule type Machine/s of 
interest 

Working zone d1 

(pixel) 
d2 

(pixel) 

1 Working 
zone rule 

Dump trucks, 
concrete mixer 
trucks, dozers, 
and cars 

[(0,600), 
(1920,600), 
(0,1080), 
(1920,1080)] 

NA NA 

2 Working 
status rule 

Dump trucks, 
concrete mixer 
trucks, dozers, 
and cars 

[(0,600), 
(1920,600), 
(0,1080), 
(1920,1080)] 

60 10  
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case and it governs the productivity of the whole crew. The working 
interaction rule, meanwhile, focuses on cases of overlap between the 
excavator and dump truck. 

4.3.2. Experimental results 
Table 8 shows the experimental results of the proposed method and 

the baseline method in terms of precision, recall, F1 score, and the 
number of correct highlights. The proposed method detected 111 video 
highlights, 104 of them being correct highlights, achieving a precision of 
93.7%, recall of 90.4%, and F1 score of 92.0%. Meanwhile, the baseline 
method achieved a precision of 70.8%, recall of 63.5%, and F1 score of 

Fig. 8. The overview of the baseline method.  

Fig. 9. Illustration of the computation of TIoU.  

Table 5 
Experimental results of proposed method in construction gate case.   

Precision Recall F1 
score 

Correct highlights 
detected 

Gate- 
Video1 

Proposed 
method 

90% 90% 90% 18 

Baseline 
method 

84.2% 80% 82% 16 

Gate- 
Video2 

Proposed 
method 

86.4% 100% 92.7% 19 

Baseline 
method 

70.8% 89.5% 79.1% 17 

Gate- 
Video3 

Proposed 
method 

86.7% 92.9% 89.7% 13 

Baseline 
method 

66.7% 71.4% 69% 10 

Average Proposed 
method 

87.7% 94.3% 90.8% 16.7 

Baseline 
method 

73.9% 80.3% 76.7% 14.3  

Table 6 
Summary of machines accessing the gate.   

No. of machine accesses 
in original video 

No. of machine accesses in 
detected video highlights 

Accuracy 

Gate- 
Video1 

18 16 88.9% 

Gate- 
Video2 

18 18 100.0% 

Gate- 
Video3 

12 11 91.7% 

Sum 48 45 93.8%  

Table 7 
Construction rules applied to earthmoving case.  

# of 
rule 

Rule type Machine/s 
of interest 

Working zone d1 

(pixel) 
d2 

(pixel) 
a 

1 Working 
zone rule 

Excavator [(0,215), 
(1045,215), 
(0,720), 
(1045,720)] 

NA NA NA 

2 Working 
status rule 

Excavator [(0,215), 
(1045,215), 
(0,720), 
(1045,720)] 

20 10 NA 

3 Working 
interaction 
rule 

Excavator 
and dump 
truck 

[(0,215), 
(1045,215), 
(0,720), 
(1045,720)] 

NA NA 0.1  
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72.4%. As can be seen, the proposed method outperformed the baseline 
feature-based method by a margin of 22.9% with respect to precision, 
16.9% on recall, and 19.6% in terms of F1 score for the earthmoving 
case. It is also worth noting that, although the earthmoving case contains 
more extensive video highlights than the construction gate case, the 
proposed method achieved similar performance for both cases, under
scoring the ability of the proposed method to deal with different con
struction scenarios. 

4.3.3. Video highlights for productivity analysis 
In the earthmoving case, the detected highlights were found to 

contain meaningful video clips of loading activities that would be useful 
for productivity analysis. As mentioned, in the earthmoving cycle, the 
excavator digs soil into the bucket and then loads it into a dump truck. 
Once the dump truck is fully loaded, it moves away and another dump 
truck approaches the excavator for the next cycle. As such, the number 
of cycles is equal to the number of loading activities, such that the 
excavator productivity can be calculated as per Eq. 13, where the bucket 
payload per cycle is given by the excavator manufacturer (2.1 LCY, in 
this case). 

Productivity =
number of cycles

time (hr)
×
bucket payload

cycle
(LCY) (13) 

In Earthmoving-Video1, the excavator has completed 99 work cycles 
in 40 min and the ground truth productivity is 311.85LCY/hr. By 
manually analysis the video highlights detected by the proposed 
method, the author of the present study found 93 video clips of the 
loading activity. In other words, if the video highlights are used for 
advanced vision-based method for productivity analysis, the analyzed 
productivity of Earthmoving-Video1 can reach 292.95LCY/hr. The ac
curacy of the productivity analysis, then, is 93.9%, which means 93.9% 
of the relevant productivity information can be retrieved from the 
detected video highlights without browsing the original construction 
videos. 

5. Discussions 

The experimental results indicate that the proposed method can 
successfully produce video highlights from construction videos for the 
purpose of reducing manual inspection efforts and digital storage re
quirements. The research findings and challenges identified in analyzing 
the test results are discussed below.  

• The proposed method exhibited better performance than the feature- 
based method for detection of construction video highlights. In ex
periments, the proposed method has achieved an average precision 
of 89.2%, recall of 93.3%, and F1 score of 91.1% for two case studies, 
respectively (4 videos in total), while the baseline method has ach
ieved the average precision of 76.5%, recall of 76.1%, and F1 score of 
78.0%. The proposed method outperforms the baseline method over 
10.0% on three evaluation metrics. The proposed method also ach
ieved close performance when compared with the state-of-the-art 
method F-DES (fast and deep event summarization) [26] from 
computer vision. The F-DES implemented the CNN feature extractor 
and cosine similarity, which has achieved the average precision of 

92.3%, recall of 88.3%, and 89.9% of F1 score in three experiments. 
The F-DES has obtained 3.1% higher results on precision than the 
proposed method, while the proposed method outperforms 5.0% on 
recall and 1.2% on F1-score than F-DES. Technically, the proposed 
method achieved robust performance for two reasons: (1) adopting 
pre-defined construction rules (i.e., working zone, working status, 
and working interaction) to detect object keyframes by analyzing 
machine trajectories. As such, the proposed method explores the 
context information from construction videos and becomes more 
robust; and (2) employing ResNet50 to detect feature keyframes to 
describe scene changes in construction videos. The feature keyframes 
efficiently represent the video clips that have no construction ma
chines, while improve the precision of the proposed method.  

• Reducing the amount of construction video footage is a crucial 
benefit of applying video highlight detection in construction. In this 
regard, Table 9 provides a comparison of the original raw video and 
the detected video highlights in terms of duration and storage size in 
reference to the two case studies. The average size of the original 
videos is 635.5 MB. After implementing with the proposed highlight 
detection method, the average size is reduced to 34.2 MB, a reduc
tion in storage size requirement of approximately 94.6%. The 
average duration of video highlights is 2.77 min, while the original 
videos average 55 min in duration. The results indicate that the video 
highlights generated represent a more watchable synopsis of the raw 
video, meaning that the use of this method can reduce the amount of 
effort required in order to maintain construction video 
documentation. 

• Compare to the baseline method, the proposed method is less sen
sitive to illumination changes, as demonstrated in the construction 
gate case. Most construction sites are outdoors, and as such illumi
nation changes are frequent in construction video footage. Feature- 
based highlight detection methods are prone to errantly detect 
frames that contain significant illumination variations as keyframes, 
decreasing the accuracy of the highlight detection. In contrast, the 
proposed method shows stable performance in dealing with illumi
nation changes because it adopts the machine tracking module for 
object keyframe selection. The CMT tracking method, built upon 
YOLO-v3 object detection, shows excellent performance in tracking 
machine trajectories under illumination changes. In this respect, the 
proposed method exhibits reliable performance even in challenging 
construction scenarios. To be noted, replacing the backbone object 
detector YOLO-v3 with more robust methods (e.g. ResNet-based 
detectors) will provide better results for object keyframe detection, 
and eventually improve the performance of video highlights 
detection.  

• Compared with feature-based methods, the proposed method has 
better interpretability and flexibility because it integrates object 
keyframe selection with feature keyframe selection. The outputs of 
the proposed method include not only video highlights, but also the 
intuitive interpretation of selection rationale, such as a machine 
entering or leaving the frame. This information is beneficial for 
project management in terms of gate control and productivity 

Table 8 
Experimental results of proposed method in earthmoving case.   

Precision Recall F1 
score 

Correct 
highlights 
detected 

Earthmoving- 
Video1 

Proposed 
method 

93.7% 90.4% 92.0% 104 

Baseline 
method 

84.2% 63.5% 82.0% 73  

Table 9 
Duration and storage size of video highlights in construction gate case.   

Original video Detected video highlights 

Duration 
(minutes) 

Storage size 
(MB) 

Duration 
(minutes) 

Storage size 
(MB) 

Gate-Video1 60 713.1 1.33 35.6 
Gate-Video2 60 713.5 1.30 39.3 
Gate-Video3 60 713.3 1.15 27.8 
Earthmoving- 

Video1 
40 402.1 7.30 72.5 

Average 55 635.5 2.77 34.2  
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analysis, as illustrated in the case studies. Furthermore, in the pro
posed method, the construction rules can be flexibly customized 
based on the particular needs of a given construction project. For 
example, the proposed method can generate video highlights that 
relate only to a specific construction machine (e.g., dump truck), or 
movement (e.g., machine leaving the site); this is not possible using 
feature-based highlight detection methods. The proposed method 
demonstrates the feasibility of rule-based highlights detection 
methods in construction scenarios. 

• The proposed method has three limitations that need to be investi
gated in the future. First, the parameters of pre-defined construction 
rules need to be manually set up, and the parameters in one scenario 
are not typically generically applicable to other scenarios. Second, 
the performance of the proposed method may be affected if the 
tracking method fails occasionally because of heavy occlusions, 
motion blurs, and so forth. It should be noted in this regard that 
object detection and tracking methods are developing rapidly within 
the computer vision field. Third, the processing speed of the pro
posed method should be enhanced. For instance, for the construction 
gate case described in this paper, it took approximately 2 h to process 
the one-hour video, and most of the computational resources were 
dedicated to the CNN feature extraction module. 

6. Conclusions and future works 

An effective and efficient method for converting construction video 
footage into concise video data is in high demand in today’s construction 
industry. This paper proposes a novel vision-based method to generate 
video highlights from construction videos. The proposed method con
sists of five modules: machine tracking, rule-based keyframe selection, 
CNN feature extraction, similarity evaluation, and video editing. Two 
case studies were conducted to validate the performance of the proposed 
method using construction gate and earthmoving video footage. The 
proposed method was found to achieve average precision of 89.2% and 
average recall of 93.3%, outperforming the feature-based highlight 
detection method. The proposed method can be integrated into several 
advanced applications that may potentially benefit construction man
agement, including: (1) auto-generating reports from lengthy con
struction videos; (2) building a query system that searches for clips of 
interest in the video footage; and (3) quantitatively analyzing con
struction productivity based on video highlights. 

The contributions of this research are three-fold. First, this research 
has proposed a novel method to detect video highlights from construc
tion videos, while the proposed method outperforms the baseline 
method over 10% on robustness and precision. Second, three construc
tion rules have been proposed for object keyframes detection including 
the working zone rule, working status rule, and working interaction 
rule. By integrating these rules, the detected video highlights are 
interpretable and flexible, meaning that the resultant construction 
videos are searchable, filterable, and manageable. Third, the proposed 
method is shown its feasibility of eliminating over 90% of storage space 
while retaining most of the useful information for construction video 
documentation. 

Future works will focus on developing an automated process to set up 
the parameters of construction rules by using machine learning tech
niques. Moreover, more robust object detection methods (e.g., ResNet- 
based detectors) will be investigated in the future to replace the 
YOLO-v3 employed in this research to achieve better performance of 
construction video highlights detection. Currently, the proposed method 
simply adopts the cosine similarity metric for feature keyframes detec
tion, while the SSIM (structural similarity index measure) metric will be 
implemented in the proposed method to replace the cosine similarity in 
the future. Finally, the parallel coding strategy will be implemented in 
the future to improve the processing speed of the proposed method. 
Replacing the ResNet50 feature extractor with small neural networks is 
another future work to accelerate the processing speed. 
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