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A B S T R A C T

A novel method for estimating droplet charge in numerical simulations of conductively and inductively charged
sprays is presented. This method is based on balancing the effective electric field at the sprayer nozzle with the
global electric field induced by the charged droplets. The global approach avoids the need for computationally
expensive local resolution of the spray formation region, allowing it to be used in Eulerian–Lagrangian
simulations of high-flowrate sprays. The method is validated against experimental data from literature, proving
it can predict droplet charge with reasonable engineering accuracy, over a wide range of spray parameters,
for conductive spray liquids.
1. Introduction

Electrically charged sprays presently exist in a plethora of sizes,
forms, and applications [1]. Compared to uncharged sprays, they offer
several industrially advantageous properties, with the most prominent
being the improved transfer efficiency and self-dispersal of the spray.
As such they are commonly used in painting and coating systems, gas
scrubbers, cooling systems, and fuel atomisers, in addition to vari-
ous more niche and specialised applications. Substantial amounts of
experimental and applied research has been carried out on charged
sprays, and a large library of theoretical and numerical models exists,
describing these sprays’ behaviour. However, full physics modelling of
high-flowrate sprays is not yet possible, leaving some significant gaps
in our knowledge. Indeed a common complaint in numerical research
articles is the lack of a good method for predicting the droplet charge in
directly charged sprays [2,3]. The droplet charges are usually estimated
based on experimental data (authors’ own measurements [4] or from
literature [2]), or not even discussed [5]. While measurements are an
excellent way of obtaining this data, a major motivation for doing
numerical simulations is to avoid the need for experiments in the first
place.

In this paper, we propose an efficient numerical approach for es-
timating droplet charge in directly-charged, high-flowrate sprays. In
this context, direct charging means the spray liquid takes on charge
via conductive contact with an electrode. This is in contrast to external
charging methods such as corona charging, for which some numerical
models already exist [1,6]. Our distinction between high- and low-
flowrate sprays is based on computational limitations. For capillary
electrosprays with flowrates on the order of millilitres per hour, Collins
et al. [7], Herrada et al. [8], and Wei et al. [9] have shown the
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feasibility of simulating the jet breakup and droplet formation using
Volume of Fluid based methods. Such a detailed simulation would be
impractical if not impossible when modelling industrial processes such
as spray painting, with flowrates often exceeding 100 millilitres per
minute. The common approach to such problems is to use Lagrangian
particle tracking instead, which is therefore also used in our model.

Since simulating the full physics is not possible, our model needs to
work on more general principles. Jaworek [1] gives a comprehensive
overview of the theory of direct charging of sprays. The core mecha-
nism is that electrostatic interactions push charges to the surface of the
liquid jet at a spray nozzle. As the jet breaks up, the resultant ligaments
and droplets carry these charges with them. For sufficiently conductive
liquids, the charge density on the jet surface is directly proportional to
the local electric field strength. Thus, the key to determining the droplet
charge for a given sprayer lies in finding the electric field strength
around the spray breakup zone.

Computation of the electric field in a simulation of charged sprays
is rather straightforward and indeed included in most works on this
topic. The simulation framework we use is described in detail in our
previous work [10], but our method for charge estimation is not ex-
clusive to that framework. Instead we will show a general approach to
determine droplet charges based on electric field solutions, and discuss
stable implementation of this approach in iterative solvers. Finally, to
demonstrate the accuracy and versatility of our method, we perform
two simulations validated against measurement data from literature.

2. Modelling approach

The charge density on the surface of a conductive liquid is directly
proportional to the local electric field intensity. This follows directly
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Table 1
Boundary conditions for the potential field components.

Component Nozzle Conductors Symmetry planes

𝛹𝑒 𝛹𝑒 = 𝛹 − 𝛹𝑑 − 𝛹0 𝛹𝑒 = 0 𝜕
𝜕𝑛
𝛹𝑒 = 0

𝛹𝑑
𝜕
𝜕𝑛
𝛹𝑑 = 0 𝛹𝑑 = 0 𝜕

𝜕𝑛
𝛹𝑑 = 0

𝛹0
𝜕
𝜕𝑛
𝛹0 = 0 𝛹0 = 𝛹 𝜕

𝜕𝑛
𝛹0 = 0

from the Poisson equation (1) governing the electrostatic field and
Gauss’ Law. Using this principle to directly calculate droplet charge
requires full resolution of the liquid jet breakup, which is unfortunately
not feasible for high-flowrate sprays. It does, however, give us a more
pragmatic insight. If each individual droplet’s charge depends linearly
on the electric field intensity, then so must the charge of the bulk of
the spray. This, indeed, forms the central principle of our model.

The second key component of our model is the space-charge effect
created by the cloud of charged spray droplets. This space charge
effect has a significant influence on the electric field in the sprayer–
target system, as shown by Ellwood and Braslaw [2]. Furthermore, Wei
et al. [9] show that this effect can significantly reduce the intensity of
the electric field near the sprayer, reducing the charge on subsequently
emitted droplets. This can be seen as a self-limiting mechanism for
spray charge.

2.1. Model definitions

The electrostatic field is governed by the Poisson equation (1) given
below.

∇⃗2𝛹 =
𝜌𝑞
𝜖0

with 𝐸⃗ = −∇⃗𝛹 (1)

ere 𝛹 denotes the electric potential, 𝐸⃗ the electric field, 𝜌𝑞 the charge
ensity, and 𝜖0 the permittivity of the vacuum. Since this equation is
inear, the potential field can be split into separate components by the
rinciple of superposition. We want to isolate the field intensity at the
pray nozzle, and the effect of space charge, and therefore choose the
ollowing components:

𝛹 = 𝛹0 + 𝛹𝑑 + 𝛹𝑒

∇⃗2𝛹0 = ∇⃗2𝛹𝑒 = ∇⃗2𝛹𝑑 −
𝜌𝑞
𝜖0

= 0
(2)

ere 𝛹𝑑 is the potential field generated by the charged droplets, 𝛹𝑒
s the effective potential field generated by the spray nozzle, and 𝛹0
epresents the effects of all other electrified bodies. To prevent 𝛹𝑑 and
0 from contributing to the field intensity at the nozzle, a zero flux
oundary condition is applied at the nozzle for those field components.
his may result in non-zero potentials, which are compensated for

n the boundary conditions for 𝛹𝑒. Finally, since 𝛹0 represents all
lectrified bodies, all other boundary conditions for 𝛹𝑒 and 𝛹𝑑 are set
o 0. These conditions are summarised in Table 1.

Working on the principle that the charge of the bulk of the spray is
roportional to the field intensity at the nozzle, and having isolated
his intensity to the 𝛹𝑒 field component, we can start building our
odel equations. First, for convenience, we define the Effective Nozzle
otential 𝜓𝑒 = 𝛹𝑒|𝑛𝑜𝑧𝑧𝑙𝑒. Next, since droplet charges depend on the
article diameter in polydisperse sprays, we express the bulk spray
harge in the form of a spray current 𝐼𝑠. Both of these are treated as

quasi-steady variables, with a linear relation as given in Eq. (3).

𝐼𝑠 = 𝜓𝑒 ∗ 𝑓 (...) with 𝜓𝑒 = 𝛹𝑒|𝑛𝑜𝑧𝑧𝑙𝑒 (3)

he constant of proportionality in this equation is 𝑓 (...), a yet-to-
e-determined function of the sprayer and spray parameters, that is
ndependent of 𝜓 .
2

𝑒

For a given set of droplet trajectories, the space charge density
throughout the domain, and therefore the magnitude of 𝛹𝑑 , is linear
with the spray current 𝐼𝑠. This we can express as Eq. (4).

𝑑 = 𝐼𝑠 ∗ 𝑔(...) with 𝜓𝑑 = 𝛹𝑑 |𝑛𝑜𝑧𝑧𝑙𝑒 (4)

ere 𝑔(...) is a function based on the field solution of the 𝛹𝑑 potential
omponent, and is notionally independent of 𝐼𝑠. It must be noted that
he spray droplet trajectories are not truly independent of the droplet
harge, but in the steady or quasi-steady case Eq. (4) must nevertheless
old.

From Eq. (2) and our boundary conditions it follows that the poten-
ial at the spray nozzle must satisfy:

= 𝜓0 + 𝜓𝑑 + 𝜓𝑒 with 𝜓0 = 𝛹0|𝑛𝑜𝑧𝑧𝑙𝑒 (5)

ombining Eqs. (3)–(5) we can thus formulate a general expression for
he spray current 𝐼𝑠:

𝑠 = (𝜓 − 𝜓0)
𝑓 (...)

1 + 𝑓 (...)𝑔(...) (6)

o make this equation into a useful model we must now find suit-
ble ways of determining the values of 𝑓 and 𝑔, our functions of
roportionality.

.2. Spray current as a function of effective nozzle potential

The amount of current imparted to the spray is proportional with
he effective potential (or electric field intensity) at the nozzle. The co-
fficient of proportionality is determined by the geometry of the sprayer
ozzle and the flow rate and breakup pattern of the liquid jet. The
ccuracy to which its value can be approximated depends on how well
he geometry and flow of the jet are understood. Some approximations
xist, such as the one given by Jaworek [1] for induction-charging
ressure atomisers. We find that, for sprayers using a central orifice
ozzle, sufficiently accurate results can be obtained by approximating
he geometry of the sprayer and fluid as two touching spheres. The
lectric charge distribution for this approximate geometry can be solved
nalytically, as presented in the following sections. For sprayers that
roduce droplets along a linear or toroidal ‘‘nozzle’’, such as rotating
ell sprayers, an analogous two-cylinder or concentric-torus solution
ay be derived in similar fashion.

.2.1. Solution of infinite images
The charge of the spray droplets is determined at the moment of

rimary breakup, after which no more current can be conducted into
he droplet. We approximate the liquid’s geometry at primary breakup
ith two spherical bodies, one of which represents the bulk, and the
ther representing the detaching mass. The electric potential of both
pheres is equal, based on the assumption that the liquid is sufficiently
onductive. This may be checked by comparing the electric relaxation
ime to the hydrodynamic time scale, a criterion given by Marchewicz
t al. [11] and shown in Eq. (7). Here, 𝜖 denotes the permittivity of
he liquid, 𝜎 the conductivity of the liquid, 𝑑𝑛𝑜𝑧𝑧𝑙𝑒 the sprayer nozzle
iameter and 𝑄 the volumetric flowrate of the spray.

𝑒𝑙 ≪ 𝜏ℎ with 𝜏𝑒𝑙 =
𝜖
𝜎

and 𝜏ℎ =
𝑑𝑛𝑜𝑧𝑧𝑙𝑒
𝑢

=
𝜋𝑑3𝑛𝑜𝑧𝑧𝑙𝑒
4𝑄

(7)

We know that the electric field around a sphere at a constant potential
𝜓𝑠 is identical to the field generated by a point charge of magnitude
𝑞𝑠 = 𝜓𝑠𝑅𝑠∕𝑘 with 𝑘 = (4𝜋𝜖0)−1, located at the centre of the sphere. The
method of image charges [12] dictates that a point-charge located near
a conductive sphere induces an image charge inside the sphere. Thus,
two conductive spheres kept at constant potential in close proximity
will mutually induce image charges. These image charges recursively
induce further image charges, and the total charge on either sphere may
be found by taking the sum of these, through the so-called method of

infinite images.
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Fig. 1. Two sphere geometry and first induced image charge location.

The geometry and system of coordinates are defined as shown in
Fig. 1. Two spheres are placed with their centres on the 𝑥-axis, such
that they make tangential contact in the origin. The 𝑥-coordinates of the
initial point-charges, at the centres of the spheres, are thus 𝑥𝑙,0 = −𝑅𝑙
and 𝑥𝑟,0 = 𝑅𝑟. These initial charges we name 𝑞𝑙,0 and 𝑞𝑟,0, for the left
and right spheres respectively. As a matter of definition, charge 𝑞𝑙,𝑛+1
is located in the left sphere, and is the image of charge 𝑞𝑟,𝑛, and vice
versa. The locations of these charges are correspondingly called 𝑥𝑙,𝑛+1
nd 𝑥𝑟,𝑛. Eq. (8) gives a recursive relation for the positions of the image
harges in our coordinate system.

𝑙,𝑛+1 = −
𝑥𝑟,𝑛 𝑅𝑙
𝑥𝑟,𝑛 + 𝑅𝑙

and 𝑥𝑟,𝑛+1 =
𝑥𝑙,𝑛 𝑅𝑟
𝑥𝑙,𝑛 − 𝑅𝑟

(8)

or simplicity we define the ratio between the radii of the spheres 𝑎
uch that 𝑅𝑟 = 𝑎𝑅𝑙. It can then be trivially shown that Eq. (8) and the
efined geometry are satisfied by the solutions:

𝑥𝑙,𝑛 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝑅𝑙
1 + 𝑚(1 + 𝑎−1)

if 𝑛 = 2𝑚

−𝑅𝑙
(𝑚 + 1)(1 + 𝑎−1)

if 𝑛 = 2𝑚 + 1
and

𝑥𝑟,𝑛 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑅𝑟
1 + 𝑚(1 + 𝑎)

if 𝑛 = 2𝑚

𝑅𝑟
(𝑚 + 1)(1 + 𝑎)

if 𝑛 = 2𝑚 + 1
(9)

The magnitude of the image charges can be recursively expressed as
(10).

𝑞𝑙,𝑛+1 =
−𝑞𝑟,𝑛𝑅𝑙
𝑥𝑟,𝑛 + 𝑅𝑙

and 𝑞𝑟,𝑛+1 =
𝑞𝑙,𝑛𝑅𝑟
𝑥𝑙,𝑛 − 𝑅𝑟

(10)

he initial charge on either sphere is chosen so that it produces an
lectric potential 𝜓𝑒 at the surface of the sphere, thus 𝑞𝑙,0 = 𝜓𝑒𝑅𝑙∕𝑘 and
𝑟,0 = 𝜓𝑒𝑅𝑟∕𝑘. Noting that Eq. (10) is similar in structure to Eq. (8),
nd the initial charges and initial positions both scale with the radius
f the sphere in question, the strength of the image charges will be
roportional with their positions. Indeed it can be shown that the
olution expressed in Eq. (11) satisfies Eq. (10) and the given initial
alues.

𝑙,𝑛 = −1𝑛
𝜓𝑒
𝑘
|𝑥𝑙,𝑛| and 𝑞𝑟,𝑛 = −1𝑛

𝜓𝑒
𝑘
|𝑥𝑟,𝑛| (11)

.2.2. Sum of infinite images
The total charge of either sphere can be computed by taking the sum

f the initial charge and all image charges induced on the sphere. That
3

s

Fig. 2. Normalised charge on right sphere, 𝑄𝑟𝑘∕𝜓𝑒𝑅𝑟, as a function of diameter
ratio 𝑎.

is, 𝑄𝑙 =
∑∞
𝑛=0 𝑞𝑙,𝑛 and similarly with 𝑟 subscripts for the right sphere.

Assuming both spheres’ radii are finite, the sum of the series of Eq. (11)
converges. In the special case of 𝑎 = 1, i.e. both spheres having equal
adii, this series effectively becomes an alternating harmonic series, and
e find 𝑄𝑙 = 𝑄𝑟 = ln(2)𝜓𝑒𝑅∕𝑘.

If the spheres do not have equal radii, the sum can be rewritten
into the formulation of Eq. (12). Only the expression for 𝑄𝑟 is given, to
obtain 𝑄𝑙, 𝑅𝑟 and 𝑎 should be replaced with 𝑅𝑙 and 𝑎−1 respectively.

𝑄𝑟 =
𝜓𝑒𝑅𝑟
𝑘

[

1
1 + 𝑎

∞
∑

𝑚=0

(

1
𝑚 + (1 + 𝑎)−1

− 1
𝑚 + 1

)

]

(12)

Abrahamowitz [13] gives an exact solution for sums of this nature, and
we can find the following results for charges 𝑄𝑙 and 𝑄𝑟:

𝑄𝑙 =
−𝜓𝑒𝑅𝑙

𝑘(1 + 𝑎−1)

[

𝛾 + ϝ
(

1
1 + 𝑎−1

)]

and

𝑄𝑟 =
−𝜓𝑒𝑅𝑟
𝑘(1 + 𝑎)

[

𝛾 + ϝ
( 1
1 + 𝑎

)]

(13)

Here 𝛾 denotes the Euler–Mascheroni constant, and ϝ the Digamma
function (or logarithmic derivative of the Gamma function). To illus-
trate, Fig. 2 shows the normalised charge of the right sphere, 𝑄𝑟𝑘∕𝜓𝑒𝑅𝑟.
As seen in the figure, for equally sized spheres, their normalised charge
is equal to ln(2). For unequal spheres, the normalised charge asymptot-
ically approaches zero for the smaller sphere and one for the larger
sphere, as the diameter ratio increases.

2.2.3. Computing spray current
In this model we assume that the left of the two spheres represents

the nozzle and liquid bulk, and the right sphere represents masses of
liquid detaching during primary breakup. The charge of each detaching
mass is taken from Eq. (13). Dividing this charge by the mass of the
detaching sphere gives us the specific charge of the spray. To find the
total spray current, we multiply the specific charge by the massflow of
the sprayer, which yields Eq. (14):

𝐼𝑠 = 𝑄𝑟
3𝑚̇

4𝜋𝜌𝑑𝑅3
𝑟
= −3

4𝜋
𝜓𝑒𝑚̇

𝜌𝑑𝑘𝑅2
𝑙 𝑎

2(1 + 𝑎)

[

𝛾 + ϝ
( 1
1 + 𝑎

)]

(14)

Here 𝑚̇ denotes the spray massflow and 𝜌𝑑 the droplet density. Fig. 3
shows the normalised spray current as a function of diameter ratio 𝑎.
For 𝑎 smaller than unity the figure shows an inverse linear relation
etween droplet size and total spray current, progressing to an inverse
quare relation for 𝑎 larger than unity.
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Fig. 3. Normalised spray current, 𝐼𝑠𝜌𝑑𝑘𝑅2
𝑙 ∕𝜓𝑒𝑚̇, as a function of diameter ratio 𝑎.

2.3. Electric potential as a function of spray current

To find an expression for the droplet-induced potential at the injec-
tor as a function of spray current, following Eq. (4), we must solve the
Poisson equation (2). To do so we need to know the charge density
distribution in the domain, which requires knowing the trajectories
of the spray droplets. Since we intend to predict droplet charge for
numerical simulations, it makes sense to couple this step with the
CFD and droplet tracking solver. We discuss an implementation of
Lagrangian charged droplet tracking using the Ansys Fluent CFD solver
in our previous article [10], which we will again use for the present
simulations.

For the droplet charge model we need to compute both the com-
bined electric field 𝛹 as well as the electric field component due
to droplet charge 𝛹𝑑 . The combined field is necessary to compute
the droplet trajectories, and can be solved exactly as in our previous
article [10]. The latter is needed to compute 𝜓𝑑 as a function of spray
current 𝐼𝑠, and to that end we will solve a second ‘‘virtual’’ potential
field 𝛹̂𝑑 = 𝛹𝑑∕𝐼𝑠. To solve this virtual field we need a virtual charge
density 𝜌̂𝑞 , which is made up of the virtual charges carried by the
droplets present in the domain. Thus, for each droplet we need to set
a virtual charge 𝑞𝑑 = 𝑞𝑑∕𝐼𝑠.

2.3.1. Individual droplet charge
The initial charge of individual droplets in a charged spray is not

simply proportional to the droplets’ volume. According to Viti et al. [3],
various scaling laws have been proposed. We follow the example
of Viti [3], and others including Domnick et al. [14] and Guettler
et al. [4], and use 𝑞𝑑 ∝

√

𝑟3𝑑 . This scaling is proportional to the Rayleigh
stability limit for charged droplets. The constant of proportionality can
be determined by demanding that the sum of all individual droplet
charges produced per second matches the spray current. If the droplet
sizes follow the Rosin–Rammler distribution, with a reference radius
𝑟0 and spread parameter 𝑛, the initial charge of individual droplets is
given by Eq. (15). We use the scaling exponent 𝑏 = 3

2 , but this equation
will hold for any value between 0 and 3.

𝑞𝑑 = 𝐶1𝑟
𝑏
𝑑 with 𝐶1 =

4𝜋
3
𝜌𝑑𝐼𝑠
𝑚̇

𝑟(3−𝑏)0

𝛤 (1 − (3−𝑏)
𝑛 )

(15)

ther droplet size distributions can be used in conjunction with our
eneral method, but will require the user to calculate the corresponding
harge distribution.
4

f

.3.2. Virtual droplet-induced potential field
The virtual droplet-induced field is found by solving the Poisson

quation, with the same boundary conditions as specified in Table 1
or 𝛹𝑑 . The value of 𝑔(...) is then found by taking the virtual electric
otential at the sprayer nozzle. Some examples of the virtual potential
ield solution are given in Sections 3.2.2 and 3.3.2.

.4. Combined model

With the provided methods for finding values for 𝑓 (...) and 𝑔(...),
he spray current can be computed according to Eq. (6). We suggest
ecomputing the spray current, and thus droplet charges, whenever new
agrangian parcels are injected into the simulation. Each change in
harge will result in (slight) changes in droplet trajectories and thus
he value of 𝑔(...), until the simulation converges on the final solution.

e find that, since Eq. (6) is a direct rather than an iterative expression,
ncluding it in an existing Euler–Lagrange solver does not contribute to
umerical instabilities.

So far unmentioned is the ‘‘remaining’’ potential component, 𝛹0.
n cases involving direct-charging sprayers, where only the nozzle is
lectrified and all other conductors are grounded, this field component
s trivially zero everywhere. This is not the case for inductively charged
prayers, in which one or more electrodes are placed near the nozzle.
f such electrodes are present, 𝛹0 must also be computed, by again
olving the Poisson equation with the boundary conditions as specified
n Table 1.

.4.1. Scaling considerations
The scaling of Eq. (6) for the spray current changes asymptotically

epending on the value of the product of 𝑓 (...) and 𝑔(...). For 𝑓𝑔 ≪ 1,
he equation reduces to 𝐼𝑠 = (𝜓 − 𝜓0)𝑓 (...), making the space charge
istribution irrelevant. Such a situation might occur in inductively-
harged spray systems, although Cooke et al. [15] find that space
harge can significantly affect those as well, despite the close spacing
f the nozzle and induction electrode.

Vice versa, if 𝑓𝑔 ≫ 1, the equation reduces to 𝐼𝑠 = (𝜓 − 𝜓0)𝑔(...)−1.
his situation is more likely in large-scale conductively-charged spray
ystems, and favours the use of our spray charge model. With our
pproach, the value of 𝑔(...) can be calculated to great accuracy, while
(...) can only be estimated or calculated from measurement data.

. Validation study

To validate our approach and demonstrate its versatility we simu-
ate two sprays for which experimental results are available. We have
elected the experimental studies by Marchewicz et al. [11] and Anestos
t al. [16] as the most suitable sources for validation data. These studies
n particular stand out by including sufficiently detailed descriptions
f the spray properties and geometry to be replicated numerically.
urthermore, the sprays in both studies are good representatives of the
igh-flowrate and directly charged types that our model is intended
or. Finally, for the sake of demonstrating versatility, both sprays differ
reatly from each other in terms of droplet size, flowrate, and electrode
eometry.

.1. Numerical method

For our simulations, we use the Ansys Fluent CFD and DPM solver
version 18). The flow fields are solved using steady RANS equations,
nd droplet trajectories are computed using quasi-steady Lagrangian
racking. The (virtual) electric potential is solved using the Poisson
quation, and is computationally treated as a Eulerian phase. For
comprehensive description of the equations and methods used we

efer to our previous work [10], which covers the general simulation

ramework in detail.
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To compute a quasi-steady Euler–Lagrange solution, this solver al-
ternates between two modes. In the Eulerian mode, it iteratively solves
the equations governing the Eulerian phases (including the potential
fields). In the quasi-steady Lagrangian mode, it uses forward integration
to compute the trajectories of Lagrangian parcels. These trajectories are
computed all the way from the parcels’ injection to the point where
they leave the domain. The Lagrangian solver computes the amount of
mass, momentum, and energy exchanged between the parcel and the
flow, as well as the charge density the parcel represents. It converts
these values into volumetric source terms that are then handed back to
the Eulerian solver. By alternating (several) Eulerian solver iterations
with Lagrangian droplet tracking computation, a converged coupled
solution is achieved.

Implementation of our droplet charge prediction model requires a
few modifications to the modelling framework presented previously.
Two additional electric potential fields are added, representing the
virtual potential field 𝛹̂𝑑 and the field component 𝛹0. The Lagrangian
parcels are modified, adding a variable that represents the virtual
charge 𝑞𝑑 carried by the droplets. Finally, a subroutine is added that
computes the spray current and the electric charge carried by the
droplets, using Eqs. (6) and (15). This subroutine is called prior to each
round of Lagrangian droplet tracking computations. To resolve Eq. (6),
the values of 𝜓0 and 𝑔(...) are computed from the Eulerian field solution,
while the values of 𝜓 and 𝑓 (...) are supplied as user input at the start
of the simulation.

3.2. Inductively charged sprayer from Marchewicz et al. [11]

In their work, Marchewicz et al. [11] investigate the spray cur-
rent for an inductively charged sprayer, pictured in Fig. 4a. They
use a pressure atomiser with interchangeable nozzles, placed inside
an induction electrode. The setup is enclosed in a cylindrical tube
covered in conductive mesh, inside which a cylindrical ‘‘Faraday cage’’
is suspended to serve as a spray target. This cage is connected to ground
via an ammeter, which is used to measure the effective spray current.

Fig. 4b shows our numerical domain. To reduce the computational
effort required we make use of the symmetry of the setup, and simulate
only a quarter of the full cylindrical geometry. Marchewicz et al. [11]
describe their sprayer and setup geometry comprehensively, allowing
us to replicate the main features accurately.
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Table 2
Spray parameters, Case 1.

Nozzle type Lechler 460.523
Spray geometry 45◦ full cone
Flowrate 3.21 [L/min]
Droplet reference radius 𝑟0 = 185 [μm]
Spread parameter 3.5
Initial velocity 32 [m/s]

Electrode geometry Toroidal, 100 × 12 [mm]
Electrode offset [0, 20, 40] [mm]
Electrode voltage −10 [kV]

Spray current function 𝑓 (...) = 1.27 × 10−8 [A/V]

3.2.1. Case description
Marchewicz et al. [11] performed a vast series of measurements,

primarily varying the voltage, position, and geometry of the electrode,
as well as using different models of nozzle. Since the measured specific
charge shows very similar scaling with electrode voltage for each
configuration, we will only show detailed simulation results for a single
case. Furthermore, since our model by definition gives a linear relation
between spray current and electrode voltage we choose to simulate at
10 kV, which is high in the linear range for Marchewicz’s data. We use
a Rosin–Rammler droplet size distribution, which reasonably approxi-
mates the measured droplet sizes. The full set of case parameters we
use is given in Table 2.

To estimate the value of the spray current function 𝑓 (...) we use
Eq. (14). We use the nozzle bore radius (0.75 mm) and droplet refer-
ence radius (𝑟0 = 185 μm) as our ‘‘bulk’’ and ‘‘breakoff’’ representative
radii. This yields a value of 𝑓 (...) = 1.27 × 10−8 Ampere per Volt.

3.2.2. Solution
Since this case involves an electrified induction electrode the 𝛹0

field component will not be trivial, and need to be solved to find 𝜓0.
This potential field, as well as the virtual droplet induced potential 𝛹̂𝑑
and the total potential 𝛹 are shown in Figs. 5a, 5b and 5c. These fields,
for the case with a 20 mm electrode offset, are plotted on a (half) cross-
section of the domain, in the plane intersecting the induction-electrode
support. For the sake of brevity, we omit showing the gas phase results
in this article, which are wholly unremarkable for a spray-entrained
airflow.

The plotted figures illustrate the boundary- and field-conditions
applied to the different potential components. The 𝛹 component is
0
Fig. 4. First validation case, experimental setup and numerical model.
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Fig. 5. Computed potential (component) fields for the first validation case, with 20 mm electrode offset.
zero at all (conductive) boundaries, except the induction electrode and
the injector face. The 𝛹̂𝑑 component is zero at the induction electrode
as well, but shows a high value in the centre of the spray cone, away
from all boundaries. The effects of both components are evident in the
combined field 𝛹 . Although not immediately apparent from the figure,
the net electrostatic flux over the injector face is slightly positive,
courtesy of the (not plotted) 𝛹𝑒 component that also generates the
droplet charges. The potential fields for electrode offsets of 0 and
40 mm are qualitatively similar, albeit with slightly different values
at the injector face.

3.2.3. Results
The electrode induced potentials and spray-induced virtual poten-

tials at the injector face for different electrode offsets are shown in
Fig. 6a. These potentials are used to compute the spray current, which
is plotted in Fig. 6b, compared to the values measured by Marchewicz
et al. [11]. In this figure we also plot the ‘‘spacecharge-limited’’ spray
current, which is the value that is obtained under the assumption that
𝑓𝑔 ≫ 1 (see Section 2.4.1).

From Fig. 6a we can see that both the electrode-induced potential
and the droplet induced potential at the nozzle varies with the electrode
offset. 𝜓0 likely has a maximum at an offset between 0 and 20 mm,
when the electrode is closest to the injector face without being occluded
by the grounded supply tube. 𝜓𝑑 decreases with increasing electrode
offset, as the electrode is ‘‘pushed into’’ the space-charge cloud.

Fig. 6b shows that our model gives a reasonable first-order pre-
diction of the spray current in this case. Even if we disregard our
approximate value for 𝑓 (...), the spacecharge-limited prediction is per-
haps even closer to the measured values. However, this figure also
makes clear that the model does not predict the measured variation of
spray current with the electrode offset. We expect that this difference
can be attributed to two mechanisms. The first is that the bulk of
water coming from the nozzle effectively acts as an extension of the
nozzle geometry. The jet forms a sharper point than the nominally blunt
nozzle, which will increase the electric field strength near the primary
breakup point, and its variation with the electrode offset distance.
This effect might be included in a simulation, by changing the nozzle
geometry to match photographs of the water at the nozzle exit. The
second effect is corona discharge; a smaller distance between nozzle
and electrode results in increased negative discharge from the elec-
trode, partly neutralising the spray and reducing the measured spray
current. Marchewicz [11] mentions this effect, and is corroborated by
Higashiyama [17] and Castle and Inculet [18], but our present model
cannot estimate it quantitatively.
6

Table 3
Spray parameters, Case 2.

Nozzle type Ransburg 4907-2, #5 air cap
Spray geometry 60◦ × 15◦ Elliptical full cone
Flowrate [108, 185, 250] [g/min]
Droplet reference radius 𝑟0 = 21.5 [μm]
Spread parameter 3.5
Initial droplet velocity [25–32] [m/s]
Nozzle air velocity [25–32] [m/s]

Nozzle voltage 60 [kV]

Spray current function 𝑓 (...) = 4.6319 × 10−9 [A/V]
𝑓 (...) = 7.9343 × 10−9 [A/V]
𝑓 (...) = 1.0722 × 10−8 [A/V]

3.3. Directly charged sprayer from Anestos et al. [16]

Anestos et al. [16] investigate a directly charged spray created
using an air-assisted atomiser. Intended to represent charged paint
application, a square target plate with a side of 406 mm (16′′) was
placed 305 mm (12′′) in front of the sprayer nozzle. No photographs of
the setup are provided, so our numerical representation shown in Fig. 7
is based on the description only. To model the effects of the air blast
from the atomiser, air is injected from the atomiser face along with the
spray droplets. As with the first validation case, we will simulate only
a quarter of the full geometry to reduce computational effort.

3.3.1. Case description
Anestos et al. [16] vary a number of parameters throughout their

measurements, the most relevant and influential of which is the liquid
flowrate. Unfortunately, they only provide the measured total spray
current at a constant liquid flowrate of 185 g/min. For the remaining
values of liquid flowrate, we will compare our results to the specific
charge measured by Anestos et al. [16]. The spray parameters for the
simulated cases are given in Table 3.

We estimate the value of the spray current function 𝑓 (...) us-
ing Eq. (14). The nozzle bore radius (0.762 mm, 0.06′′) and the droplet
reference radius (21.5 μm) are again used as the representative radii.
This yields values of 𝑓 (...) = 4.6319 × 10−9, 7.9343 × 10−9, and 1.0722 ×
10−8 Ampere per Volt at 108, 185, and 250 g/min liquid flowrate
respectively.
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Fig. 6. Results from the first validation case.
Fig. 7. Second validation case, numerical domain and particle tracks coloured by droplet diameter, at 185 g/min liquid mass flow.
3.3.2. Solution
Since this case does not involve any electrodes besides the sprayer

nozzle itself, the 𝛹0 field component is trivially zero throughout the
domain. The droplet charge is thus determined solely by the value of
𝑓 (...) and the virtual droplet-induced potential. This virtual potential
field 𝛹̂𝑑 is shown in Fig. 8, plotted on both symmetry planes of the
geometry, for the case with 185 g/min liquid flowrate. The combined
electric potential 𝛹 for the same flowrate is also plotted, in Fig. 9. These
(virtual) potential fields are shaped as expected, high near the sprayer
nozzle and dropping outward towards the grounded box enclosing the
experiment. The high potential region is wider in the 𝑋 direction than
in the 𝑍 direction, caused by the flattened-cone shape of the spray be-
ing oriented along the 𝑋𝑌 plane. For different values of liquid flowrate
the shape of the (virtual) electric field does not change appreciably, and
the maximum value of 𝛹̂𝑑 increases slightly for increasing flowrate and
vice versa.

Although the gas-phase solution is as unremarkable in this case as
in the previous one, it would go amiss not to comment on the particle
tracks shown in Fig. 7. A large fraction of the droplets, especially those
with relatively small diameters, exit the domain without hitting the
target. The reason for this can be seen in Fig. 9, which shows a high
electric potential in the middle of the domain, repelling droplets in all
7

directions. Integrating the droplet deposition rate over the target plate
we find a total liquid transfer rate of 116 gram per minute out of 185
g/min supplied to the sprayer. This matches Anestos’ [16] observations,
who estimates a liquid transfer rate of 110 g/min in their experiments.

3.3.3. Results
Anestos et al. [16] present total spray current as a function of the

conductivity of the liquid. At low conductivities, the spray current
(and therefore droplet charge) is reduced due to the electric relaxation
becoming too slow to fully charge droplets before they detach from
the liquid bulk. At high conductivities the droplet charge is reduced as
well, while the total injector current remains constant due to increased
corona discharge from the liquid surface. Since our model does not
incorporate conductivity or corona discharge, we will compare our
spray current to the maximum current measured by Anestos. This
maximum is 18 μA, and is only given for a liquid flowrate of 185 g/min.

From our simulation results at 185 g/min liquid flowrate we find
that the droplet-induced virtual potential at the injector is 3.11 Gigavolt
per Ampere. Substituting this and the value of 𝑓 (...) into Eq. (6),
our model predicts a spray current of 18.54 μA. For reference, we can
also compute the ‘‘spacecharge-limited’’ value by dividing the nozzle
voltage by 𝜓̂ , resulting in a value of 19.29 μA. Both these predictions
𝑑
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Fig. 8. Second validation case, virtual droplet induced potential 𝛹̂𝑑 on the 𝑍𝑌 -plane (left) and 𝑋𝑌 -plane (right), at 185 g/min liquid flowrate.
Fig. 9. Second validation case, electric potential 𝛹 on the 𝑍𝑌 -plane (left) and 𝑋𝑌 -plane (right), at 185 g/min liquid flowrate.
are extremely close to the value measured by Anestos et al. [16],
with only a slight overprediction. An overprediction was to be ex-
pected in this case, since Anestos does measure a notable amount of
corona-discharge current. Corona discharge increases the amount of
space-charge present, further suppressing the effective nozzle potential
and thereby reducing the spray current.

To compare our results at different liquid flowrates, we extract
the massflow-averaged specific charge from the figures presented by
Anestos et al. [16]. The comparison between these experimental values
and our prediction of average specific charge at the target plate is
shown in Fig. 10. As can be seen in the figure, our prediction follows
the trend of increasing specific charge at lower liquid flowrates, and
stays within one standard deviation from Anestos’ data. We do see that
Anestos finds a particularly high variation in specific charge for the
case with 108 g/min liquid flow, but a more detailed characterisation
of the used sprayer would be required to explain this behaviour.

4. Conclusions

In this work we developed a novel method for estimating droplet
charges in directly charged sprays. This method is primarily based on
separation of the electric field into distinct components that can be
attributed to the spray nozzle, to the space charge effect of the charged
droplets, and to all remaining electrodes respectively. The droplet
charge is found by balancing these field components such that all
electrostatic boundary conditions are satisfied. This approach requires
no prior knowledge of the electrical properties of the spray(er) in
question, and can be applied to most arbitrary systems and geometries.

The presented method does not require resolving the spray-breakup
process in detail, and only adds two global field variables for which
8

Fig. 10. Second validation case, average specific charge at the target as a function of
liquid flowrate, compared to data from Anestos et al. [16].

the Poisson equation must be solved. This allows it to be implemented
into any simulation of high-flowrate charged sprays, such as those used
for spray painting, gas scrubbing and other industrial applications. The
implicit formulation of the expression for the spray current prevents
the introduction of numerical instabilities.

Our validation study shows that the presented method can predict
the droplet charge within reasonable accuracy. This is true for both
tested validation cases, despite differences in spray parameters of up to
an order of magnitude. Our method can therefore be a powerful and
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versatile tool for estimating the performance of electrostatic sprayers
in new applications, and for improving the accuracy of simulations of
electrostatic sprays in moving or changing geometries.
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