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ABSTRACT
Dedicated experimental and modeling research studies on the performance of superconducting cable-in-conduit conductor (CICC) have
been massively performed and are still ongoing in order to determine the operational limits of the conductors and to optimize their design.
Strand strain distribution and crack formation in the filaments after cabling and compaction, and under cooling down and electromagnetic
load have been considered as the main cause for the degradation of the CICC’s transport properties. In combination with the strain maps
generated by the mechanical model MULTIFIL and the electromagnetic code JackPot with the basic electrical and strain properties of the
superconducting strand, the current sharing temperature (Tcs) of the CICC of the ITER Central Solenoid has been simulated and analyzed.
A quantitative analysis of the Tcs degradation due to strain variation and filament fracture, respectively, is still missing. Here, the approach
of analyzing the performance of CICC (e.g., the short samples tested in the SULTAN facility, or the full-size CICC used in real magnets) has
been presented. Consequently, the effect of filament fracture on the cable Tcs has been investigated and turns out to be limited. Instead, the
dominant mechanism behind the degradation of the transport properties of ITER type Nb3Sn CICCs is shown to be the broadening and shift
in the strain distribution of the superconducting filaments.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0008726., s

I. INTRODUCTION

In order to quantitatively describe the behavior of the large
and complex cable-in-conduit conductor (CICCs) (e.g., the ITER
magnets1), experiments and models have been designed and mas-
sively performed. In particular, to analyze the effects of strain in
Nb3Sn strands and multi-strand conductors, many experimental
and theoretical studies,2–15 as well as numerical cable models,16–25

have been widely performed. As the two main causes of the degra-
dation of CICC’s transport performance, strand strain distribution
and filament fracture have been investigated and analyzed.

The tests of the transport properties of ITER CICCs were car-
ried out mainly at the SULTAN facility in Switzerland.26 Many of

the tested short cable samples show a systematic degradation of
the current sharing temperature Tcs over several thousand current
cycles under a background magnetic field of 11 T, which has been
attributed mostly to filament fracture due to the electromagnetic
loads on the strands.8,26 However, detailed examination of the tested
samples revealed a number of inconsistencies.15 The proven solu-
tion for the ITER TF conductors following the TEMLOP model in
solving the degradation17,27 was adapted in favor of coupling loss
reduction, allowing strand bending but with the prediction that fil-
ament fracture would remain limited. Consequently, a cable model
containing sufficient strand-level details and precise strain and crack
distribution in the strands of the cable is needed to quantitatively
assess the influence of filament strain and crack distribution.
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In this study, the coupled electromagnetic and mechanical cable
models (3D strand model–MULTIFIL–JackPot) are used to quan-
titatively analyze the impact of strain and filament fracture on the
CICC’s Tcs. The University Twente 3D strand model predicts strand
performance under different loads28 together with the in-depth
inter-filament resistance,29 thus distinguishing the impact of strain
and filament fracture on the strand performance first. The MUL-
TIFIL model computes the strain distribution of strands imposed
both by the cabling process and by the electromagnetic and ther-
mal loads.30 The JackPot is a numerical code for the electromagnetic
network simulation of CICC, following individual strand trajecto-
ries and using measured electrical parameters between strands in
CICC.31–34

The results of two types of crack density analyses on strands
extracted from two tested ITER Central Solenoid conductor sam-
ples CSJA2-2 and CSIO1-135 are presented. Filament fracture
is characterized post-mortem at the Applied Superconductivity
Center at FSU, NHMFL (FSU), with the microscopic observa-
tion and analysis.36 Finally, the 3D strand model28 is applied to
analyze the quantitative effect of filament cracks on the perfor-
mance degradation of full-size ITER CICCs. The results indi-
cate that the degradation of ITER Nb3Sn CICCs can only be
marginally attributed to filament fracture, but is mainly caused by
the broadening and shift in the strain distribution of the super-
conducting filaments and corresponding inter-filamentary current
redistribution.

II. CURRENT SHARING TEMPERATURE OF CICCs
The filament fracture was observed in post-mortem tested

CICC samples after electromagnetic and thermal loads in the SUL-
TAN test facility at FSU by microscopy.36 Two such crack density
analyses on strands taken from the ITER Central Solenoid conduc-
tor samples CSIO1-1 (with internal-tin strands) and CSJA2-2 (with
bronze-route strands)36 are shown in Fig. 1. They will be referred to
as “crack I” [Fig. 1(a)] and “crack II” [Fig. 1(b)]. For crack II, the
crack density is about a factor two lower than for crack I.

In order to evaluate the impact of cracks on the Tcs of the
cable, the MULTIFIL strain map (Fig. 2) for the cable with the CSIO
Baseline design13,30 and the directly observed crack distribution at
FSU36 are combined. The measurement of Tc of CICC shows simi-
lar strain distribution and average axial strain from Ciro Calzolaio.37

The average strand neutral-axis axial strain (εa0) in the CSIO1 con-
ductor is about −0.4%, while the peak periodic bending strain (εpb)
in the multi-filamentary region is around 0.6%.30

These estimates are validated by comparing the voltage vs cur-
rent (V–I) curve of a single strand simulated with the 3D strand
model28 for εa0 = −0.4% and εpb = 0.6% with the JackPot cable model
predictions for the strand that experiences the most severe strain
condition in the MULTIFIL map. Both simulations assume the tem-
perature and external magnetic field corresponding to a cable test in
SULTAN.

All relevant test conditions, temperature, magnetic field, εa0,
and εpb, together with the results of the filament fracture analysis
at FSU, can now be introduced into the strand model to evaluate the
relative impact of cracks on the cable performance.

In order to identify the impact of different crack scenarios
(cracks I and II) on the V–I transition of the strands and on their

FIG. 1. (a) A polished longitudinal section of a CSIO1-1 internal-tin strand with
cracks indicated by blue dots. The location suggests tensile bending strain. (b) The
corresponding crack density, expressed in number of cracks per mm of filament
length for CSJA2-2 (courtesy of C. Sanabria, FSU, now at LBL).36 Distance in the
axis indicates the location along the sample length.

FIG. 2. Number of the strand neutral-axis axial strain present in the CSIO Baseline
cable design as calculated with the MULTIFIL model (courtesy of H. Bajas, Ecole
Centrale Paris, now at CERN).
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critical current Ic, the modeling approach is repeated by imple-
menting the observed crack density and distribution into the strand
model. The strain boundary conditions correspond to a εpb value
of +0.6% and a εa0 value of −0.4% for the internal-tin strand in
the CSIO1-1 sample. For the bronze-route strand, no MULTIFIL
strain map is yet available, but from the large difference in axial stiff-
ness, a corresponding εpb value of at least +0.8% may be expected
for this strand, while the neutral-axis axial strain is taken to be the
same εa0 = −0.4%.

The V–I curve corresponding to scenario crack I is compared
to the one of a crack-free bronze-route strand, while scenario crack
II is compared to a crack-free internal-tin strand. The results are
shown in Figs. 3 and 4, respectively. In the bronze-route strand,
cracks induce a much stronger critical current degradation than in
the internal-tin wire. This is partly due to the higher crack density in
the crack I scenario, but also to bridging that couples most filaments
in each bundle in the internal-tin strand.

Assuming that each strand has the same crack density and dis-
tribution along the tested cable, the ITER scaling law can be used to
estimate the reduction in Tcs caused by filament fracture, as shown
in Fig. 5. From the analysis in Ref. 36, it can be deduced that each
strand experiences only one location with crack II conditions in the
0.5 m long CSIO1-1 cable; the reduction in Tcs is less than 40 mK.
For cable CSJA2-2 with bronze-route strands and fracture scenario
crack I, it amounts to 120 mK. Figure 7 also shows the impact of a
much larger amount of cracks even assuming cracks along the entire
strand. Following this analysis, in this extreme case, reductions in
Tcs of around 1.7 K and 0.6 K can be expected for the CSJA2-2 and
CSIO1-1 conductors, respectively.

The bronze-route strand is also modeled with crack I scenario
at different values of peak bending strain (Fig. 6). At a higher peak
bending strain, filament fracture has a lower impact on Tcs. For the
same crack pattern, a higher peak bending strain implies that the
fractured filaments already have a lower Ic value so that a crack
causes less current redistribution and the impact of cracks on Tcs
is reduced.

The simulations presented in Fig. 7 predict a decrease in Tcs of
120 mK due to scenario crack I and 40 mK due to scenario crack
II for a bronze-route strand. With the extreme assumption of the
crack I scenario occurring every 7 mm or the crack II scenario occur-
ring once every 5 mm along the strand, a Tcs reduction of 1.7 K or
1.1 K may occur, respectively. The filament fracture analysis at FSU

FIG. 3. Electrical-field vs current expected for the filament fracture scenario crack
I (green curve), compared to a bronze-route strand with only a strain distribution
(blue curve, εa0 = −0.4% and εpb = 0.8%).

FIG. 4. Electrical-field vs current relation expected for the filament fracture sce-
nario crack II (green curve), compared to an internal-tin strand with only a strain
distribution (blue curve, εa0 = −0.4% and εpb = 0.6%).

revealed no evidence of cracks when the tensile strain remains below
0.8%. Based on the crack analysis in CSJA2-2 and in the TARSIS-
bent bronze-route strands,38 the εpb value in the CSJA2-2 conductor
is higher than 1.0%. Therefore, the impact of cracks should be even
less than in the εpb = 1.0% simulation shown in Fig. 4. Even in the
extreme case (see Fig. 8), so for strands with the crack I scenario
every 7 mm along the entire cable, the Tcs reduction caused by the
crack I scenario would be less than 1.7 K (εpb = 0.8%), and more
likely below 0.6 K (εpb = 1.0%). Normally, however, each strand is
expected to exhibit only one crack I or crack II event along the 0.5 m
cable and the Tcs reduction caused by cracks in CSIO1-1 and CSJA2-
2 conductors most likely lies in the range of 0.04–0.12 K. The Tcs of
ITER Nb3Sn CICC seems to degrade mainly due to local strain varia-
tion, rather than to filament fracture, which also has been concluded
similarly in the research from FSU.39

FIG. 5. Change in Tcs (∆Tcs) vs number of cracks, showing the impact of filament
fracture on Tcs in a 0.5 m long conductor with a strain condition based on MULTIFIL
and TARSIS. Both bronze-route and internal-tin strands are modeled with crack I
and crack II scenarios, respectively.
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FIG. 6. Electrical-field vs current relation expected for filament fracture crack I and
crack II scenarios (brown and green curves), compared to a bronze-route strand
subjected to only a strain distribution (blue curve, εa0 = −0.4% and εpb = +0.8%).

FIG. 7.∆Tcs vs number of cracks showing the impact of filament fracture scenarios
crack I and crack II on the Tcs reduction in a 0.5 m long bronze-route conductor
with strain conditions based on MULTIFIL and TARSIS.

FIG. 8. ∆Tcs vs number of cracks showing the impact of filament fracture scenario
crack I on the Tcs reduction in a 0.5 m long bronze-route conductor with strain
conditions based on MULTIFIL and TARSIS and peak bending strain εpb = +0.8%
or +1.0%.

III. CONCLUSION
The crack distribution is based on a microscopy analysis of

strands from post-mortem full-size ITER conductor samples. Given
the amount of filament fracture observed in post-mortem TARSIS
and full-size ITER samples, the 3D strand model effectively quan-
tifies the impact of cracks on the strand and the final CICC perfor-
mance. The impact of filament fracture on the Tcs of the investigated
cables is found rather limited. Even for a crack frequency 10 times
higher than the one observed in full-size ITER samples after load-
ing, the reduction in Tcs remains less than 0.2 K. It is concluded that
the transport properties of ITER Nb3Sn CICCs mainly degrade due
to the broadening and shift in the strain distribution of the super-
conducting filaments and corresponding inter-filamentary current
redistribution, rather than to filament fracture.
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