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ABSTRACT

We investigate the many-body effects induced by the electron–electron interaction in a valley–spin-polarized silicene under a perpen-
dicularly applied exchange field. We calculate the real and imaginary parts of the self-energy within the leading order dynamical screen-
ing approximation where the screened interaction is obtained from the random phase approximation. Our study on the valley- and
spin-dependent real and imaginary parts of the self-energy indicates that the different coupled valley–spin subbands may exhibit dis-
tinct characteristics. Moreover, we obtain the corresponding spectral functions and find that the plasmaron and quasiparticle peaks
have different spectral weights and broadenings in all states. Interestingly, it seems that there are clear dependencies for the position
and broadening of the peaks on valley–spin indexes. In addition, we study the effect of the electron–electron interaction on the renor-
malized velocity in the on-shell approximation and show that the renormalized velocity in gapped states becomes greater, and in
gapless states, it becomes smaller as the wave vector grows.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5116786

I. INTRODUCTION

Since the discovery of graphene in 2004,1 there have been con-
siderable theoretical and experimental studies on two-dimensional
(2D) materials, such as transition metal dichalcogenides, black
phosphorus, silicene, and topological insulators.2–10 Among these
are group IV materials characterized by a low-buckled honeycomb
structure with gapped Dirac points. Silicene11 (Fig. 1), the second
element of this group, has been synthesized on different substrates
such as Ag(111),12 Ir(111),13 and ZrB2(0001).

14 In the band struc-
ture of monolayer silicene, minima of the conduction band and
maxima of the valence band are located at the corner of the hexago-
nal Brillouin zone (Dirac points) with a gap induced by the intrinsic
spin–orbit coupling (SOC) of about 7:8meV.15 It is worth pointing

out that the SOC plays an important role in transport properties of
a wide range of 2D systems.16–21

The intrinsic SOC makes silicene even more promising than
graphene22 as the SOC-induced bandgap in silicene is tunable by a
perpendicular electric field, Ez .

23 The applied electric field, on the
other hand, breaks the inversion symmetry of the lattice due to the
buckling. It also opens up the degenerate spin-subbands of inequi-
valent valleys, which can be controlled by an exchange field
through the Zeeman effect.24 The spin and valley degrees of
freedom contribute to different interesting phenomena, such as the
spin Hall effect (SHE) and the valley Hall effect (VHE), and can be
employed to manipulate the electronic systems.25–29 The fact that the
spin and valley degrees of freedom can be coupled makes such
systems significant for potential applications. Silicene as a compatible
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2D material with Si-based electronics has attracted increasingly
attention especially, after introducing the first silicene-based field
effect transistor that works at room temperature.30 On the other
hand, the many-body effects that are important in determining the
electronic and optical properties of 2D materials have been experi-
mentally investigated.31,32 Angle resolved photoemission spectro-
scopy (ARPES) that produces in-depth information on the electronic
properties of 2D atomic layers can be used as a probe for the many-
body effects in such systems.33 Furthermore, it was shown that STM
measurements can be used to provide insights into many-body inter-
actions at the atomic scale.34 Both of these experimental techniques
have been widely used to quantify characteristics of silicene on
various substrates.33,35–37 Therefore, it is worthwhile to investigate
the dynamical many-body properties of silicene, thoroughly.

Self-energy, a complex function that its imaginary and real
parts determine the damping and energy of the quasiparticles,
respectively, plays a central role in the quantum mechanical many-
body theories. All important interaction effects may be included in
the self-energy function. It is a difficult job to calculate the self-
energy exactly; as a result, some approximations have been intro-
duced for obtaining the self-energy of an interacting system. It is
fair to recognize the G0W approximation as a successful approach
for calculating the self-energy of a Fermi gas system with the long-
range Coulomb interaction.38 Nevertheless, it should be pointed
out that it fails in some cases.39 One of the important many-body
properties of the system that could be obtained from the self-
energy is the single-particle spectral function A(k, ω), a key quan-
tity in characterizing the density of electronic states as a function
of both momentum and energy. The spectral function can be mea-
sured by the ARPES experiments and gives useful information
about the electronic structure of the system such as the full quasi-
particle energy dispersion.40,41 There has been many theoretical
works on the electronic properties of silicene;24,42–45 however, a
comprehensive study on the self-energy of silicene under simulta-
neously applied external fields is absent.

Spin- and valley-dependent carrier properties in silicene can be
controlled by the external electric and exchange fields. For this
reason, silicene is a promising candidate for spintronic and valley-
tronic applications. Applying external fields interestingly reveals the
spin- and valley-polarized particle–hole and plasmon excitations.24,42

Optical conductivity measurements can be used as a sensitive means
to demonstrate the signatures of spin- and valley-dependent proper-
ties of silicene.46,47

Motivated by the significance of interactions, enhanced by
externally applied fields, in the transport and optical properties of
the system, we calculate the zero-temperature self-energy of an
n-type doped silicene including the electron–electron interaction in

the presence of the perpendicular electric and exchange fields
within the G0W approximation. The effective interaction is given by
the dynamical random phase approximation (RPA). This approach
has been used successfully for studying the many-body effects in
several systems such as 3D and 2D electron gas systems48,49 and
also monolayer and bilayer graphene.50,51 Particularly, we are inter-
ested in the valley–spin polarized metal (VSPM) phase of silicene
due to its rich underlying valley and spin physics.24,52 We show that
both the real and imaginary parts of silicene self-energy depend
upon the spin and valley degrees of freedom where the change in
the imaginary part is more pronounced. Moreover, we obtain the
single-particle spectral function of carriers for four different states
(four distinct combinations of the spin and valley indexes). The
observed peaks in the spectral function are attributed to the quasi-
particle and plasmaron excitations. Plasmaron is a collective mode
consisting of the plasmon and a hole. Recently, the plasmaron has
been observed in graphene using ARPES measurements.53 We show
that existence of the quasiparticle and plasmaron peaks in the wave
vector smaller than the Fermi wave vector depends on the spin and
valley indices and a chosen substrate, similar to the cases of the 3D
and 2D electron gas systems and monolayer and bilayer
graphene.48,50,54–56 Interestingly, we find that the spectral function
has a sharp plasmaron peak in two states and broadened peaks in
the others. Furthermore, we investigate the effect of electron–elec-
tron interaction on the valley and spin-dependent renormalized
velocity, a quantity that can be directly measured from the quasipar-
ticle dispersion. Following the method that was successfully used in
the case of graphene,54 we compute the renormalized velocity and
compare it with the bare electron velocity of different subbands.
Our results on the many-body effects in VSP silicene may be useful
to better interpret the spin–valley-resolved experimental data.

The rest of the paper is organized as follows. Section II pre-
sents the low-energy Hamiltonian of silicene and its eigenvalues in
the presence of both external electric and exchange fields. The for-
malism and results of calculations for the self-energy, spectral func-
tion, and renormalized velocity of VSP silicene are given in Sec. III.
Finally, concluding remarks of this study are outlined in Sec. IV.

II. LOW-ENERGY HAMILTONIAN

We consider a single-layer silicene composed of two sublat-
tices (A and B) of silicon atoms separated by a vertical distance
of 2d ¼ 0:46A

�
under perpendicularly applied electric and mag-

netic fields.
Carriers in such a system can be described by the following

effective tight-binding Hamiltonian:26,57

H ¼ �t
X
hi,ji,s

cyi,sc j,s þ i
Δso

3
ffiffiffi
3

p
X

hhi,jii,s,s0
νijc

y
i,sσ

s,s0
z c j,s0

� d
X
i,s

ςiE
i
zc
y
i,sci,s þ

X
i,s

Mic
y
i,sσ

ss
z ci,s, (1)

where in the first term, sum runs over all nearest-neighbor pairs
(hi, ji) with t ¼ 1:61 eV.57 cyi,s (ci,s) is the creation (annihilation)
operator at site i with spin s. The second term includes the

FIG. 1. Schematic side view of the buckled structure of monolayer silicene. The
A and B sites are separated by a vertical distance 2d.
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intrinsic SOC with Δso ¼ 3:9meV15,27 (the effect of Rashba-SOC
is ignored), where σ i (i ¼ x, y, z) are the Pauli spin matrices and

νi,j ¼ (~di � ~dj):ẑ=j(~di � ~dj):ẑj, with ~di and ~dj connecting the next-
nearest neighbors. Moreover, hhi, jii denotes a sum over all those
pairs.58 The third term is the on-site potential difference
(Δz ¼ Ezd) between two sublattices,59 and Ez is the perpendicu-
lar electric field with ςi ¼ þ1(� 1) for A(B) sites. The last term
includes the interactions due to the exchange field, M, which is
induced by the ferromagnetic substrate or adatoms. In graphene
deposited on the EuO substrate, the exchange field is predicted
to be about 5meV.60 In order to show the effects more clearly,
we use a larger value for this field, as was used previously by
Van Duppen et al.24

The Hamiltonian given in Eq. (1) near the Dirac points and
for low-energy electrons can be written in the spin- and valley-
dependent continuum model as15

Hηsz ¼ vF(ηkxτx þ kyτy)þ ηszΔsoτz � Δzτz þMsz: (2)

In this equation, η ¼ +1 denotes K1 and K2 valleys, sz ¼ +1
shows the spin states, τ i (i ¼ x, y, z) are Pauli matrices in the sub-
lattice space, and vF ¼ 5� 105 m=s.59 It should be pointed out that
we use �h ¼ 1 throughout this paper.

The energy spectrum of the Hamiltonian in Eq. (2) corre-
sponding to the conduction (+) and valence (�) bands is given as

Eηsz (k) ¼ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(vFk)

2 þ (Δz � ηszΔso)
2

q
þ szM: (3)

As a result, the electronic structure of silicene, when both the
electric and magnetic fields are applied perpendicularly, contains
spin-split subbands in each valley with spin- and valley-dependent
gap, which is twice the Δηsz , 2Δηsz ¼ 2jΔz � ηszΔsoj. This is actually
a feature of silicene that allows Ez to control the spin-split bandg-
aps. Depending on the magnitude of Ez , silicene can be found in
different phases. It has been shown that the system transforms
from a topological insulator (TI) to a band insulator (BI) if Δz

goes from a value smaller than Δso to a larger one.23,59 Among
this phase transition, there is a critical value for the applied elec-
tric field with Δz ¼ Δso. This special case introduces the important
VSPM phase.61 In the VSPM phase, one of the subbands experi-
ences no gap and the other a gap of 2Δso. In other words, one of
the bandgaps becomes minimized, while the other reaches its
maximum value.24 Without exchange field, the spin-split sub-
bands in the two valleys are equal but with reversed spin labels.
The exchange field, on the other hand, alters the subband density
of states in each valley.24 Figure 2 shows all spin- and valley-
dependent subbands of the VSPM phase. Here, the green solid
line displays the position of Fermi energy, μ0, with respect to the
subbands, and the horizontal axis represents the dimensionless 2D
wave vector, ka, with a being the lattice constant a ¼ 3:86A

�
. The

interesting VSPM regime is the focus of this paper. By choosing
Δz ¼ Δso and M = 0, we study some spin- and valley-dependent
many-body properties of silicene.

III. MANY-BODY FORMULATION AND RESULTS

Many-body systems in condensed matter physics are the
main subject of research. In such systems, investigating the dif-
ferent interactions that are responsible for the fascinating behav-
iors is of great interest. Many theoretical and experimental
efforts have been made to understand the macroscopic and
microscopic properties of matter. Electronic and optical proper-
ties of a system may strongly depend on the presence of different
interactions such as coupling to the substrate, electron-impurity
scattering, and electron–phonon interaction. When the electron
Fermi energy is comparable to the phonon energies, the elec-
tron–phonon interaction becomes significant. Since the Fermi
energy of carriers in silicene can be controlled by external fields,

FIG. 2. Low-energy spectrum of VSP silicene under an external exchange field
around two valleys (a) K1 and (b) K2 as a function of ka. The blue dotted and
red dashed lines correspond to the spin-up and spin-down states, respectively.
The green solid line shows the Fermi energy, μ0. Here, we set Δz ¼ Δso,
M ¼ 2:7Δso, and μ0 ¼ 5Δso.
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it is quite possible to choose the Fermi energy far from the
phonons’ energy range. In this paper, we consider only the elec-
tron–electron interaction and can neglect the electron–phonon
interaction because the selected Fermi energy is sufficiently
lower than the optical phonon energy in silicene. Also, due to
the weak bonds in silicene, the deformation potential constant is
small, resulting in a weak electron–acoustic phonon coupling.62,63

The electron–electron Coulomb interaction that governs the many-
body properties of the electron gas systems can be described by the
following Hamiltonian:64

Hint ¼ 1
2S

X
q=0

V(q)(nqn�q � N), (4)

where V(q) ¼ 2πe2=κq (κ being the background dielectric cons-
tant) is the bare Coulomb interaction, S is the area of the sample,
nq is the electron density operator, and N is the number operator.

A. Self-energy

As mentioned earlier, the self-energy accounts for the elec-
tronic interactions and plays a crucial role in determining the
complex energy of quasiparticles. In this section, we calculate the
real and imaginary parts of the silicene dynamical self-energy
function, considering their spin and valley dependencies in the
presence of the externally applied electric and magnetic fields.
We employ the G0W approximation corresponding to the first-
order perturbation expansion in the dynamically screened
Coulomb interaction, as shown in Fig. 3, in which the screening
is included by the RPA dynamical dielectric function. Using the
self-energy, the effect of the interaction on some physical quanti-
ties such as the quasiparticle lifetime within the on-shell approx-
imation, spectral function, renormalized velocity, and effective
mass38,48,52,65 can be calculated. The self-energy within the G0W
approximation for band λ and subband (η, sz) is given by38

Σληsz (k, iωn) ¼ �1
β

X
λ
0

ð
d2q

(2π)2
Fλλ0 ηsz (k, k þ q)

�
Xþ1

m¼�1
W(q, iΩm)G

0
λ
0
ηsz
(k þ q, iωn þ iΩm), (5)

where β ¼ 1=kBT , Fλλ0 ηsz (k, k þ q) is the overlap function and
given by66

Fλλ0 ηsz (k, k þ q) ¼ 1
2

1þ λλ
0 v2Fk:(k þ q)þ Δ2

ηsz

Ληsz (k)Ληsz (k þ q)

 !
, (6)

with Ληsz (k) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(vFk)

2 þ Δ2
ηsz

q
. ωn and Ωm are the Matsubara

fermion and boson frequencies and G0(k, iωn) is the noninteract-
ing Green’s function, which is given by

G0
ληsz (k, iωn) ¼ 1

iωn � Eηsz (k)þ μ0
: (7)

The dynamical screened effective interaction W(q, iΩm)
¼ V(q)=ϵ(q, iΩm) is determined by the bare Coulomb potential,
V(q) ¼ 2πe2=κq, and the dynamical dielectric function
ϵ(q, iΩm), which within the RPA can be obtained from the fol-
lowing relation:

ϵ(q, iΩm) ¼ 1� V(q)Π0(q, iΩm): (8)

In the above equation, Π0(q, iΩm) is the noninteracting polar-
ization function.38 Assuming negligible transitions between differ-
ent spin and valley states, the dynamical polarization function, in
Eq. (8), can be expressed by summation over the spin and valley
degrees of freedom as Π0(q, iΩ) ¼Pη¼+1

P
sz¼+1 Π

0
ηsz (q, iΩ),

24

with66

Π0
ηsz (q, iΩ) ¼

ð
d2k

(2π)2
X
λλ

0
Fλλ0ηsz (k, k þ q)

� nF(λΛηsz (k))� nF(λ
0
Ληsz (k þ q))

iΩþ λΛηsz (k)� λ
0
Ληsz (k þ q)

, (9)

where nF(λΛηsz (k)) is the Fermi–Dirac distribution function with
the spin-dependent Fermi level, μs ¼ μ0 � szM.

The retarded self-energy is obtained from Eq. (5) via ana-
lytic continuation, iω ! ωþ iη, after performing the Matsubara
frequency summation (

P
m). At zero temperature, the retarded

self-energy can be written as a sum of two terms, line and
residue in the form of Σret

ληs(k, ω) ¼ Σ line
ληsz (k, ω)þ Σres

ληs(k, ω),
which are given as38,55,67

Σ line
ληsz (k, ω) ¼ �

X
λ
0

ð
d2q

(2π)2

ðþ1

�1

dΩ
2π

V(q)
ϵ(q, iΩ)

� Fλλ0 ηsz (k, k þ q)

iΩþ ω� ξλ0 ηsz (k þ q)
(10)

FIG. 3. Feynman diagrams for the electronic self-energy within the G0W-RPA.
The thin (thick) solid line indicates the noninteracting (interacting) electron
Green’s function, and the thin and thick wavy lines show the bare and screened
Coulomb potential, respectively.
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FIG. 4. Real (top panels) and imaginary (bottom panels) parts of the spin- and valley-dependent self-energy Σ(k, ω) in units of μ0 as a function of energy for k ¼ 0:25kF
in (a) (K1, +), (b) (K1, �), (c) (K2, +), and (d) (K2, �) states of an n-doped VSP silicene. Here, we set Δz ¼ Δso, M ¼ 2:7Δso, and μ0 ¼ 5Δso.
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and

Σres
ληsz (k,ω)¼

X
λ
0

ð
d2q

(2π)2
V(q)Fλλ0 ηsz (k, kþq)

ϵ(q,ω� ξλ0 ηsz (kþq))

� [Θ(ω�ξλ0 ηsz (kþq))�Θ(�ξλ0 ηsz (kþq))], (11)

where ξληsz ¼ λΛηsz � μs is the free particle energy and Θ(x) is
the Heaviside step function. The line contribution to the self-
energy is entirely real; however, the residue term is a complex

function. In Fig. 4, we plot the real and imaginary parts of the
dynamical self-energy of silicene in different spin–valley states,
when the electric and magnetic fields are perpendicularly
applied. Here, we consider Ez ¼ Δso, M ¼ 2:7Δso,

24 μ0 ¼ 5Δso,
k ¼ 0:25kF , which characterizes the quasiparticles with a wave
vector below the Fermi surface. Also, we choose SiO2 as a sili-
cene substrate (κ ¼ 2:5) that is commonly used in 2D structures
with a honeycomb lattice such as graphene and MoS2.

There are two major scattering mechanisms that determine the
overall structure of the self-energy: excitations of plasmons and
particle–hole pairs. The line contribution is a smooth curve in all

FIG. 5. Valley- and spin-dependent spectral function in (a) (K1, +), (b) (K1, �), (c) (K2, +), and (d) (K2, �) states of an n-type doped VSP silicene as a function of energy
for k ¼ 0:25kF. The dominant peaks are associated with the quasiparticle and plasmaron peaks. Here, we set Δz ¼ Δso, M ¼ 2:7Δso, μ0 ¼ 5Δso, and SiO2 as a sub-
strate with κ � 2:5.
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spin–valley states, as shown in Fig. 4. Moreover, the imaginary part of
the self-energy displays logarithmic singularities, which come from
plasmon contributions. There is a corresponding dip in the real part,
ReΣ , through the Kramers–Kronig relation between ReΣ and ImΣ .

Below the Fermi energy, the intraband single-particle excita-
tions contribute to ImΣ , and above the Fermi energy, it is the inter-
band excitations that enhance ImΣ . Contributions from these two
excitations depend on the density of carriers in the conduction
band and also the gap size.67

According to this figure, there are some differences between the
self-energy results of the diverse states with different electron densities.

In particular, the imaginary part of the self-energy illustrates a pro-
nounced variation with the valley and spin indexes. Also, we can see
that a kink in the real part of the self-energy in a gapless (K1, +)
state and a gapped (K2, +) state at ω ≃ μ0 disappears in (K2, �)
and (K1, �) states, which have higher electron densities, similar to
the graphene65 and 2D electron gas48 cases, respectively.

B. Spectral function

The spectral function A(k, ω) gives the probability of finding a
particle (quasiparticle) in the system with momentum k and energy

FIG. 6. Valley- and spin-dependent spectral function in (a) (K1, +), (b) (K1, �), (c) (K2, +), and (d) (K2, �) states of an n-type doped VSP silicene as a function of energy
for k ¼ 0:25kF. The dominant peaks are associated with the quasiparticle and plasmaron peaks. Here, we set Δz ¼ Δso, M ¼ 2:7Δso, μ0 ¼ 5Δso, and SiC as a substrate
with κ � 5:3.
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ω. This quantity contains significant information about the dynam-
ical structure of the system. The spectral function is obtained from
the self-energy through the following equation:68

Aληsz (k,ω)¼
2jImΣληsz (k,ω)j

[ω� ξkηsz �ReδΣληsz (k,ω)]
2þ [ImΣληsz (k,ω)]

2 , (12)

where δΣληsz (k, ω) ¼ Σληsz (k, ω)� Σληsz (kF , 0) and the energy of
the noninteracting electrons measured from the chemical potential,
ξkηsz ¼ Eληsz � μ0.

68 As is clear from Eq. (12), the spectral function is
a Lorentzian function in which the peak position is determined
by ReΣ and jImΣj represents the linewidth. In the absence of
interactions, the spectral function is a Dirac delta function
A0(k, ω) ¼ δ(ω� ξ(k)), while the interactions broaden the
δ-function peak where ImΣ = 0. We find that the spectral function
of VSP silicene has two peaks within the RPA [see Figs. 5(a)–5(d)
showing the spectral function in different spin–valley states]. The first
peak (going from ω ¼ 0 toward negative frequencies) corresponds to
quasiparticles, which are bare particles surrounded by a cloud of
virtual plasmon and particle–hole excitations. Moreover, silicene
spectral function has a plasmaron peak, i.e., a peak associated with
the charged particle and real plasmon excitations.48,68

Intersections of ReΣ with ω� ξk indicate the quasiparticle and
plasmaron peaks, which are solutions of Dyson’s equation.48 By com-
paring the obtained spin- and valley-dependent spectral functions of
silicene, we can see the effect of different electron densities of sub-
bands on the results. It should be noted that the plasmaron and qua-
siparticle peaks have different spectral weights and broadening in
four spin-split subbands. The broadening of the plasmaron peak is
more evident in (K1, �) and (K2, �) states rather than (K1, +) and
(K2, +). This is due to the higher electron densities in the spin-down
states with respect to the spin-up ones according to Fig. 2. Thus, it is
expected that the electron density that can be tuned by the electric
and exchange fields plays an important role in determining the
behavior of a subband spectral function in all phases of silicene.
Carrier density dependence of the spectral function has been
obtained in the cases of 2D electron gas and bilayer graphene.48,50 It
is worth noting that the broad peak characterizes the short lifetime of
plasmaron excitations. As it can be observed from Fig. 5, the plas-
maron peak has a slightly different position in each distinct state.

One of the factors that can tune the electron–electron interac-
tion is using a different substrate. Different substrates modify κ, the
background dielectric constant, in Eq. (4). To show this effect, we
plot all spin-split subband spectral functions of silicene on SiC in
Fig. 6. Except for the dielectric constant, the other parameters are
the same as those in Fig. 5. As the substrate changes from SiO2

(Fig. 5) to SiC (Fig. 6), the dielectric screening will be increased
and the electron–electron interaction undergoes some changes. The
main effect of changing the substrate from SiO2 to SiC is increasing
magnitude of the plasmaron peak in the K1 and K2 subband with
spin down, and destroying the plasmaron peak in (K2, þ).
Moreover, the difference between spectral functions of distinct sub-
bands becomes more pronounced by using substrates with higher
κ. In the absence of the exchange field, M, since densities of carri-
ers in (K1, þ) and (K2, �) are identical and also in (K1, �) with
(K2, þ), they will show the same behavior. Applying the exchange

field destroys the observed symmetry between subbands and
changes the Fermi energy of each state. As a result, four possible
states show different responses in the spectral function.

C. Renormalized velocity

An important quantity that is significantly influenced by the
interactions is the renormalized velocity. Frequency and wave
vector dependent renormalized velocity is obtained by taking the
wave vector derivative of the quasiparticle energy according to the
following relation:

vηsz* (k) ¼
@εηsz (k)

@k
: (13)

The modified energy dispersion of electrons due to the electron–
electron interaction is given by the solution to Dyson’s equation for
a given k,

εηsz (k) ¼ ξkηsz þ ReΣηsz (k, ω)jω¼εηsz (k)
: (14)

In the on-shell approximation ω ¼ ξkηsz , the renormalized velocity
can be obtained as

vηsz* (k) ¼
v2Fkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(vFk)
2 þ Δ2

ηsz

q þ d
dk

ReΣηsz (k, ξkηsz ): (15)

In Fig. 7, we demonstrate the renormalized velocity, vηsz* (k),
calculated within the on-shell approximation in units of the bare
Fermi velocity as a function of wave vector in a VSP silicene under

FIG. 7. The renormalized velocity in four spin-split subbands as a function of
dimensionless wave vector ka within on-shell approximation. SiC and SiO2 are
considered as substrates with κ ≃ 5:3 and 2.5, respectively. The black lines
show the velocity without electron–electron interaction correction in four sub-
bands. Here, we set Δz ¼ Δso, M ¼ 2:7Δso, and μ ¼ 5Δso.
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an external exchange field. Furthermore, we investigate the effects
of the substrate on the renormalized velocity by obtaining the
results of two different substrates, SiO2 and SiC. As seen in Fig. 7,
the renormalized velocity reduces by increasing the background
dielectric constant as a result of a stronger screening effect. For
comparison, we also display the electron velocity in the absence of
self-energy correction (the gray lines in Fig. 7). The relative change
in the renormalized velocity with respect to the bare velocity pro-
vides a measure of the interaction strength. In general, the elec-
tron–electron interaction increases the effective electron velocity
similar to what has been seen in graphene.54 Our calculations show
that the effect of the self-energy correction on the renormalized
velocity becomes greater in gapped (K1, �) and (K2, þ) subbands,
except at very small wave vectors. Moreover, it is observed that
while subbands with similar dispersions have an analogous renor-
malized velocity, the different magnitudes are related to the differ-
ence between their electron densities.

IV. CONCLUSION

In this paper, we have studied the dynamical spin- and
valley-dependent self-energy corrections to the electronic energy
due to the electron–electron interaction within the G0W-RPA
approximation for an n-type doped silicene at zero temperature.
In particular, we have considered the interesting VSPM phase of
silicene in the presence of an external exchange field. Our numeri-
cal results have shown that the real and imaginary parts of the
self-energy may behave differently in distinct subbands, and some
features of corresponding results for both 2D electron gas and gra-
phene can be obtained in VSP silicene. Furthermore, the corre-
sponding single-particle spectral function has been investigated,
and it is seen that existence of the quasiparticle and plasmaron
peaks and its specific behavior depends on the electron density of
each state and also on the substrate. Our calculations have sug-
gested that these peaks exhibit different broadenings and positions
in different subbands. We have discussed this effect based on the
fact that in the VSPM phase under an external exchange field, the
individual subbands have different electron densities that can
affect the spectral function. Moreover, we have calculated the
renormalized velocity of four valley and spin-dependent states as a
function of wave vector in the on-shell approximation. We have
found that this many-body quantity, which can be experimentally
measured, is an increasing function of wave vectors for the gapped
subbands and a slowly decreasing function for the gapless sub-
bands. Furthermore, we see that increasing the background dielec-
tric constant decreases the renormalized velocity. We expect our
findings to be potentially useful for interpreting relevant experi-
mental results in silicene-like materials.

ACKNOWLEDGMENTS

B.T. acknowledges support from TUBITAK (Grant No. 117F125)
and TUBA (Grant No. AD19).

REFERENCES
1K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva,
S. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).

2R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, and F. Zamora,
Nanoscale 3, 20 (2011).
3A. Gupta, T. Sakthivel, and S. Seal, Prog. Mater. Sci. 73, 44 (2015).
4J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and
X. Xu, Nat. Rev. Mater. 1, 16055 (2016).
5M. Alidoust, M. Willatzen, and A.-P. Jauho, Phys. Rev. B 99, 125417 (2019).
6M. Alidoust, M. Willatzen, and A.-P. Jauho, Phys. Rev. B 98, 184505 (2018).
7M. Alidoust, M. Willatzen, and A.-P. Jauho, Phys. Rev. B 98, 085414 (2018).
8G. Huang, Z. Xing, and D. Xing, Appl. Phys. Lett. 106, 113107 (2015).
9S. Barua, K. Rajeev, and A. K. Gupta, J. Phys.: Condens. Matter 27, 015601
(2014).
10R. Zhang, J. Waters, A. K. Geim, and I. V. Grigorieva, Nat. Commun. 8, 15036
(2017).
11M. Houssa, A. Dimoulas, and A. Molle, J. Phys.: Condens. Matter 27, 253002
(2015).
12P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio,
A. Resta, B. Ealet, and G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012).
13L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou,
W. A. Hofer et al., Nano Lett. 13, 685 (2013).
14A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and
Y. Yamada-Takamura, Phys. Rev. Lett. 108, 245501 (2012).
15C.-C. Liu, H. Jiang, and Y. Yao, Phys. Rev. B 84, 195430 (2011).
16S. Dushenko, H. Ago, K. Kawahara, T. Tsuda, S. Kuwabata, T. Takenobu,
T. Shinjo, Y. Ando, and M. Shiraishi, Phys. Rev. Lett. 116, 166102 (2016).
17B. T. Zhou, K. Taguchi, Y. Kawaguchi, Y. Tanaka, and K. Law, Commun.
Phys. 2, 26 (2019).
18D. Xiao, W. Yao, and Q. Niu, Phys. Rev. Lett. 99, 236809 (2007).
19R. Beiranvand, H. Hamzehpour, and M. Alidoust, Phys. Rev. B 96, 161403
(2017).
20J. Mendes, O. A. Santos, L. Meireles, R. Lacerda, L. Vilela-Leão, F. Machado,
R. Rodríguez-Suárez, A. Azevedo, and S. Rezende, Phys. Rev. Lett. 115, 226601
(2015).
21A. Avsar, J. Y. Tan, T. Taychatanapat, J. Balakrishnan, G. Koon, Y. Yeo,
J. Lahiri, A. Carvalho, A. Rodin, E. O’Farrell et al., Nat. Commun. 5, 4875
(2014).
22A. Kara, H. Enriquez, A. P. Seitsonen, L. L. Y. Voon, S. Vizzini, B. Aufray, and
H. Oughaddou, Surf. Sci. Rep. 67, 1 (2012).
23N. Drummond, V. Zolyomi, and V. Fal’Ko, Phys. Rev. B 85, 075423 (2012).
24B. Van Duppen, P. Vasilopoulos, and F. Peeters, Phys. Rev. B 90, 035142
(2014).
25Y. Ye, J. Xiao, H. Wang, Z. Ye, H. Zhu, M. Zhao, Y. Wang, J. Zhao, X. Yin,
and X. Zhang, Nat. Nanotechnol. 11, 598 (2016).
26M. Ezawa, Phys. Rev. B 87, 155415 (2013).
27C.-C. Liu, W. Feng, and Y. Yao, Phys. Rev. Lett. 107, 076802 (2011).
28M. Tahir, A. Manchon, K. Sabeeh, and U. Schwingenschlögl, Appl. Phys. Lett.
102, 162412 (2013).
29M. Tahir and U. Schwingenschlögl, Sci. Rep. 3, 1075 (2013).
30L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey,
A. Molle, and D. Akinwande, Nat. Nanotechnol. 10, 227 (2015).
31A. Grüneis, C. Attaccalite, T. Pichler, V. Zabolotnyy, H. Shiozawa,
S. Molodtsov, D. Inosov, A. Koitzsch, M. Knupfer, J. Schiessling, and R. Follath,
Phys. Rev. Lett. 100, 037601 (2008).
32G. Cappellini, J. Furthmüller, E. Cadelano, and F. Bechstedt, Phys. Rev. B 87,
075203 (2013).
33S.-K. Mo, Nano Convergence 4, 6 (2017).
34P. Sessi, V. M. Silkin, I. A. Nechaev, T. Bathon, L. El-Kareh, E. V. Chulkov,
P. M. Echenique, and M. Bode, Nat. Commun. 6, 8691 (2015).
35W. Peng, T. Xu, P. Diener, L. Biadala, M. Berthe, X. Pi, Y. Borensztein,
A. Curcella, R. Bernard, G. Prevot, and B. Grandidier, ACS Nano 12, 4754
(2018).
36L. Feng, K. Yabuoshi, Y. Sugimoto, J. Onoda, M. Fukuda, and T. Ozaki, Phys.
Rev. B 98, 195311 (2018).
37T. Kaloni, M. Tahir, and U. Schwingenschlögl, Sci. Rep. 3, 3192 (2013).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 127, 054305 (2020); doi: 10.1063/1.5116786 127, 054305-9

Published under license by AIP Publishing.

https://doi.org/10.1038/nature04233
https://doi.org/10.1039/C0NR00323A
https://doi.org/10.1016/j.pmatsci.2015.02.002
https://doi.org/10.1038/natrevmats.2016.55
https://doi.org/10.1103/PhysRevB.99.125417
https://doi.org/10.1103/PhysRevB.98.184505
https://doi.org/10.1103/PhysRevB.98.085414
https://doi.org/10.1063/1.4916100
https://doi.org/10.1088/0953-8984/27/1/015601
https://doi.org/10.1038/ncomms15036
https://doi.org/10.1088/0953-8984/27/25/253002
https://doi.org/10.1103/PhysRevLett.108.155501
https://doi.org/10.1021/nl304347w
https://doi.org/10.1103/PhysRevLett.108.245501
https://doi.org/10.1103/PhysRevB.84.195430
https://doi.org/10.1103/PhysRevLett.116.166102
https://doi.org/10.1038/s42005-019-0127-7
https://doi.org/10.1038/s42005-019-0127-7
https://doi.org/10.1103/PhysRevLett.99.236809
https://doi.org/10.1103/PhysRevB.96.161403
https://doi.org/10.1103/PhysRevLett.115.226601
https://doi.org/10.1038/ncomms5875
https://doi.org/10.1016/j.surfrep.2011.10.001
https://doi.org/10.1103/PhysRevB.85.075423
https://doi.org/10.1103/PhysRevB.90.035142
https://doi.org/10.1038/nnano.2016.49
https://doi.org/10.1103/PhysRevB.87.155415
https://doi.org/10.1103/PhysRevLett.107.076802
https://doi.org/10.1063/1.4803084
https://doi.org/10.1038/srep01075
https://doi.org/10.1038/nnano.2014.325
https://doi.org/10.1103/PhysRevLett.100.037601
https://doi.org/10.1103/PhysRevB.87.075203
https://doi.org/10.1186/s40580-017-0100-7
https://doi.org/10.1038/ncomms9691
https://doi.org/10.1021/acsnano.8b01467
https://doi.org/10.1103/PhysRevB.98.195311
https://doi.org/10.1103/PhysRevB.98.195311
https://doi.org/10.1038/srep03192
https://aip.scitation.org/journal/jap


38G. D. Mahan, Many-Particle Physics (Springer Science & Business Media, 2013).
39L. Reining, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1344 (2018).
40A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Nat. Phys. 3, 36
(2007).
41S. Hüfner, R. Claessen, F. Reinert, T. Straub, V. Strocov, and P. Steiner,
J. Electron. Spectrosc. Relat. Phenom. 100, 191 (1999).
42C. J. Tabert and E. J. Nicol, Phys. Rev. B 89, 195410 (2014).
43N. Dadkhah, T. Vazifehshenas, M. Farmanbar, and T. Salavati-fard, J. Appl.
Phys. 125, 104302 (2019).
44C.-H. Wu, Results Phys. 11, 665 (2018).
45V. Vargiamidis and P. Vasilopoulos, J. Appl. Phys. 117, 094305 (2015).
46L. Stille, C. J. Tabert, and E. J. Nicol, Phys. Rev. B 86, 195405 (2012).
47H. Bao, W. Liao, J. Guo, X. Yang, H. Zhao, and G. Zhou, J. Phys. D Appl.
Phys. 48, 455306 (2015).
48R. Jalabert and S. D. Sarma, Phys. Rev. B 40, 9723 (1989).
49L. Hedin and S. Lundqvist, Solid State Physics (Academic Press, New York,
1969), Vol. 23.
50A. Sabashvili, S. Östlund, and M. Granath, Phys. Rev. B 88, 085439 (2013).
51E. Hwang and S. D. Sarma, Phys. Rev. B 77, 081412 (2008).
52M. Mirzaei, T. Vazifehshenas, T. Salavati-fard, M. Farmanbar, and B. Tanatar,
Phys. Rev. B 98, 045429 (2018).

53A. Bostwick, F. Speck, T. Seyller, K. Horn, M. Polini, R. Asgari,
A. H. MacDonald, and E. Rotenberg, Science 328, 999 (2010).
54S. D. Sarma and E. Hwang, Phys. Rev. B 87, 045425 (2013).
55J. J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1958).
56R. Sensarma, E. Hwang, and S. D. Sarma, Phys. Rev. B 84, 041408
(2011).
57C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
58C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
59M. Ezawa, New J. Phys. 14, 033003 (2012).
60H. Haugen, D. Huertas-Hernando, and A. Brataas, Phys. Rev. B 77, 115406
(2008).
61M. Ezawa, Phys. Rev. Lett. 109, 055502 (2012).
62X. Li, J. T. Mullen, Z. Jin, K. M. Borysenko, M. B. Nardelli, and K. W. Kim,
Phys. Rev. B 87, 115418 (2013).
63B. Bishnoi and B. Ghosh, RSC Adv. 3, 26153 (2013).
64G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid
(Cambridge University Press, 2005).
65E. Hwang, B. Y.-K. Hu, and S. D. Sarma, Physica E 40, 1653 (2008).
66P. Pyatkovskiy, J. Phys.: Condens. Matter 21, 025506 (2008).
67A. Qaiumzadeh and R. Asgari, New J. Phys. 11, 095023 (2009).
68P. von Allmen, Phys. Rev. B 46, 13345 (1992).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 127, 054305 (2020); doi: 10.1063/1.5116786 127, 054305-10

Published under license by AIP Publishing.

https://doi.org/10.1002/wcms.1344
https://doi.org/10.1038/nphys477
https://doi.org/10.1016/S0368-2048(99)00047-X
https://doi.org/10.1103/PhysRevB.89.195410
https://doi.org/10.1063/1.5083200
https://doi.org/10.1063/1.5083200
https://doi.org/10.1016/j.rinp.2018.10.009
https://doi.org/10.1063/1.4913934
https://doi.org/10.1103/PhysRevB.86.195405
https://doi.org/10.1088/0022-3727/48/45/455306
https://doi.org/10.1088/0022-3727/48/45/455306
https://doi.org/10.1103/PhysRevB.40.9723
https://doi.org/10.1103/PhysRevB.88.085439
https://doi.org/10.1103/PhysRevB.77.081412
https://doi.org/10.1103/PhysRevB.98.045429
https://doi.org/10.1126/science.1186489
https://doi.org/10.1103/PhysRevB.87.045425
https://doi.org/10.1103/PhysRev.112.812
https://doi.org/10.1103/PhysRevB.84.041408
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1088/1367-2630/14/3/033003
https://doi.org/10.1103/PhysRevB.77.115406
https://doi.org/10.1103/PhysRevLett.109.055502
https://doi.org/10.1103/PhysRevB.87.115418
https://doi.org/10.1039/c3ra43491e
https://doi.org/10.1016/j.physe.2007.10.043
https://doi.org/10.1088/0953-8984/21/2/025506
https://doi.org/10.1088/1367-2630/11/9/095023
https://doi.org/10.1103/PhysRevB.46.13345
https://aip.scitation.org/journal/jap

	Many-body effects due to the electron–electron interaction in silicene under an applied exchange field: The case of valley–spin coupling
	I. INTRODUCTION
	II. LOW-ENERGY HAMILTONIAN
	III. MANY-BODY FORMULATION AND RESULTS
	A. Self-energy
	B. Spectral function
	C. Renormalized velocity

	IV. CONCLUSION
	References


