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ABSTRACT

We explore the temperature-dependent plasmonic modes of an n-doped double-layer silicene system which is composed of two spatially
separated single layers of silicene with a distance large enough to prevent interlayer electron tunneling. By applying an externally applied
electric field, we numerically obtain the poles of the loss function within the so-called random phase approximation to investigate the effects
of temperature and geometry on the plasmon branches in three different regimes: topological insulator, valley-spin polarized metal, and
band insulator. Also, we present the finite-temperature numerical results along with the zero-temperature analytical ones to support a dis-
cussion of the distinct effects of the external electric field and temperature on plasmon dispersion. Our results show that at zero temperature
both the acoustic and optical modes decrease when the applied electric field is increased and experience a discontinuity at the valley-spin
polarized metal phase as the system transitions from a topological insulator to a band insulator. At finite temperature, the optical plasmons
are damped around this discontinuity, and the acoustic modes may exhibit a continuous transition. Moreover, while the optical branch of
plasmons changes non-monotonically and noticeably with temperature, the acoustic branch dispersion displays a negligible growth with
temperature for all phases of silicene. Furthermore, our finite-temperature results indicate that the dependency of two plasmonic branches
on the interlayer separation is not affected by temperature at long wavelengths; the acoustic mode energy varies slightly with an increase in
the interlayer distance, whereas the optical mode remains unchanged.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5083200

I. INTRODUCTION

The advent of two-dimensional (2D) materials has sparked a
considerable scientific interest due to their unique properties and
their potential for applications in electronic, spintronic, valley-
tronic, optoelectronic, and plasmonic devices. Silicene, the silicon
counterpart of graphene, has received much attention in recent
years both theoretically1–7 and experimentally.8–17 Like graphene,
silicene is an atomically-thin sheet of silicon atoms arranged in a
honeycomb structure; however, unlike graphene, silicene does not
hold a planar structure. A small out-of-plane buckling of the
silicene structure due to the sp3 hybridization results in a system of

two sublattices (A and B) which lie in two parallel planes separated
by a vertical distance 2l ¼ 0:46 Å.2,18,19 The novel properties of
graphene arise from its band structure, in which the valence and
conduction bands meet at Dirac points (K and K 0) in the first
Brillouin zone with a well-defined linear energy dispersion relation
around these points: E(k) ¼ +�hνF jkj with νF ¼ 106 m/s and �hk
being the carrier momentum. The strong spin-orbit interaction in
silicene along with the buckled structure induces a nonzero bandgap,
2ΔSO, of about a few meV. The buckled structure of silicene provides
a new possibility of establishing a potential difference between
sublattices A and B, by applying an external out-of-plane electric
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field Ez . Interestingly, this feature allows for tuning the bandgap of
silicene and distinguishing between the different phases, namely,
topological insulator (TI), valley-spin polarized metal (VSPM), and
band insulator (BI). Clearly, this offers a benefit over graphene.

Furthermore, for the biased silicene-like materials, some
valley-dependent properties can be expected in the presence of an
exchange field. Silicene’s extra spin and valley degrees of freedom
makes it a very versatile material. Silicene can be effectively used
as a source of nearly 100% spin-polarized electrons20 and as a
valley-selective spin filter.21–23 Moreover, silicene can probably be
integrated into the current silicon-based electronics, which makes it
a promising material for future electronic applications.24

Considerable progress in fabrication techniques has made the
synthesis of double-layer 2D structures more tenable. A double-
layer structure is composed of two parallel electron or hole gas
systems which are kept in close vicinity and are coupled through
the Coulomb interaction. This class of 2D structures demands
special attention due to exciting many-body phenomena that they
can display, such as the coupled collective excitations, Coulomb
drag, fractional quantized Hall effect,25–27 and more. The interlayer
interaction accounts for unique effects in correlated double-layer
systems, which have been extensively investigated in double-layer
GaAs-based quantum wells, double-layer graphene, and double-
layer phosphorene structures.28–36

Plasmons, the collective excitations of an interacting electron
or hole gas system, can be pictured as different modes of charge
density oscillations. Plasmon branches are the central concept of
the rapidly developing field of plasmonics which deals with light-
matter (photon-surface plasmon) interactions and their technologi-
cally significant consequences. The plasmonic dispersion relations,
which reveal the wave vector-dependent modes, can be theoretically
obtained from zeros of the dynamical dielectric function of the
system37,38 and may be observed by inelastic light scattering spec-
troscopy, frequency domain far-infrared spectroscopy, or inelastic
electron scattering spectroscopy.32 The well-behaved plasmon
modes lie outside the single-particle excitation (SPE) region.
However, those modes entering this region experience the Landau
damping.

The plasma oscillations of single-layer silicene (SLS) have
already been calculated at both zero temperature and finite temper-
ature with and without a perpendicularly applied electric field.39–42

It has been shown that, in an extrinsic SLS, the plasma oscillations
follow a

ffiffiffi
q

p
behavior in the long-wavelength limit at zero tempera-

ture for all values of electric field (i.e., all different phases). In addi-
tion, the location of the long-wavelength plasmon branch as a
function of the applied electric field depends on the position of the
Fermi energy with respect to the spin-split bands.40,43 These results
resemble those of single-layer graphene (SLG) and single-layer
gapped graphene (SLGG) with ΔSO ¼ 0 and ΔSO = 0, respectively.
Moreover, the presence of a small gap in SLGG and various combi-
nations of two gaps in SLS leads to the splitting of the plasmon
branch and the appearance of new undamped plasmon modes.44,41

On the other hand, in the case of SLG, plasmons decay into
particle-hole pairs in the interband portion of the SPE region,
while for SLS, both intra- and interband dampings can occur by
tuning the external electric field.40 The extrinsic (doped) finite-
temperature plasmons of SLS have also been studied: as temperature

increases from T ¼ 0, the plasmon energy first lowers, reaching a
minimum value and then bounces back in both cases of SLS and
SLGG.42,45

Similar calculations were performed at zero temperature
when both electric and magnetic (exchange) fields were applied.46

It is worth pointing out that an exchange field can be induced by
positioning ferromagnetic adatoms47 on the surface or by employ-
ing a ferromagnetic substrate.48,49 In the presence of these fields,
the SPE region is given a spin-valley texture, which results in the
spin-polarized plasmons with zero Ez but finite exchange field
and valley-spin-polarized plasmons when both fields are finite.
However, it was mentioned that the magnetic field strongly
affected the plasmon branch intensity such that it was unlikely to
be experimentally observable. Also, the typical

ffiffiffi
q

p
behavior of

long-wavelength plasmons in 2D systems was preserved when the
magnetic field was turned on. For shorter wavelengths, although
the plasmon dispersion looked different in the presence of a
strong magnetic field, it was still possible to tune plasmons to
display an approximate

ffiffiffi
q

p
behavior.46 In a recent work, the

plasmon-phonon coupling in a valley-spin polarized SLS was
investigated and the dispersion relations of hybrid modes were
discussed.50

Plasma oscillations have also been studied in a doped
double-layer graphene at both zero32,51–55 and finite38,56,57 tem-
peratures within the so-called random phase approximation
(RPA). At zero temperature and in the limit of small wave
vectors, the plasmon dispersion of the in-phase (optical) branch
obeys the � ffiffiffi

q
p

relation and is independent of the interlayer sepa-
ration, d. On the other hand, the out-of-phase (acoustic) branch
has an � q dispersion and depends upon layer distance as � ffiffiffi

d
p

.
This long-wavelength behavior of plasmons is identical to that of
the conventional double-layer 2D electron gas despite having
different dependence on the electron density. Moreover, the plas-
monic dispersion for larger wave vectors calculated within the
RPA for both systems differs from one another.32,54,55 At finite
temperature, the frequency of the acoustic mode decreases to
T � 0:4TF and then increases afterwards. However, the slope of
the growth/decline highly depends on the value of the wave
vector. The variation of optical mode energy with temperature is
not uniform; it is fair to say that at low wave vectors, the optical
branch mimics the behavior of the acoustic branch while at large
wave vectors, the frequency of this branch generally increases with
increasing temperature.38,56

In this paper, we consider an n-doped double-layer silicene
(DLS) system in which two parallel single layers of silicene are
placed in a dielectric environment at a distance d from one
another, which is short enough to make an effective interaction
between them but far enough to guarantee that there will be no
electron tunneling. A schematic model of this system is shown in
Fig. 1. We investigate the effect of temperature on both plasmon
branches with and without the presence of a perpendicular electric
field within different regimes. We also study the dependence of the
plasmon frequencies on the interlayer distance.

The rest of this paper is organized as follows: In Sec. II, we
describe the model and theoretical formalism. In Sec. III, we
present the results of calculations and discuss them in detail.
Finally, a conclusion is given in Sec. IV.
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II. THEORY

A. Low-energy Hamiltonian

Focusing on low-energy phenomena, the effective Hamiltonian
of a buckled honeycomb structure with an effective intrinsic
spin-orbit coupling (SOC) strength ΔSO (ΔSO ¼ 3:9 meV throughout
this paper), in the presence of a perpendicular electric field, around
the Dirac point Kξ, is given by58–60

Ĥξ ¼ �hνF(ξkx τ̂x þ ky τ̂y)� ξΔSOσ̂z τ̂z þ Δz τ̂z , (1)

where ξ distinguishes the two inequivalent valleys with
ξ ¼ þ1(� 1), representing K(K 0) point. k ¼ (kx , ky) is the 2D wave
vector measured relative to the Dirac points. τ i and σ i are Pauli
matrices corresponding to (sublattice) pseudospin (written in A-B
basis) and the real spin of the system, respectively. They are given as

τx ¼ 0 1
1 0

� �
, τy ¼ 0 �i

i 0

� �
, τz ¼ σz ¼ 1 0

0 �1

� �
: (2)

Further, νF is the Fermi velocity of the electrons, reported to be
5� 105 m/s for silicene.61,62 Finally, 2Δz shows the on-site potential
difference between the two sublattices. This low-energy model works
quite well for energies between �800 and þ800 meV.61

The effects of intrinsic Rashba SOC and electric field induced
Rashba SOC are not considerable46 and, therefore, are neglected in
the Hamiltonian (1). Consequently, spin states are decoupled and
the eigenvalues obtained from Eq. (1) are labeled by valley (ξ) and
spin (σ) indexes

Eσξ(k) ¼ λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2ν2F jkj2 þ Δ2

σξ

q
, (3)

where Δσξ ¼ jσξΔSO � Δzj and λ ¼ +1 indexes over the conduction
(particle) and valence (hole) bands, respectively. It is also helpful to
introduce Δmin ; Δþ1,þ1 ¼ Δ�1,�1 and Δmax ; Δþ1,�1 ¼ Δþ1,�1. As
can be seen from the above equation, in the absence of an external
electric field, there exists a bandgap of 2ΔSO. When Ez is turned on
and Δz=ΔSO , 1 (TI regime), the bands become spin-split, represent-
ing two energy gaps determined by 2Δmin and 2Δmax . At Δz=ΔSO ¼ 1

(VSPM regime), the lower bandgap closes; however, by further
increase of Ez , it opens up again (BI regime).

B. Collective excitations

For a double-layer system, the location of the undamped
plasmon collective modes, in the (ω, q) space, is determined by the
zeros of the dielectric tensor, generalized from the single-layer
dynamical dielectric function.37 For systems with high electron
density, it is reasonable to employ the RPA to calculate the dielec-
tric tensor.38 In this approach, the aforementioned tensor is given
by37,32

ϵij(ω, q) ¼ δij � νij(q)Π
0
j (ω, q), (4)

where i and j specify the two layers, νij(q) is the Fourier component
of the bare 2D Coulomb interaction between electrons in layers i
and j, and Π0

j is the non-interacting dynamical polarization func-
tion associated with jth layer. For a double-layer system consisting
of two identical layers separated by a distance d, we have ν11(q) ¼
ν22(q) ¼ ν(q) ¼ 2πα=q (intralayer interaction) and ν12(q) ¼
ν21(q) ¼ ν(q)e�qd (interlayer interaction)37 in which α is the
effective fine structure constant, expressed as e2=4πϵ0κ with κ
being the effective background dielectric constant. The dimension-
less fine structure constant is a measure of the quasiparticle interac-
tion strength.63 The value of fine structure constant has been
explored both theoretically63 and experimentally64–66 for graphene.
There are no such studies for the buckled silicene with the
spin-orbit coupling. Here, we use κ ¼ 4 (assuming a SiO2 back-
ground) to elucidate some interesting features. Finally, Π0

i ¼ Π0
j ¼

Π0 is given by44

Π0(ω, q) ¼ 1
8π2

X
σ,ξ¼+1

ð
d2k

X
λ,λ0¼+1

1þ λλ0
�h2ν2F k:(qþ k)þ Δ2

σξ

Eσξ(k)Eσξ(k þ q)

 !

� nF[λEσξ(k)]� nF[λ0Eσξ(k þ q)]
λEσξ(k)� λ0Eσξ(k þ q)� ω� i0þ

: (5)

Here, nF(E) ¼ 1=[e[(E�μ)=kBT] þ 1] is the Fermi-Dirac distribution
function with μ being the chemical potential which equals to the
Fermi energy EF at T ¼ 0. It is important to notice that the upper
limit of integration over k is restricted by the low-energy condition.
Hence, in the case of identical layers, the plasmon modes can be
obtained from the zeros of the following relation:

ϵ(ω, q) ¼ [1� ν(q)Π0(ω, q)]
2 � ν2(q)e�2qdΠ02 (ω, q): (6)

The dynamical dielectric function is generally a complex func-
tion of (ω, q) such that ω explicitly has a positive imaginary part,
which guarantees that the dynamical physical functions are
retarded. For undamped plasmon excitations in the (ω, q) space,
both the real [<ϵ(ω, q)] and imaginary [=ϵ(ω, q)] parts of the

FIG. 1. Schematic view of a double-layer silicene with an interlayer distance
of d.
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dielectric function are equal to zero. However, there can be points
where <ϵ(ω, q) ¼ 0 but =ϵ(ω, q) = 0, which indicates the exis-
tence of collective modes at these points but with a finite lifetime
due to the nonzero value of =ϵ. These types of plasmons decay
into particle-hole excitation states. For those points of the (ω, q)
plane where =ϵ(ω, q) = 0, the single-particle excitations are possi-
ble, i.e., a photon with a wave vector q and frequency ω can excite a
particle-hole pair in the system. These regions in the (ω, q) space
are called SPE spectrum; any collective mode present in SPE will
eventually decay (known as the Landau damping). SPE spectrum
can be studied as two separate regions corresponding to the inter-
and intra-band pair-creation excitations.

At T ¼ 0 and in the limit of low energies and momenta,
�hνFq � �hω � EF , the non-interacting polarization function of
Eq. (5) has the following analytical form:43,44,46

Π0(ω, q) �
X

ξ,σ¼+1

q2EF
4π�h2ω2

(1� Δ2
ξσ=E

2
F)Θ(EF � Δξσ): (7)

For qd � 1, Eqs. (6) and (7) give the corresponding plasmon
frequencies as

~ωOP
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~α~q

X
σ,ξ¼+1

(1� ~Δ
2
ξσ)Θ(1� ~Δξσ),

s
(8)

~ωAP
p � ~q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
~α~d

X
σ,ξ¼+1

(1� ~Δ
2
ξσ)Θ(1� ~Δξσ)

s
, (9)

where ~α ¼ α=�hνF , ~d ¼ (EF=�hνF)d, ~ω ¼ �hω=EF , ~q ¼ �hνFq=EF , and
~Δξσ ¼ Δξσ=EF are all dimensionless parameters.

Equations (8) and (9) reproduce the well-known behavior of
plasmons in a double-layer system32 which is shown in Fig. 2 for
ΔSO=EF ¼ 0:5, d ¼ 100 Å and varying Δz . The linear (non-linear)
branch corresponds to the acoustic (optical) plasmon modes. Here,
the Fermi energy sits above both gaps in the TI regime
(Δz=ΔSO , 1) and only above the lower gap in the BI regime
(Δz=ΔSO . 1). For the latter, Eqs. (8) and (9) show that the
plasmon dispersion depends only on the lower bandgap and the
upper bandgap plays no role. For this given configuration, the fre-
quencies of both branches decrease as the potential difference
increases. However, Fig. 3 shows a discontinuity in the dispersion
relations of both branches (which is more pronounced for the
optical branch) as the system transitions from TI to BI through the
VSPM phase (Δz=ΔSO ¼ 1).

III. RESULTS AND DISCUSSION

The spectral weight associated with a particular plasmon
mode is directly proportional to =[ϵ�1(ω, q)] and is known as the
loss function. This quantity, which can be measured experimentally
(e.g., in inelastic electron scattering experiments), gives a measure
of the absorption of radiation and is an indication of the plasmon
creation in the system. Thus, the loss function in the (ω, q) space
provides us with branches (poles of the loss function), which iden-
tifies both damped and undamped plasmons. In fact, the long-lived
plasmons (those that are outside the SPE regions) are δ-function
peaks of the loss function, while the damped plasmons (those are
inside SPE regions) correspond to the broadened peaks of the loss
function.32

In this section, we first study the effect of temperature and
bandgap variations on the SPE regions. In this respect, we need to

FIG. 2. Zero-temperature plasmon dispersion of a DLS with d ¼ 100 Å for
ΔSO=EF ¼ 0:5 and varying Δz at low energies. The inset shows the position of
band structure relative to EF as Δz varies.

FIG. 3. Zero-temperature plasmon frequency of a DLS as a function of Δz with
d ¼ 100 Å for ΔSO=EF ¼ 0:5 and ~q ¼ 0:1 at low energies.
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numerically calculate Eq. (5). Note that for T . 0, the effect of
temperature on the chemical potential, μ, must be taken into
account. This can be done by assuming that the number of carriers
of the system is fixed and μ changes accordingly. Figure 4 demon-
strates the dependence of μ=EF on T=TF calculated by using
numerical methods for ΔSO=EF ¼ 0:5 and different values of
Δz=ΔSO.

To investigate the SPE regions in silicene, we plot the imagi-
nary part of the dynamical polarization function for ΔSO=EF ¼ 0:5
at T ¼ 0:5TF and T ¼ TF , respectively (see Figs. 5 and 6). The
layers are apart by d ¼ 100 Å (this value is used for the rest of
calculations, as well) and the applied electric field varies
Δz=ΔSO ¼ 0, 0:25, 1, and 1:75.

The SPEInter and SPEIntra regions are above and below the ~ω ¼ ~q
line, respectively. The SPE boundaries are determined analytically
at T ¼ 0,40 whereas at finite temperature, they can be expressed
approximately as

~ωth(Inter)
min(max) � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(~q=2)2 þ (~Δmin(max))

2
q

,

~ωIntra
min � 0,

~ωIntra
max � ~q: (10)

At a given ~q, ~ωth(Inter) determines the threshold energy for the onset
of an interband pair excitation, while ~ωIntra

max (~ωIntra
min ) gives us the

maximum (minimum) allowed energy transfer in an intraband tran-
sition. The zero- and finite-temperature SPE boundaries are displayed
in Fig. 5 by the solid blue and dashed magenta curves, respectively,
for four different values of applied electric field. As Figs. 5(a)
and 6(a) show, at Δz ¼ 0, the SPE region is gapped and the
formation of undamped plasmons is possible in the system.

When Δz=ΔSO . 0 [Figs. 5(b)–5(d) and Figs. 6(b)–6(d)], the band
structure is spin-split and the polarization function can be interpreted
as the summation of two gapped subsystems with bandgaps 2Δmin

and 2Δmax .
40 So, similar to T ¼ 0 case,40,46 the SPEInter region is

divided into two parts such that the lower (upper) boundary corre-
sponds to Δmin(Δmax). With increasing Δz , the SPEIntermin boundary
moves toward the ~ω ¼ ~q line, while the other one moves away.
Furthermore, the intraband boundary, which is located slightly below
the ~ω ¼ ~q line, moves toward the ~ω ¼ ~q line very slowly as Δz

increases. Thus, the SPE gap becomes smaller. This pattern continues
until Δz ¼ ΔSO, where the lower boundary of SPEInter and the
SPEIntra boundary meet approximately at the ~ω ¼ ~q line, resulting in
closure of the SPE gap as shown in Figs. 5(c) and 6(c). Consequently,
at Δz ¼ ΔSO, the possibility of undamped plasmon formation is
negligible (except for small q, ω, and T as will be shown later).
Figures 5(d) and 6(d) show that as Δz grows beyond the ΔSO, the SPE
gap opens again: the SPEInter and SPEIntra boundaries both move
away from the ~ω ¼ ~q line. Comparing Figs. 5 and 6 suggests that
when the temperature increases from T ¼ 0:5TF to T ¼ TF , similar
to the case of SLGG at finite temperature,45 the boundaries are
changed only slightly such that the extent of SPE gap decreases by
temperature very slowly; this can be explained by the fact that single-
particle transitions are more probable at higher temperatures.45

Moreover, in panels (a), (b), and (d) of Figs. 5 and 6, the
interband boundaries are not discernible before ~q ≃ 0:25, but for

FIG. 4. Scaled chemical potential as a function of dimensionless temperature.
As expected, an increase in temperature results in decline of the chemical
potential.

FIG. 5. =Π0(ω, q), scaled by EF=(�hνF )
2 for ΔSO=EF ¼ 0:5 and varying

Δz=ΔSO: (a) 0, (b) 0.25, (c) 1, and (d) 1.75 at T=TF ¼ 0:5. Solid blue curves
show the SPE boundaries at T ¼ 0 and dashed magenta curves are those of
Eq. (10).
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values after that they seem to be consistent with Eq. (10) and the
intraband SPE boundary shows consistency with this equation as
well. For panel (c), where Δz=ΔSO ¼ 1, Eq. (10) implies that the
interband (Δmin) and intraband boundaries lie along ~ω ¼ ~q line,
suggesting there is no SPE gap available for long-lived plasmons.
This point will be discussed later on.

In order to study the behavior of the finite-temperature plas-
monic dispersion in a DLS, we numerically calculate and plot the
temperature-dependent DLS loss function, =[ϵ�1(ω, q)], in the
(ω, q) space, for several parameters that affect the band structure.
In Fig. 7, the loss function is plotted at T ¼ 0:5TF for the same
parameters as in Fig. 5. Since plasmons are well-defined at small
wave vectors, we consider 0 , q , 2EF=�hνF , corresponding to a
range of plasmon energies from 0 to 2EF (0.015eV), which falls in
the range of the infrared spectrum. As this figure shows the
undamped acoustic and optical plasmon modes exist in the SPE
gap for Δz=ΔSO ¼ 0, 0:25, and 1:75 with the acoustic branches
having very weak intensity. For Δz=ΔSO ¼ 1, on the other hand, the
acoustic and optical branches are broadened for most values of
(ω, q) displayed here. Since the SPE gap is almost closed and conse-
quently, the plasmons are damped, there exist narrower peaks only
for small q’s, indicating the undamped plasmons.

=[ϵ�1(ω, q)] for the same parameters as Fig. 7 but at T ¼ TF

is depicted in Fig. 8, where the emergence of new optical modes
can be observed. When Δz=ΔSO ¼ 0 [panel (a)], there is only
one (undamped) optical branch. However, for Δz=ΔSO ¼ 0:25

[panel (b)] and Δz=ΔSO ¼ 1:75 [panel (d)] where both bandgaps of
silicene layers are nonzero, a new undamped optical branch is
observed in the vicinity of the SPEInter

min ’s boundary at higher values
of q. Moreover, a new damped mode appears in the weaker
damping region of SPE continuum which is not extended from the
undamped branch continuously. Such splitting is not obtained for
the acoustic branch. At Δz=ΔSO ¼ 1 [panel (c)], we see a similar
trend for both branches as observed in Fig. 7(c). However, the
branches are generally more broadened because the electron-hole
pair excitations are facilitated by increasing temperature.

Plots of the analytical zero-temperature loss function for the
same parameters used for Fig. 7 are shown in Fig. 9. The results
resemble those in Fig. 7 except for Δz=ΔSO ¼ 1 (VSPM phase),
where the undamped optical plasmons are present for a wider
range of wave vectors.

To better support the damped and undamped plasmons, we
plot the absolute values of the real (a) and imaginary (b) parts of
the DLS dynamical dielectric function in the (ω, q) space in Fig. 10
for ΔSO=EF ¼ 0:5 and Δz=ΔSO ¼ 0:25 at T ¼ 0:5TF . These figures
are essentially consistent with those obtained from the loss function
but they also demonstrate the presence of a third plasmonic
branch,62 which is not observable in the plots of the loss function
because it is completely located in the Landau damped region.

Figure 11 illustrates the DLS loss function, =(ϵ�1), over the
(ω, T) plane, at a given ~q ¼ 0:1, for different values of Δz=ΔSO ¼
0, 0:25, 1, and 1:75 with ΔSO=EF ¼ 0:5. The upper and lower

FIG. 7. Loss function of DLS for ΔSO=EF ¼ 0:5 and varying Δz=ΔSO: (a) 0, (b)
0.25, (c) 1, and (d) 1.75 at T=TF ¼ 0:5.

FIG. 6. =Π0(ω, q), scaled by EF=(�hνF )
2 for ΔSO=EF ¼ 0:5 and varying

Δz=ΔSO: (a) 0, (b) 0.25, (c) 1, and (d) 1.75 at T=TF ¼ 1.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 125, 104302 (2019); doi: 10.1063/1.5083200 125, 104302-6

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


pronounced branches correspond to the optical and acoustic
modes, respectively. Figure 12 displays the extent of the SPE
boundaries for the same parameters. As can be observed from
these figures, the optical branches are positioned in the SPE gap
and, therefore, remain undamped for all presented values of T ,
except for the VSPM phase. Furthermore, the frequency of the
optical branch decreases with an increase in temperature and
reaches a minimum value around T ¼ 0:4TF but after that it
bounces off at higher temperatures. The behavior of optical plas-
mons for this studied DLS is similar to the plasmon dispersion of
SLGG, where the plasmon frequencies follow first a decreasing and
then an increasing trend with a minimum at T � 0:5TF for all
bandgap values45 and similar to the double-layer graphene at small
wave vectors.56 Recently, it has been shown that the temperature-
dependent plasmons of SLS, SLG, and single-layer n-doped and
p-doped molybdenum disulfide can also exhibit such a behavior.41

In Fig. 11(c), for Δz=ΔSO ¼ 1, the optical branch follows a
similar temperature trend as the other phases, but Fig. 12(c) shows
that there is almost no gap left for the undamped plasmons to
reside. However, for T ¼ 0 and low temperatures, SPEInter boun-
dary sits higher than the approximate interband SPE boundary.
Thus, as can be seen, for T=TF , 0:1, the optical branch has a
well-defined delta function-like peak, which is a characteristic of
undamped plasmons. Beyond this temperature, however, the peak
is extremely broadened which indicates damping of plasmons at
higher temperatures. Moreover, Fig. 11 demonstrates the fact that

the spectral weight of acoustic mode is insignificant compared to
that of optical mode; this is an obstacle in experimentally observing
the acoustic mode. Applying a more distinguishing color limit to
all panels of Fig. 11 reveals that the acoustic branches located in
close proximity of SPEIntra boundary grow negligibly with tempera-
ture, which may not be of experimental significance. This figure

FIG. 8. Loss function of DLS for ΔSO=EF ¼ 0:5 and varying Δz=ΔSO: (a) 0, (b)
0.25, (c) 1, and (d) 1.75 at T=TF ¼ 1.

FIG. 9. Loss function of DLS for ΔSO=EF ¼ 0:5 and varying Δz=ΔSO: (a) 0, (b)
0.25, (c) 1, and (d) 1.75 at T ¼ 0.

FIG. 10. Dielectric function of DLS for ΔSO=EF ¼ 0:5 and Δz=ΔSO ¼ 0:25 at
T ¼ 0:5TF : (a) real part and (b) imaginary part.
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also displays that as temperature rises, the interband boundary
changes a bit and the intraband boundary moves slightly to higher
frequencies.

To investigate the effect of spatial separation between two
layers on the DLS plasma oscillation modes, we plot =ϵ�1 in the
(ω, d) plane at ~q ¼ 0:1 for ΔSO=EF ¼ 0:5 and Δz=ΔSO ¼ 0:25 in
Fig. 13 at two different temperatures, T ¼ 0:5TF and TF . The inter-
layer separation varies from 50 Å up to 150 Å in this figure. As
demonstrated, for all the presented separation values at both tem-
peratures, the undamped acoustic and optical modes exist (with a
very weak acoustic mode spectral weight). Figure 13 suggests that
the finite-temperature optical modes are not affected by changing
the spatial separation between the layers, similar to the zero-
temperature case. On the other hand, applying a more distinguish-
ing colormap displays that the frequency of acoustic plasmons
increases slightly with d for both temperatures such that T ¼ TF

dispersion has a slightly higher slope. This growth is also observed
at T ¼ 0, which is evident from the d-dependence of Eq. (9). Our
results here may not be easily observed in experiment, though.

In order to study the effect of an external electric field on the
finite-temperature DLS plasmons, the loss function is plotted in
Fig. 14 for ΔSO=EF ¼ 0:5 with T ¼ 0:5TF and TF at ~q ¼ 0:1. At
both temperatures, the optical plasmon frequency decreases as Δz

increases quite similar to the trend for T ¼ 0 (see Fig. 3).
Moreover, the optical plasmon branch enters the SPE region for a
certain interval of Δz=ΔSO around Δz=ΔSO ¼ 1 and this interval is
extended as the temperature increases from T ¼ 0:5TF up to

T ¼ TF . It can also be seen that the damped part of the optical
plasmon branch is not extended continuously from the undamped
part, and it really seems more like a separate mode; for the acoustic
branch, however, such discontinuity cannot be observed as it enters
and exits the SPE region.

FIG. 11. Loss function of DLS as a function of (ω, T ) for ΔSO=EF ¼ 0:5 and
two different values of Δz=ΔSO: (a) 0.25 and (b) 1 at ~q ¼ 0:1.

FIG. 13. Loss function of DLS as a function of (ω, d) at ~q ¼ 0:1, for
ΔSO=EF ¼ 0:5 and Δz=ΔSO ¼ 0:25 at two different values of T=TF : (a) 0.5
and (b) 1.

FIG. 12. =Π0 as a function of (ω, T ), scaled by EF=(�hνF )
2 for ΔSO=EF ¼ 0:5

and two different values of Δz=ΔSO: (a) 0.25 and (b) 1 at ~q ¼ 0:1.
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IV. CONCLUSION

To summarize, we have studied the finite-temperature plas-
mons of an n-doped double-layer 2D system consisting of silicene
sheets with ΔSO ¼ 3:9 meV and ΔSO=EF ¼ 0:5. We have considered
all three phases of silicene (TI, VSPM, and BI) by applying an
external electric field to the system. For comparison, the zero-
temperature results have been presented. By calculating the poles of
the loss function, both the optical and acoustic plasmon branches
have been obtained. To illustrate the finite-temperature SPE
regions, we have also plotted the imaginary part of the polarization
function. Our calculations for a DLS with d ¼ 100 Å have shown
that as the temperature is raised from 0 up to TF , the optical
plasmon frequency first decreases and then increases smoothly for
the different values of Δz=ΔSO ¼ 0 (TI), 0:25 (TI), 1 (VSPM), and
1:75 (BI). However, the acoustic modes change negligibly with tem-
perature. Moreover, for a DLS with Δz=ΔSO ¼ 0:25 at finite temper-
ature, similar to the zero-temperature analytical results at long
wavelengths, the optical plasmon dispersion is unaffected by the
change in the layer separation, at both T ¼ 0:5TF and T ¼ TF ,
while the acoustic plasmon dispersion exhibits a small growth. The
effect of external electric field has also been studied for T ¼ 0:5TF

and TF at a given q, and a decreasing trend has been observed for
the optical plasmon dispersion as Δz=ΔSO varies from 0 to 2 and a
Landau damping behavior is obtained around Δz=ΔSO ¼ 1. The
corresponding zero-temperature results have displayed a disconti-
nuity at the VSPM phase for both optical and acoustic plasmons.
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