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Some traffic management measures route drivers towards socially-desired paths in order to achieve the
system optimum: the traffic state with minimum total travel time. In previous attempts, the behavioral
response to route advice is often not accounted for since some drivers are advised to take significantly
longer paths for the system’s benefit. Hence, these drivers may not comply with such advice and the
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to show that the directional derivative of the lower-level link flows however exists. This derivative is the
optimal solution of a quadratic optimization problem with a suitable route flow solution as parameter.
We use the derivative in a descent algorithm to solve the bilevel problem. Numerical experiments in a
realistic environment show that the routing strategy only asks a small fraction of the drivers to take a

limited detour and thereby substantially improves the performance of the traffic system.
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1. Introduction

Transport authorities face the daily challenge to reduce con-
gestion. Traditionally, this was solved by increasing road capacity
through building new or expanding existing infrastructure. How-
ever, the construction of infrastructure is costly, and may also
lead to an increase in demand. Nowadays, authorities implement
management measures alongside to improve utilization of existing
roads.

The need for policy measures in general stems from the obser-
vation that individuals typically behave selfishly, i.e., travelers are
mainly concerned with their own utility when making decisions.
The resulting traffic state (i.e., flow distribution) with respect to
route choice, the user equilibrium, does mostly not correspond to
the system optimum: the traffic state with minimum (total or av-
erage) travel time (Wardrop, 1952). Without intervention, in par-
ticular with the increasing use of real-time routing apps, the real-
world traffic state is likely to be closer to the inefficient user equi-
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librium than to the system optimum (Klein, Levy, & Ben-Elia, 2018).
In the user equilibrium, travelers with the same origin-destination
pair have equal travel times. The system optimum, on the other
hand, is ‘unstable’ since it is unfair: some drivers may travel longer
than others for the same origin-destination pair. Hence, we can
characterize the system optimum as (perfectly) efficient but unfair,
while the user equilibrium is inefficient and perfectly fair.
Recently, traffic management measures, e.g., social routing, have
been proposed that steer or nudge travelers towards socially-
desired routes. The ‘pure’ system optimum is difficult to achieve
(Klein et al., 2018) and maintain over time, because only some
travelers use and comply with advice from information systems,
and the individual intra- (within the system optimum) and inter-
state (compared to the user equilibrium) travel time differences
might be substantial (Jahn, Mohring, Schulz, & Stier-Moses, 2005;
van Essen, Eikenbroek, Thomas, & van Berkum, 2020). Hence, any
social routing strategy should in essence anticipate user responses
and persuade travelers to comply with socially-oriented advice.
Empirical evidence (e.g., Djavadian, Hoogendoorn, van Arem, &
Chow, 2014) shows that some (travelers) are receptive for advice
that proposes reasonable routes for the system’s benefit. A pos-
sible explanation is that individuals have a so-called indifference
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band (Simon, 1997), which means in our context that when a route
is only slightly longer than the best one, it is still acceptable to
use (Vreeswijk et al., 2015). A social routing strategy can ‘exploit’
the indifference band and propose acceptable routes (possibly, sub-
optimal from an individual’s perspective) to receptive drivers (those
that use and comply with advice from the service), and thereby
potentially steer the network to a state close to the system opti-
mum. Compared to the system optimum, the resulting distribution
is easier to achieve and maintain over time.

In this paper, we propose and evaluate a centrally coordinated
social routing strategy that improves overall efficiency, while we
explicitly account for the above-mentioned practical requirements.
The routing strategy incorporates user-induced constraints in the
sense that travel time differences in the resulting state are explic-
itly limited, and only a fraction of the travelers is asked to take
an acceptable detour to the system’s benefit. We note that a rout-
ing service adopting the strategy, in practice, offers a single route
advice using a personalized information device to its users before
departure.

1.1. Research contribution

Although empirical research has shown that social routing has
great potential in real life, there is not yet a corresponding rout-
ing strategy that improves efficiency while explicitly incorporating
user responses to advice in terms of route choice behavior. Route
choice behavior is crucial for the strategy’s performance in prac-
tice. Compliance is expected to be much higher when the advised
route is only slightly longer than the shortest route. Behavioral re-
sponses influence the travel times, and should thus be anticipated
in order to advise routes that are acceptable with respect to travel
time.

In this study, we propose a social routing strategy that explic-
itly accounts for behavioral responses to a routing service. In fact,
changes in route choice may occur from travelers that comply with
the advice but also from those that do not comply, but are now
confronted with altered travel times on routes as a result of be-
havioral changes by others. We introduce a bilevel optimization
problem that calculates the best possible paths (with respect to
efficiency) with a limited (realized) detour to be proposed to the
compliant travelers. Although in this paper we limit ourselves to
a static environment, the bilevel problem is already highly chal-
lenging to solve. Many of the theoretical difficulties that occur in
our case, also apply to a real-world social route guidance service in
which limited detours are suggested in a dynamic fashion. Hence,
before considering such a guidance system we should address the
theoretical challenges and potential impact in a static traffic as-
signment first. In particular, the service as proposed in this paper
can serve as a proof-of-concept for a dynamic variant.

Related social routing approaches

We discuss related social routing approaches from literature.
Jahn et al. (2005) proposed a routing strategy that limits the ‘nor-
mal length’ difference before and after implementation, assum-
ing that the normal length is independent of the traffic flow. This
mechanism was numerically evaluated on realistic network in-
stances, and showed performance (with respect to efficiency) close
to the system optimum. The intra-state time differences, however,
were not explicitly limited. A related approach by Angelelli, Ar-
sik, Morandi, Savelsbergh, & Speranza (2016) considers a mathe-
matical program that tries to achieve an optimal flow with a reg-
ularization term to minimize the ‘total inconvenience’ alongside.
Here, the travel time is assumed to be independent of the flow.
Both studies assume a full market penetration of the routing ser-
vice. Bagloee, Sarvi, Patriksson, & Rajabifard (2017); van Essen et al.
(2020); Zhang & Nie (2018) proposed systems to route a fraction of
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the demand onto social routes. We refer to Li, Liu, & Nie (2018) and
Zhou, Xu, Meng, & Huang (2017), for dynamic (day-to-day) varia-
tions on such routing policies.

In contrast to the above-mentioned studies, we propose a rout-
ing strategy that steers the network to a system optimum while
explicitly limiting the intra-state time differences whereas we ar-
gue that travelers evaluate acceptability of routes in terms of real-
ized travel time rather than free-flow travel time or distance. This
necessary user-induced constraint makes the accompanying opti-
mization problem substantially harder to solve, which might be a
reason that a majority of the studies relax this real-life constraint
or introduce heuristic approaches (e.g., Angelelli, Morandi, & Sper-
anza, 2019; Roughgarden, 2005). Recently, Angelelli, Morandi, &
Speranza (2020) studied a similar setting, with a so-called ‘con-
strained system optimum’. They used an integer linear program
and matheuristic to formulate and solve the corresponding opti-
mization problem, respectively. In contrast to our study, they do
not incorporate the route choices of travelers that do not com-
ply with route advice. Angelelli, Morandi, Savelsbergh, & Speranza
(2021) proposed a fast heuristic to find the constrained system op-
timum and use a piecewise linearization of the travel time func-
tion. In our paper, we formulate the problem as a continuous op-
timization problem and keep the nonlinearity of the travel time
function.

We note that our optimization problem is a generalized case of
finding the boundedly rational user equilibrium (BRUE) with min-
imum travel time. Although there is a body of literature on BRUE
(e.g., Di, Liu, Pang, & Ban, 2013; Lou, Yin, & Lawphongpanich, 2010),
a thorough quantitative analysis of this problem is still lacking.
Thus far, analyses have been based on relatively strong assump-
tions which reduce the complexity of the problem but might not
hold in practice.

Bilevel problem

The success of the social routing strategy, as discussed, hinges
on the (travel time of the) paths suggested to the drivers. We show
that best possible paths can be found by solving a bilevel optimiza-
tion problem. Our bilevel problem (see Section 2.2) can be seen
as a game between a leader (authority) and a follower (travelers)
(Josefsson & Patriksson, 2007). The leader chooses the paths to be
proposed, while the travelers update their route choice based on
this advice. The compliant travelers follow the advice if the travel
time differences (based on the route choice of the travelers) com-
pared to the fastest paths are limited, while non-compliant trav-
elers find the cheapest paths available. These dynamics should be
anticipated to find the best possible advice in terms of total travel
time.

Bilevel problems are typically difficult to solve directly, and
therefore often reformulated as single-level problems. In this pa-
per, we use an implicit reformulation, and require parametric
analysis of the lower-level problem to describe the behavior of
the corresponding solution set as a function of the upper-level
variable. Parametric analysis is either quantitative or qualitative
in nature (Fiacco & Ishizuka, 1990b). The qualitative analysis is
mainly concerned with the continuity of the optimal solution set.
Here, we require a - local - quantitative analysis that focuses
on the estimation of generalized derivatives of the optimal so-
lution set, e.g., to be used in numerical procedures. We refer to
Eikenbroek, Still, van Berkum, & Kern (2018) for the qualitative
analysis of this problem (the mentioned paper’s setting is however
different).

Techniques from variational analysis are used to study the
quantitative behavior of the lower-level problem. We refer to Luo,
Pang, & Ralph (1996); Mordukhovich (2018); Rockafellar & Wets
(2009) for an overview of theoretical results. Many of these re-
sults, however, are presented in general form and require relatively
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strong conditions when applying an implicit reformulation. A crit-
ical issue in our case is that the lower-level solution is not unique
for a given upper-level variable. This leads to practical and theoret-
ical challenges, since the desired lower-level solution might not be
realized, and small changes in the parameter might lead to major
changes in the solution (Dempe, 2002). Hence, at first sight, many
of the algorithms designed for bilevel problems do not apply in our
context.

In this paper, we theoretically assess the lower-level problem
and use techniques from variational analysis to show that we can
guarantee the existence and calculation of a generalized derivative
of the lower-level solution projected onto a subspace. The gener-
alized derivative of the solution of the lower-level problem con-
tributes to the understanding of the optimization problem finding
the best possible paths. Indeed, the theoretical analysis in this pa-
per allows one to formulate the necessary optimality conditions
of the bilevel problem. Moreover, the derivative can be used in
exact numerical procedures to find descent directions. Hence, not
only can the generalized derivative be used in standard algorithms
to solve bilevel programs, it can also support the assessment of
heuristic procedures (e.g., Angelelli et al. (2020)). Although a com-
parative analysis of algorithms that solve the formulated program
is beyond the scope of our paper, we provide nonetheless a nu-
merical procedure and refer to related algorithms that could be
applied.

In a static traffic assignment context, bilevel problems are well-
known, mainly in Network Design Problems (NDPs) in which op-
timal network settings (e.g., link tolls) are determined. Paramet-
ric analysis has been topic of a body of literature in this context
(Do Chung, Cho, Friesz, Huang, & Yao, 2014; Josefsson & Patriks-
son, 2007; Lu, 2008; Lu & Nie, 2010; Outrata, 1997; Patriksson,
2004; Patriksson & Rockafellar, 2002; 2003; Qiu & Magnanti, 1989;
Robinson, 2006; Tobin & Friesz, 1988; Yin, Madanat, & Lu, 2009).
Mainly, these papers concern perturbations that occur in the (pa-
rameters of the) link cost function and/or demand vector. Our pa-
per is different from the aforementioned studies since we basically
consider perturbations in a path-dependent parameter. It turns out
that the analysis and the computational results rely on the choice
of a suitable route flow corresponding to a link flow solution. This
forces us to study the behavior of the (multi-valued) route flow
solution set in dependence of the parameter. In the context of per-
turbations in the parameter of the demand vector, the analysis of
Qiu & Magnanti (1989) also depends on the choice of a specific
route flow solution. However, Patriksson & Rockafellar (2002) show
that the results of Qiu & Magnanti (1989) are actually independent
of a specific choice. In our context, this does not hold (as we will
show in Example 1). Some of our findings show similarities to the
results for parametric optimization problems with a unique min-
imizer but non-unique multipliers (Dempe, 1989; 1993; Ralph &
Dempe, 1995). There, a generalized derivative of the optimal so-
lution can be calculated by choosing a suitable multiplier (which
might be difficult to find). In our case, we consider a setting with
a non-unique optimal solution.

Considering the practical application, we assess a possible im-
plementation of the social routing strategy. Specifically, we evalu-
ate the interaction among compliance rate, acceptable travel time
differences, and network-wide performance in a static setting.
The numerical experiments provide insight which minimum pen-
etration rate and indifference band might be required to sub-
stantially lower the total travel time in the network, and, thus,
how much some travelers have to sacrifice for the network’s
benefit. These experiments substantiate the opportunities for a
real-life implementation of a social routing service or guidance
mechanism.

Summarizing, the main contributions of this paper are as fol-
lows:
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« We propose a social routing strategy that steers the traf-
fic network towards an efficient but also fair, and therefore
achievable and maintainable, traffic state. We show that the
best possible paths to be proposed by a social routing ser-
vice can be found by solving a bilevel program that explicitly
accounts for behavioral responses to the service;

o We use parameteric analysis to prove that the generalized
derivative of the lower-level link flow solution problem ex-
ists and can be calculated efficiently. The generalized deriva-
tive can be used to find descent directions and to formulate
optimality conditions of the bilevel problem;

o We use the generalized derivative in a descent algorithm to
solve the bilevel problem and numerically evaluate our pro-
posed social routing strategy in test networks. Here, only a
small fraction of the travelers need to take a limited detour
to substantially improve the traffic system’s performance.

The remainder of our paper is organized as follows. We
formally introduce our social routing strategy in Section 2. In
Section 3, we analyze qualitatively the ‘behavior’ of the opti-
mization problem that relates to our social routing strategy. In
Section 4, we investigate the existence and calculation of the di-
rectional derivative of the link flows, which we use in Section 5 in
a descent algorithm for solving the bilevel problem. Section 6 re-
ports on numerical experiments and management implications.
Section 7 draws the conclusions.

2. Problem formulation

We study the static traffic assignment with fixed demand. Given
is a directed traffic network G = (V,E), with V being the set of
nodes, and E is the set of directed edges (roads or links) e = (i, j),
with i, j € V. The network has a set of origin-destination pairs (OD
pairs) K €V x V, with static demand d, > 0, k € K. Each OD pair
k € K is connected by the set P, of simple directed paths. The set
P of all paths in the network is the union of the path sets per OD
pair, i.e., P = Uy Py

A feasible traffic flow or flow for given demand d e R‘f‘ (we
denote by |.| the cardinality of a set) is a pair of vectors (f,x) e
RIPI x RIEN = (fp, p € P; Xe, e € E) so that

Af=d, Af-x=0, f=>0. (1)

The matrix A € RIXIXIPl is the OD-path incidence matrix with
Ayp=T1if pe Py, and Ay, = 0 otherwise. A € RIEIXIP| denotes the
link-path incidence matrix: Aep =1 if edge e is in route p, and
Aep = 0 otherwise. For each edge, e € E, l.(xe) is the non-negative,
continuous, and non-decreasing link cost (or: travel time) func-
tion for a given flow x. on that edge. The cost of a route cp(f),
p € P, is the sum of travel costs of all edges in that path, c,(f) =
Zeep le (xe).

Throughout our paper we make the following (natural) assump-
tion regarding the travel time function (we refer to Patriksson &
Rockafellar (2002) for a study that relaxes this assumption).

Assumption 1. We assume throughout the paper that the travel
time functions lo(xe) are continuous, conveX, and strictly mono-
tone: lo(xe) < L (x9), for xo < X, for all e € E.

2.1. A social routing strategy

We consider the setting in which a central authority asks trav-
elers to take a small detour for the system’s benefit (see Section 1).
The social travelers comply with such an advice if the alternative
route is reasonable, i.e., the route is not perceived to be substan-
tially worse (in terms of travel time) compared to the fastest path.
The remaining drivers do not comply with travel advice and be-
have in a selfish manner, i.e., choose the fastest path available.
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The demand vector d° R‘f‘ (dj < dy for all k € K) denotes the
travelers that receive and comply with a route advice from the au-
thority (superscript s refers to the social travelers). The remain-
ing demand d" € RI*l, so that d = d* + d", behaves selfishly. (Su-
perscript n refers to Nash equilibrium - see (2b) below: a driver
cannot improve travel time by changing strategy (route)).

We define F as the set of feasible flows. Formally,

Ag=4d%g>0,
F={ (g hx) eRPl xRIPl x RIF Ah=d" h>0,
A(g+h)-x=0

Obviously, any (g, h,x) € F is a flow as in (1) for f=g+h.

The advised routes to compliant travelers d* have to be fair in
the sense that the realized (i.e., traffic flow-dependent) travel time
differences are limited. We assume that social travelers accept any
travel time difference (compared to the shortest path for the same
OD pair) with a maximum of &, > 0,k € K. Hence, the resulting
state in the network is so that no social traveler for OD pair k € K
can improve travel time with more than ¢, by unilaterally chang-
ing routes. At the same time, the selfish travelers choose the fastest
path. The following definition (Definition 1) formalizes our notion
of the resulting state among social (receptive) and selfish travelers.
We refer to this state as a mixed equilibrium.

Definition 1 (Mixed equilibrium). Given & e]RIfI, a traffic flow
(g, h, x) € F with corresponding path costs c(f), f =g+ h, is called
a mixed equilibrium among social and selfish travelers if for all

k € K, the following conditions are satisfied for all p € P;:

8 > 0= cp(f) = minc,y(f) + & (2a)
hpy > 0= ¢, (f) = gggklcq(f) (2b)

Assuming only selfish demand, in a traffic state in user equilib-
rium as in (2b), travelers with the same OD pair share travel times.
However, it is well-known that this state does not necessarily min-
imize total travel time ), Xele(Xe). The traffic state (f,x) as in
(1) which minimizes the total travel time, is referred to as the sys-
tem optimum (Wardrop, 1952). Typically, it may be assumed that
in practice, without intervention, a state close to a user equilibrium
arises.

Condition (2a) gives a range of acceptable travel times for a re-
ceptive user. We assume that any social traveler that is routed onto
an acceptable path (i.e., any route p € Py, k € K for which ¢p(f) <
mingep, ¢q(f) + &) complies with such an advice although the user
might be aware that it is not necessarily the fastest path available.
The condition as defined in (2a) is equivalent to the BRUE condi-
tion (see Section 1). The mixed equilibrium as in (2), i.e., (2a) and
(2b), has the user equilibrium as a special case and does not cor-
respond (even if £ — oo) to a mixed user equilibrium and system-
optimal flow, e.g., as in Yang, Zhang, & Meng (2007).

In (2a), we model the band ¢ as being additive. In particular
for shorter travel times, an additive indifference band is more ap-
propriate compared to a multiplicative one as in, e.g., Roughgarden
(2005). In combination with ¢, k € K, being OD-pair dependent,
we allow a range of scenarios regarding the maximum detour to
be modeled using the condition in (2a).

The mixed-equilibrium conditions (2) do not provide a unique
state (yet all travelers are satisfied with their route), which is key
for the social routing strategy. We exploit this range of allowed
distributions to find one which is the best for the system. That
is, our routing strategy is designed so that we achieve - among
all (g, h,x) € F that satisfy (2) - the one with the minimum total
travel time. Hence, the optimal strategy can be found by solving
the following optimization program for a known ¢ > 0:

s.t. (g, h, x) satisfies (2), (3)

min X
(g,h,x)e]-'(p( )
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where @(x) = )" ,.g Xele(xe) is the total travel time.

For a routing service, the optimal solution of (3) with respect to
g is typically the variable of interest, since g represents the distri-
bution of the social travelers over the different acceptable paths.
The selfish demand basically responds to the choices of the so-
cial demand in the sense of (2b). In fact, selfish travelers are con-
fronted with a change in travel times on routes due to the choices
of others. When determining the best distribution g (with condi-
tion (2a)), the authority needs to anticipate the travel times de-
pending on the route choices of both the social and selfish de-
mand. This Stackelberg mechanism is implicitly in (3). After solving
(3), the route to be suggested to a social traveler can be extracted
from solution g.

One should note that, in principle, while solving (3), one is free
to choose any (g, h, x) satisfying (2). In practice, for a given g, the
distribution h is a result of the route choice behavior of the selfish
travelers and cannot be precisely predicted (if there are multiple
h satisfying (2b)). However, as we will see in Theorem 1, the re-
sponse to g with respect to the link flows x is uniquely determined.
Since x is the only variable appearing in the objective function, it
is therefore not necessary to consider a pessimistic variant of (3).

2.2. Bilevel reformulation

The optimization problem in (3) is difficult to solve. Indeed,
Eikenbroek et al. (2018) and Lou et al. (2010) show that the feasible
set corresponding to (3) is in general not convex, does not satisfy
a regularity condition, and different local minimizers can coexist.
We use the following proposition (Proposition 1) to reformulate
our problem. In the remainder of the analysis we drop parame-
ter € in the notation: we assume it is known and fixed. During the
experiments (Section 5 and Section 6), we numerically investigate
the impact of a varying ¢.

Proposition 1 (Di et al. (2013); Eikenbroek et al. (2018)). The fol-
lowing are equivalent for (g, h, x):

1. (g h,x) € F is a mixed equilibrium as in (2);
2. There exists

peB:={ perRP [ 0<p=<ATe }

such that (g, h, x) solves the convex optimization problem

Qp): minz(p.gx) =200 +p'g st (ghx) eF,
(4)

where zg(X) = Yo Jo° le(w)dew.

We omit the proof, which is a generalization of Proposition 2.2
in Di et al. (2013) or Proposition 1 in Eikenbroek et al. (2018).
These references use objective function zy(x) — p7g, but the two
problems are equivalent by selecting p = ATe — p. We prefer our
objective function in (4) whereas it eases the upcoming analysis.
We note that p does not necessarily have an intuitive interpreta-
tion.

Problem (3) is a mathematical program with equilibrium con-
straints. According to Proposition 1, we can rewrite (3) as a bilevel
problem. We use the following reformulation, which eases the
parametric analysis in Section 3 and 4 (Eikenbroek et al., 2018):

pet
(g, h, x) solves Q(p).

(BL) is a technical reformulation of the bilevel problem in which
the leader finds the best possible paths to be proposed, while an-
ticipating route choices (see Section 1.1). Basically, Q(p) describes
the route choice behavior of both the social and selfish travelers
for a given p.

(BL) : min ¢(x) s.t.
ghx.p)
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In the remainder, we refer to parametric optimization problem
Q(p) as the lower-level problem. Here, p is a parameter in the
lower-level problem but a variable in the upper-level problem. Note
that in (BL) both lower-level variables (g, h,x) as well as upper-
level variable p appear as variables. Even in case there is no upper
bound with respect to p, i.e.,, the social travelers can be routed
onto any path, the problem (BL) might be difficult to solve. In the
upcoming sections we rewrite and (numerically) solve (BL) as a
single-level optimization problem.

3. Parametric analysis

Based on reformulation (BL) of previous section, one basically
needs to find an appropriate p € E so that the corresponding
(g, h,x) that solves Q(p) minimizes total travel time ¢(x). In this
paper, we apply parametric analysis with respect to problem Q(p),
i.e., we investigate the ‘behavior’ of (g, h, x) that solves Q(p) under
perturbations in p.

The purpose of the analysis is, from a computational perspec-
tive, as follows. The parametric analysis provides an estimate for
the rate of change in the lower-level solution as the lower-level
parameter (which is an upper-level variable) changes (Patriksson,
2004). Then, we use this estimate to move into a direction that
decreases the total travel time. In this and next section (Section 4),
we provide the parametric analysis of the lower-level problem. The
results of these sections are used to reformulate and solve (BL) as
single-level optimization problem (Section 5).

3.1. Notation, definitions and preliminary results

We introduce notations that correspond to lower-level problem
Q(p) (see (4)) with parameter p:

v(p) =min{z(p.g x) | (g h.x) € F},
S(p) ={(g h,x) | (g h,x) is a global minimizer of Q(p)}.

We refer to F as the feasible set, v(p) as the optimal value func-
tion, and to S(p) as the solution set at p.

To study the parametric problem Q(p), we introduce def-
initions that describe the behavior of functions. In this pa-
per, we consider both single and multi-valued functions
(or: mappings). A multi-valued function F assigns to each
e e X CR" a possibly empty subset F(¢) CY CR™. We de-
note by dom(F) :={¢ € X|F(¢) # @} the domain of multifunc-
tion F. We further define for v >0, § > 0, the neighborhoods
Ur (F(£%)) := {x e R™[[|lx = ¥'|| < = for some x" € F(£°)} and
Us(e) :={x e R"|||x — g]| <48}

We use the following definitions (Bank, Guddat, Klatte, Kum-
mer, & Tammer, 1983; Robinson, 1982):

Definition 2. A multifunction F(¢) is said to be:

1. closed at &° if for any sequences &/, x!, | ¢ N, with ! — &9,
x! € F(e!), the condition x! — x° implies x9 € F(g°);
upper/outer semicontinuous at &9, if for any T > 0, exists § >
0 such that

F(e) C U (F(eY)),

3. lower/inner semicontinuous at &9, if for any T > 0, exists § >
0 such that

F(e%) C U (F(e)),

. (locally) upper Lipschitz continuous at 9 if there exists a § >
0 and Lipschitz constant L < oo such that

F(g) CF(%) +L||ls — °B, for all ¢ € Us(e2),

where B := {x e R™ | ||x|| < 1};

2.

for all & € Us(e?);

for all & € Us(g°);
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5. (locally) Lipschitz continuous at €° if there exists a § > 0 and
Lipschitz constant L < oo such that

F(g) CF(¢') +L|le — &'||B, for all ¢, &’ € Us ().

The following results are from Eikenbroek et al. (2018). Here,
SX(p),S8(p), S"(p) denote the projections of S(p) onto the x, g
and h-space, respectively.

Theorem 1 (Eikenbroek et al. (2018)).

1. S(p°) £ ¢ for all p° € E;

2. S5(p%), S%(p%), and S"(p°) are (polyhedral) convex sets for
each p% € B;

3. $*(p2) is a singleton for each p° e E, ie., S*(0%) = {x(p?)},
and x(p) is a continuous function on g, i.e., x(p) is upper and

-

lower semicontinuous at each p® e E. Moreover,
vp)={ p'g | geSEp) }

is uniquely determined at each p° € E;
. The mappings S(p), S8(p), and S"(p), are upper semicontinu-
ous at each p° € B;
5. The mapping S(p) is not injective, i.e., different p0 # pl ¢ B
might have a common solution (g2, h% x°%) € S(p%) NS(p1).

We underline that in our setting we cannot expect
Theorem 1 to be stronger in the sense that S8(p) is also lower
semicontinuous at each p°. The route flow set

Ag=d*, Ah=d" A(g+h) =x(p),

g20h=0"g=vy(p)
is a polyhedral convex set at each p® ¢ E. So, although the x-
part of the solution to Q(p) is uniquely determined, there might
be multiple route flow solutions that correspond to a single link
flow solution x(p). In the context of perturbations of a parame-
ter in the link-cost and/or demand vector, the route flow set is
a continuous mapping relative to its domain (Lu & Nie, 2010),
given that the link flow changes continuously. We demonstrate
later (Section 4) it is in fact the absence of lower semicontinuity
of S2(p) at some p° ¢ E that causes the practical difficulties for
the calculation of the directional derivative x'(0%; 1) of x(p) at p°
in direction r € RI”I,

SE(p) = {ge Rl | 3h,

Remark 1. To improve readability, we assume for now that d* =
d (i.e., d" =0). We prove in Section 4.4 that we can extend the
results to the more general case d" # 0.

3.2. Directional derivative of the optimal value function

This subsection covers the parametric analysis of the opti-
mal value function v(p). We show that the directional derivative
v (0% 1) of v(p) exists for any p° € E and direction r, ||r|| = 1, and
we use - in Section 4.3 - the sensitivity of the optimal value func-
tion to find a specific route flow.

Definition 3 (Directional derivative). A function f(p) is said to be
directionally differentiable at p° € dom(f) in direction r, ||r|| =1,
if
f(p®+tr) = f(p°)

t

N NP

;1) = lim
fi(p%ir) = lim
exists.

The following proposition (Proposition 2) demonstrates that the
optimal value function v(p) is directionally differentiable at any p°
for any direction r, ||r|| = 1. This is a well-known result in para-
metric optimization (see Fiacco & Ishizuka, 1990a), but the accom-
panying proof (provided in the Appendix) is easier in our case.
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Proposition 2. The optimal value function v(p) is directionally dif-
ferentiable at each p° € E and in each direction r e RI”l, ||r|| = 1. In
fact, v/ (p0; 1) is the optimal value that corresponds to a solution of
the parametric linear program
P(r) : minr’g st geS8(p°).

In this section, we proved that the directional derivative
V' (p% 1) of v(p) exists for any p® and direction r (||r|| = 1). In the
upcoming section, we treat the (existence and calculation of the)
directional derivative of the link flows x(0). The sensitivity analy-
sis of v(p) can also be used to formulate a single-level problem,
see, e.g., Dempe & Zemkoho (2012) and Mordukhovich (2018).

4. Parametric analysis of the optimal solution

Intuitively, directional derivative x'(0%; r) is the rate of change
of the optimal solution x(p) at p° along r. This section investigates
the existence and calculation of the directional derivative, which
we use in Section 5 to formulate a solution method for bilevel pro-
gram (BL).

In the remainder, we repeatedly use the following assumption
(Assumption 2), which states that the Jacobian of the link cost
function is a positive definite matrix. This assumption is stronger
than necessary for some upcoming results, and that it does not
follow directly from Assumption 1 (e.g., when using the Bureau of
Public Roads-function (Bureau of Public Roads, 1964) with x, =0,
for some e e E). See Lu (2008) for conditions that can replace
Assumption 2.

Assumption 2. Assumption 2 is said to hold at x0 if V2zq(x)(=
Vil(x)) is a positive definite matrix at x°.

Let p% ¢ E be in the remainder of this section a reference value
and we consider reference point (09, x%), with x0 € §*(0?).

We prove that the Karush-Kuhn-Tucker (KKT)-set mapping cor-
responding to Q(p) is an upper Lipschitz continuous multifunction
at p9, given that Assumption 2 holds at x°. Consider therefore the
system of KKT optimality conditions for Q(p). For each p, this sys-
tem can be written as

I(x)—B=0
ATB—y —ATA+p=0

gy=0

(g,x) e F, (5)

with accompanying Lagrange multiplier vector ¢ := (8,4, y),y >
0. The KKT-set mapping Skkr(p) is the function that maps p onto
the set of (g, x, ¢) that satisfies (5), i.e., for p € E

Skkr(p) = { (g%, ¢) | (g.x ¢) satisfies (5) , ¥ = 0}.

In our context, the Lagrange multiplier vector ¢ is uniquely de-
termined at p0. Indeed, for each fixed p?, x0 = $*(p?) is a single-
ton, which implies that I(x%) and thus B° are uniquely determined
(with (g2, X9, #°) e Skxr (p?)). Whereas p° is fixed, and there ex-
ists at least one p € Py, for which yg = 0 (which is true by d; > 0)
for all k € K, it follows that also A° (and thus y9) are uniquely de-
termined given 0.

We state the main result of this section (Theorem 2): Skxr(0)
is (locally) upper Lipschitz continuous at 0. We moved the (rather
technical) proof to the Appendix.

Theorem 2. Let Assumption 2 hold at x°, the multifunction Sgxr(p)
is upper Lipschitz continuous at p° ¢ B.

We need the auxiliary result of this section in the upcom-
ing subsections to prove existence of the directional derivative
X' (p% 1), under Assumption 2 at x0.
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4.1. Directional derivative of the link flow solution

This and upcoming subsections (Section 4.2 and 4.3) are de-
voted to treat the existence and calculation of the directional
derivative

0 X0 Er) — X0
(%) = fim B,
with x0 = x(p?), since in particular the link flows are of interest
for authorities (i.e., the upper-level objective function ¢(x) in (BL)
is a function of x). Some of our arguments are taken from Dempe
(1993) and Pang & Ralph (1996).

Let p° be the reference value and r e RI”l, ||r|| =1, is an ar-
bitrary direction. Let tk > 0, k € N, so that tX — 0. From previous
analysis (Theorem 2), we know that, if Assumption 2 holds at x9,
for each

(&5 %k, @8 e Skr (p%), Pk = p° +thr,

exists

(& x°, ¢°) € Skir (p°) (6)
so that

(gl(ﬁxk7¢k) - ((’g”-k’XO’ d)O) (7)

tk
is a bounded sequence, and thus has (for a certain subsequence)
a limit point w = (w8, w*, w?). We investigate whether w* of w is
unique and independent of the choices of tk and gk.

The complexity of the analysis lies in the fact that S8(p) is only
upper semicontinuous at p°. Intuitively, for some p* — o0, not all
g e S8(pY) can be reached by some (sub)sequence gk € S8(p%). We
follow the strategy of Dempe (1993), and introduce reachable set
V(S8(p°); 1) of S8(p) at p° € E into direction r:

V(r) =V(S¥(p°): 1)
= {g = RIPI

We first show that V(r) is nonempty, and that it is a subset of

SP(r) (and thus S%(p9)) (cf. Dempe, 1993). SP(r) is the solution set

corresponding to problem P(r) with parameter r, i.e.,

SP(r) = {g € S8(0°) | g solves P(r)}.

exists sequence t > 0,k e N, tk — 0,
and g € S8(p*) so that gk > g

Lemma 1. For arbitrary direction r, ||r|| = 1:

#V(r) < SP(r) < S¥(p°). (8)

Proof. We prove the lemma in two parts. First, we prove that ¢ #
V(r), and then we prove that V(r) € SP(r). It is trivial that SP(r) C
SE(p?).

(8 #V(r)). Consider pX, keN, so that p¥ converges to p°.
Choose gk e S(pk). Since ||g¥|| is bounded, there exists subse-
quence gkf of g* so that gkf converges to some g°. S8(p) is a closed
mapping at p?, and thus g € S5(p?). So, V(r) # 0.

(V(r) € SP(r)). Choose any g° € V(r). By definition, there exists
gk e S8(p%) so that g¢ — g0 € S8(p?). In the proof of Proposition 2,
we established that
v(p*) —v(p®)

g% > v (p%r) = lim > lim gt =rTg?
k—o0 tk k—o0

So, rTgd =v/(p% 1) = min, (0, '8 That is, g esSP(r). O

In general, it holds that V(r) is a proper subset of S8(p9) (as
we show in Example 1 in Section 4.3), and V(r) = S8(p°) follows
if S2(p) is lower semicontinuous at p9. S%(p) is lower semicon-
tinuous relative to its domain if p is a parameter in the link cost
function (see Lu & Nie, 2010).
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Lemma 2. Let Assumption 2 hold at x°. For direction r, ||r|| = 1, any
limit point w of (7) satisfies the following system:
0= AT(VAXOW) + p% — ATwh — 3 o0y (WH) 1
AwWE —w* =0, Aws = 0;
ws=0,pel(g®):y)>0;

wy>0,pel’ (9)
b
w, =0,p:y)=0;

wiws=0,pel,
for some 0 < I(g°), with g0 € V(r).

Here, 1, € {0, 1}/P! is the indicator vector. I(g) € P denotes the
active index set at g € F5:

Ie)={ peP | g=0 }

Proof. We prove this lemma in three parts. In the first part of the
proof, we prove that for g® € V(r), & of (6) converges to g°. In Part
2, we prove that the limit point w satisfies the first equality of (9),
that w satisfies the (in)equalities of (9) is proven in Part 3.

(Part 1). Note that we can assume (by passing to a subsequence)
that gk — g0, ie., g% € V(r). We prove that for g0 e V(r), 8¢ as in
(6) converges to g°. Let g0 e V(r). By definition there exists a se-
quence tk > 0, with tX — 0, and gk € S8(¥) so that g — g0. Since
ll(g", %", %) — (&, x° ¢°) | - O,
and g — g0 as k — oo, it follows that g — g0.

(Part 2). Consider the set Sgxr(o*) for each ke N. Recall,
for each ke N, and gte S8(p¥) exists unique (xk, ¢k) so that
(gk, Xk, @K) € Skkr (p¥). That is, for each k, (g¢, xk, ¢k) satisfies the
KKT conditions that correspond to Q(p%), i.e., with y* >0,

1<) — B = 0 &)y =0

ATﬂk 4 ,00 4 tkr _ AT}»k _ )/k =0 (gk’xk) e F.
Since g0 e V(r), g8 — g° with g° € $8(p°). Hence, g > 0 implies
gk > 0 for sufficiently large k, and thus I(gk)  I(g°) for these k.
Now, we can rewrite the first three KKT conditions in (10) as

(10)

0=ATIK) + p° +thr— ATAK = 3™ yku, (11)
pel(g®)

Taylor's expansion of I(x) around x° says that

[(XF) = 1(x%) + Vil (x°) (x* = x%) + o(||x* — x°]]). (12)

where o(||x¥ — x°||)/t* converges to zero for k — oco.

We repeat a similar argument for (g%, x0, ¢°). We have that g
converges to g0, and thus I(g%) c I(g®) for large k. The KKT con-
ditions of Q(p?) say that (8%, x%, ¢0) e Skxr(p°) satisfies (at least)
the following condition for sufficiently large k (using the unique-
ness of y9):
0=ATIK") +p° = ATAF = > y01,.

pel(g®)

Subtracting (13) from (11), and using the Taylor expansion (12),
we obtain
0 = AT(Vl(x) (xk — x0)) + tkr — AT (WK — 1)

= > W=D +o(Ix = x0|).
pel(g®)

We divide (14) by t¥, using that the quotient in (7) is bounded by

upper Lipschitz continuity of Sgxr(p) at p9, then the limit point w

of (7) satisfies (at least) the following equation:

0=AT(VAOW) +1 - ATw" = >~ (wh)1,.
pel(g®)

(Part 3). The last KKT condition in (5) for ok and p° says that
for each k e N, (gk, x¥) ¢ 7 and (g%, x0) e F. Therefore,

AWE —w* =0, and Aw®=0.

(13)

(14)

(15)
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Also, for any p € P, we find that (for a subsequence)
&g =0 il yp=0 B
v - wh if ¥y =0 and s.t. exist infinitely
t p many k with g’;, =0,

— >0,

which yields

A

for some 10 < I(g).

By the non-negativity constraint with respect to multiplier y in
(5), in combination with the fact that y is a singleton for each p,
we have that for p € P,

yk—y0
tk
p
Finally, note that also a complementarity condition arises:

Y —
wpwj =0,
O

:07
>0,

pelE):y)>0

pe 10’ (16)

—>wh) =0, if y)=0.

for all p € I°. (17)

We recall that, in order to determine whether directional
derivative x'(p%; r) exists, we have to show that the limit point w*

of "kt‘,j‘o does not depend on choices of tk, gk, gk, and I° = [0(g¥).
Based on the result as presented in Lemma 2, even in the case
that V(r) is a singleton, different choices of I° could possibly lead
to different solutions w* of (9). In the following section, we present
a method that finds x'(0%; r) without the trouble finding an appro-

priate I°,

4.2. A quadratic program reformulation

Recall reference point (02, x%). As mentioned, even if V(r) is a
singleton (V (r) = {g°}), different I° < I(¢%) in (16), (17), might be
possible, which makes it difficult to calculate (a) limit point w. In
this subsection, we demonstrate that, under the assumption that
V(r) = {g°), w* is actually independent of I° and can be found ef-
ficiently by solving a convex optimization problem.

Before we continue, we define Tr(g, x) as the tangent cone to F
at (g, x) € F, ie,

Aws =0
Tr(g, x) = { (WE, W) e RPI x RIEEI | Awg —w* =0 )
wh =0 pel(g)

We introduce the following parametric (convex) quadratic op-
timization problem (with parameter (g°,r), and for now V(r) =

{g°):
QP 1) : nwn%(wX)TAMHTWg st. (wEw) ec(g’,x°,¢%),

where A := Vil (x0) = V2zy(x0), and

C(g2. %%, @%) :=Tr (g%, X%) N Tppo) (&)

is the critical cone to F at (g9, x°, ¢0). Here,

T (&) = {wE e RIPl | w§=0,peP:y) >0}
is the tangent cone to

D(@°) ={geRPl | g,=0,peP:y)>0}

at g0 Under Assumption 2 at X0, QP(g0,r) is a convex problem
(strictly convex in w*).

Lemma 3. Let Assumption 2 hold at xO. For direction r, ||r|| = 1, for
which V(r) = {g°}, w* of any limit point w of (7) is the (global) opti-
mal solution of QP(g, r).
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Proof. Consider a limit point w of (7). We prove that the w*-part
of w is the optimal solution of QP(g% r) with V(r) = {g°}. There-
fore, we first show that w*, with accompanying w#, is a feasible
solution of QP(g, r), then we prove (w8, w*) is a global optimal
solution of QP(g, r).

(Feasibility). For given direction r and V (r) = {g°}, with gk — g9,
we note that for sufficiently large k, (gk, x) € S(p*) are also opti-
mal solutions to

QAp):

with p = pk. So, xk € 7* (the projection of F onto the x-space) for
all these k, and therefore w* of any limit point w of (7) satisfies
WX e Ty (x0). Since F* is a polyhedral set (the projection of a poly-
hedral set is a polyhedral set), x! = x? + aw* e F* for some « > 0.
Hence, exists g! € 78 so that Ag! =x! (see Rockafellar & Wets,
2009, Theorem 6.43). Now, let w8 = #, then w8 ¢ Tf(go), since
g' = g% + aw8 e FE. In particular, it holds that w8 >0 for all pe
1(g°). Thus, limit point w* of (7) is in the feasible set C*(g0, x0, ¢?).
We underline that w8 is different from the w8-part of w in (7), i.e.,
it might hold that w& # w8,

(Optimality). We showed that w* of the limit point of (7) with
an accompanying wé is a feasible solution of QP(g%, r). Now, we
demonstrate that (W8, w¥) is the optimal solution of QP(g°, r).

Note from (15) that there exists w® so that (w*, w®) satisfies

AT(VAOW) +7— ATwh— 3" (w))1,=0

pel(g®)
Then let (u€, u¥) € C(g% x%, ¢°) be arbitrary, we find that
0 = (AT(VIEOW) +1)Tug — (ATwH)Tus

— 3 (W1,
pel(g®)
< (AT(V X)W +1)Tus,

minzy(x) + p’g st (g.x) € F:= FnD(@),

which is exactly the first-order optimality condition of convex
problem QP(g° r). Note that the latter inequality holds whereas
w) <0 for some pel(g®) implies that y? >0, and thus uf = 0.
Since C(g0, x9, ¢°) is a polyhedral cone, and by strict convexity of
the objective function in QP(g0,r) with respect to w¥, the limit
point wX is contained in the optimal solution w (unique with re-
spect to w¥) of QP(g% r). We show in the proof accompanying
Lemma 4 that the optimal solution is bounded. O

For any given direction r (||r|| = 1), in combination with the ex-
tra assumptions that |V (r)| = 1 and Assumption 2 holds at x°, we
proved that the directional derivative x’'(p?;r) exists. This direc-
tional derivative is the optimal solution (with respect to w*) of
QP(g% r) with V(r) = {g°}. An opportunity to force uniqueness of
V(r) (and also S8(p%)) is to include a regularization term in the
objective function of the lower-level problem.

4.3. V(r) Not a singleton

The more interesting case occurs when V(r) is not a singleton.
Note that only a finite number of different 1(g°), g° € V(r), can oc-
cur, and, under Assumption 2 at x°, finitely many w* exist.

The previous analysis in Section 4.2 relied on the choice of g° ¢
V(r). One might ask the question whether we can choose any g0 €
S8(p?), and solve QP(g0, r) to obtain directional derivative w*, if
it exists. The following example illustrates that an arbitrary g0 €
S8(p%) may lead to an unbounded solution of QP(g°, r).

Example 1 (Unbounded Solutions). In this example, we show that
optimization program QP (g, r) with g° € S8(p?%) \ V(r), may have
a corresponding unbounded solution.
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a C

(o)

b d

Fig. 1. Example traffic network.

Fig. 1 shows the single OD pair (|| = 1) network we consider.
The network has 4 links with travel time function l.(x.) = X for
all e € E. Demand for the OD pair is 1. The paths

pi={a.c}, p2={ad}, ps={b.c}, and p,={b,d},

connect the OD pair (0,D). Define o = (pop,, Pp,, Pps. Pp,), and
let

pt)=t-r
for the sake of this example. We solve Q(p0(0)): the traditional

user equilibrium problem (Beckmann, McGuire, & Winsten, 1956).
We denote this solution with respect to x by x" and find

111 1)
2°2°2°2)
Since the link cost functions are strictly increasing, we find the op-
timal solution vector x(o(t)) as a function of t: x(p(t)) =x",t ¢

[0, 1]. Consider S8P1 (p(t)), the route flow solution g on path pq, as
a multifunction of t:

: B [0,11 ift=0;
s¢ (p(t))—{o ? if t € (0,1].

with r = (1,0,0,0), andt €]0,1],

X" = (xg, Xy, X2, X)) = (

It is clear that S®P1(p(t)) is not a lower semicontinuous func-
tion at t =0. Moreover, choose g° € S¥(p(0)) so that g) > 0. It
is easy to check that QP(g0 r) gives an unbounded solution for
r=(1,0,0,0). In fact, g° ¢ V(r) and observe that g° is not a so-
lution of P(r).

Example 1 illustrates the practical difficulties calculating the di-
rectional derivative. In fact, if we choose g° e S8(p?) arbitrarily, we
might not be able calculate x'(p?; r) using QP(g°, r) (even if it ex-
ists - see Theorem 3). We should select therefore g° e S8(p°) care-
fully. From a practitioner’s perspective, this result is undesirable
since some g% € $8(p?) is often a by-product of the algorithm that
solves Q(p?). In the upcoming analysis, we prove that g0 € S8(p?)
could be selected so that g9 € SP(r).

Lemma 4. Let Assumption 2 hold at x°. For arbitrary r, ||| =1,
QP(g°, 1), with g € SP(r), has a bounded solution w which is unique
in wX.

Proof. Let g° ¢ SP(r), and (g2, X0, ¢°) e Skxr(0°). From Corollary
2.1 in Lee, Tam, & Yen (2006) it follows that QP(g?,r) has a so-
lution if and only if

(ug’ ux)a (Wg’ WX) € C(gosxo? ¢0) x\T T,8

W TAY = 0 = (W)'AwW* +r'ug > 0. (18)
By Assumption 2, A is a positive definite matrix, and (u¥)TAu* =0
implies u* = 0 and it automatically follows that (u*)TAw* = 0. Sup-
pose now that the right-hand side of (18) is not satisfied, i.e.,
rTug < 0 for some (ug, u¥) € C(g0, x0, »9). Note that

Vizo () Tu* + (p%)Tug = 0, (19)

for any (ug, u¥) € C(g% x%, ¢0) (see Luo et al., 1996, p. 225). Since
u¥ =0, by (19), (0°)Tus = 0. So, for small t > 0, (g° + tus) e S&(p%)
and rT(g% +tug) < rTg® which contradicts that g° e SP(r). The
uniqueness of w with respect to w* can then be concluded from
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the fact that A is positive definite matrix and that (g0, x0, ¢°) is a
polyhedral cone. O

Hence, selecting g0  SP(r) makes that the issue as described
in Example 1 cannot occur. Now, we prove the main result of the
paper. For direction r, rather than explicitly using V(r), we can
choose an arbitrary g0 € SP(r) to calculate directional derivative

X' (p% ) of x(p) at p°.

Theorem 3. Let Assumption 2 hold at x0. For arbitrary direction r,
lIrll =1, ¥’ (p°; r) exists and is the optimal solution (with respect to
wX) of optimization problem QP(g°, 1), g° € SP(r).

Proof. Based on Lemma 3 and 4, we only need to prove that for
any r the solution w* of w that corresponds to QP(g%,r) is inde-
pendent of the choice g° € SP(r). Assume r to be fixed, and let g! #
g2 € SP(r). Suppose (w&1 w*1) solves QP(g!,r), and (w&2 w*2)
solves QP (g2, 1), but w*! £ w*2, Note that both problems have an
optimal solution by Lemma 4.

We may assume, without loss of generality, that

SOVDTAWT) £ 1TWsT < 2 (W) AW?) 41T we?

Since w*! £ w*2 and the optimal solution of QP(g2,r) is unique
with respect to w*2, we have

SOTAGWY) + el < 2w TAW) 1T (20)
for all w82 so that (W82, w*1) e (g2, x0, ¢?). It directly follows
from (20) that rTw&! < rTw&2 for all such w&2, given that there
exist such (w&2 wr1) e c(g2,x0, ¢0).

Note that for all sufficiently small o > 0, g! + aw8! € F. Hence,
for any such «, let

gl 4 an,l _g2
P )
Then, g%+ aw&2e F, hence (W82 w*l)eC(g? x% ¢Y). Since

T (g! + awsl) = rT(g2 + aws?), it follows that r’g! > rTg%, which
contradicts that g! € SP(r). O

Wg,Z =

Theorem 3 proves that x'(p9;r) exists for any p° in any direc-
tion r, ||| = 1, provided that Assumption 2 holds globally (i.e., for
all x(p%) with p% € E). Now, for p0 € E, we can estimate x(p!) ~
X0 +tx'(p% 1), with p! = p9 +tr, t > 0 small, and ||r|| =1. To do
so, we have to choose g° € SP(r), and subsequently solve QP(g9, r).
We use this result to formulate an optimization method for (BL) in
Section 5.

We compare the result of Theorem 3 with Theorem 2 in Ralph
& Dempe (1995). There, the directional derivative of a solution of
a parametric nonlinear program (with a locally unique minimizer)
can be calculated (under a constraint qualification) by selecting a
suitable KKT multiplier as a solution of auxiliary program. In our
case, we have a non-unique solution, and need a linear program to
find directional derivative x'(0%; ) of the link flows x(p) at p°.

4.4. General results

In previous sections, we assumed d" = 0. We extend the results
to the case d" # 0. We omit the corresponding proofs which are
straightforward extensions of the proofs in previous sections.

For p0 ¢ Eand r, ||r|| = 1, arbitrary, and (g°, h9, x%) € S(00), the
linear program

P(r): mihang st. (g h) eSEM (%),
g

finds (g2, h%) € SP(r). The quadratic (convex) optimization problem
to find directional derivative x'(0%;r) of x(p) at p° in direction r
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corresponds to

QP ho 1) : min%vv"TAvv"+rng st (wWe wh, w¥)
ec(g®, h° x%),
with
(W8, wh, w¥) e RII
\/ngo pePgJ
w%:() [JE'Pg_z
0,0y _ wy >0 P € Pna
CE X0 = 1 girl g wh=0 PePia
AWE +wh) —w* =0
Aws =0
Awh =0

Here, we decompose path set 1(g°) < P, I(h®) C P, as follows
Pg1={pePkek | pellg). (c,(x°) + pp)

_mi 0 0y _
ll;relg(l(cq(x )+10q) O}a

7Dg.z = I(go) \ Pg,l,
Pri={pePukek | pel(hy),cp(x°) — {Ingyncq(xo) =0,}
€Fk

Pra =1(h°) \ Pp;.

Pg2. Ppo are the path sets that consist of the paths with an ac-
companying positive multiplier. Note that QP(g% h°, r) can be in-
terpreted as a traffic assignment problem with a restricted path
set (¢f. Patriksson (2004)). In comparison with Q(p), the link cost
function is linear, some paths might carry negative flows, and each
OD pair has zero demand.

5. Algorithm and numerical experiments

Thus far, we proved the existence of the directional derivative
of the link flows under perturbations in the parameter, and found
a constructive method to calculate it. In this section, we solve opti-
mization problem (BL) using a feasible descent method. The algo-
rithm is so that we solely need to solve convex optimization prob-
lems and, thus, it can be implemented in standard optimization
toolboxes.

5.1. Algorithm

Consider optimization problem (BL). We can reformulate it as
(BL"), a nonsmooth optimization program in which x is an implicit
function of p, i.e.,

(BL) : mpin(p(x(,o)) st. pekB.

Consider p0 with solution x° = x(0%) of lower-level problem
Q(p®). We proved that the directional derivative x'(p°; r) into di-
rection r exists, i.e., for t > 0 small,

Px(P°+1tr) — p(x°) = Vip(x®)T (x(p° + tr) — x°)
=tV (x")TX (0% 1). (21)

So, any direction r, ||r|| = 1, that satisfies Vyp(x®)Tx'(0%;1) <0
yields a descent direction for (BL"). This allows us to formulate the
necessary optimality conditions for (BL").

The calculation of a steepest descent direction r is difficult and
is the optimal solution of a linear-quadratic optimization problem,
which can be found using an expensive branch-and-bound tech-
nique (Bard, 1998). To reduce computational intensity and to en-
hance application by traffic engineers, we use an algorithm that
assumes that x(p) is differentiable at any p°, i.e., V,x(p%) exists
(see Josefsson & Patriksson, 2007). Algorithms that explicitly use
the nonsmoothness of the objective function in (BL") can be found
in Outrata, Kocvara, & Zowe (2013).
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At every iteration i € N, with iteration point o' € &, we find a
feasible descent direction by solving convex optimization problem

.1 i i
min > || = V@ (x(p)) —v[* st veD(p), (22)

with feasible cone

v,20 peP'={peP|p}=0}

iy — IP] .
DY {UER v, <0 peP’={pePrkek | p)=e}

Summarizing, the algorithm is as follows (based on Faigle, Kern,
& Still, 2013; Josefsson & Patriksson, 2007):

Step O Initialize 0° € E, n > 0 small, Armijo line search factor t > 0
and multiplier «, set i :=0;
Step 1 Solve Q(p!) to obtain x(p');
Step 2 Construct the approximate Jacobian, V,x(p') by solving for
each p e P:
(a) let r =1p;
(b) find (g, h) € SP(r), i.e., solve P(r).
(c) find w that solves QP(g, h, r);
(d) let (Vx(p'))p = wX.
Step 3 Solve (22) to find Vi
Step 4 Use the inexact Armijo line search (using «) to find m >0
that satisfies :

px(p)) < px(p)) — Tm((WHT (Ve (x(p))). (23)

where p' is the projection of (p! + mv') onto E, let pi*! = pi
and i :=i+ 1, goto Step 1. If there is no such m, terminate.

5.2. Implementation and settings

We implemented our method in MATLAB, and adapted a path-
based algorithm to solve Q(p) for a fixed p. Therefore, we used
an adapted version of the gradient projection method, with a
quadratic approximation line search (Gentile, 2014; Perederieieva,
Ehrgott, Raith, & Wang, 2015). We used the built-in linear pro-
gramming method of MATLAB to solve P(r) rather than P(r).
Here,

B(r): (g.h) € S (p),
where $&M is equivalent to S&M except that we replace

p'g=v(p) pTge v (p) =8, v(p)+3l.

in which § > 0. To solve QP(g, h,r), given (g, h,r), we use the al-
gorithm as described by Josefsson & Patriksson (2007). In order
to apply our algorithm based on sensitivity analysis, one needs to
solve Q(p) with high accuracy. Therefore, we introduced the fol-
lowing metric to measure accuracy (for simplicity, here assuming
d"=0):

Y kex 2per, 8p((Cp(f) + p) —min (¢, (f) + p))
> ke 2pep, 8p(Cp (fH+p) '

and stopped when an accuracy of 10-'2, or a maximum number
of iterations, was achieved. In the remainder, we assumed 6 = 5 x
10~4 in P(r), and used T = 0.1 and « = 0.5 in the backtracking line
search.

Two networks are implemented to provide insight into the po-
tential of social routing in practice. We use the network of Nguyen
& Dupuis (1984) (|K| =4), with the settings of Ohazulike, Still,
Kern, & van Berkum (2013) and the demand scenario of the lat-
ter paper of 400, 800, 600, and 200, respectively. To assess per-
formance in larger networks, we used the Sioux Falls network
(Transportation Networks for Research Core Team, 2019), with
|K| = 528. For the first network the path set is known a priori, in
the latter network the path set needs to be constructed iteratively
while solving the bilevel problem. Therefore, we add (if necessary)

minr’g s.t.

with

Acc =

}.
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the k-shortest paths (k = 2) for each commodity every time we ac-
cept the Armijo condition (23). To initialize the path set, we used
the path set generated while solving the user equilibrium and sys-
tem optimum.

The main computational burden of the presented algorithm -
compared to approaches solving NDPs - is the construction of an
approximate Jacobian V,x(p'), which requires P(r) and QP(g, h, )
to be solved |P| times for each outer iteration. In particular for
dense networks with many OD pairs this might lead to increas-
ing run times. For example, for the Sioux Falls network, we ended
with about 2050 paths in the path set. Therefore, we limited the
outer iterations to 25. For practical purposes, one might relieve the
computation time by aggregating zones.

6. Results and management implications

We explore the potential network impacts of a social routing
service adopting the proposed strategy: we apply the algorithm
(Section 5.1) to two test networks (see Section 5.2). In Section 6.2,
we draw some preliminary conclusions about social routing for
traffic management purposes.

6.1. Network impact

We provide insight in the potential network efficiency, by as-
suming varying social trip rates d*, and acceptable travel time dif-
ferences ¢. In these experiments, we assume that only a portion of
the travelers is receptive for advice. Receptive drivers might be un-
equally distributed over the network, and, therefore, we consider
for each network eight social demand scenarios. We assume that
25%, 50%, 75% or 100% of the largest OD pairs (in terms of trips)
can be reached or targeted by a social routing service. Furthermore,
only a portion of this demand is assumed to comply with the ad-
vice, hence we assume d° = ad (d" = (1 — «)d)) for these OD pairs,
with o € {%, 1}. To allow comparison with the unfair system opti-
mum, we express the OD-pair dependent maximum detour & as
a percentage of the maximum detour needed in the system opti-
mum (for the same OD pair). For each scenario we determine the
distribution of social demand over the network by solving problem
(BL").

Fig. 2 and 3 show the performance of the routing service (in
terms of total travel time) for the Nguyen & Dupuis and Sioux Falls
network, respectively, under different scenarios. In each figure, the
upper and lower dashed lines depict the total travel time in user
equilibrium and system optimum, respectively. In general, a larger
share of social trips, and a less equitable (i.e., larger values of ¢)
routing strategy leads to a better performance. in terms of total
travel time.

When analyzing the results for the Nguyen & Dupuis network
(Fig. 2), we observe that the routing strategy is able to approach
the performance of the system optimum (Fig. 2b). However, tar-
geting the right (amount of) OD pairs is crucial, since we see in
Fig. 2a almost no travel time improvement with only one OD pair
reached. This can be explained by the minor detour in the system
optimum for this OD pair. Further increasing the social trip rate
to 75% and 100% does not substantially change performance and
the corresponding results are therefore not shown. Interestingly,
the compliance rate & has only limited impact on the results.

In the Sioux Falls network, the total travel time improvement
is 2.7% compared to the user equilibrium (Fig. 3); the system opti-
mum shows an improvement of 3.8%. With a compliance rate of
50%, the strategy has a maximum improvement of 1.9% in total
travel time. The results with 100% of the OD pairs targeted are
comparable to the results as depicted in Fig. 3¢ and therefore not
shown. If only 25% of the largest OD pairs can be targeted by a
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Fig. 4. Cumulative distribution of relative travel time detours compared to the fastest paths in the Sioux Falls network. Fig. 4a corresponds to the scenario of Fig. 3a with

& = 50%, Fig. 4b corresponds to the demand scenario of Fig. 3b with & = 50%.

routing service, improvements drop (Fig. 3a). Again, we observe
only a minor change in total travel time when OD pairs targeted
increase above 50% (compare Fig. 3b and 3 ¢).

In Fig. 4, we depict the cumulative distributions of the detours
(in travel time, relative to the shortest path available) in the re-
sulting states (assuming & = 50%) for the different demand scenar-
ios. We also show the distribution of detours in the system opti-
mum (SO). We note that in user equilibrium, all travelers take the

fastest path (i.e., no detour) - see (2b). Here, we see that - although
more than 50% of the drivers receive advice - only about 12% of the
drivers need to take a small detour to obtain 2.7% total travel time
improvement (Fig. 4b), i.e., a major share of the social travelers is
still advised to take the shortest route. At the same time, the de-
tours, if advised, are less than 26% worse compared to the fastest
path. For a system-optimal assignment, detours might potentially
take 60% longer. Fig. 4a shows that here only a very small frac-
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tion (2.1% of all trips) of social trips is needed to obtain already 1%
improvement in total travel time.

6.2. Management implications

A real-life implementation of a social routing system adopting
the proposed strategy requires a travel information service, using,
e.g., a smartphone application. Based on the market penetration
rate, (expected) compliance rate, and acceptable travel time differ-
ences, a central system calculates the paths for each user by solv-
ing (BL). These paths, provided to the drivers, are the best possible
ones for the traffic system while meeting user constraints along-
side. Based on the results of Section 6.1, we provide some prelimi-
nary management implications.

The numerical experiments show that a social routing system
is a potential powerful measure to improve efficiency, and pre-
serve fairness at the same time. Even if a small portion of travelers
can be rerouted onto social routes, the resulting traffic state might
show a major improvement in total travel time compared to the
user equilibrium.

We note that the spatial distribution of the social travelers, in
combination with the maximum acceptable travel time difference
of users, might highly impact the strategy’s performance. In the ex-
periments, advised detours are usually fairly limited which is ex-
pected to lead to high compliance rates. In addition, travelers can
be motivated to take a detour, e.g., by providing rewards. Obvi-
ously, also autonomous vehicles might be routed onto such paths
(Speranza, 2018).

Even for the relatively simple setting we considered in this
study, finding the optimal solution of the bilevel problem is highly
complex. The algorithm as proposed in Section 5.1 finds an improv-
ing solution over the iterations. This procedure is however time-
consuming. Evaluating the potential of the strategy on real-world
network instances requires therefore an alternative procedure. The
theoretical analysis and algorithm can nonetheless be used to as-
sess the quality of faster heuristics that find a good solution of
(BL).

An application of the social routing system in real life requires
further research. First, we only considered fairness of the resulting
state, but one might also evaluate the inter-state travel time differ-
ences, i.e., before and after implementation of the service (see Jahn
et al., 2005). Second, we used a relatively simple procedure to con-
struct the path set. In practice, one might consider column gener-
ation that further explores the path set while solving the bilevel
problem. Finally, we focused ourselves to the equilibrium state in
an assignment with static demand. Developing a similar routing
strategy for the dynamic case is much more complex, in particular
since a range of possible behavioral responses should be accounted
for.

7. Conclusion

In this paper, we consider a social routing strategy that explic-
itly accounts for the route choice behavior of drivers. The routing
strategy asks a portion of the travelers to take a small detour for
the system’s benefit. Recent empirical research proved that such a
strategy is implementable in a routing system in real life.

We showed that the best possible routes (with respect to effi-
ciency) to be proposed by a routing system can be found by solv-
ing a bilevel optimization problem that anticipates the route choice
behavior of compliant and non-compliant travelers. We used para-
metric analysis to study the behavior of the solution set of the
lower-level problem as a function of the upper-level variable. Un-
der mild conditions, we can efficiently calculate the directional
derivative of the lower-level link flow solution by solving a con-
vex quadratic optimization problem. A numerical procedure uses
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this directional derivative to find the paths to be proposed. The
numerical experiments show the potential efficiency gain of such
a system in practice. Indeed, only a small portion of the travelers
need to take a fairly limited detour to achieve a substantial travel
time improvement.

This paper assumed a static setting, but finding the best possi-
ble paths to be proposed to the receptive travelers is already dif-
ficult. Nonetheless, the paper introduces a strategy (and proves it
potential) worth considering for application in a general traffic en-
gineering context. For instance, in the case of incidents, authorities
can particularly apply a similar routing strategy to mitigate the im-
pact on the network with respect to the total travel time, but at
the same time limit the detour of individual drivers.

Acknowledgment

This work was supported by the Netherlands Organisation for
Scientific Research (NWO), project number 439.16.103.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at 10.1016/j.ejor.2021.06.036

References

Angelelli, E., Arsik, 1., Morandi, V., Savelsbergh, M., & Speranza, M. (2016). Proactive
route guidance to avoid congestion. Transportation Research Part B: Methodolog-
ical, 94, 1-21.

Angelelli, E., Morandi, V., Savelsbergh, M., & Speranza, M. G. (2021). System optimal
routing of traffic flows with user constraints using linear programming. Euro-
pean journal of operational research, 293(3), 863-879.

Angelelli, E., Morandi, V., & Speranza, M. G. (2019). A trade-off between average
and maximum arc congestion minimization in traffic assignment with user con-
straints. Computers & Operations Research, 110, 88-100.

Angelelli, E., Morandi, V., & Speranza, M. G. (2020). Minimizing the total travel time
with limited unfairness in traffic networks. Computers & Operations Research,
123, 105016.

Bagloee, S. A., Sarvi, M., Patriksson, M., & Rajabifard, A. (2017). A mixed user-equi-
librium and system-optimal traffic flow for connected vehicles stated as a com-
plementarity problem. Computer-Aided Civil and Infrastructure Engineering, 32(7),
562-580.

Bank, B., Guddat, ]J., Klatte, D., Kummer, B., & Tammer, K. (1983). Non-linear para-
metric optimization. Birkhduser Verlag.

Bard, J. F. (1998). Practical bilevel optimization: Algorithms and applications. Springer
Science & Business Media.

Beckmann, M., McGuire, C., & Winsten, C. B. (1956). Studies in the economics of trans-
portation. New Haven: Yale University Press.

Bureau of Public Roads (1964). Traffic assignment manual. US Department of Com-
merce.

Dempe, S. (1989). On the directional derivative of the optimal solution map-
ping without linear independence constraint qualification. Optimization, 20(4),
401-414.

Dempe, S. (1993). Directional differentiability of optimal solutions under slater’s
condition. Mathematical programming, 59(1-3), 49-69.

Dempe, S. (2002). Foundations of bilevel programming. Springer Science & Business
Media.

Dempe, S., & Zemkoho, A. B. (2012). Bilevel road pricing: Theoretical analysis and
optimality conditions. Annals of operations research, 196(1), 223-240.

Di, X., Liu, H. X,, Pang, J.-S., & Ban, X. ]. (2013). Boundedly rational user equilibria
(brue): mathematical formulation and solution sets. Transportation Research Part
B: Methodological, 57, 300-313.

Djavadian, S., Hoogendoorn, R. G., van Arem, B., & Chow, J. Y. (2014). Empirical eval-
uation of drivers’ route choice behavioral responses to social navigation. Trans-
portation research record, 2423(1), 52-60.

Do Chung, B., Cho, H.-J., Friesz, T. L., Huang, H., & Yao, T. (2014). Sensitivity anal-
ysis of user equilibrium flows revisited. Networks and Spatial Economics, 14(2),
183-207.

Eikenbroek, O. A. L, Still, G. ]., van Berkum, E. C., & Kern, W. (2018). The boundedly
rational user equilibrium: A parametric analysis with application to the network
design problem. Transportation Research Part B: Methodological, 107, 1-17.

Faigle, U., Kern, W., & Still, G. (2013). Algorithmic principles of mathematical program-
ming: 24. Springer Science & Business Media.

Fiacco, A. V., & Ishizuka, Y. (1990a). Sensitivity and stability analysis for nonlinear
programming. Annals of operations research, 27(1), 215-235.

Fiacco, A. V., & Ishizuka, Y. (1990b). Suggested research topics in sensitivity and
stability analysis for semi-infinite programming problems. Annals of operations
research, 27(1), 65-76.


https://doi.org/10.1016/j.ejor.2021.06.036
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0005
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0005
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0005
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0005
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0005
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0005
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0011
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0011
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0012
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0012
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0020

O.A.L Eikenbroek, G,J. Still and E.C. van Berkum

Gentile, G. (2014). Local user cost equilibrium: A bush-based algorithm for traffic
assignment. Transportmetrica A: Transport Science, 10(1), 15-54.

Jahn, O., Mohring, R. H., Schulz, A. S., & Stier-Moses, N. E. (2005). System-optimal
routing of traffic flows with user constraints in networks with congestion. Op-
erations research, 53(4), 600-616.

Josefsson, M., & Patriksson, M. (2007). Sensitivity analysis of separable traffic equi-
librium equilibria with application to bilevel optimization in network design.
Transportation Research Part B: Methodological, 41(1), 4-31.

Klein, I, Levy, N., & Ben-Elia, E. (2018). An agent-based model of the emergence of
cooperation and a fair and stable system optimum using atis on a simple road
network. Transportation research part C: emerging technologies, 86, 183-201.

Lee, G. M., Tam, N. N,, & Yen, N. D. (2006). Quadratic programming and affine varia-
tional inequalities: A qualitative study: 78. Springer Science & Business Media.

Li, R, Liu, X, & Nie, Y. M. (2018). Managing partially automated network traffic
flow: efficiency vs. stability. Transportation Research Part B: Methodological, 114,
300-324.

Lou, Y., Yin, Y., & Lawphongpanich, S. (2010). Robust congestion pricing under
boundedly rational user equilibrium. Transportation Research Part B: Methodolog-
ical, 44(1), 15-28.

Lu, S. (2008). Sensitivity of static traffic user equilibria with perturbations in arc
cost function and travel demand. Transportation science, 42(1), 105-123.

Lu, S., & Nie, Y. (2010). Stability of user-equilibrium route flow solutions for the
traffic assignment problem. Transportation Research Part B: Methodological, 44(4),
609-617.

Luo, Z.-Q., Pang, ].-S., & Ralph, D. (1996). Mathematical programs with equilibrium
constraints. Cambridge University Press.

Mordukhovich, B. S. (2018). Variational analysis and applications. Springer.

Nguyen, S., & Dupuis, C. (1984). An efficient method for computing traffic equilibria
in networks with asymmetric transportation costs. Transportation Science, 18(2),
185-202.

Ohazulike, A. E., Still, G., Kern, W., & van Berkum, E. C. (2013). An origin-desti-
nation based road pricing model for static and multi-period traffic assignment
problems. Transportation Research Part E: Logistics and Transportation Review, 58,
1-27.

Outrata, J. (1997). On a special class of mathematical programs with equilibrium
constraints. In Recent advances in optimization (pp. 246-260). Springer.

Outrata, J., Kocvara, M., & Zowe, J. (2013). Nonsmooth approach to optimization prob-
lems with equilibrium constraints: Theory, applications and numerical results: 28.
Springer Science & Business Media.

Pang, J.-S., & Ralph, D. (1996). Piecewise smoothness, local invertibility, and para-
metric analysis of normal maps. Mathematics of Operations Research, 21(2),
401-426.

Patriksson, M. (2004). Sensitivity analysis of traffic equilibria. Transportation Science,
38(3), 258-281.

Patriksson, M., & Rockafellar, R. T. (2002). A mathematical model and descent algo-
rithm for bilevel traffic management. Transportation Science, 36(3), 271-291.
Patriksson, M., & Rockafellar, R. T. (2003). Sensitivity analysis of aggregated varia-
tional inequality problems, with application to traffic equilibria. Transportation

Science, 37(1), 56-68.

207

European Journal of Operational Research 299 (2022) 195-207

Perederieieva, O., Ehrgott, M., Raith, A., & Wang, J. Y. (2015). A framework for and
empirical study of algorithms for traffic assignment. Computers & Operations Re-
search, 54, 90-107.

Qiu, Y., & Magnanti, T. L. (1989). Sensitivity analysis for variational inequalities
defined on polyhedral sets. Mathematics of Operations Research, 14(3), 410-
432.

Ralph, D., & Dempe, S. (1995). Directional derivatives of the solution of a parametric
nonlinear program. Mathematical programming, 70(1-3), 159-172.

Robinson, S. M. (1982). Generalized equations and their solutions, part ii: appli-
cations to nonlinear programming. In Optimality and stability in mathematical
programming (pp. 200-221). Springer.

Robinson, S. M. (2006). Strong regularity and the sensitivity analysis of traffic equi-
libria: A comment. Transportation Science, 40(4), 540-542.

Rockafellar, R. T., & Wets, R. ].-B. (2009). Variational analysis: 317. Springer Science &
Business Media.

Roughgarden, T. (2005). Selfish routing and the price of anarchy: 174. MIT press Cam-
bridge.

Simon, H. A. (1997). Models of bounded rationality: Empirically grounded economic
reason: 3. MIT press.

Speranza, M. G. (2018). Trends in transportation and logistics. European journal of
operational research, 264(3), 830-836.

Tobin, R. L., & Friesz, T. L. (1988). Sensitivity analysis for equilibrium network flow.
Transportation Science, 22(4), 242-250.

Transportation Networks for Research Core Team (2019). Transportation networks
for  researchhttps://github.com/bstabler/transportationnetworks/.  Accessed
September 11, 2020.

van Essen, M., Eikenbroek, O., Thomas, T, & van Berkum, E. (2020). Travel-
ers’ Compliance with social routing advice: impacts on road network perfor-
mance and equity. [EEE Transactions on Intelligent Transportation Systems, 21(3),
1180-1190.

Vreeswijk, J. D., Landman, R. L., van Berkum, E. C., Hegyi, A., Hoogendoorn, S. P.,
& van Arem, B. (2015). Improving the road network performance with dynamic
route guidance by considering the indifference band of road users. IET Intelligent
Transport Systems, 9(10), 897-906.

Wardrop, J. G. (1952). Some theoretical aspects of road traffic research. ICE Proceed-
ings: Engineering Divisions, 1, 767-768.

Yang, H., Zhang, X., & Meng, Q. (2007). Stackelberg games and multiple equilibrium
behaviors on networks. Transportation Research Part B: Methodological, 41(8),
841-861.

Yin, Y., Madanat, S. M., & Lu, X.-Y. (2009). Robust improvement schemes for road
networks under demand uncertainty. European journal of operational research,
198(2), 470-479.

Zhang, K., & Nie, Y. M. (2018). Mitigating the impact of selfish routing: An opti-
mal-ratio control scheme (orcs) inspired by autonomous driving. Transportation
Research Part C: Emerging Technologies, 87, 75-90.

Zhou, B., Xu, M., Meng, Q., & Huang, Z. (2017). A day-to-day route flow evolution
process towards the mixed equilibria. Transportation Research Part C: Emerging
Technologies, 82, 210-228.


http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0024
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0024
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0024
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0024
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0024
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0028
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0028
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0030
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0030
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0030
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0030
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0030
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0031
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0031
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0041
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0041
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0041
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0041
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0042
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0042
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0042
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0042
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0043
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0043
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0045
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0045
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0045
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0045
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0046
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0046
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0047
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0047
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0049
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0049
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0049
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0049
https://github.com/bstabler/transportationnetworks/
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0052
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0052
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0052
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0052
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0052
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0052
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0052
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0052
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0053
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0053
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0054
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0054
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0054
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0054
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0054
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0055
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0055
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0055
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0055
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0055
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0056
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0056
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0056
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0056
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0057
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0057
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0057
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0057
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0057
http://refhub.elsevier.com/S0377-2217(21)00552-X/sbref0057

	Improving the performance of a traffic system by fair rerouting of travelers
	1 Introduction
	1.1 Research contribution
	Related social routing approaches
	Bilevel problem


	2 Problem formulation
	2.1 A social routing strategy
	2.2 Bilevel reformulation

	3 Parametric analysis
	3.1 Notation, definitions and preliminary results
	3.2 Directional derivative of the optimal value function

	4 Parametric analysis of the optimal solution
	4.1 Directional derivative of the link flow solution
	4.2 A quadratic program reformulation
	4.3  Not a singleton
	4.4 General results

	5 Algorithm and numerical experiments
	5.1 Algorithm
	5.2 Implementation and settings

	6 Results and management implications
	6.1 Network impact
	6.2 Management implications

	7 Conclusion
	Acknowledgment
	Supplementary material
	References


