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a b s t r a c t 

Some traffic management measures route drivers towards socially-desired paths in order to achieve the 

system optimum: the traffic state with minimum total travel time. In previous attempts, the behavioral 

response to route advice is often not accounted for since some drivers are advised to take significantly 

longer paths for the system’s benefit. Hence, these drivers may not comply with such advice and the 

optimal state will not be achieved. In this paper, we propose a social routing strategy to approach the 

optimal state while accounting for fairness in the resulting state. This routing strategy asks travelers to 

take a limited detour in order to improve efficiency. We show that the best possible paths (in terms 

of efficiency) to be proposed by a service adopting this strategy can be found by solving a bilevel opti- 

mization problem with a non-unique lower-level solution. We use techniques from parametric analysis 

to show that the directional derivative of the lower-level link flows however exists. This derivative is the 

optimal solution of a quadratic optimization problem with a suitable route flow solution as parameter. 

We use the derivative in a descent algorithm to solve the bilevel problem. Numerical experiments in a 

realistic environment show that the routing strategy only asks a small fraction of the drivers to take a 

limited detour and thereby substantially improves the performance of the traffic system. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Transport authorities face the daily challenge to reduce con- 

estion. Traditionally, this was solved by increasing road capacity 

hrough building new or expanding existing infrastructure. How- 

ver, the construction of infrastructure is costly, and may also 

ead to an increase in demand. Nowadays, authorities implement 

anagement measures alongside to improve utilization of existing 

oads. 

The need for policy measures in general stems from the obser- 

ation that individuals typically behave selfishly, i.e., travelers are 

ainly concerned with their own utility when making decisions. 

he resulting traffic state (i.e., flow distribution) with respect to 

oute choice, the user equilibrium , does mostly not correspond to 

he system optimum : the traffic state with minimum (total or av- 

rage) travel time ( Wardrop, 1952 ). Without intervention, in par- 

icular with the increasing use of real-time routing apps, the real- 

orld traffic state is likely to be closer to the inefficient user equi- 
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ibrium than to the system optimum ( Klein, Levy, & Ben-Elia, 2018 ). 

n the user equilibrium, travelers with the same origin-destination 

air have equal travel times. The system optimum, on the other 

and, is ‘unstable’ since it is unfair: some drivers may travel longer 

han others for the same origin-destination pair. Hence, we can 

haracterize the system optimum as (perfectly) efficient but unfair, 

hile the user equilibrium is inefficient and perfectly fair. 

Recently, traffic management measures, e.g., social routing, have 

een proposed that steer or nudge travelers towards socially- 

esired routes. The ‘pure’ system optimum is difficult to achieve 

 Klein et al., 2018 ) and maintain over time, because only some 

ravelers use and comply with advice from information systems, 

nd the individual intra- (within the system optimum) and inter- 

tate (compared to the user equilibrium) travel time differences 

ight be substantial ( Jahn, Möhring, Schulz, & Stier-Moses, 2005; 

an Essen, Eikenbroek, Thomas, & van Berkum, 2020 ). Hence, any 

ocial routing strategy should in essence anticipate user responses 

nd persuade travelers to comply with socially-oriented advice. 

Empirical evidence (e.g., Djavadian, Hoogendoorn, van Arem, & 

how, 2014 ) shows that some (travelers) are receptive for advice 

hat proposes reasonable routes for the system’s benefit. A pos- 

ible explanation is that individuals have a so-called indifference 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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and ( Simon, 1997 ), which means in our context that when a route 

s only slightly longer than the best one, it is still acceptable to 

se ( Vreeswijk et al., 2015 ). A social routing strategy can ‘exploit’ 

he indifference band and propose acceptable routes (possibly, sub- 

ptimal from an individual’s perspective) to receptive drivers (those 

hat use and comply with advice from the service), and thereby 

otentially steer the network to a state close to the system opti- 

um. Compared to the system optimum, the resulting distribution 

s easier to achieve and maintain over time. 

In this paper, we propose and evaluate a centrally coordinated 

ocial routing strategy that improves overall efficiency, while we 

xplicitly account for the above-mentioned practical requirements. 

he routing strategy incorporates user-induced constraints in the 

ense that travel time differences in the resulting state are explic- 

tly limited, and only a fraction of the travelers is asked to take 

n acceptable detour to the system’s benefit. We note that a rout- 

ng service adopting the strategy, in practice, offers a single route 

dvice using a personalized information device to its users before 

eparture. 

.1. Research contribution 

Although empirical research has shown that social routing has 

reat potential in real life, there is not yet a corresponding rout- 

ng strategy that improves efficiency while explicitly incorporating 

ser responses to advice in terms of route choice behavior. Route 

hoice behavior is crucial for the strategy’s performance in prac- 

ice. Compliance is expected to be much higher when the advised 

oute is only slightly longer than the shortest route. Behavioral re- 

ponses influence the travel times, and should thus be anticipated 

n order to advise routes that are acceptable with respect to travel 

ime. 

In this study, we propose a social routing strategy that explic- 

tly accounts for behavioral responses to a routing service. In fact, 

hanges in route choice may occur from travelers that comply with 

he advice but also from those that do not comply, but are now 

onfronted with altered travel times on routes as a result of be- 

avioral changes by others. We introduce a bilevel optimization 

roblem that calculates the best possible paths (with respect to 

fficiency) with a limited (realized) detour to be proposed to the 

ompliant travelers. Although in this paper we limit ourselves to 

 static environment, the bilevel problem is already highly chal- 

enging to solve. Many of the theoretical difficulties that occur in 

ur case, also apply to a real-world social route guidance service in 

hich limited detours are suggested in a dynamic fashion. Hence, 

efore considering such a guidance system we should address the 

heoretical challenges and potential impact in a static traffic as- 

ignment first. In particular, the service as proposed in this paper 

an serve as a proof-of-concept for a dynamic variant. 

elated social routing approaches 

We discuss related social routing approaches from literature. 

ahn et al. (2005) proposed a routing strategy that limits the ‘nor- 

al length’ difference before and after implementation, assum- 

ng that the normal length is independent of the traffic flow. This 

echanism was numerically evaluated on realistic network in- 

tances, and showed performance (with respect to efficiency) close 

o the system optimum. The intra-state time differences, however, 

ere not explicitly limited. A related approach by Angelelli, Ar- 

ik, Morandi, Savelsbergh, & Speranza (2016) considers a mathe- 

atical program that tries to achieve an optimal flow with a reg- 

larization term to minimize the ‘total inconvenience’ alongside. 

ere, the travel time is assumed to be independent of the flow. 

oth studies assume a full market penetration of the routing ser- 

ice. Bagloee, Sarvi, Patriksson, & Rajabifard (2017) ; van Essen et al. 

2020) ; Zhang & Nie (2018) proposed systems to route a fraction of 
196 
he demand onto social routes. We refer to Li, Liu, & Nie (2018) and

hou, Xu, Meng, & Huang (2017) , for dynamic (day-to-day) varia- 

ions on such routing policies. 

In contrast to the above-mentioned studies, we propose a rout- 

ng strategy that steers the network to a system optimum while 

xplicitly limiting the intra-state time differences whereas we ar- 

ue that travelers evaluate acceptability of routes in terms of real- 

zed travel time rather than free-flow travel time or distance. This 

ecessary user-induced constraint makes the accompanying opti- 

ization problem substantially harder to solve, which might be a 

eason that a majority of the studies relax this real-life constraint 

r introduce heuristic approaches (e.g., Angelelli, Morandi, & Sper- 

nza, 2019; Roughgarden, 2005 ). Recently, Angelelli, Morandi, & 

peranza (2020) studied a similar setting, with a so-called ‘con- 

trained system optimum’. They used an integer linear program 

nd matheuristic to formulate and solve the corresponding opti- 

ization problem, respectively. In contrast to our study, they do 

ot incorporate the route choices of travelers that do not com- 

ly with route advice. Angelelli, Morandi, Savelsbergh, & Speranza 

2021) proposed a fast heuristic to find the constrained system op- 

imum and use a piecewise linearization of the travel time func- 

ion. In our paper, we formulate the problem as a continuous op- 

imization problem and keep the nonlinearity of the travel time 

unction. 

We note that our optimization problem is a generalized case of 

nding the boundedly rational user equilibrium (BRUE) with min- 

mum travel time. Although there is a body of literature on BRUE 

e.g., Di, Liu, Pang, & Ban, 2013; Lou, Yin, & Lawphongpanich, 2010 ), 

 thorough quantitative analysis of this problem is still lacking. 

hus far, analyses have been based on relatively strong assump- 

ions which reduce the complexity of the problem but might not 

old in practice. 

ilevel problem 

The success of the social routing strategy, as discussed, hinges 

n the (travel time of the) paths suggested to the drivers. We show 

hat best possible paths can be found by solving a bilevel optimiza- 

ion problem. Our bilevel problem (see Section 2.2 ) can be seen 

s a game between a leader (authority) and a follower (travelers) 

 Josefsson & Patriksson, 2007 ). The leader chooses the paths to be 

roposed, while the travelers update their route choice based on 

his advice. The compliant travelers follow the advice if the travel 

ime differences (based on the route choice of the travelers) com- 

ared to the fastest paths are limited, while non-compliant trav- 

lers find the cheapest paths available. These dynamics should be 

nticipated to find the best possible advice in terms of total travel 

ime. 

Bilevel problems are typically difficult to solve directly, and 

herefore often reformulated as single-level problems. In this pa- 

er, we use an implicit reformulation, and require parametric 

nalysis of the lower-level problem to describe the behavior of 

he corresponding solution set as a function of the upper-level 

ariable. Parametric analysis is either quantitative or qualitative 

n nature ( Fiacco & Ishizuka, 1990b ). The qualitative analysis is 

ainly concerned with the continuity of the optimal solution set. 

ere, we require a - local - quantitative analysis that focuses 

n the estimation of generalized derivatives of the optimal so- 

ution set, e.g., to be used in numerical procedures. We refer to 

ikenbroek, Still, van Berkum, & Kern (2018) for the qualitative 

nalysis of this problem (the mentioned paper’s setting is however 

ifferent). 

Techniques from variational analysis are used to study the 

uantitative behavior of the lower-level problem. We refer to Luo, 

ang, & Ralph (1996) ; Mordukhovich (2018) ; Rockafellar & Wets 

2009) for an overview of theoretical results. Many of these re- 

ults, however, are presented in general form and require relatively 
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trong conditions when applying an implicit reformulation. A crit- 

cal issue in our case is that the lower-level solution is not unique 

or a given upper-level variable. This leads to practical and theoret- 

cal challenges, since the desired lower-level solution might not be 

ealized, and small changes in the parameter might lead to major 

hanges in the solution ( Dempe, 2002 ). Hence, at first sight, many 

f the algorithms designed for bilevel problems do not apply in our 

ontext. 

In this paper, we theoretically assess the lower-level problem 

nd use techniques from variational analysis to show that we can 

uarantee the existence and calculation of a generalized derivative 

f the lower-level solution projected onto a subspace. The gener- 

lized derivative of the solution of the lower-level problem con- 

ributes to the understanding of the optimization problem finding 

he best possible paths. Indeed, the theoretical analysis in this pa- 

er allows one to formulate the necessary optimality conditions 

f the bilevel problem. Moreover, the derivative can be used in 

xact numerical procedures to find descent directions. Hence, not 

nly can the generalized derivative be used in standard algorithms 

o solve bilevel programs, it can also support the assessment of 

euristic procedures (e.g., Angelelli et al. (2020) ). Although a com- 

arative analysis of algorithms that solve the formulated program 

s beyond the scope of our paper, we provide nonetheless a nu- 

erical procedure and refer to related algorithms that could be 

pplied. 

In a static traffic assignment context, bilevel problems are well- 

nown, mainly in Network Design Problems (NDPs) in which op- 

imal network settings (e.g., link tolls) are determined. Paramet- 

ic analysis has been topic of a body of literature in this context 

 Do Chung, Cho, Friesz, Huang, & Yao, 2014; Josefsson & Patriks- 

on, 2007; Lu, 2008; Lu & Nie, 2010; Outrata, 1997; Patriksson, 

0 04; Patriksson & Rockafellar, 20 02; 20 03; Qiu & Magnanti, 1989; 

obinson, 2006; Tobin & Friesz, 1988; Yin, Madanat, & Lu, 2009 ). 

ainly, these papers concern perturbations that occur in the (pa- 

ameters of the) link cost function and/or demand vector. Our pa- 

er is different from the aforementioned studies since we basically 

onsider perturbations in a path-dependent parameter. It turns out 

hat the analysis and the computational results rely on the choice 

f a suitable route flow corresponding to a link flow solution. This 

orces us to study the behavior of the (multi-valued) route flow 

olution set in dependence of the parameter. In the context of per- 

urbations in the parameter of the demand vector, the analysis of 

iu & Magnanti (1989) also depends on the choice of a specific 

oute flow solution. However, Patriksson & Rockafellar (2002) show 

hat the results of Qiu & Magnanti (1989) are actually independent 

f a specific choice. In our context, this does not hold (as we will

how in Example 1 ). Some of our findings show similarities to the 

esults for parametric optimization problems with a unique min- 

mizer but non-unique multipliers ( Dempe, 1989; 1993; Ralph & 

empe, 1995 ). There, a generalized derivative of the optimal so- 

ution can be calculated by choosing a suitable multiplier (which 

ight be difficult to find). In our case, we consider a setting with 

 non-unique optimal solution. 

Considering the practical application, we assess a possible im- 

lementation of the social routing strategy. Specifically, we evalu- 

te the interaction among compliance rate, acceptable travel time 

ifferences, and network-wide performance in a static setting. 

he numerical experiments provide insight which minimum pen- 

tration rate and indifference band might be required to sub- 

tantially lower the total travel time in the network, and, thus, 

ow much some travelers have to sacrifice for the network’s 

enefit. These experiments substantiate the opportunities for a 

eal-life implementation of a social routing service or guidance 

echanism. 

Summarizing, the main contributions of this paper are as fol- 

ows: 
h

197 
• We propose a social routing strategy that steers the traf- 

fic network towards an efficient but also fair, and therefore 

achievable and maintainable, traffic state. We show that the 

best possible paths to be proposed by a social routing ser- 

vice can be found by solving a bilevel program that explicitly 

accounts for behavioral responses to the service; 
• We use parameteric analysis to prove that the generalized 

derivative of the lower-level link flow solution problem ex- 

ists and can be calculated efficiently. The generalized deriva- 

tive can be used to find descent directions and to formulate 

optimality conditions of the bilevel problem; 
• We use the generalized derivative in a descent algorithm to 

solve the bilevel problem and numerically evaluate our pro- 

posed social routing strategy in test networks. Here, only a 

small fraction of the travelers need to take a limited detour 

to substantially improve the traffic system’s performance. 

The remainder of our paper is organized as follows. We 

ormally introduce our social routing strategy in Section 2 . In 

ection 3 , we analyze qualitatively the ‘behavior’ of the opti- 

ization problem that relates to our social routing strategy. In 

ection 4 , we investigate the existence and calculation of the di- 

ectional derivative of the link flows, which we use in Section 5 in 

 descent algorithm for solving the bilevel problem. Section 6 re- 

orts on numerical experiments and management implications. 

ection 7 draws the conclusions. 

. Problem formulation 

We study the static traffic assignment with fixed demand. Given 

s a directed traffic network G = (V, E) , with V being the set of

odes, and E is the set of directed edges (roads or links) e = (i, j) ,

ith i, j ∈ V . The network has a set of origin-destination pairs (OD

airs) K ⊆ V × V , with static demand d k > 0 , k ∈ K. Each OD pair

 ∈ K is connected by the set P k of simple directed paths. The set 

of all paths in the network is the union of the path sets per OD

air, i.e., P = ∪ k ∈K P k . 

A feasible traffic flow or flow for given demand d ∈ R 

| K | 
+ (we 

enote by | . | the cardinality of a set) is a pair of vectors ( f, x ) ∈
 

| P | × R 

| E | = ( f p , p ∈ P; x e , e ∈ E) so that 

f = d, � f − x = 0 , f ≥ 0 . (1) 

The matrix � ∈ R 

| K | ×| P | is the OD-path incidence matrix with 

kp = 1 if p ∈ P k , and �kp = 0 otherwise. � ∈ R 

| E | ×| P | denotes the

ink-path incidence matrix : �ep = 1 if edge e is in route p, and

ep = 0 otherwise. For each edge, e ∈ E, l e (x e ) is the non-negative,

ontinuous, and non-decreasing link cost (or: travel time) func- 

ion for a given flow x e on that edge. The cost of a route c p ( f ) ,

p ∈ P , is the sum of travel costs of all edges in that path, c p ( f ) =
 

e ∈ p l e (x e ) . 

Throughout our paper we make the following (natural) assump- 

ion regarding the travel time function (we refer to Patriksson & 

ockafellar (2002) for a study that relaxes this assumption). 

ssumption 1. We assume throughout the paper that the travel 

ime functions l e (x e ) are continuous, convex, and strictly mono- 

one: l e (x e ) < l e (x 0 e ) , for x e < x 0 e , for all e ∈ E. 

.1. A social routing strategy 

We consider the setting in which a central authority asks trav- 

lers to take a small detour for the system’s benefit (see Section 1 ).

he social travelers comply with such an advice if the alternative 

oute is reasonable, i.e., the route is not perceived to be substan- 

ially worse (in terms of travel time) compared to the fastest path. 

he remaining drivers do not comply with travel advice and be- 

ave in a selfish manner, i.e., choose the fastest path available. 
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The demand vector d s ∈ R 

| K | 
+ ( d s 

k 
≤ d k for all k ∈ K) denotes the

ravelers that receive and comply with a route advice from the au- 

hority (superscript s refers to the social travelers). The remain- 

ng demand d n ∈ R 

| K | , so that d = d s + d n , behaves selfishly. (Su-

erscript n refers to Nash equilibrium - see (2b) below: a driver 

annot improve travel time by changing strategy (route)). 

We define F as the set of feasible flows. Formally, 

 = 

{ 

(g, h, x ) ∈ R 

| P | × R 

| P | × R 

| E | 
�g = d s , g ≥ 0 , 

�h = d n , h ≥ 0 , 

�(g + h ) − x = 0 

} 

. 

bviously, any (g, h, x ) ∈ F is a flow as in (1) for f = g + h . 

The advised routes to compliant travelers d s have to be fair in 

he sense that the realized (i.e., traffic flow-dependent) travel time 

ifferences are limited. We assume that social travelers accept any 

ravel time difference (compared to the shortest path for the same 

D pair) with a maximum of ε k ≥ 0 , k ∈ K. Hence, the resulting

tate in the network is so that no social traveler for OD pair k ∈ K
an improve travel time with more than ε k by unilaterally chang- 

ng routes. At the same time, the selfish travelers choose the fastest 

ath. The following definition ( Definition 1 ) formalizes our notion 

f the resulting state among social (receptive) and selfish travelers. 

e refer to this state as a mixed equilibrium . 

efinition 1 (Mixed equilibrium) . Given ε ∈ R 

| K | 
+ , a traffic flow 

g, h, x ) ∈ F with corresponding path costs c( f ) , f = g + h , is called

 mixed equilibrium among social and selfish travelers if for all 

 ∈ K, the following conditions are satisfied for all p ∈ P k : 

 p > 0 ⇒ c p ( f ) ≤ min 

q ∈P k 
c q ( f ) + ε k (2a) 

 p > 0 ⇒ c p ( f ) = min 

q ∈P k 
c q ( f ) (2b) 

Assuming only selfish demand, in a traffic state in user equilib- 

ium as in (2b) , travelers with the same OD pair share travel times. 

owever, it is well-known that this state does not necessarily min- 

mize total travel time 
∑ 

e ∈ E x e l e (x e ) . The traffic state ( f, x ) as in

1) which minimizes the total travel time, is referred to as the sys- 

em optimum ( Wardrop, 1952 ). Typically, it may be assumed that 

n practice, without intervention, a state close to a user equilibrium 

rises. 

Condition (2a) gives a range of acceptable travel times for a re- 

eptive user. We assume that any social traveler that is routed onto 

n acceptable path (i.e., any route p ∈ P k , k ∈ K for which c p ( f ) ≤
in q ∈P k c q ( f ) + ε k ) complies with such an advice although the user 

ight be aware that it is not necessarily the fastest path available. 

he condition as defined in (2a) is equivalent to the BRUE condi- 

ion (see Section 1 ). The mixed equilibrium as in (2) , i.e., (2a) and

2b) , has the user equilibrium as a special case and does not cor- 

espond (even if ε → ∞ ) to a mixed user equilibrium and system- 

ptimal flow, e.g., as in Yang, Zhang, & Meng (2007) . 

In (2a) , we model the band ε as being additive . In particular 

or shorter travel times, an additive indifference band is more ap- 

ropriate compared to a multiplicative one as in, e.g., Roughgarden 

2005) . In combination with ε k , k ∈ K, being OD-pair dependent, 

e allow a range of scenarios regarding the maximum detour to 

e modeled using the condition in (2a) . 

The mixed-equilibrium conditions (2) do not provide a unique 

tate (yet all travelers are satisfied with their route), which is key 

or the social routing strategy. We exploit this range of allowed 

istributions to find one which is the best for the system. That 

s, our routing strategy is designed so that we achieve - among 

ll (g, h, x ) ∈ F that satisfy (2) - the one with the minimum total

ravel time. Hence, the optimal strategy can be found by solving 

he following optimization program for a known ε ≥ 0 : 

min 

g,h,x ) ∈F 
ϕ(x ) s.t. (g, h, x ) satisfies (2) , (3) 
198 
here ϕ(x ) = 

∑ 

e ∈ E x e l e (x e ) is the total travel time. 

For a routing service, the optimal solution of (3) with respect to 

is typically the variable of interest, since g represents the distri- 

ution of the social travelers over the different acceptable paths. 

he selfish demand basically responds to the choices of the so- 

ial demand in the sense of (2b) . In fact, selfish travelers are con- 

ronted with a change in travel times on routes due to the choices 

f others. When determining the best distribution g (with condi- 

ion (2a) ), the authority needs to anticipate the travel times de- 

ending on the route choices of both the social and selfish de- 

and. This Stackelberg mechanism is implicitly in (3) . After solving 

3) , the route to be suggested to a social traveler can be extracted 

rom solution g. 

One should note that, in principle, while solving (3) , one is free 

o choose any (g, h, x ) satisfying (2) . In practice, for a given g, the

istribution h is a result of the route choice behavior of the selfish 

ravelers and cannot be precisely predicted (if there are multiple 

 satisfying (2b) ). However, as we will see in Theorem 1 , the re-

ponse to g with respect to the link flows x is uniquely determined. 

ince x is the only variable appearing in the objective function, it 

s therefore not necessary to consider a pessimistic variant of (3) . 

.2. Bilevel reformulation 

The optimization problem in (3) is difficult to solve. Indeed, 

ikenbroek et al. (2018) and Lou et al. (2010) show that the feasible 

et corresponding to (3) is in general not convex, does not satisfy 

 regularity condition, and different local minimizers can coexist. 

e use the following proposition ( Proposition 1 ) to reformulate 

ur problem. In the remainder of the analysis we drop parame- 

er ε in the notation: we assume it is known and fixed. During the 

xperiments ( Section 5 and Section 6 ), we numerically investigate 

he impact of a varying ε. 

roposition 1 ( Di et al. (2013) ; Eikenbroek et al. (2018) ) . The fol-

owing are equivalent for (g, h, x ) : 

1. (g, h, x ) ∈ F is a mixed equilibrium as in (2) ; 

2. There exists 

ρ ∈ � := 

{
ρ ∈ R 

| P | 0 ≤ ρ ≤ �T ε 
}

such that (g, h, x ) solves the convex optimization problem 

Q(ρ) : min 

(g,h,x ) 
z(ρ, g, x ) = z 0 (x ) + ρT g s.t. (g, h, x ) ∈ F, 

(4) 

where z 0 (x ) = 

∑ 

e ∈ E 
∫ x e 

0 l e (ω ) dω . 

We omit the proof, which is a generalization of Proposition 2.2 

n Di et al. (2013) or Proposition 1 in Eikenbroek et al. (2018) .

hese references use objective function z 0 (x ) − ˜ ρT g, but the two 

roblems are equivalent by selecting ˜ ρ = �T ε − ρ . We prefer our 

bjective function in (4) whereas it eases the upcoming analysis. 

e note that ρ does not necessarily have an intuitive interpreta- 

ion. 

Problem (3) is a mathematical program with equilibrium con- 

traints . According to Proposition 1 , we can rewrite (3) as a bilevel

roblem. We use the following reformulation, which eases the 

arametric analysis in Section 3 and 4 ( Eikenbroek et al., 2018 ): 

BL ) : min 

(g,h,x,ρ) 
ϕ(x ) s.t. 

ρ ∈ �
(g, h, x ) solves Q(ρ) . 

BL ) is a technical reformulation of the bilevel problem in which 

he leader finds the best possible paths to be proposed, while an- 

icipating route choices (see Section 1.1 ). Basically, Q(ρ) describes 

he route choice behavior of both the social and selfish travelers 

or a given ρ . 
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In the remainder, we refer to parametric optimization problem 

(ρ) as the lower-level problem . Here, ρ is a parameter in the 

ower-level problem but a variable in the upper-level problem . Note 

hat in (BL ) both lower-level variables (g, h, x ) as well as upper-

evel variable ρ appear as variables. Even in case there is no upper 

ound with respect to ρ , i.e., the social travelers can be routed 

nto any path, the problem (BL ) might be difficult to solve. In the 

pcoming sections we rewrite and (numerically) solve (BL ) as a 

ingle-level optimization problem. 

. Parametric analysis 

Based on reformulation (BL ) of previous section, one basically 

eeds to find an appropriate ρ ∈ � so that the corresponding 

g, h, x ) that solves Q(ρ) minimizes total travel time ϕ(x ) . In this

aper, we apply parametric analysis with respect to problem Q(ρ) , 

.e., we investigate the ‘behavior’ of (g, h, x ) that solves Q(ρ) under 

erturbations in ρ . 

The purpose of the analysis is, from a computational perspec- 

ive, as follows. The parametric analysis provides an estimate for 

he rate of change in the lower-level solution as the lower-level 

arameter (which is an upper-level variable) changes ( Patriksson, 

004 ). Then, we use this estimate to move into a direction that 

ecreases the total travel time. In this and next section ( Section 4 ),

e provide the parametric analysis of the lower-level problem. The 

esults of these sections are used to reformulate and solve (BL ) as 

ingle-level optimization problem ( Section 5 ). 

.1. Notation, definitions and preliminary results 

We introduce notations that correspond to lower-level problem 

(ρ) (see (4) ) with parameter ρ: 

v (ρ) = min { z(ρ, g, x ) | (g, h, x ) ∈ F } , 
S(ρ) = { (g, h, x ) | (g, h, x ) is a global minimizer of Q(ρ) } . 
We refer to F as the feasible set , v (ρ) as the optimal value func-

ion , and to S(ρ) as the solution set at ρ . 

To study the parametric problem Q(ρ) , we introduce def- 

nitions that describe the behavior of functions. In this pa- 

er, we consider both single and multi-valued functions 

or: mappings). A multi-valued function F assigns to each 

 ∈ X ⊆ R 

n a possibly empty subset F (ε) ⊆ Y ⊆ R 

m . We de-

ote by dom (F ) := { ε ∈ X| F (ε) � = ∅} the domain of multifunc-

ion F . We further define for τ > 0 , δ > 0 , the neighborhoods

 τ (F (ε 0 )) := 

{
x ∈ R 

m |‖ x − x ′ ‖ < τ for some x ′ ∈ F (ε 0 ) 
}

and 

 δ (ε) := { x ∈ R 

n |‖ x − ε‖ < δ} . 
We use the following definitions ( Bank, Guddat, Klatte, Kum- 

er, & Tammer, 1983; Robinson, 1982 ): 

efinition 2. A multifunction F (ε) is said to be: 

1. closed at ε 0 if for any sequences ε l , x l , l ∈ N , with ε l → ε 0 ,
x l ∈ F (ε l ) , the condition x l → x 0 implies x 0 ∈ F (ε 0 ) ; 

2. upper/outer semicontinuous at ε 0 , if for any τ > 0 , exists δ > 

0 such that 

F (ε) ⊆ U τ (F (ε 0 )) , for all ε ∈ U δ(ε 
0 ) ;

3. lower/inner semicontinuous at ε 0 , if for any τ > 0 , exists δ > 

0 such that 

F (ε 0 ) ⊆ U τ (F (ε)) , for all ε ∈ U δ(ε 
0 ) ;

4. (locally) upper Lipschitz continuous at ε 0 if there exists a δ > 

0 and Lipschitz constant L < ∞ such that 

F (ε) ⊆ F (ε 0 ) + L ‖ ε − ε 0 ‖ B , for all ε ∈ U δ(ε 
0 ) , 

where B := { x ∈ R 

m | ‖ x ‖ ≤ 1 };
199 
5. (locally) Lipschitz continuous at ε 0 if there exists a δ > 0 and 

Lipschitz constant L < ∞ such that 

F (ε) ⊆ F (ε ′ ) + L ‖ ε − ε ′ ‖ B , for all ε , ε ′ ∈ U δ(ε 
0 ) . 

The following results are from Eikenbroek et al. (2018) . Here, 

 

x (ρ) , S g (ρ) , S h (ρ) denote the projections of S(ρ) onto the x , g,

nd h -space, respectively. 

heorem 1 ( Eikenbroek et al. (2018) ) . 

1. S(ρ0 ) � = ∅ for all ρ0 ∈ �; 

2. S(ρ0 ) , S g (ρ0 ) , and S h (ρ0 ) are (polyhedral) convex sets for 

each ρ0 ∈ �; 

3. S x (ρ0 ) is a singleton for each ρ0 ∈ �, i.e., S x (ρ0 ) = { x (ρ0 ) } ,
and x (ρ) is a continuous function on �, i.e., x (ρ) is upper and

lower semicontinuous at each ρ0 ∈ �. Moreover, 

ψ(ρ) := 

{
ρT g g ∈ S g (ρ) 

}
is uniquely determined at each ρ0 ∈ �; 

4. The mappings S(ρ) , S g (ρ) , and S h (ρ) , are upper semicontinu- 

ous at each ρ0 ∈ �; 

5. The mapping S(ρ) is not injective, i.e., different ρ0 � = ρ1 ∈ �

might have a common solution (g 0 , h 0 , x 0 ) ∈ S(ρ0 ) ∩ S(ρ1 ) . 

We underline that in our setting we cannot expect 

heorem 1 to be stronger in the sense that S g (ρ) is also lower

emicontinuous at each ρ0 . The route flow set 

 

g (ρ) = 

{
g ∈ R 

| P | ∃ h, 
�g = d s , �h = d n , �(g + h ) = x (ρ) , 
g ≥ 0 , h ≥ 0 , ρT g = ψ(ρ) 

}
, 

s a polyhedral convex set at each ρ0 ∈ �. So, although the x - 

art of the solution to Q(ρ) is uniquely determined, there might 

e multiple route flow solutions that correspond to a single link 

ow solution x (ρ) . In the context of perturbations of a parame- 

er in the link-cost and/or demand vector, the route flow set is 

 continuous mapping relative to its domain ( Lu & Nie, 2010 ), 

iven that the link flow changes continuously. We demonstrate 

ater ( Section 4 ) it is in fact the absence of lower semicontinuity 

f S g (ρ) at some ρ0 ∈ � that causes the practical difficulties for 

he calculation of the directional derivative x ′ (ρ0 ; r) of x (ρ) at ρ0 

n direction r ∈ R 

| P | . 

emark 1. To improve readability, we assume for now that d s = 

 (i.e., d n = 0 ). We prove in Section 4.4 that we can extend the

esults to the more general case d n � = 0 . 

.2. Directional derivative of the optimal value function 

This subsection covers the parametric analysis of the opti- 

al value function v (ρ) . We show that the directional derivative 

 

′ (ρ0 ; r) of v (ρ) exists for any ρ0 ∈ � and direction r , ‖ r ‖ = 1 , and

e use - in Section 4.3 - the sensitivity of the optimal value func- 

ion to find a specific route flow. 

efinition 3 (Directional derivative) . A function f (ρ) is said to be 

irectionally differentiable at ρ0 ∈ dom ( f ) in direction r , ‖ r ‖ = 1 ,

f 

f ′ (ρ0 ; r) := lim 

t→ 0 + 

f (ρ0 + tr) − f (ρ0 ) 

t 

xists. 

The following proposition ( Proposition 2 ) demonstrates that the 

ptimal value function v (ρ) is directionally differentiable at any ρ0 

or any direction r , ‖ r ‖ = 1 . This is a well-known result in para-

etric optimization (see Fiacco & Ishizuka, 1990a ), but the accom- 

anying proof (provided in the Appendix) is easier in our case. 
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roposition 2. The optimal value function v (ρ) is directionally dif- 

erentiable at each ρ0 ∈ � and in each direction r ∈ R 

| P | , ‖ r‖ = 1 . In

act, v ′ (ρ0 ; r) is the optimal value that corresponds to a solution of 

he parametric linear program 

 (r ) : min r T g s.t. g ∈ S g (ρ0 ) . 

In this section, we proved that the directional derivative 

 

′ (ρ0 ; r) of v (ρ) exists for any ρ0 and direction r ( ‖ r ‖ = 1 ). In the

pcoming section, we treat the (existence and calculation of the) 

irectional derivative of the link flows x (ρ) . The sensitivity analy- 

is of v (ρ) can also be used to formulate a single-level problem, 

ee, e.g., Dempe & Zemkoho (2012) and Mordukhovich (2018) . 

. Parametric analysis of the optimal solution 

Intuitively, directional derivative x ′ (ρ0 ; r) is the rate of change 

f the optimal solution x (ρ) at ρ0 along r. This section investigates 

he existence and calculation of the directional derivative, which 

e use in Section 5 to formulate a solution method for bilevel pro- 

ram (BL ) . 

In the remainder, we repeatedly use the following assumption 

 Assumption 2 ), which states that the Jacobian of the link cost 

unction is a positive definite matrix. This assumption is stronger 

han necessary for some upcoming results, and that it does not 

ollow directly from Assumption 1 (e.g., when using the Bureau of 

ublic Roads-function ( Bureau of Public Roads, 1964 ) with x e = 0 ,

or some e ∈ E). See Lu (2008) for conditions that can replace 

ssumption 2 . 

ssumption 2. Assumption 2 is said to hold at x 0 if ∇ 

2 
x z 0 (x )(=

 x l(x )) is a positive definite matrix at x 0 . 

Let ρ0 ∈ � be in the remainder of this section a reference value 

nd we consider reference point (ρ0 , x 0 ) , with x 0 ∈ S x (ρ0 ) . 

We prove that the Karush-Kuhn-Tucker (KKT)-set mapping cor- 

esponding to Q(ρ) is an upper Lipschitz continuous multifunction 

t ρ0 , given that Assumption 2 holds at x 0 . Consider therefore the 

ystem of KKT optimality conditions for Q(ρ) . For each ρ , this sys- 

em can be written as 

l(x ) − β = 0 g T γ = 0 

�T β − γ − �T λ + ρ = 0 (g, x ) ∈ F, 
(5) 

ith accompanying Lagrange multiplier vector φ := (β, λ, γ ) , γ ≥
 . The KKT-set mapping S K K T (ρ) is the function that maps ρ onto 

he set of (g, x, φ) that satisfies (5) , i.e., for ρ ∈ �: 

 K K T (ρ) = 

{
(g, x, φ) (g, x, φ) satisfies (5) , γ ≥ 0 

}
. 

n our context, the Lagrange multiplier vector φ is uniquely de- 

ermined at ρ0 . Indeed, for each fixed ρ0 , x 0 = S x (ρ0 ) is a single-

on, which implies that l(x 0 ) and thus β0 are uniquely determined 

with (g 0 , x 0 , φ0 ) ∈ S K K T (ρ
0 ) ). Whereas ρ0 is fixed, and there ex-

sts at least one p ∈ P k , for which γ 0 
p = 0 (which is true by d k > 0)

or all k ∈ K, it follows that also λ0 (and thus γ 0 ) are uniquely de-

ermined given ρ0 . 

We state the main result of this section ( Theorem 2 ): S K K T (ρ)

s (locally) upper Lipschitz continuous at ρ0 . We moved the (rather 

echnical) proof to the Appendix. 

heorem 2. Let Assumption 2 hold at x 0 , the multifunction S K K T (ρ) 

s upper Lipschitz continuous at ρ0 ∈ �. 

We need the auxiliary result of this section in the upcom- 

ng subsections to prove existence of the directional derivative 

 

′ (ρ0 ; r) , under Assumption 2 at x 0 . 
200 
.1. Directional derivative of the link flow solution 

This and upcoming subsections ( Section 4.2 and 4.3 ) are de- 

oted to treat the existence and calculation of the directional 

erivative 

 

′ (ρ0 ; r) = lim 

t→ 0 + 

x (ρ0 + tr) − x 0 

t 
, 

ith x 0 = x (ρ0 ) , since in particular the link flows are of interest

or authorities (i.e., the upper-level objective function ϕ(x ) in (BL ) 

s a function of x ). Some of our arguments are taken from Dempe

1993) and Pang & Ralph (1996) . 

Let ρ0 be the reference value and r ∈ R 

| P | , ‖ r‖ = 1 , is an ar-

itrary direction. Let t k > 0 , k ∈ N , so that t k → 0 . From previous

nalysis ( Theorem 2 ), we know that, if Assumption 2 holds at x 0 ,

or each 

g k , x k , φk ) ∈ S K K T (ρ
k ) , ρk := ρ0 + t k r, 

xists 

 ̃

 g k , x 0 , φ0 ) ∈ S K K T (ρ
0 ) (6) 

o that 

(g k , x k , φk ) − ( ̃  g k , x 0 , φ0 ) 

t k 
(7) 

s a bounded sequence, and thus has (for a certain subsequence) 

 limit point w = (w 

g , w 

x , w 

φ ) . We investigate whether w 

x of w is

nique and independent of the choices of t k and ˜ g k . 

The complexity of the analysis lies in the fact that S g (ρ) is only

pper semicontinuous at ρ0 . Intuitively, for some ρk → ρ0 , not all 

 ∈ S g (ρ0 ) can be reached by some (sub)sequence g k ∈ S g (ρk ) . We

ollow the strategy of Dempe (1993) , and introduce reachable set 

 (S g (ρ0 ) ; r) of S g (ρ) at ρ0 ∈ � into direction r: 

 (r) = V (S g (ρ0 ) ; r) 

= 

{
g ∈ R 

| P | exists sequence t k > 0 , k ∈ N , t k → 0 , 

and g k ∈ S g (ρk ) so that g k → g 

}
. 

e first show that V (r) is nonempty, and that it is a subset of

P (r) (and thus S g (ρ0 ) ) ( cf. Dempe, 1993 ). SP (r) is the solution set

orresponding to problem P (r ) with parameter r , i.e., 

P (r) = 

{
g ∈ S g (ρ0 ) g solves P (r) 

}
. 

emma 1. For arbitrary direction r, ‖ r‖ = 1 : 

 � = V (r) ⊆ SP (r) ⊆ S g (ρ0 ) . (8) 

roof. We prove the lemma in two parts. First, we prove that ∅ � =
 (r) , and then we prove that V (r) ⊆ SP (r) . It is trivial that SP (r) ⊆
 

g (ρ0 ) . 

( ∅ � = V (r) ) . Consider ρk , k ∈ N , so that ρk converges to ρ0 .

hoose g k ∈ S g (ρk ) . Since ‖ g k ‖ is bounded, there exists subse-

uence g k j of g k so that g k j converges to some g 0 . S g (ρ) is a closed

apping at ρ0 , and thus g 0 ∈ S g (ρ0 ) . So, V (r) � = ∅ . 
( V (r) ⊆ SP (r) ) . Choose any g 0 ∈ V (r) . By definition, there exists

 

k ∈ S g (ρk ) so that g k → g 0 ∈ S g (ρ0 ) . In the proof of Proposition 2 ,

e established that 

 

T g 0 ≥ v ′ (ρ0 ; r) = lim 

k →∞ 

v (ρk ) − v (ρ0 ) 

t k 
≥ lim 

k →∞ 

r T g k = r T g 0 

o, r T g 0 = v ′ (ρ0 ; r) = min g∈ S g (ρ0 ) r 
T g. That is, g 0 ∈ SP (r) . �

In general, it holds that V (r) is a proper subset of S g (ρ0 ) (as

e show in Example 1 in Section 4.3 ), and V (r) = S g (ρ0 ) follows

f S g (ρ) is lower semicontinuous at ρ0 . S g (ρ) is lower semicon- 

inuous relative to its domain if ρ is a parameter in the link cost 

unction (see Lu & Nie, 2010 ). 
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emma 2. Let Assumption 2 hold at x 0 . For direction r , ‖ r ‖ = 1 , any

imit point w of (7) satisfies the following system: 

0 = �T (∇ x l(x 0 ) w 

x ) + ρ0 − �T w 

λ − ∑ 

p∈ I(g 0 ) (w 

γ
p ) 1 p ;

�w 

g − w 

x = 0 , �w 

g = 0 ;
w 

g 
p = 0 , p ∈ I(g 0 ) : γ 0 

p > 0 ;
w 

g 
p ≥ 0 , p ∈ I 0 ;

w 

γ
p ≥ 0 , p : γ 0 

p = 0 ;
w 

γ
p w 

g 
p = 0 , p ∈ I 0 , 

(9) 

or some I 0 ⊆ I(g 0 ) , with g 0 ∈ V (r) . 

Here, 1 p ∈ { 0 , 1 } | P | is the indicator vector. I(g) ⊆ P denotes the

ctive index set at g ∈ F 

g : 

(g) = 

{
p ∈ P g p = 0 

}
. 

roof. We prove this lemma in three parts. In the first part of the 

roof, we prove that for g 0 ∈ V (r) , ˜ g k of (6) converges to g 0 . In Part

, we prove that the limit point w satisfies the first equality of (9) ,

hat w satisfies the (in)equalities of (9) is proven in Part 3. 

(Part 1) . Note that we can assume (by passing to a subsequence) 

hat g k → g 0 , i.e., g 0 ∈ V (r) . We prove that for g 0 ∈ V (r) , ˜ g k as in

6) converges to g 0 . Let g 0 ∈ V (r) . By definition there exists a se-

uence t k > 0 , with t k → 0 , and g k ∈ S g (ρk ) so that g k → g 0 . Since 

 (g k , x k , φk ) − ( ̃  g k , x 0 , φ0 ) ‖ → 0 , 

nd g k → g 0 as k → ∞ , it follows that ˜ g k → g 0 . 

(Part 2) . Consider the set S K K T (ρ
k ) for each k ∈ N . Recall,

or each k ∈ N , and g k ∈ S g (ρk ) exists unique (x k , φk ) so that

g k , x k , φk ) ∈ S K K T (ρ
k ) . That is, for each k , (g k , x k , φk ) satisfies the

KT conditions that correspond to Q(ρk ) , i.e., with γ k ≥ 0 , 

l(x k ) − βk = 0 (g k ) T γ k = 0 

�T βk + ρ0 + t k r − �T λk − γ k = 0 (g k , x k ) ∈ F . 
(10) 

ince g 0 ∈ V (r) , g k → g 0 with g 0 ∈ S g (ρ0 ) . Hence, g 0 p > 0 implies

 

k 
p > 0 for sufficiently large k , and thus I(g k ) ⊆ I(g 0 ) for these k .

ow, we can rewrite the first three KKT conditions in (10) as 

 = �T l(x k ) + ρ0 + t k r − �T λk −
∑ 

p∈ I(g 0 ) 

γ k 
p 1 p . (11) 

aylor’s expansion of l(x ) around x 0 says that 

(x k ) = l(x 0 ) + ∇ x l(x 0 )(x k − x 0 ) + o(‖ x k − x 0 ‖ ) , (12)

here o(‖ x k − x 0 ‖ ) /t k converges to zero for k → ∞ . 

We repeat a similar argument for ( ̃  g k , x 0 , φ0 ) . We have that ˜ g k 

onverges to g 0 , and thus I( ̃  g k ) ⊆ I(g 0 ) for large k . The KKT con-

itions of Q(ρ0 ) say that ( ̃  g k , x 0 , φ0 ) ∈ S K K T (ρ
0 ) satisfies (at least)

he following condition for sufficiently large k (using the unique- 

ess of γ 0 ): 

 = �T l(x 0 ) + ρ0 − �T λk −
∑ 

p∈ I(g 0 ) 

γ 0 
p 1 p . (13) 

Subtracting (13) from (11) , and using the Taylor expansion (12) , 

e obtain 

 = �T (∇ x l(x 0 )(x k − x 0 )) + t k r − �T (λk − λ0 ) 

−
∑ 

p∈ I(g 0 ) 

(γ k 
p − γ 0 

p ) 1 p + o(‖ x k − x 0 ‖ ) . (14) 

e divide (14) by t k , using that the quotient in (7) is bounded by

pper Lipschitz continuity of S K K T (ρ) at ρ0 , then the limit point w 

f (7) satisfies (at least) the following equation: 

 = �T (∇ x l(x 0 ) w 

x ) + r − �T w 

λ −
∑ 

p∈ I(g 0 ) 

(w 

γ
p ) 1 p . (15)

(Part 3) . The last KKT condition in (5) for ρk and ρ0 says that 

or each k ∈ N , (g k , x k ) ∈ F and ( ̃  g k , x 0 ) ∈ F . Therefore, 

w 

g − w 

x = 0 , and �w 

g = 0 . 
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lso, for any p ∈ P , we find that (for a subsequence) 

g k − ˜ g k 

t k 

)
p 

→ w 

g 
p 

{ = 0 , if γ 0 
p > 0 

≥ 0 , if γ 0 
p = 0 and s.t. exist infinitely 

many k with 

˜ g k p = 0 , 

hich yields 

 

g 
p 

{
= 0 , p ∈ I(g 0 ) : γ 0 

p > 0 

≥ 0 , p ∈ I 0 , 
(16) 

or some I 0 ⊆ I(g 0 ) . 

By the non-negativity constraint with respect to multiplier γ in 

5) , in combination with the fact that γ is a singleton for each ρ , 

e have that for p ∈ P , 

γ k − γ 0 

t k 

)
p 

→ w 

γ
p ≥ 0 , if γ 0 

p = 0 . 

inally, note that also a complementarity condition arises: 

 

γ
p w 

g 
p = 0 , for all p ∈ I 0 . (17) 

�

We recall that, in order to determine whether directional 

erivative x ′ (ρ0 ; r) exists, we have to show that the limit point w 

x 

f x k −x 0 

t k 
does not depend on choices of t k , g k , ̃  g k , and I 0 = I 0 ( ̃  g k ) .

ased on the result as presented in Lemma 2 , even in the case 

hat V (r) is a singleton, different choices of I 0 could possibly lead 

o different solutions w 

x of (9) . In the following section, we present 

 method that finds x ′ (ρ0 ; r) without the trouble finding an appro- 

riate I 0 . 

.2. A quadratic program reformulation 

Recall reference point (ρ0 , x 0 ) . As mentioned, even if V (r) is a

ingleton ( V (r) = { g 0 } ), different I 0 ⊆ I(g 0 ) in (16), (17) , might be

ossible, which makes it difficult to calculate (a) limit point w . In 

his subsection, we demonstrate that, under the assumption that 

 (r) = { g 0 } , w 

x is actually independent of I 0 and can be found ef-

ciently by solving a convex optimization problem. 

Before we continue, we define T F (g, x ) as the tangent cone to F
t (g, x ) ∈ F , i.e., 

 F (g, x ) = 

{ 

(w 

g , w 

x ) ∈ R 

| P | × R 

| E | 
�w 

g = 0 

�w 

g − w 

x = 0 

w 

g 
p ≥ 0 p ∈ I(g) 

} 

. 

We introduce the following parametric (convex) quadratic op- 

imization problem (with parameter (g 0 , r) , and for now V (r) = 

 g 0 } ): 
P (g 0 , r) : min 

w 

1 

2 

(w 

x ) T Aw 

x + r T w 

g s.t. (w 

g , w 

x ) ∈ C(g 0 , x 0 , φ0 )

here A := ∇ x l(x 0 ) = ∇ 

2 
x z 0 (x 0 ) , and 

(g 0 , x 0 , φ0 ) := T F (g 0 , x 0 ) ∩ T D(φ0 ) (g 0 ) 

s the critical cone to F at (g 0 , x 0 , φ0 ) . Here, 

 D(φ0 ) (g 0 ) = 

{
w 

g ∈ R 

| P | w 

g 
p = 0 , p ∈ P : γ 0 

p > 0 

}
s the tangent cone to 

(φ0 ) = 

{
g ∈ R 

| P | g p = 0 , p ∈ P : γ 0 
p > 0 

}
, 

t g 0 . Under Assumption 2 at x 0 , QP (g 0 , r) is a convex problem

strictly convex in w 

x ). 

emma 3. Let Assumption 2 hold at x 0 . For direction r , ‖ r ‖ = 1 , for

hich V (r) = { g 0 } , w 

x of any limit point w of (7) is the (global) opti-

al solution of QP (g 0 , r) . 
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Fig. 1. Example traffic network. 
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roof. Consider a limit point w of (7) . We prove that the w 

x -part

f w is the optimal solution of QP (g 0 , r) with V (r) = { g 0 } . There-

ore, we first show that w 

x , with accompanying w 

g , is a feasible

olution of QP (g 0 , r) , then we prove (w 

g , w 

x ) is a global optimal

olution of QP (g 0 , r) . 

(Feasibility) . For given direction r and V (r ) = { g 0 } , with g k → g 0 ,

e note that for sufficiently large k , (g k , x k ) ∈ S(ρk ) are also opti-

al solutions to 

˜ 
 (ρ) : min z 0 (x ) + ρT g s.t. (g, x ) ∈ 

˜ F := F ∩ D(φ0 ) , 

ith ρ = ρk . So, x k ∈ 

˜ F 

x (the projection of ˜ F onto the x -space) for

ll these k , and therefore w 

x of any limit point w of (7) satisfies 

 

x ∈ T ˜ F x (x 0 ) . Since ˜ F 

x is a polyhedral set (the projection of a poly-

edral set is a polyhedral set), x 1 = x 0 + αw 

x ∈ 

˜ F 

x for some α > 0 .

ence, exists g 1 ∈ 

˜ F 

g so that �g 1 = x 1 (see Rockafellar & Wets, 

009 , Theorem 6.43). Now, let w̄ 

g = 

g 1 −g 0 

α , then w̄ 

g ∈ T ˜ F (g 0 ) , since

 

1 = g 0 + αw̄ 

g ∈ 

˜ F 

g . In particular, it holds that w̄ 

g 
p ≥ 0 for all p ∈

(g 0 ) . Thus, limit point w 

x of (7) is in the feasible set C x (g 0 , x 0 , φ0 ) .

e underline that w̄ 

g is different from the w 

g -part of w in (7) , i.e.,

t might hold that w̄ 

g � = w 

g . 

(Optimality) . We showed that w 

x of the limit point of (7) with 

n accompanying w̄ 

g is a feasible solution of QP (g 0 , r) . Now, we

emonstrate that ( ̄w 

g , w 

x ) is the optimal solution of QP (g 0 , r) . 

Note from (15) that there exists w 

φ so that (w 

x , w 

φ ) satisfies 

T (∇ x l(x 0 ) w 

x ) + r − �T w 

λ −
∑ 

p∈ I(g 0 ) 

(w 

γ
p ) 1 p = 0 

hen let (u g , u x ) ∈ C(g 0 , x 0 , φ0 ) be arbitrary, we find that 

 = (�T (∇ x l(x 0 ) w 

x ) + r) T u 

g − (�T w 

λ) T u 

g 

−
∑ 

p∈ I(g 0 ) 

((w 

γ
p ) 1 p ) 

T u 

g 

≤ (�T (∇ x l(x 0 ) w 

x ) + r) T u 

g , 

hich is exactly the first-order optimality condition of convex 

roblem QP (g 0 , r) . Note that the latter inequality holds whereas 

 

γ
p < 0 for some p ∈ I(g 0 ) implies that γ 0 

p > 0 , and thus u 
g 
p = 0 .

ince C(g 0 , x 0 , φ0 ) is a polyhedral cone, and by strict convexity of

he objective function in QP (g 0 , r) with respect to w 

x , the limit

oint w 

x is contained in the optimal solution w (unique with re- 

pect to w 

x ) of QP (g 0 , r) . We show in the proof accompanying

emma 4 that the optimal solution is bounded. �

For any given direction r ( ‖ r‖ = 1 ), in combination with the ex-

ra assumptions that | V (r) | = 1 and Assumption 2 holds at x 0 , we

roved that the directional derivative x ′ (ρ0 ; r) exists. This direc- 

ional derivative is the optimal solution (with respect to w 

x ) of 

P (g 0 , r) with V (r) = { g 0 } . An opportunity to force uniqueness of

 (r) (and also S g (ρ0 ) ) is to include a regularization term in the

bjective function of the lower-level problem. 

.3. V (r) Not a singleton 

The more interesting case occurs when V (r) is not a singleton. 

ote that only a finite number of different I(g 0 ) , g 0 ∈ V (r) , can oc-

ur, and, under Assumption 2 at x 0 , finitely many w 

x exist. 

The previous analysis in Section 4.2 relied on the choice of g 0 ∈ 

 (r) . One might ask the question whether we can choose any g 0 ∈
 

g (ρ0 ) , and solve QP (g 0 , r) to obtain directional derivative w 

x , if

t exists. The following example illustrates that an arbitrary g 0 ∈ 

 

g (ρ0 ) may lead to an unbounded solution of QP (g 0 , r) . 

xample 1 (Unbounded Solutions) . In this example, we show that 

ptimization program QP (g 0 , r) with g 0 ∈ S g (ρ0 ) \ V (r) , may have

 corresponding unbounded solution. 
202 
Fig. 1 shows the single OD pair ( | K | = 1 ) network we consider. 

he network has 4 links with travel time function l e (x e ) = x e for

ll e ∈ E. Demand for the OD pair is 1. The paths 

p 1 = { a, c} , p 2 = { a, d} , p 3 = { b, c} , and p 4 = { b, d} , 
onnect the OD pair (O, D ) . Define ρ = (ρp 1 , ρp 2 , ρp 3 , ρp 4 ) , and

et 

(t) = t · r, with r = (1 , 0 , 0 , 0) , and t ∈ [0 , 1] , 

or the sake of this example. We solve Q(ρ(0)) : the traditional 

ser equilibrium problem ( Beckmann, McGuire, & Winsten, 1956 ). 

e denote this solution with respect to x by x n and find 

 

n = (x n a , x 
n 
b , x 

n 
c , x 

n 
d ) = 

(
1 

2 

, 
1 

2 

, 
1 

2 

, 
1 

2 

)
. 

ince the link cost functions are strictly increasing, we find the op- 

imal solution vector x (ρ(t )) as a function of t : x (ρ(t)) = x n , t ∈
0 , 1] . Consider S g p 1 (ρ(t)) , the route flow solution g on path p 1 , as

 multifunction of t: 

 

g p 1 (ρ(t)) = 

{
[0 , 1 

2 
] if t = 0 ;

0 if t ∈ (0 , 1] . 

t is clear that S g p 1 (ρ(t)) is not a lower semicontinuous func- 

ion at t = 0 . Moreover, choose g 0 ∈ S g (ρ(0)) so that g 0 p 1 
> 0 . It

s easy to check that QP (g 0 , r) gives an unbounded solution for 

 = (1 , 0 , 0 , 0) . In fact, g 0 / ∈ V (r) and observe that g 0 is not a so-

ution of P (r) . 

Example 1 illustrates the practical difficulties calculating the di- 

ectional derivative. In fact, if we choose g 0 ∈ S g (ρ0 ) arbitrarily, we 

ight not be able calculate x ′ (ρ0 ; r) using QP (g 0 , r) (even if it ex-

sts - see Theorem 3 ). We should select therefore g 0 ∈ S g (ρ0 ) care-

ully. From a practitioner’s perspective, this result is undesirable 

ince some g 0 ∈ S g (ρ0 ) is often a by-product of the algorithm that 

olves Q(ρ0 ) . In the upcoming analysis, we prove that g 0 ∈ S g (ρ0 )

ould be selected so that g 0 ∈ SP (r) . 

emma 4. Let Assumption 2 hold at x 0 . For arbitrary r , ‖ r ‖ = 1 ,

P (g 0 , r) , with g 0 ∈ SP (r) , has a bounded solution w which is unique

n w 

x . 

roof. Let g 0 ∈ SP (r) , and (g 0 , x 0 , φ0 ) ∈ S K K T (ρ
0 ) . From Corollary

.1 in Lee, Tam, & Yen (2006) it follows that QP (g 0 , r) has a so-

ution if and only if 

(u 

g , u 

x ) , (w 

g , w 

x ) ∈ C(g 0 , x 0 , φ0 ) 
(u 

x ) T Au 

x = 0 

}
⇒ (u 

x ) T Aw 

x + r T u 

g ≥ 0 . (18) 

y Assumption 2 , A is a positive definite matrix, and (u x ) T Au x = 0

mplies u x = 0 and it automatically follows that (u x ) T Aw 

x = 0 . Sup-

ose now that the right-hand side of (18) is not satisfied, i.e., 

 

T u g < 0 for some (u g , u x ) ∈ C(g 0 , x 0 , φ0 ) . Note that 

 x z 0 (x 0 ) T u 

x + (ρ0 ) T u 

g = 0 , (19) 

or any (u g , u x ) ∈ C(g 0 , x 0 , φ0 ) (see Luo et al., 1996 , p. 225). Since

 

x = 0 , by (19) , (ρ0 ) T u g = 0 . So, for small t > 0 , (g 0 + tu g ) ∈ S g (ρ0 )

nd r T (g 0 + tu g ) < r T g 0 , which contradicts that g 0 ∈ SP (r) . The

niqueness of w with respect to w 

x can then be concluded from 



O.A.L. Eikenbroek, G.J. Still and E.C. van Berkum European Journal of Operational Research 299 (2022) 195–207 

t  

p

i

p

c

x

T

‖  

w

P  

a  

p  

g  

s  

o

S  

w

 

f  

f  

e

 

f

w

T  

r  

c

t  

a

x  

s  

W

S

&

a

c

s

c

fi

4

t  

s

 

l

P

fi  

t

c

Q

w

C

H

P

P
P  

c  

t

s

f

O

5

o

a

m

r

l

t

5

(

f

(

Q

r

ϕ

 

y

n

i

w

n

h

a  

(

t

i

he fact that A is positive definite matrix and that C(g 0 , x 0 , φ0 ) is a

olyhedral cone. �

Hence, selecting g 0 ∈ SP (r) makes that the issue as described 

n Example 1 cannot occur. Now, we prove the main result of the 

aper. For direction r, rather than explicitly using V (r) , we can 

hoose an arbitrary g 0 ∈ SP (r) to calculate directional derivative 

 

′ (ρ0 ; r) of x (ρ) at ρ0 . 

heorem 3. Let Assumption 2 hold at x 0 . For arbitrary direction r, 

 r‖ = 1 , x ′ (ρ0 ; r) exists and is the optimal solution (with respect to

 

x ) of optimization problem QP (g 0 , r) , g 0 ∈ SP (r) . 

roof. Based on Lemma 3 and 4 , we only need to prove that for

ny r the solution w 

x of w that corresponds to QP (g 0 , r) is inde-

endent of the choice g 0 ∈ SP (r) . Assume r to be fixed, and let g 1 � =
 

2 ∈ SP (r) . Suppose (w 

g, 1 , w 

x, 1 ) solves QP (g 1 , r) , and (w 

g, 2 , w 

x, 2 )

olves QP (g 2 , r) , but w 

x, 1 � = w 

x, 2 . Note that both problems have an

ptimal solution by Lemma 4 . 

We may assume, without loss of generality, that 

1 

2 

(w 

x, 1 ) T A (w 

x, 1 ) + r T w 

g, 1 ≤ 1 

2 

(w 

x, 2 ) T A (w 

x, 2 ) + r T w 

g, 2 . 

ince w 

x, 1 � = w 

x, 2 , and the optimal solution of QP (g 2 , r) is unique

ith respect to w 

x, 2 , we have 

1 

2 

(w 

x, 1 ) T A (w 

x, 1 ) + r T w 

g, 1 < 

1 

2 

(w 

x, 1 ) T A (w 

x, 1 ) + r T w̄ 

g, 2 , (20)

or all w̄ 

g, 2 so that ( ̄w 

g, 2 , w 

x, 1 ) ∈ C(g 2 , x 0 , φ0 ) . It directly follows

rom (20) that r T w 

g, 1 < r T w̄ 

g, 2 for all such w̄ 

g, 2 , given that there

xist such ( ̄w 

g, 2 , w 

x, 1 ) ∈ C(g 2 , x 0 , φ0 ) . 

Note that for all sufficiently small α > 0 , g 1 + αw 

g, 1 ∈ 

˜ F . Hence,

or any such α, let 

¯
 

g, 2 = 

g 1 + αw 

g, 1 − g 2 

α
. 

hen, g 2 + αw̄ 

g, 2 ∈ 

˜ F , hence ( ̄w 

g, 2 , w 

x, 1 ) ∈ C(g 2 , x 0 , φ0 ) . Since

 

T (g 1 + αw 

g, 1 ) = r T (g 2 + αw̄ 

g, 2 ) , it follows that r T g 1 > r T g 2 , which

ontradicts that g 1 ∈ SP (r) . �

Theorem 3 proves that x ′ (ρ0 ; r) exists for any ρ0 in any direc- 

ion r , ‖ r ‖ = 1 , provided that Assumption 2 holds globally (i.e., for

ll x (ρ0 ) with ρ0 ∈ �). Now, for ρ0 ∈ �, we can estimate x (ρ1 ) ≈
 

0 + tx ′ (ρ0 ; r) , with ρ1 = ρ0 + tr, t > 0 small, and ‖ r‖ = 1 . To do

o, we have to choose g 0 ∈ SP (r) , and subsequently solve QP (g 0 , r) .

e use this result to formulate an optimization method for (BL ) in 

ection 5 . 

We compare the result of Theorem 3 with Theorem 2 in Ralph 

 Dempe (1995) . There, the directional derivative of a solution of 

 parametric nonlinear program (with a locally unique minimizer) 

an be calculated (under a constraint qualification) by selecting a 

uitable KKT multiplier as a solution of auxiliary program. In our 

ase, we have a non-unique solution, and need a linear program to 

nd directional derivative x ′ (ρ0 ; r) of the link flows x (ρ) at ρ0 . 

.4. General results 

In previous sections, we assumed d n = 0 . We extend the results 

o the case d n � = 0 . We omit the corresponding proofs which are

traightforward extensions of the proofs in previous sections. 

For ρ0 ∈ � and r , ‖ r ‖ = 1 , arbitrary, and (g 0 , h 0 , x 0 ) ∈ S(ρ0 ) , the

inear program 

 (r ) : min 

g,h 
r T g s.t. (g, h ) ∈ S (g,h ) (ρ0 ) , 

nds (g 0 , h 0 ) ∈ SP (r) . The quadratic (convex) optimization problem

o find directional derivative x ′ (ρ0 ; r) of x (ρ) at ρ0 in direction r
203 
orresponds to 

P (g 0 , h 

0 , r) : min 

1 

2 

w 

x T Aw 

x + r T w 

g s.t. (w 

g , w 

h , w 

x ) 

∈ C(g 0 , h 

0 , x 0 ) , 

ith 

(g 0 , h 0 , x 0 ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(w 

g , w 

h , w 

x ) ∈ R | P | 

×R | P | × R | E | 

w 

g 
p ≥ 0 p ∈ P g, 1 

w 

g 
p = 0 p ∈ P g, 2 

w 

h 
p ≥ 0 p ∈ P h, 1 

w 

h 
p = 0 p ∈ P h, 2 

�(w 

g + w 

h ) − w 

x = 0 

�w 

g = 0 

�w 

h = 0 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

. 

ere, we decompose path set I(g 0 ) ⊆ P , I(h 0 ) ⊆ P , as follows 

P g, 1 = { p ∈ P k , k ∈ K | p ∈ I(g 0 ) , (c p (x 0 ) + ρ0 
p ) 

− min 

q ∈P k 
(c q (x 0 ) + ρ0 

q ) = 0 } , 
P g, 2 = I(g 0 ) \ P g, 1 , 

 h, 1 = { p ∈ P k , k ∈ K | p ∈ I(h 0 ) , c p (x 0 ) − min 

q ∈P k 
c q (x 0 ) = 0 , } 

 h, 2 = I(h 

0 ) \ P h, 1 . 

 g, 2 , P h, 2 are the path sets that consist of the paths with an ac-

ompanying positive multiplier. Note that QP (g 0 , h 0 , r) can be in-

erpreted as a traffic assignment problem with a restricted path 

et ( cf. Patriksson (2004) ). In comparison with Q(ρ) , the link cost 

unction is linear, some paths might carry negative flows, and each 

D pair has zero demand. 

. Algorithm and numerical experiments 

Thus far, we proved the existence of the directional derivative 

f the link flows under perturbations in the parameter, and found 

 constructive method to calculate it. In this section, we solve opti- 

ization problem (BL ) using a feasible descent method. The algo- 

ithm is so that we solely need to solve convex optimization prob- 

ems and, thus, it can be implemented in standard optimization 

oolboxes. 

.1. Algorithm 

Consider optimization problem (BL ) . We can reformulate it as 

BL ′ ) , a nonsmooth optimization program in which x is an implicit 

unction of ρ , i.e., 

BL ′ ) : min 

ρ
ϕ(x (ρ)) s.t. ρ ∈ �. 

Consider ρ0 with solution x 0 = x (ρ0 ) of lower-level problem 

(ρ0 ) . We proved that the directional derivative x ′ (ρ0 ; r) into di- 

ection r exists, i.e., for t > 0 small, 

(x (ρ0 + tr)) − ϕ(x 0 ) = ∇ x ϕ(x 0 ) T (x (ρ0 + tr) − x 0 ) 

= t∇ x ϕ(x 0 ) T x ′ (ρ0 ; r) . (21) 

So, any direction r, ‖ r‖ = 1 , that satisfies ∇ x ϕ(x 0 ) T x ′ (ρ0 ; r) < 0

ields a descent direction for (BL ′ ) . This allows us to formulate the 

ecessary optimality conditions for (BL ′ ) . 
The calculation of a steepest descent direction r is difficult and 

s the optimal solution of a linear-quadratic optimization problem, 

hich can be found using an expensive branch-and-bound tech- 

ique ( Bard, 1998 ). To reduce computational intensity and to en- 

ance application by traffic engineers, we use an algorithm that 

ssumes that x (ρ) is differentiable at any ρ0 , i.e., ∇ ρx (ρ0 ) exists

see Josefsson & Patriksson, 2007 ). Algorithms that explicitly use 

he nonsmoothness of the objective function in (BL ′ ) can be found 

n Outrata, Kocvara, & Zowe (2013) . 
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At every iteration i ∈ N , with iteration point ρ i ∈ �, we find a

easible descent direction by solving convex optimization problem 

in 

ν

1 

2 

‖ − ∇ ρϕ(x (ρ i )) − ν‖ 

2 s.t. ν ∈ D (ρ i ) , (22) 

ith feasible cone 

 (ρ i ) = 

{
ν ∈ R 

| P | νp ≥ 0 p ∈ P 1 = { p ∈ P | ρ i 
p = 0 } 

νp ≤ 0 p ∈ P 2 = { p ∈ P k , k ∈ K | ρ i 
p = ε k } 

}
Summarizing, the algorithm is as follows (based on Faigle, Kern, 

 Still, 2013; Josefsson & Patriksson, 2007 ): 

tep 0 Initialize ρ0 ∈ �, η > 0 small, Armijo line search factor τ > 0 

and multiplier κ , set i := 0 ; 

tep 1 Solve Q(ρ i ) to obtain x (ρ i ) ; 

tep 2 Construct the approximate Jacobian , ∇ ρx (ρ i ) by solving for 

each p ∈ P: 

(a) let r = 1 p ; 

(b) find (g, h ) ∈ SP (r) , i.e., solve P (r) . 

(c) find w that solves QP (g, h, r) ; 

(d) let (∇x (ρ i )) p = w 

x . 

tep 3 Solve (22) to find ν i ; 

tep 4 Use the inexact Armijo line search (using κ) to find m ≥ 0 

that satisfies : 

ϕ(x (p i )) ≤ ϕ(x (ρ i )) − τm ((ν i ) T (∇ ρϕ(x (ρ i ))) , (23) 

where p i is the projection of (ρ i + mν i ) onto �, let ρ i +1 = p i 

and i := i + 1 , goto Step 1. If there is no such m , terminate. 

.2. Implementation and settings 

We implemented our method in MATLAB, and adapted a path- 

ased algorithm to solve Q(ρ) for a fixed ρ . Therefore, we used 

n adapted version of the gradient projection method, with a 

uadratic approximation line search ( Gentile, 2014; Perederieieva, 

hrgott, Raith, & Wang, 2015 ). We used the built-in linear pro- 

ramming method of MATLAB to solve ˜ P (r) rather than P (r) . 

ere, 

˜ 
 (r ) : min r T g s.t. (g, h ) ∈ 

˜ S (g,h ) (ρ) , 

here ˜ S (g,h ) is equivalent to S (g,h ) , except that we replace 

T g = ψ(ρ) with ρT g ∈ [ ψ(ρ) − δ, ψ(ρ) + δ] , 

n which δ > 0 . To solve QP (g, h, r) , given (g, h, r) , we use the al-

orithm as described by Josefsson & Patriksson (2007) . In order 

o apply our algorithm based on sensitivity analysis, one needs to 

olve Q(ρ) with high accuracy. Therefore, we introduced the fol- 

owing metric to measure accuracy (for simplicity, here assuming 

 

n = 0 ): 

cc = 

∑ 

k ∈K 
∑ 

p∈P k g p ( (c p ( f ) + ρ) − min (c p ( f ) + ρ) ) ∑ 

k ∈K 
∑ 

p∈P k g p (c p ( f ) + ρ) 
, 

nd stopped when an accuracy of 10 −12 , or a maximum number 

f iterations, was achieved. In the remainder, we assumed δ = 5 ×
0 −4 in 

˜ P (r) , and used τ = 0 . 1 and κ = 0 . 5 in the backtracking line

earch. 

Two networks are implemented to provide insight into the po- 

ential of social routing in practice. We use the network of Nguyen 

 Dupuis (1984) ( | K | = 4 ), with the settings of Ohazulike, Still, 

ern, & van Berkum (2013) and the demand scenario of the lat- 

er paper of 40 0, 80 0, 60 0, and 20 0, respectively. To assess per-

ormance in larger networks, we used the Sioux Falls network 

 Transportation Networks for Research Core Team, 2019 ), with 

 

K | = 528 . For the first network the path set is known a priori, in

he latter network the path set needs to be constructed iteratively 

hile solving the bilevel problem. Therefore, we add (if necessary) 
204 
he k -shortest paths ( k = 2 ) for each commodity every time we ac-

ept the Armijo condition (23) . To initialize the path set, we used 

he path set generated while solving the user equilibrium and sys- 

em optimum. 

The main computational burden of the presented algorithm - 

ompared to approaches solving NDPs - is the construction of an 

pproximate Jacobian ∇ ρx (ρ i ) , which requires P (r) and QP (g, h, r)

o be solved | P | times for each outer iteration . In particular for 

ense networks with many OD pairs this might lead to increas- 

ng run times. For example, for the Sioux Falls network, we ended 

ith about 2050 paths in the path set. Therefore, we limited the 

uter iterations to 25. For practical purposes, one might relieve the 

omputation time by aggregating zones. 

. Results and management implications 

We explore the potential network impacts of a social routing 

ervice adopting the proposed strategy: we apply the algorithm 

 Section 5.1 ) to two test networks (see Section 5.2 ). In Section 6.2 ,

e draw some preliminary conclusions about social routing for 

raffic management purposes. 

.1. Network impact 

We provide insight in the potential network efficiency, by as- 

uming varying social trip rates d s , and acceptable travel time dif- 

erences ε. In these experiments, we assume that only a portion of 

he travelers is receptive for advice. Receptive drivers might be un- 

qually distributed over the network, and, therefore, we consider 

or each network eight social demand scenarios. We assume that 

5%, 50%, 75% or 100% of the largest OD pairs (in terms of trips) 

an be reached or targeted by a social routing service. Furthermore, 

nly a portion of this demand is assumed to comply with the ad- 

ice, hence we assume d s = αd ( d n = (1 − α) d) ) for these OD pairs,

ith α ∈ { 1 2 , 1 } . To allow comparison with the unfair system opti-

um, we express the OD-pair dependent maximum detour ε as 

 percentage of the maximum detour needed in the system opti- 

um (for the same OD pair). For each scenario we determine the 

istribution of social demand over the network by solving problem 

BL ′ ) . 
Fig. 2 and 3 show the performance of the routing service (in 

erms of total travel time) for the Nguyen & Dupuis and Sioux Falls 

etwork, respectively, under different scenarios. In each figure, the 

pper and lower dashed lines depict the total travel time in user 

quilibrium and system optimum, respectively. In general, a larger 

hare of social trips, and a less equitable (i.e., larger values of ε) 

outing strategy leads to a better performance. in terms of total 

ravel time. 

When analyzing the results for the Nguyen & Dupuis network 

 Fig. 2 ), we observe that the routing strategy is able to approach

he performance of the system optimum ( Fig. 2 b). However, tar- 

eting the right (amount of) OD pairs is crucial, since we see in 

ig. 2 a almost no travel time improvement with only one OD pair 

eached. This can be explained by the minor detour in the system 

ptimum for this OD pair. Further increasing the social trip rate 

o 75% and 100% does not substantially change performance and 

he corresponding results are therefore not shown. Interestingly, 

he compliance rate α has only limited impact on the results. 

In the Sioux Falls network, the total travel time improvement 

s 2.7% compared to the user equilibrium ( Fig. 3 ); the system opti-

um shows an improvement of 3.8%. With a compliance rate of 

0%, the strategy has a maximum improvement of 1.9% in total 

ravel time. The results with 100% of the OD pairs targeted are 

omparable to the results as depicted in Fig. 3 c and therefore not 

hown. If only 25% of the largest OD pairs can be targeted by a 
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Fig. 2. Impact varying social demand, acceptable travel time difference ε, and compliance rate α with respect to system performance in the Nguyen & Dupuis network. 

Fig. 3. Impact varying social demand, acceptable travel time difference ε, and compliance rate α with respect to system performance in the Sioux Falls network. 

Fig. 4. Cumulative distribution of relative travel time detours compared to the fastest paths in the Sioux Falls network. Fig. 4 a corresponds to the scenario of Fig. 3 a with 

ε = 50% , Fig. 4 b corresponds to the demand scenario of Fig. 3 b with ε = 50% . 
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outing service, improvements drop ( Fig. 3 a). Again, we observe 

nly a minor change in total travel time when OD pairs targeted 

ncrease above 50% (compare Fig. 3 b and 3 c). 

In Fig. 4 , we depict the cumulative distributions of the detours 

in travel time, relative to the shortest path available) in the re- 

ulting states (assuming ε = 50% ) for the different demand scenar- 

os. We also show the distribution of detours in the system opti- 

um (SO). We note that in user equilibrium, all travelers take the 
205 
astest path (i.e., no detour) - see (2b) . Here, we see that - although

ore than 50% of the drivers receive advice - only about 12% of the 

rivers need to take a small detour to obtain 2.7% total travel time 

mprovement ( Fig. 4 b), i.e., a major share of the social travelers is 

till advised to take the shortest route. At the same time, the de- 

ours, if advised, are less than 26% worse compared to the fastest 

ath. For a system-optimal assignment, detours might potentially 

ake 60% longer. Fig. 4 a shows that here only a very small frac- 
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ion (2.1% of all trips) of social trips is needed to obtain already 1%

mprovement in total travel time. 

.2. Management implications 

A real-life implementation of a social routing system adopting 

he proposed strategy requires a travel information service, using, 

.g., a smartphone application. Based on the market penetration 

ate, (expected) compliance rate, and acceptable travel time differ- 

nces, a central system calculates the paths for each user by solv- 

ng (BL ) . These paths, provided to the drivers, are the best possible

nes for the traffic system while meeting user constraints along- 

ide. Based on the results of Section 6.1 , we provide some prelimi- 

ary management implications. 

The numerical experiments show that a social routing system 

s a potential powerful measure to improve efficiency, and pre- 

erve fairness at the same time. Even if a small portion of travelers 

an be rerouted onto social routes, the resulting traffic state might 

how a major improvement in total travel time compared to the 

ser equilibrium. 

We note that the spatial distribution of the social travelers, in 

ombination with the maximum acceptable travel time difference 

f users, might highly impact the strategy’s performance. In the ex- 

eriments, advised detours are usually fairly limited which is ex- 

ected to lead to high compliance rates. In addition, travelers can 

e motivated to take a detour, e.g., by providing rewards. Obvi- 

usly, also autonomous vehicles might be routed onto such paths 

 Speranza, 2018 ). 

Even for the relatively simple setting we considered in this 

tudy, finding the optimal solution of the bilevel problem is highly 

omplex. The algorithm as proposed in Section 5.1 finds an improv- 

ng solution over the iterations. This procedure is however time- 

onsuming. Evaluating the potential of the strategy on real-world 

etwork instances requires therefore an alternative procedure. The 

heoretical analysis and algorithm can nonetheless be used to as- 

ess the quality of faster heuristics that find a good solution of 

BL ) . 

An application of the social routing system in real life requires 

urther research. First, we only considered fairness of the resulting 

tate, but one might also evaluate the inter-state travel time differ- 

nces, i.e., before and after implementation of the service (see Jahn 

t al., 2005 ). Second, we used a relatively simple procedure to con- 

truct the path set. In practice, one might consider column gener- 

tion that further explores the path set while solving the bilevel 

roblem. Finally, we focused ourselves to the equilibrium state in 

n assignment with static demand. Developing a similar routing 

trategy for the dynamic case is much more complex, in particular 

ince a range of possible behavioral responses should be accounted 

or. 

. Conclusion 

In this paper, we consider a social routing strategy that explic- 

tly accounts for the route choice behavior of drivers. The routing 

trategy asks a portion of the travelers to take a small detour for 

he system’s benefit. Recent empirical research proved that such a 

trategy is implementable in a routing system in real life. 

We showed that the best possible routes (with respect to effi- 

iency) to be proposed by a routing system can be found by solv- 

ng a bilevel optimization problem that anticipates the route choice 

ehavior of compliant and non-compliant travelers. We used para- 

etric analysis to study the behavior of the solution set of the 

ower-level problem as a function of the upper-level variable. Un- 

er mild conditions, we can efficiently calculate the directional 

erivative of the lower-level link flow solution by solving a con- 

ex quadratic optimization problem. A numerical procedure uses 
206 
his directional derivative to find the paths to be proposed. The 

umerical experiments show the potential efficiency gain of such 

 system in practice. Indeed, only a small portion of the travelers 

eed to take a fairly limited detour to achieve a substantial travel 

ime improvement. 

This paper assumed a static setting, but finding the best possi- 

le paths to be proposed to the receptive travelers is already dif- 

cult. Nonetheless, the paper introduces a strategy (and proves it 

otential) worth considering for application in a general traffic en- 

ineering context. For instance, in the case of incidents, authorities 

an particularly apply a similar routing strategy to mitigate the im- 

act on the network with respect to the total travel time, but at 

he same time limit the detour of individual drivers. 
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