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Abstract. Increasing customer demands and variability in today’s lo-
gistics networks force fleet operators to become more reliable and flexible
in their operations. As modern-day fleets are well equipped with wireless
sensing, processing, and communication devices, fleet operators could
proactively respond to dynamic events. However, the use of real-time
sensor data to achieve re-optimization is scarce. This observation raises
the question of how logistics operators should incorporate the emerging
track-and-trace services into their dynamic planning activities. In this pa-
per, we propose a reference architecture that relies on both the Internet
of Things and the Smart Logistics paradigms, and aims at enhancing the
resilience of logistics networks. Since the decision of when to reschedule
the network’s configurations remains nontrivial, we propose a hierarchi-
cal set of disruption handling systems to facilitate the trade-off between
decision quality and response time. In our design, autonomous logistics
agents can quickly anticipate on minor changes in their surroundings,
while more severe disruptions require both more data and computational
power in higher-level processing nodes (e.g., fog/cloud computing, ma-
chine learning, optimization algorithms). We illustrate the need of our
architecture in the context of the dynamic vehicle routing problem.

Keywords: Internet of Things · IoT · Smart Logistics · Enterprise Ar-
chitecture · Disruption Handling.

1 Introduction

In modern-day supply chains, it is getting more challenging to deliver all goods
in the most efficient and reliable way possible. Customer requirements become
more variable over time due to the increasing volumes of e-commerce [1], which
enables customers to instantaneously demand for more transparency, affordabil-
ity, and speed in their deliveries [2]. Logistics operators try to gain competitive
advantage by including those preferences into their network designs, resulting
into an increased individualization of product flows and more direct-to-customer
deliveries [3]. The trend towards logistics customization should be performed in
an environment characterized by more complex constraints (e.g., just-in-time

https://www.utwente.nl/en/bms/iebis/


2 M. Koot et al.

deliveries, congestion, safety regulations, environmental footprint, etc). Luckily,
logistics planners can rely on multiple decision support tools to create an initial
schedule that fulfills both customer requirements and environmental constraints,
but it seems almost impossible to fully maintain reliable outcomes during ex-
ecution due to the dynamic and stochastic nature of real-world logistics net-
works [4]. Therefore, successful supply chains are characterized by reliable and
flexible operations [3, 5], which indicates the need for a more active approach
towards dynamic events once observed or predicted [6].

Recent IT advancements have enabled logistics companies to manage their
fleet in (near) real-time [3, 5]. Most vehicles are constantly transmitting a wide
variety of data regarding the transportation system’s state towards a central
planning authority [7]. For example, a modern-day fleet is well-equipped with Ge-
ographic Information Systems (GIS), Global Positioning Systems (GPS), Elec-
tronic Data Interchanges (EDI), auto-identification technologies and mobile de-
vices [2]. Logistics operators use these sensing devices to monitor their fleet re-
motely [8], but more advanced data processing is required to learn from the per-
ceived disruptions and re-optimize the supply chain’s resource allocations accord-
ingly. The rise of the Internet of Things (IoT) may bridge this gap by empowering
physical objects with sensory, communication, and information processing tech-
nologies, resulting into an interconnected network of context-aware devices [7,9].
Therefore, the IoT paradigm stimulates logistics operations to progress from re-
mote monitoring towards ambient intelligence and autonomous control [10], a
key feature which is also envisioned by the Smart Logistics paradigm [11].

Both logistics researchers and business practitioners are highly interested into
IoT and Smart Logistics developments to build a more resilient logistics system.
Therefore, a rising number of conceptual models is found in today’s scientific
literature that define all technological building blocks to anticipate on logis-
tics disturbances (e.g., [12–14]). Other authors focus more on the integration
of IoT devices, communication networks, and software required for the detec-
tion and/or prediction of dynamic events [9, 10, 15]. The increasing variety of
modelling approaches used in Smart Logistics indicates the need for a uniform
IoT-based architecture that explains how real-time data should be processed
to proactively respond towards dynamic events. We only found one publication
proposing an Enterprise Architecture (EA) for situation-aware Smart Logistics,
where the IoT infrastructure facilitates the perception and handling of logistics
exceptions [16]. To our knowledge, no other architecture is proposed to align
IoT devices, learning mechanisms, and logistics processes together. This is why
the main contribution of this paper is the design of a reference architecture that
links all necessary components in between the perception layer and final decision
making, as reflected by the question we address in the remainder of this study.

Research question: How to design an enterprise system that uses IoT
technology for enhancing the resilience of logistics processes in (near)
real-time on the basis of dynamic events data?
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We will answer the research question by following the design science method-
ology for information system research [17]. The remainder of this paper is struc-
tured as follows. Section 2 includes a literature review. The system’s require-
ments are introduced in Section 3, while the IoT-based architecture is proposed
in Section 4. In Section 5, we will elaborate on how the proposed architecture
can be improved, while the conclusions and further research directions are given
in Section 6.

2 Literature review

The smartness in the term “Smart Logistics” refers to the intelligent man-
agement of logistics operations by the use of the latest technological advance-
ments [13]. Most logistics operators try to obtain intelligence by the development
of a solid IT infrastructure, including recent data-driven processing techniques
like the Internet of Things (IoT), Cyber-Physical Systems (CPS), Big Data An-
alytics (BDA), cloud computing, and Artificial Intelligence (AI) [14]. Real-time
access towards the system’s conditions enables decision makers to efficiently re-
allocate resources in case a dynamic event is observed. A more proactive and
resilient approach is possible when the real-time data is analyzed to predict dis-
turbances in advance already [18]. Therefore, the main aim of these technological
implementations is to obtain a more flexible and scalable system in which the
decision making of logistics entities is decentralized [13], a vision that is strongly
associated with the Industry 4.0 concept developments of the past decade [11].
The implementation of the six design principles originating from Industry 4.
0 could be helpful to obtain a logistics network that is more intelligent than
traditional systems [19]:

1. Real-time capability: the ability to collect and analyze data and imme-
diately provide the derived insights.

2. Interoperability: the ability of logistics objects to connect and communi-
cate with each other.

3. Virtualization: the ability to create a digital/virtual copy of the physical
world by linking sensor data with virtual models and simulation techniques.

4. Decentralization: the ability of logistics objects to make decisions on their
own and to perform their tasks as autonomous as possible, including excep-
tions, interferences, and/or conflicting goals’ handling.

5. Modularity: the flexible adoption of logistics networks to the changing
requirements by replacing or expanding individual modules.

6. Service orientation: the ability to offer the services with other logistics
objects or decision entities.

IoT technologies are essential building blocks for many applications related
to Industry 4.0 [14]. The IoT network forms a global infrastructure of intercon-
nected physical objects empowered with electronic devices that rely on sensors,
communication, and information processing technologies [9]. The dynamic be-
havior of IoT networks would require a flexible layered architecture, allowing
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all electronic components to deliver their services [20]. Multiple alternative IoT
architectures have been developed over the years [20], but a Service-Oriented
Architecture (SOA) is most commonly applied to decompose the IoT network
into smaller, re-usable, and well-defined components [8, 10]. The number of lay-
ers may differ for each application, but all IoT architectures are composed of
a perception layer (e.g., identification and sensing devices installed on physical
objects), a network layer (e.g., middleware technologies that allow the sensing
objects to connect, coordinate, and share information), and an application layer
in which the system’s functionalities are exposed to the end-users.

The layered configuration of IoT architectures explains how logistics ob-
jects can extend their real-time monitoring functionalities with more intelligent
and autonomous decision making [10], aiming for a more resilient logistics sys-
tem [11]. Many IoT-based reference architectures highlight the need to integrate
more IoT devices, cloud-based computing, and data-driven processing techniques
for better decision making (e.g., [12–14]), while other researchers focus more on
the detection and/or prediction of dynamic events [9,10,15]. However, the major-
ity of IoT architectures do not explain how the real-time data should be processed
to pro-actively respond towards dynamic events. The reference models proposed
by [12] and [16] also highlight the need for new disruption handling systems, but
the decision logic encapsulated in those applications remains unknown. There-
fore, we need a comprehensive model to better align dynamic planning with the
supporting IT infrastructures in logistics domains, allowing decision makers to
gain more insights into the added value of their own IoT implementations. We
argue that an EA approach enables us to improve the business-IT alignment for
logistics execution [21]. We will use the enterprise modelling language “Archi-
Mate” for the development of an online disruption handling system, inspired
by [5], where solutions are computed as soon as a dynamic event occurs during
the operational process. All our EA models are based on the ArchiMate 3.1 Spec-
ification (https://pubs.opengroup.org/architecture/archimate3-doc/).

3 Requirement analysis

Today’s supply chains are more vulnerable towards both internal and external
disruptions due to globalization, lean operations, and customization trends [6].
The presence of dynamic events will cause deviations from the planned oper-
ations, which in turn may dissatisfy customers when the Service Level Agree-
ments (SLAs) are not met [16]. A more proactive approach towards dynamic
events enables logistics operators to reduce operational risks by re-configuring
their resource allocations. However, re-optimization is scarcely done in the logis-
tics domain [12], and if rescheduling happens, than purely reactive by relying on
human intuition only. Therefore, the main driver behind this research is to design
a logistics disruption handling system with flexible and automated operations to
satisfy customer requirements in the most reliable way [3, 5].

The next step is to derive the system’s stakeholders and their requirements.
We base our assessment on the stakeholder analysis made by [12] and [16], both
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researches derived the requirements from interviews with company representa-
tives of the associated case studies. We limit our design to the most important
stakeholders involved in logistics operations only:

1. Customers: persons, departments, or organizations who can either send
or receive goods. In case a dynamic event disrupts the logistics operations,
customers still demand reliable outcomes:
(a) On-time pick-up and/or delivery of goods according to the SLA;
(b) Immediate incident notification (including order tracking);
(c) The ability to alter the decision and/or SLAs in case conflicts among

stakeholders emerge.
2. Logistics operators: entities who coordinate the physical flow of goods

(e.g., order picking, transportation, storage, etc.). Logistics operators are
responsible to handle disruptions effectively by re-configuring the network’s
configurations in a flexible matter:
(a) Increase responsiveness to disruptions;
(b) Reduce operational risks;
(c) Guarantee SLAs to customers.

Our vision is to design a resilient system similar to [6] that incorporates event
readiness, autonomous re-optimization procedures, and recovering capabilities.
In this system, logistics objects should perform their tasks autonomously un-
der “standard” operational conditions, while decisions are delegated to a central
planning authority in case of a severe incident, interference, or conflicting goal
is observed [22]. The ability to interchange local and global optimization pro-
cedures for different severity levels requires a solid IT foundation, consisting of
remote sensing capabilities, wireless communication networks, and distributed
processing nodes. Even better performances are expected when the system is
able to predict the occurrences of dynamic events by re-examining the decisions
previously made, resulting into a positive feedback loop. We will use the six de-
sign principles originating from the Industry 4.0 paradigm to define the general
properties of our logistics disruption handling system [19].

The “motivation strategy view” in Figure 1 visualizes how the stakeholders,
requirements, system outcomes, design principles, and course of actions are in-
terrelated with each other. The implementation of our vision requires three main
courses of action:

1. Logistics IoT architecture: event readiness is achieved by empowering
physical resources with context-aware measuring systems. A regular IoT de-
vice extends its sensing function with communication, data (pre-) processing,
and remote management capabilities due to the integration of sensors, actu-
ators, micro-controllers, storage devices, data interfaces, and power sources
into one device [8, 20]. The installation of those IoT devices allows logistics
objects to sense and control the physical world [9], while the use of loca-
tions receivers and identification tags stimulates accurate monitoring of the
objects’ business operations in real-time [8, 23]. The use of wireless commu-
nication networks would improve the system’s interoperability (e.g., RFID,
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Fig. 1. Motivation strategy view.

NFC, W-LAN, LP-WAN, etc.), because logistics objects are characterized
by their dynamic behaviour.

2. Distributed processing capabilities: a distributed network of process-
ing nodes has to be equipped with prescriptive data analytical tools to au-
tonomously re-optimize the objects’ individual interests. The logistics ob-
jects already include some intelligence to handle minor disturbances due to
the IoT devices installed, but re-optimization of a large logistics network
demands both data and computational time. Therefore, cloud computing is
used to create a centralized and powerful pool of computing resources to be
shared and accessed when severe incidents emerge [23]. Both data-intensive
techniques and centralized data warehouses can run on the core’s servers to
virtualize logistics networks and accurately assess the severity of incidents
without intervening into the actual operations. We make use of IoT gate-
ways to speed up the data interchange and local decision making [20, 24].
Therefore, the IoT gateway’s purpose is twofold: 1) facilitating the commu-
nication of heterogeneous IoT devices over the internet, and; 2) leveraging
its network knowledge by executing optimization algorithms for a minor part
of the logistics network [9].

3. Service-oriented Decision support system (DSS): The IoT’s hardware
layer will bridge the gap between the physical and virtual world by installing
a modular design of interoperable measuring devices [10]. A service-oriented
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Architecture is required to ensure a fast-reallocation of the heterogeneous
logistics objects once a potential disturbance has emerged [9]. The main aim
of our system design is to automate the dynamic planning activities, but
dynamic events may also change the stakeholders’ preferences during the
actual execution of the initial plan. Therefore, our system should include
a symbiotic relationship where intelligent agents focus on task execution,
while human stakeholders can modify objectives, constraints and decision
parameters [25].

4 System design

In this section, we gradually develop an IoT-based architecture to better co-
ordinate dynamic events in logistics networks. First, we develop a baseline EA
that represents how logistics operators embrace IoT techniques nowadays. The
baseline EA in Section 4.1 is founded on three major sources:

1. a systematic literature review of state-of-the-art IoT developments in today’s
supply chain and logistics research [26];

2. the business logic modeled by [12] and [16], and;
3. multiple informal interviews with Dutch logistics stakeholders regarding the

IT support for their decision making; The results from these interviews co-
incide with those reported in [27,28].

Second, we will design our target EA by referring to the “motivation strategy
view” given earlier in Figure 1. We explicitly motivate how our reference archi-
tecture meets the system requirements in Section 3 by highlighting the corre-
sponding Industry 4.0 design principles in italic. Finally, we will conduct a gap
analysis by evaluating the discrepancies in between the baseline and target EAs
in Section 4.3, and demonstrate the need for our system design by referring to
the Dynamic Vehicle Routing Problem (DVRP) in Section 4.4.

4.1 Baseline architecture

Logistics operators commonly empower their fleet with flexible track-and-trace
devices for some decades already to monitor the dynamic behaviour of their lo-
gistics networks [8, 9, 23]. Therefore, modern-day fleets are characterized by a
sophisticated IT infrastructure that continuously gathers enormous amounts of
real-time data regarding the system’s state, while wireless communication tech-
nologies rapidly transmit those heterogeneous data streams towards a central
fleet operator [2, 7, 29]. Human fleet operators can monitor, control, and plan
their logistics activities by using the fleet management system’s graphical user
interface [30], a central application that is fed with data from the vehicles’ on-
board systems, the organization’s legacy systems, and other external applications
(e.g., traffic, weather, and news institutions). Cloud computing has become the
standard for data processing, mainly due to the internet-based computing plat-
form where configurable resources can be shared and accessed on demand [23].
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The predictive power of pattern searching algorithms (e.g., big data analytics,
data mining, machine learning, etc.) enables logistics operators to adopt a proac-
tive approach in response to potential disturbances in advance as well [18]. We
have summarized the baseline EA in Figure 2, which indicates that two out
of six Industry 4.0 design principles (real-time capability, and interoparability)
are commonly implemented already, mainly to incorporate event readiness into
today’s logistics networks.

4.2 Target architecture

As stated earlier in Section 3, our vision is to design a resilient system where
logistics objects should perform their tasks autonomously under “standard” op-
erational conditions, while decisions are delegated to a central planning authority
in case of a severe incident, interference, or conflicting goal is observed [22]. Both
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the remote sensing capabilities, and the interoperability offered by IoT devices,
enables self-operating agents to anticipate on dynamic events in a decentral-
ized way. However, more severe incidents require heavier support in terms of
data management and computational resources. Therefore, we use self-organizing
agents to ensure a modular, and service-oriented design of the logistics network,
while the collaboration with a central fleet management system mitigates the
trade-off between decision quality and response time (as visualized in our tar-
get EA in Figure 3). The disruption handling collaboration will automatically
virtualize the logistics network, and initiate a risk assessment once a dynamic
event emerges. The risk management module will decide which logistics activities
need to be rescheduled to maintain reliable outcomes, without the intervention
of any human operator. Only highly severe incidents require additional input
from the fleet coordinator and/or customer, since the stakeholders’ preferences
may change due to the incident’s impact.

The success of our dynamic disruption handling collaboration in Figure 3
strongly depends on the availability of accurate data sources and fast computa-



10 M. Koot et al.

tional resources. Therefore, we advocate to diversify the logistics objects with a
variety of sensors and/or actuator systems (e.g., embedded sensors, location re-
ceivers, identification tags, etc.). We also propose a cloud-based architecture for
an efficient and process-oriented utilization of the computational resources [31],
while fog computing resources are installed nearby the IoT devices in a dis-
tributed way to provide “quick-and-dirty” computing responses on sites [24].
The cooperation among edge-, fog-, and cloud computational resources supports
both the prescriptive analytics and data mining toolboxes in terms of data (pre-)
processing, networking, and storage activities. The prescriptive analytics tool-
box will re-optimize the network’s configurations by virtualizing the stakehold-
ers’ objectives, environmental conditions, and system constraints. We also need
a data mining toolbox consisting of various pattern searching algorithms (e.g.,
classification, association, clustering, rule induction, etc.). The predictive power
of classification and regression techniques can be used to predict the system’s
state at a future state, while decisions are better customized when continuous
learning gives us a more accurate description of the problem context (e.g., input
parameters, objective functions, constraints, and recovery policies).

4.3 Gap analysis

The baseline EA in Figure 2 shows that most logistics operators use their IoT
architecture to monitor their fleet, while a cloud-based configuration is imple-
mented to efficiently process incoming data streams. However, all those techno-
logical innovations are mainly hardware-driven, while the development of more
intelligent software is relatively neglected [2]. Most logistics organizations lack
the capacity to mine through the increasing data volumes and transform the
observed patterns into valuable knowledge [18], which obstructs fleet opera-
tors to efficiently respond towards dynamic events. As a result, data-driven
re-optimization is scarcely done in the logistics domain [12]. The central role
of the fleet management system enforces fleet coordinators to manually resched-
ule logistics once disturbances emerge. This means that large volumes of IoT
data are still being processed and acted upon by human operators with little
decision support [2], a time-consuming operation which reduces the system’s re-
sponsiveness towards dynamic events. Therefore, techniques for data acquisition,
pattern recognition and mathematical optimization have to be merged into the
application layer to adequately anticipate on dynamic events as soon as they
emerge.

The main aim of our target EA in Figure 3 is to automate the dynamic
planning activities in case a disruption is either observed or predicted. Logis-
tics objects have to quickly reschedule their tasks to become more responsive
towards dynamic events, but a (near) optimal reconfiguration of the logistics
network requires both data and computational time. Consequently, the dynamic
reallocation of resources depends on the disruption’s severity, area of impact,
and the available planning horizon. We propose an hierarchical disruption han-
dling architecture to compromise the trade-off among the decision’s quality and
response time, consisting of five main applications (as visualized in Figure 4):
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1. Logistics agent: the logistics agent represents the virtual twin of the logis-
tics object on which the corresponding IoT device is installed. The agent’s
main responsibility is to monitor the object’s status and environmental con-
ditions in real-time, while the perceived knowledge can be shared with nearby
agents to speed up data acquisition. Logistics agents autonomously act on the
gathered data by a fixed set of decision rules stored on the IoT devices’ local
memory (=edge computing). The agents’ behaviour is designed according to
the individual Belief-Desire-Intention (BDI) architecture proposed by [32].

2. Risk management system: logistics agents can quickly anticipate on
minor changes in their surroundings already, but an effective response to-
wards severe disruptions require both more data and computational power in
higher-level processing nodes (=fog computing). First, the risk management
system aggregates the real-time data gathered by a cluster of IoT devices to
detect any harmful exceptions in the network’s conditions. Second, the risk
management system assigns a severity level to the dynamic events observed,
which is used to allocate the recovery tasks more effectively.

3. Disruption handling system: less severe incidents (e.g., little impact,
minor impact radius, and/or quick resolution) are easily solved by relying on
“quick-and-dirty” solution mechanisms. Therefore, the disruption handling
system is equipped with optimization heuristics that require limited data and
computational time. The disruption handling will anticipate on the network’s
configurations assessed by the risk management system, and re-optimize the
network locally by updating the decisions’ rules of all IoT devices affected.

4. Incident management system: serious and prolonged events require a
more radical re-optimization approach. Therefore, we accept a longer re-
sponse time to centralize all the network’s real-time data gathered (=cloud



12 M. Koot et al.

computing). The incident management system has access to simulation and
optimization techniques to automatically reconfigure resource allocations,
while data mining tools can either transform dynamic events into param-
eters for improved decision making, or reduce the available solution space.
There is also a high probability that customer preferences are not met in case
the incident causes delays (e.g., delivering in the desired time windows, or
delivering the right quantity). Therefore, the incident management system
keeps customers up-to-date of the network’s conditions, and receives new
customer input if preferences change over time.

5. Offline learning toolbox: the logistics agents, disruption handling system,
and incident management system are developed to immediately anticipate
on the disturbances observed. However, an additional toolbox evaluates all
online responses and performances afterwards. The risk management system
can better recognize severe incidents by extracting features from historical
events with a variety of data mining techniques, while offline simulations en-
able the system to prescribe a suitable recovery strategy in advance already.

4.4 Demonstration

We will demonstrate the need for our target EA (Figure 3) and the correspond-
ing disruption handling systems (Figure 4) using the Dynamic Vehicle Routing
Problem (DVRP). In the VRP, vehicles are assigned to a sequence of geographi-
cally scattered customer locations with the aim to minimize overall routing costs,
subject to a set of constraints [4]. In the DVRP, not all information is known in
advance, but will be revealed during logistics execution [5]. This implies that all
stochastic elements gradually change into static parameters due to the vehicles’
remote monitoring capabilities (see technology layer in Figure 3).We would ex-
pect that logistics operators incorporate the fleet’s tracking data into their route
planning, since there is plenty of evidence supporting the need to reschedule the
DVRP when the uncertainty in the network’s conditions increases (e.g., [29,33]).
However, data-driven re-optimization is often not the case [26–28]. Consequently,
the question is not how to detect disturbances, nor to find a suitable recovery
strategy, but how to automate rescheduling of the DVRP by assessing the fleet’s
real-time data. For example, attended home delivery services, such as online gro-
cers and parcel deliveries, can become more flexible if a vehicle autonomously
monitors its surroundings, and alters its route to avoid problems beforehand. The
deliveries’ reliability is likely to be enhanced as well when centralized algorithms
search for disruptions that negatively influence customer SLAs, and immediately
reallocate the fleet without human delays (e.g., vehicles may interchange orders,
dispatch additional vehicles, complete overhaul, etc.).

5 Discussion

The reference architecture in Figure 3 is designed to obtain more reliable and
flexible logistics operations by anticipating on the dynamic events observed in
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the IoT’s perception layer. The hierarchical disruption handling architecture in
Figure 4 autonomously initiates the dynamic planning activities once a severe
disturbance emerges, while our edge-, fog- and cloud-based architecture design
compromises the trade-off in between response time and decision quality [5].
Therefore, the central role of fleet management systems and human decision
making, as depicted in Figure 2, is replaced by a fully automated collaboration
of decentralized logistics agents, “quick-and-dirty” solution heuristics, and data-
intensive re-optimization algorithms. However, our initial design is still open for
discussion, since other technical approaches may fulfill the stakeholder require-
ments even better. For example, microprocessors are becoming more powerful,
which makes it possible to empower edge devices with deep neural networks [34].
We can also modify the BDI architecture proposed by [32] to alter how logis-
tics agent interact with each other, maybe process mining could be helpful to
implement a more context-aware set of agent decision rules [35]. Our claim to
speed up dynamic planning with fog computing resources, as inspired by [24],
becomes doubtful if we take into account that most logistics operations require
minutes, hours, or even days, but not seconds. The decisions when to reschedule,
how to classify dynamic events, and how much time to reserve for computations
are also far from trivial and require further investigation [1]. The wide variety of
design alternatives indicates that validation of our reference architecture should
be prioritized before proceeding further. We especially pursue the implementa-
tion of real-life demonstrations to evaluate if our reference architecture enhances
the reliability and flexibility of logistics networks. Real-life demonstrations also
provide the opportunity to reflect on non-technical implementation issues as well
(e.g., city regulations, customer habits, and sustainability).

6 Conclusion & further research

In this paper, we proposed an IoT-based reference architecture to face the in-
creasing variability of today’s digitized logistics networks. Our design improves
the system’s responsiveness towards dynamic events by replacing the fleet op-
erator’s manual rescheduling tasks with a fully automated disruption handling
system. The Industry 4.0 design principles inspired us to develop a hierarchical
disruption handling architecture that compromises the trade-off among decision
quality and response time. Minor events are resolved by logistics agents, while
more severe disruptions are processed in higher-level processing nodes (e.g., fog
and/or cloud computing). Future research is required to investigate when to ini-
tiate the risk assessment module, how to classify dynamic events, and how much
time to reserve for dynamic planning. Real-life demonstrations are required to
validate the system’s benefits as well.
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