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ABSTRACT: The halide double perovskite Cs,AgBiBrg has emerged as a promising nontoxic
alternative to the lead halide perovskites APbX; (A = organic cation or Cs; X = I or Br). Here, we
perform high-pressure synchrotron X-ray total scattering on Cs,AgBiBrg and discover local
disorder that is hidden from conventional Bragg analysis. While our powder diffraction data show
that the average structure remains cubic up to 2.1 GPa, analysis of the X-ray pair distribution
function reveals that the local structure is better described by a monoclinic space group, with
significant distortion within the Ag—Br and Bi—Br octahedra and off-centering of the Cs atoms.
By tracking the distribution of interatomic Cs—Br distances, we find that the local disorder is
enhanced upon compression, and we corroborate these results with molecular dynamics
simulations. The observed local disorder affords new understanding of this promising material
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and potentially offers a new parameter to tune in halide perovskite lattices.

H alide perovskites have attracted extraordinary interest for
photovoltaic applications, due to their low-cost solution-
state syntheses, long carrier lifetimes, and vast possibilities for
compositional tuning."”” Power conversion efficiencies of
perovskite-based devices have chmbed rapidly from less than
4% initially’ to over 25% last year.* The all-inorganic double
perovskite Cs,AgBiBrs™® aims to address the toxicity and
stability challenges of the more prominent hybrid lead halide
perovskites. Cs,AgBiBry has a reasonable band gap of 1.95 eV
and is far more stable to heat and humidity than (MA)PbI,
and (MA)PbBr; (MA = methylammonium).” However, its
indirect bandgap results in weak visible-light absorption. Using
compression, it is possible to directly alter the structures of
halide perovskites, which in turn allows for tuning of
optoelectronic properties.”'” In a previous study, Cs,AgBiBry
exhibited band gap narrowing with compression to ca. 3 GPa,
which was attributed to contraction of the Ag—Br and Bi—Br
octahedra while cubic symmetry was maintained.'® However,
that study only described the evolution of the average structure
of Cs,AgBiBrg. Understanding the local structure of
Cs,AgBiBrs under compression has the potential to further
illuminate the photophysics of this material and its analogs.
Indeed, most elpasolites, like Cs,AgBiBrs, have cubic Fm3m
symmetry at ambient conditions with no apparent octahedral
tilting or distortions, although their 2-D derivatives show
considerable inter- and intraoctahedral distortions.'” Local
structural disorder has a significant influence on the
optoelectronic properties of halide perovskites. Spontaneous
octahedral tilting in the cubic phases of CsMX; (M = Pb, Sn; X
= 1, Br, Cl, F) halide perovskites leads to increases in their
band gaps due to decreased overlap of the M s and X p orbitals
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that contribute to the valence band.'® Furthermore, calcu-
lations have shown that local asymmetry combined with spin—
orbit coupling produces a spin-split band gap in the related
inorganic halide perovskite CsPbl;, leading to an indirect
rather than direct band gap.19 In Cs,AgBiBry itself, the large
Stokes shift and broad width of its photoluminescence
emission have been attributed to strong electron—phonon
coupling via the Frohlich interaction; however, calculations
based on the cubic structure predicted coupling of only
moderate strength, with local structural disorder being a
possible explanation for this mismatch.** Existing studies on
local structural disorder in halide perovskites are limited to
ABX;"®'”*1? and A,B[X>** compositions, where [] is a
vacancy, and we are not aware of high-pressure studies of such
disorder.

To better understand possible local structural disorder in
Cs,AgBiBr,, we conducted high-pressure synchrotron X-ray
total scattering, as typical powder or single-crystal X-ray
diffraction (XRD) based on Bragg peaks is limited to observing
the average crystalline structure. Analysis of the atomic pair
distribution function (PDF) reveals that the average Fm3m
model® poorly describes the material’s structure at the length
scale of a single unit cell. We propose a lower-symmetry model
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Figure 1. (a) Experimental X-ray PDF data of Cs,AgBiBrs. (b) Experimental powder XRD data, collected concurrently with PDF data. Also shown
is a pattern calculated from the Fm3m model of Slavney et al.’ Inset shows splitting of the cubic (400) peak at 2.4 GPa (marked *).
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Figure 2. (a) Fits of the X-ray PDFs at short range (SR, 2—10 A) with space groups P2,/c and Fm3m at selected pressures. The lower-symmetry
space group P2,/c is necessary to capture the broad second nearest-neighbor peak at 2.1 GPa, marked with arrows. (b) Fits of the X-ray PDFs at
long range (LR, 2—30 A). Both space groups perform similarly in modeling the PDF at longer distances. (c) Comparison of R,, values for the two
space groups and two fit ranges with compression.

with space group P2,/c to describe local tilting between and energy of 86.7 keV (0.143 A). The 2-D scattering patterns

distortion within the Ag—Br and Bi—Br octahedra and also off- were masked to remove diamond reflections and integrated
centering of the Cs atoms, and we corroborate this model with using the Fit2D software package.”” The PDFgetX2 software
molecular dynamics (MD) simulations. Our results agree with program28 was used to extract the structure factor S(Q) up to
halide disorder observed in related single B-site halide Q = 18 A7, which was then transformed to the real-space PDF
perovskites, both experimentally”"** and theoretically,'®*>*° G(r) (Figure 1a). We collected powder XRD data at a longer
and potentially support the unexpectedly large electron— sample-to-detector distance for average structure analysis
phonon interaction in Cs,AgBiBr, described above.” (Figure 1b).

The Cs,AgBiBrs sample was synthesized according to our The PDFs were analyzed using the PDFgui program,”’
previous method,” with an additional step of ball milling to allowing us to refine various structural models to account for
ensure good powder averaging. The sample was loaded in a local disorder as well as pressure-induced changes. Our first-
diamond anvil cell, and high-pressure X-ray total scattering principles MD calculations were performed using a canonical
data were collected at beamline 11-ID-B at the Advanced (NVT) ensemble with a Nosé—Hoover thermostat, as
Photon Source at Argonne National Laboratory using an implemented in the VASP’>’' code, with the exchange-
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correlation approximation PBEsol.*” The total runtime of each

simulation was 40 ps, and we allowed for an equilibration time
of 1.2 ps. Structures were visualized using the VESTA
program.” Further experimental and computational details
are in the Supporting Information.

The ambient-pressure structure with space group Fm3m was
the starting point for our analysis. We fit the PDF series over
two ranges, i.e., 2—10 A (short range, SR, Figure 2a) and 2—30
A (long-range, LR, Figure 2b). The full pressure series of fits
are shown in Figures S1—S4. The figure of merit R,, was used
to compare the fitted model and the experimental data, with
lower values indicating better agreement. The cubic model
performs significantly worse at short range compared to long
range and generally becomes worse for both ranges as pressure
increases (Figure 2c). The Fm3m fits yielded highly anisotropic
thermal parameters for the Br atoms, in a§reement with
behavior observed in related halide perovskites.”"">>*° The 2.4
GPa data have poor R,, values due to the onset of a transition
to a high-pressure tetragonal phase, evident from the split
(400) diffraction peak at 260 =~ 3° (Figure 1b inset). At
pressures of 2.1 GPa and below, the powder XRD data reflect
an Fm3m structure as no split or emergent peaks were
observed.

However, the cubic model was unable to account for how
the second nearest-neighbor PDF peak at ca. 4 A broadens
with pressure (Figure 2a). To describe the local structure upon
compression, we obtained the best results by starting with the
low-temperature phase of the related halide perovskite
CsSnBr;, which has space group Pnma and a b*a” tilts in
Glazer notation.”"** Importantly, low-temperature CsSnBr;,
exhibited a split second nearest-neighbor peak in its X-ray
PDF. We adapted this structure by matching the lattice
parameters pressure-by-pressure to values from our long-range
cubic PDF fits of Cs,AgBiBr,, which were in good agreement
with values obtained by synchrotron powder XRD, and by
substituting the Sn atoms with a rock salt-ordered arrangement
of Ag and Bi atoms. Due to the existence of two different,
ordered B-site atoms in an a”ba” tilt system, the space group
is reduced to P2,/c.*

The P2,/c model fits the short-range PDFs significantly
better at higher pressures (Figures 2a and 2c). Notably, the
P2,/c model simulates the broad second nearest-neighbor
peak, corresponding to Cs—Br and Br—Br atomic pairs.
Moreover, this model can still describe the structure at long
range over the range of experimental pressures (Figures 2b and
2c). This indicates the presence of local disorder which is
hidden from observation by conventional XRD. The local
distortions of the Br octahedral network in the P2,/c model
explain the highly anisotropic Br thermal parameters when the
structure is considered from the average, Fm3m perspective. In
fact, this anisotropy increases with pressure (Figure SS). Also,
we find that the P2,/c fits include Cs migration from its high-
symmetry sites. Considering the Cs—Br interatomic distances,
which are all equal in the Fm3m model, we see that the
distribution broadens as pressure increases and consistently is
broader at short range than at long range (Figure S6); that is,
the local disorder is enhanced upon compression.

To better understand the effect of Br distortion and Cs off-
centering on the PDF, we compare four models for the PDF at
2.1 GPa. Figure 3a shows the P2,/c fit at short range, which
provides the best fit of the local structure. Figures 3b and 3c
show calculated PDFs with only Br distortion and only Cs-off
centering, respectively. Lastly, Figure 3d shows the Fm3m long-
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Figure 3. Comparison of the effects of Br distortion and Cs off-
centering at 2.1 GPa. (a) PDF fit using the P2,/c model, allowing
both Cs off-centering and Br distortion. (b) Calculated PDF with Br
distortion while Cs remains on high-symmetry sites. (c) Calculated
PDF with Cs off-centering while Br remains on high-symmetry sites.
(d) PDF fit using the Fm3m model, which allows neither Br distortion
nor Cs off-centering.

range fit over 2—10 A, which is very similar to the Fm3m short-
range fit (Figure 2a). From this comparison, it is clear that
both Cs off-centering and Br distortion are necessary to
describe the local structure upon compression. This agrees
with recent theoretical work on related CsMX; (M = Pb, Sn; X
= 1, Br) halide perovskites which found that the cubic and
tetragonal phases are dynamically unstable with respect to the
orthorhombic ground state, and this orthorhombic b7ba*
tilted arrangement, analogous to P2,/c in our case, is stabilized
by Cs off-centering.”®

Our analysis is corroborated by MD simulations of
Cs,AgBiBrg at 0.0 and 2.1 GPa (see the Supporting
Information for video animations). Although the simulations
were started with high-symmetry Fm3m configurations, local
disorder quickly developed. The average of the MD snapshot
PDFs in Figure 4a matches the P2,/c fitted PDF and
experimental PDF well at both 0.0 and 2.1 GPa, including
capturing the second nearest-neighbor peak. Note that these
average PDFs at each pressure are computed by first
calculating the PDF of each MD snapshot and then averaging
those PDFs. This is distinct from first calculating the time-
averaged atomic positions (as in Figure 4d and discussed
below) and then calculating the PDF, as this order of
operations would obscure any local-scale behavior. The
short-range Br octahedral distortion and Cs off-centering in
the P2, /c fitted models (Figure 4b) are in good agreement
with disorder observed in the MD snapshots (Figure 4c).
Despite this significant local disorder, the time-averaged MD
structures (Figure 4d) match the Fm3m structures from our
long-range cubic PDF fits and from XRD.”'® The mean
squared displacements (MSDs) of atoms relative to their
average MD positions are in good agreement with the thermal
parameters in the XRD model and with those in the long-range
Fm3m PDF fitted models (Figures S7 and S8). The Br atoms
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Figure 4. (a) PDFs from MD simulations and comparison with PDFs from the P2,/c fitted model and experimental data. The upper panel at each
pressure shows PDFs from 1000 MD snapshots, in addition to the average of all MD snapshot PDFs. (b) Structures of the P2,/c model fitted to the
experimental data at short range (2—10 A). (c) Structures of a randomly chosen MD snapshot. (d) Time-averaged structures of MD snapshots.

consistently show larger motion perpendicular to the Bi—Br
and Ag—Br bonds, and the Br MSDs from MD and PDF both
become more anisotropic at 2.1 GPa relative to those at
ambient pressure. As in the PDF analysis, our MD results show
that local disorder of the Br atoms manifests as highly
anisotropic thermal displacements when the structure is
considered on average.

In summary, we have performed high-pressure X-ray total
scattering on the lead-free halide double perovskite
Cs,AgBiBrs. Through analysis of the X-ray and MD PDFs,
we present a lower-symmetry crystallographic model which
describes the local structural evolution upon compression
significantly better than the cubic structure. In our model, the
Br atoms are explicitly disordered, rather than having large
anisotropic thermal displacements, and the Cs atoms are
displaced from their high-symmetry cubic sites. These results
highlight the importance of studying both the average and local
structure of halide perovskites to build more accurate
structure—property relationships toward obtaining desired
functionality.
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(Video S1) MD animation at 0.0 GPa (MP4)
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