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Abstract

Chronic diseases represent one of the main health challenges in the 21st century.
Their increasing prevalence, coupled with factors such as an ageing population and a
growing lack of healthcare resources, have necessitated a shift from the traditional,
episodic and responsive model of healthcare to a chronic and proactive model that
emphasises patient empowerment. As a result, to support this shift, pervasive health-
care systems have been researched and developed as early as the 2000s with the aim
to provide “healthcare to anyone, at anytime, and anywhere”. While these systems
are traditionally focused on the continuous monitoring of patients, the continual de-
velopment of mobile hardware technologies has enabled the emergence of intelligent
systems that can support patients autonomously with minimal manual intervention
from care providers.

At the same time, patient care in the traditional healthcare setting is increasingly
supported by the use of clinical practice guidelines, which document the current
best clinical practice as supported by the latest scientific evidence. These guidelines
aim to improve and ensure the quality of patient care by facilitating adherence to
proven best practice; to support their adoption, computer-interpretable, guideline
representation languages have been developed to formalise clinical guidelines such
that they can be executed automatically by guideline-based computer systems. In this
way, support can be seamlessly provided to clinicians in making the best possible,
evidence-based decisions for the patient.

This research aims to extend evidence-based healthcare beyond the traditional
healthcare setting by bringing computerised clinical practice guidelines to the free-
living setting to provide pervasive and guideline-based decision support to patients.
In general, guideline languages capture the control flow between the different tasks in
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a guideline and thereby assume a centralised controller for executing them. However,
for pervasive healthcare, such centralised system architectures may not be the most ap-
propriate since system components may require dynamic reconfiguration in response
to factors such as changing patient requirements and unreliable communications
environments. Therefore, the main contribution of this research is a new guideline
language that focuses on the data flow in guidelines, whereby tasks are modelled
as processes that execute in parallel. By parallelising and dynamically distributing
guideline knowledge, each device that constitutes the patient’s pervasive healthcare
system can be adapted in real-time and provide decision support independently of
each other, thereby avoiding a single point of failure.

The new guideline language is developed by using formal methods and by
following a model-driven methodology. Thus as part of this research, a formal
and generic data flow model of disease management in pervasive healthcare is
created; it comprises four types of processes, namely Monitoring (M), Analysis
(A), Decision (D) and Effectuation (E), and six types of data flowing between them,
namely Measurement, Observation, Abstraction, Action Plan, Action Instruction and
Control Instruction. This model is given a precise mathematical interpretation using
axiomatic set theory, the result of which is divided into two complementary models.
The first is a reference information model for representing the data flow, which
comprises 32 set definitions, while the second is a guideline model for representing
the MADE processes, which comprises 28 set definitions as well as 13 function
signatures and 38 logical invariants to specify their behaviour.

From the reference information model and guideline model, the syntax and
semantics of the new guideline language are derived for representing clinical guide-
lines. To support the verification and validation of the formalised guidelines, the
syntax and semantics of an accompanying archetype language were also developed
for specifying MADE archetypes (i.e. well-formedness constraints on MADE data
items). Furthermore, a reference implementation for these two languages is devel-
oped which comprises a set of libraries implemented on top of Rosette. Since Rosette
provides support for not only executing the languages but also verifying them using
off-the-shelf constraint solvers, the reference implementation is formally verified

to comply with the 38 logical invariants of the guideline model. More specifically,
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these constraint solvers help ensure that no patient data will ever cause the reference
implementation to violate its invariants during execution.

Validation of the MADE models and languages is conducted by formalising,
verifying and testing a complete clinical guideline for gestational diabetes mellitus,
i.e. diabetes that is first developed or first recognised during pregnancy. The guideline
comprises 13 semi-formal workflows, such as for managing blood glucose levels and
urinary ketone levels, and the result is a MADE network comprising 55 processes,
specifically 0 Monitoring, 4 Analysis, 22 Decision and 29 Effectuation processes, all
of which are connected together by the flow of 50 types of MADE data, specifically
0 Measurement, 8 Observation, 8 Abstraction, 14 Action Plan, 3 Action Plan and
17 Control Instruction archetypes. The 0 Monitoring processes and 0 Measurement
archetypes were a result of the fact that all measurement tasks in the guideline were
to be performed manually by the patient.

In the future, the clinical relevance of the MADE languages should be evaluated
by developing and performing clinical studies on pervasive healthcare systems that
implement the MADE languages. Usability of the languages should also be evaluated
in collaboration with clinicians, patients and other stakeholders; improvements
may include adding support for personalising guideline knowledge and for partial
specifications of manual processes. A knowledge acquisition tool suite may also
be developed from the reference implementation to provide support for formalising
clinical guidelines, developing and executing test data as well as visualising the test

and verification results.
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Chapter 1

Introduction

1.1 Motivation

Noncommunicable diseases (NCDs), also known as chronic diseases, are a major
cause of death worldwide (around 70 % in 2016) and are recognized by the World
Health Organization as one of the main health challenges in the 21st century [91].
Unlike acute diseases, NCDs require consistent, long-term management, necessitating
a shift from the traditional, episodic and responsive model of healthcare to a chronic
care model that emphasises patient empowerment and proactive clinical practice [64}
87]]. However, providing chronic care is not without challenges, especially with an
aging population and an increasing lack of healthcare resources [3]]. As a result, as
early as the 2000s, research has been conducted on the use of computer systems to
support pervasive healthcare, which aim to provide “healthcare to anyone, at anytime,
and anywhere” [86].

Traditionally, pervasive healthcare systems focused on the continuous monitoring
of patients, but with increasing development of mobile hardware technologies, there
is growing research on intelligent systems that can automate data processing and
analysis [2]. This is necessitated by the volumes of data that can be collected by the
systems about each individual patient, all of which can easily lead to information
overload and hamper clinical decision making as evidenced in the hospital setting [17]].
Therefore, the ideal pervasive healthcare system should not only monitor patients

during their daily lives but also provide support to them automatically without any
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manual intervention, thereby allowing caregivers to focus on the most important
aspects of patient care.

However, the use of such autonomous pervasive healthcare system does not pre-
clude the need to provide the best possible care to patients. In the traditional hospital
setting, the quality of patient care is assured via the use of clinical practice guidelines
(CPGs), which are defined as “statements that include recommendations intended
to optimize patient care that are informed by a systematic review of evidence and
an assessment of the benefits and harms of alternative care options” [31]]. While
these guidelines are generally written in narrative English, guideline-based computer
systems have been developed to execute formalised versions of guidelines to seam-
lessly support clinicians in making the best possible, evidence-based decisions for
the patient.

Therefore, to provide evidence-based support to patients in their daily lives, this
thesis aims to bridge the gap between pervasive healthcare systems for patients and
guideline-based systems for clinicians. In Sec.[I.2] the main features of these two
types of systems are presented, which leads to the research objectives and questions
detailed in Sec.[I.3] Sec.[I.4] and[I.5]outline, respectively, the context and scope
within which this research is conducted, while in Sec. the research approach and
outputs are described. Finally, an outline of the remainder of the thesis is presented

in Sec.[I.7

1.2 System Feature Analysis

1.2.1 Pervasive Healthcare Systems

As mentioned in Sec. pervasive healthcare systems are designed to support
patients at any time and anywhere, which implies that they are generally data-driven
and are required to process data streams in real time. Specialised sensors (e.g. blood
glucose and inertial sensors) continually collect data about the patient and their
environment, all of which are then processed to determine the appropriate support
to provide to the patient [60, 30]. This support can include immediate alerts when
abnormalities are detected (e.g. for fall detection [28]]) as well as automatic activation

of the appropriate actuators (e.g. for insulin management [935]]).



1.2 System Feature Analysis 3

B¢
Tablet
N \ f

Patient

Server
Smartphone I '

Smartwatch

v

Fig. 1.1 Example composition of a generic pervasive healthcare system.

Given their need for sensors, data processors as well as actuators, pervasive
healthcare systems are typically distributed in nature. In fact, while data process-
ing often occurs in the back-end, where advances in high performance and cloud
computing allow for highly expensive operations (e.g. deep learning), some data
processing tasks may be best distributed to front-end components (e.g. smartphones
or personal computers). Communications networks are not always reliable, but a
reliable pervasive healthcare system should always provide the appropriate support re-
gardless. Thus in the most generic case, a pervasive healthcare system may comprise
a network of devices (such as shown in Fig.[I.T)) and adopt a “holonic” multi-agent
system architecture, with each device capable of providing support independently of
each other but sharing data as well as functionality [49] to achieve overall system

resilience against technical disruptions.
1.2.2 Guideline-based Systems

Guideline-based systems comprise three main components as shown in Fig. [T.2][33]):

* A knowledge base containing the formalised clinical guidelines.
* A patient database containing all the necessary patient data.

* A guideline execution engine to execute the stored clinical guidelines.
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Fig. 1.2 Typical components of a guideline-based system.

During runtime, the clinician invokes the guideline execution engine and selects
the appropriate guideline to execute and the target patient to execute the guideline
on. The engine then begins executing the guideline, querying the database whenever
necessary to retrieve the relevant patient data. The execution engine may also send
queries to the clinician if the necessary data is unavailable or provide recommenda-
tions if dictated by the guideline, the results for which may then be fed back into the
engine to continue the guideline execution. Inputs to the system during runtime may
also be stored in the knowledge base (if they relate to clinical guidelines) or in the
database (if they relate to patients).

As a sub-type of knowledge-based systems, a key feature of guideline-based
systems is the explicit representation of knowledge [8]. For example, one of the
earliest knowledge-based systems for clinical decision support is MYCIN [72],
which reasons with clinical knowledge represented in the form of production rules.
Thus while pervasive healthcare systems may be designed in consultation with
clinical experts, they are generally not guideline-based as the clinical knowledge
is embedded within the source code of the system. By separating the knowledge
from the system implementation, guideline-based systems can be easily adapted to
execute different guidelines, provided the guidelines can all be represented using
the chosen computer-interpretable, guideline representation language. This is also
implies a common representation for all patient data as different guidelines may

require different data.
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1.3 Research Questions

Guideline-based pervasive healthcare systems offer the advantages of being explicitly
evidence-based and application independent; an explicit representation of knowledge
can help assure that the system is always providing the best evidence-based support to
patients, and by formalizing and executing different guidelines, the same system can
be adapted to support patients with different conditions. However, unlike traditional
guideline-based systems that can be deployed on a fixed back-end infrastructure,
guideline-based pervasive healthcare systems should also be highly adaptable to
changing physical configurations. This ensures that the provided support remains
unaffected by factors such as unreliable communications networks and changing

patient needs, which leads to the main research question (RQ) of this thesis:
Main RQ. How can pervasive and knowledge-based support be provided to patients?

One key challenge in developing knowledge-based systems, including guideline-
based systems, is designing the appropriate computer-interpretable language for
representing the desired knowledge. Different knowledge representation languages
require different reasoning procedures, and in general, languages with higher ex-
pressive power are also more computationally expensive [8]. Therefore, a careful
balance must be achieved to ensure that the language is appropriate for pervasive
healthcare systems and is sufficiently expressive for clinical guidelines without being
unnecessarily inefficient. As a result, the following sub-question can be derived from

the main research question:

RQ 1. What is an appropriate knowledge representation language for formalising

clinical guidelines for pervasive healthcare systems?

Apart from its expressiveness and computational complexity, the design of a
guideline representation language is also influenced by the chosen representation of
patient data, which is highly heterogeneous in nature. For example, patient data not
only includes raw numerical measurements but also abstract clinical diagnoses and

complex drug regimens. This raises the following question:

RQ 2. What is an appropriate representation for patient data in the context of
pervasive healthcare?
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Given their differing syntax and semantics, different guideline representation
languages require different guideline execution engines to interpret them. Therefore,

as part of this thesis, the following research question will also be addressed:

RQ 3. What is an appropriate design and implementation of the guideline execution

engine for guideline-based pervasive healthcare systems?

Finally, formalizing clinical guidelines is a non-trivial task; it may require a
collaboration between multiple parties and involve multiple activities, from selecting
the appropriate guideline for the target application to establishing a consensus on
the guideline semantics and evaluating the formalised guideline [71]]. While this
thesis does not aim to develop a knowledge acquisition tool, it is hypothesised that
the guideline execution engine, which can reason with clinical knowledge, can be
adapted to support the verification and validation of formalised guidelines. Thus the

final research question of this thesis is as follows:

RQ 4. What extensions can be incorporated into the guideline execution engine (and
associated language) to support the verification and validation of formalised clinical

guidelines?

1.4 Context: The MobiGuide Project

The research presented in this thesis forms part of and builds upon the MobiGuide
project (https://cordis.europa.eu/project/id/287811), which is conducted under the
European Seventh Framework Program (FP7). Similar to this research, the MobiGu-
ide project aims to develop a guideline-based decision support system for chronic
patients during their daily lives. However, in this MobiGuide project, a centralised

system architecture is adopted that comprises two main computing components [56]:

* A smartphone that remains by the patient, processing patient data locally to

ensure that support is provided whenever and wherever necessary.

* A back-end server that resides at the hospital, performing any necessary but
expensive tasks and providing decision support to clinicians. This back-end
server is also responsible for “projecting” the appropriate portions of a clinical
guideline to the smartphone component for local execution [70]].


https://cordis.europa.eu/project/id/287811
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This thesis extends the MobiGuide project by considering the general case
wherein decision support is provided by an “n-ary” pervasive healthcare system, i.e.
by an arbitrary number of devices. Furthermore, this thesis assumes a “holonic” multi-
agent architecture which, as described in Sec.[I.2.1] can offer increased robustness
compared to a centralised architecture. In this respect, the MobiGuide system can be
seen as a specific instance of an “n-ary” pervasive healthcare system, with n equal to
2, and it therefore serves as a useful frame of reference for this thesis. In fact, the
research presented in this thesis is validated using a clinical guideline that has been
developed as part of the MobiGuide project and used to validate the clinical relevance
of the MobiGuide system. This guideline is targeted at patients with gestational
diabetes mellitus (GDM), i.e. patients who exhibit diabetes during pregnancy.

1.5 Research Scope

As implied by the research questions presented in Sec.[I.3] the main aim of this
research is to enable the formalisation and execution of clinical guidelines in the
context of pervasive healthcare. However, it should be noted that to truly realise a
guideline-based pervasive healthcare system, many other considerations must also
be taken into account which are outside the scope of this thesis. For example, given
that pervasive healthcare systems may receive data from and output data to multiple
locations, including sensors and actuators on the patient as well as electronic health
records (EHRSs) in hospitals, one technical concern is the design and implementation
of an appropriate mechanism to accumulate all input and output data.

To support such integration of medical data into traditional guideline-based
systems, “mediator” components have been proposed, such as KDOM by Peleg,
Keren and Denekamp in 2008 [55] and IDAN by Boaz and Shahar in 2005 [6].
KDOM is a framework that maps abstractions found in clinical guidelines to specific
data items stored in EHRs [55]], and similarly, IDAN provides a generic interface
for healthcare information systems to access and query heterogeneous clinical data
sources [6]. Such components may also be integrated into guideline-based pervasive
healthcare systems, but these technical considerations are outside the scope of this
thesis, which focuses on the clinical aspects of representing clinical knowledge and
data.



8 Introduction

Indeed, while this research addresses the design and implementation of a guide-
line execution engine for pervasive healthcare, its focus is on providing a reference
implementation to demonstrate the semantics of the developed guideline representa-
tion language. As a result, technical performance issues, such as the potential need
to process large data streams in real-time, are ignored. Furthermore, this research
does not address the specific mechanisms with which a pervasive healthcare system
can distribute its functionality across its devices. As mentioned in Sec. such
a mechanism is necessary to mitigate issues caused by unreliable communications
networks and other technical disruptions. However, the focus of this thesis is not on
the actual distribution of functionality per se, but on enabling such a distribution via
the formalisation of clinical guideline knowledge.

At this point, it should also be mentioned that as early as the 2000s, research has
been conducted on the formalisation of clinical guidelines for verification purposes.
For example, in 2006, Giordano et al. described how model checking techniques
for linear temporal logic can be used to verify certain properties of clinical guide-
lines [23l], while ten Teije et al. demonstrated the use of the KIV theorem prover and
interval temporal logic for a similar purpose [79]. More recently, Wilk et al. and
Michalowski et al. presented in 2013 and 2020 respectively two different approaches
to detect and mitigate conflicts in the concurrent application of multiple guidelines;
the approach by Wilk et al. relies on constraint logic programming [88] while that by
Michaloski et al. uses first-order logic [47]]. While this thesis also touches upon this
issue of verifying clinical guidelines, the focus is on executable representations of
clinical guidelines as opposed to representations that can be reasoned with. Thus the
use of such formal systems are considered outside the scope of this research.

Likewise, as implied in Sec.[I.3] issues relating to the usability and acceptabil-
ity of guideline-based systems are not investigated. For example, Goud, Hasman
and Peek in 2008 presented a guideline-based system (CARDSS) which contains,
amongst other usability features, explanation facilities to increase the acceptance of
any output recommendations [27]]. Furthermore, in 2010, Hatsek et al. presented the
GESHER system to facilitate the formalisation and maintenance of clinical guide-
lines [29]. Although such considerations are also critical to the adoption of any

guideline-based system, they are outside the scope of this thesis.
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Fig. 1.3 The main research outputs of this thesis, mapped to the corresponding
software development phase. A — B indicates that B depends directly on A.

1.6 Research Approach

The development of software systems typically involve four main phases [75]: re-
quirements analysis, system design, system implementation, and finally verification
and validation. While these phases may occur iteratively and concurrently (as is the
case for agile development methodologies), this PhD thesis adopts a linear, waterfall
approach to address the research questions presented in Sec.[I.3] The resulting
research outputs are summarised in Fig.[T.3]

Firstly, for requirements analysis, related work is studied to identify the key fea-
tures and limitations of existing guideline-based systems and guideline representation

languages, the results of which are then used in the system design phase. This thesis
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adopts a model-driven development methodology, thus the outputs of the design
phase include various models on which the proposed guideline language is based,

namely:

* The overall system model, which captures the key features of pervasive health-
care systems and presents the main design decisions underlying the proposed

guideline language.

* The reference information model (RIM), which extends the overall system
model and specifies the types of patient data that may be required by pervasive
healthcare systems.

* The guideline model (GLM), which is based on the overall system model and
reference information model and captures the components that may constitute

a clinical guideline.

To ensure that the requirements are satisfied, formal methods are adopted such
that the three models are given a precise mathematical interpretation. In particular,
all models developed in this thesis are specified formally using axiomatic set theory,
the notation for which is summarised in Table @ As implied in the table, a set
is treated in this thesis as largely synonymous to a data type in the sense used in
programming languages. Thus, for example, the statement “ELEM is an element of
set T can be interpreted as being equivalent to “ELEM is an instance of type 7.

Having formalised the models, the next step as illustrated in Fig. [I.3]is to derive
from those models the syntax and semantics of the proposed guideline representation
language, including constructs for verifying and validating formalised guidelines. In
fact, an archetype language is also derived from the reference information model,
which enables the specification of well-formedness constraints on patient data and
thereby provides additional support for verifying and validating clinical guidelines.
For example, an archetype for body temperature might indicate that it is a numerical
quantity measured in °C or °F, thus any guideline that violates this constraint would
automatically be considered incorrect.

While this thesis does not aim to produce a commercial knowledge-based perva-
sive healthcare system, an implementation of the guideline and archetype languages

is provided to demonstrate that they are indeed implementable and to serve as a gold
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Table 1.1 Summary of the mathematical notation adopted for modelling pervasive

healthcare.
Notation Description
TypeName The name of a set, i.e. a collection of elements.
Type; = Type,  Type; is the same (i.e. contain the same elements) as Type.
T ={ELEM .
{ b Set T contains two elements, ELEM; and ELEM.
ELEM;}
Set T is the union of (i.e. comprises all the elements of)
T=T,UT;
sets T; and T>.
T—T AT Set T is the intersection of (i.e. comprises only the elements
— 712 shared in) sets T; and Ts.
T=T; xT>x Eachelement of T is a tuple comprising N components;
<o x Ty the first is an element of T'1, the second 75, etc.
T, is a proper subset of 7». L.e. elements in 7; are also in 7>
T, CT, .
but not vice versa.
T=2(T;) Elements of T are sets whose elements are of 7.
() The n'" component of element 7.

ELEM e T

ELEM is an element of 7.
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standard for future, possibly more efficient, implementations. The reference imple-
mentation is developed as set of libraries on top of Rosette, which provides support
for not only executing the implementation but also analysing it using off-the-shelf
constraint solvers [85]]. Thus, the reference implementation is verified formally using
Rosette against the properties of the original models.

Finally, the reference implementation, together with the guideline and archetype
languages, are validated using a case study, specifically the gestational diabetes
guideline from MobiGuide. As shown in Fig. [T.4] the clinical guideline is first
formalised using the guideline and archetype languages, the result of which is a
Rosette program. This program utilises the libraries provided by the reference
implementation and can be executed using Rosette’s interpreter. At this point, patient
data can be provided to the program to generate decision support, but for this research,
various Rosette commands are used instead to verify the formalised guideline and

thereby validate the research outputs of this thesis.

1.7 Thesis Outline

Table [1.2| summarises the structure of this thesis. Except for related work, which
is distributed across the thesis as appropriate, the chapters of this thesis largely cor-
respond to the research outputs presented in Fig. [I.3] More specifically, the thesis
starts in Ch. [2] with the necessary background on the model-driven development
methodology and formal methods that underpin this research, followed by the details
of the overall system model in Ch. [3] The next two chapters all relate to the represen-
tation of data: Ch. ] on the reference information model and Ch. [5on the archetype
language (including its verified reference implementation). Similarly, Ch. [6]and
presents, respectively, the guideline model and the guideline language (including
its verified reference implementation). Finally, the evaluation is presented; Ch. [§]

focuses on the case study and Ch. [9]on the conclusions.
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Fig. 1.4 The process followed for validating the reference implementation as well as
the guideline and archetype languages.

Table 1.2 Contents of the thesis chapters and their relation to the research questions.

Ch. Contents Related RQs
1 Introduction -
2 Background -
3 Overall System Model 1,2,3
4  Reference Information Model 2,3
5  Archetype Language & Implementation 3,4
6 Guideline Model 1,3
7 Guideline Language & Implementation 1,4
8  Case Study 1,2,3,4
9  Conclusions -







Chapter 2

Methodology

2.1 Introduction

As described in Sec. [1.6] a model-driven methodology is adopted in conjunction with
formal methods as part of the overall approach to address the research questions of
this thesis. Therefore, in this chapter, the relevant background on these methods are
presented; Sec. 2.2 focuses on model-driven engineering while Sec. [2.3]explores the
different formal methods that were considered for this research.

2.2 Model-Driven Engineering

Model-driven engineering is a software development methodology that emphasises
the use of domain models in the development of software systems [10]]. Generally
defined as simplified representations of the problem domain, different domain models
can focus on different aspects of the target system (e.g. static components or dynamic
behaviour) and can be at different levels of abstraction (from the overall architecture
to implementation-specific details). In particular, the model-driven architecture
(MDA) framework developed by the Object Management Group (OMG) distinguishes
between three types of models 10} 40]:



16 Methodology

* Computation independent model (CIM), which represents the application
domain and captures the domain requirements without reference to any system-

related details.

* Platform-independent model (PIM), which captures the functionality of the

software system without reference to any implementation specific details.

* Platform-specific model (PSM), which specifies all the relevant details for
implementing the software system on a specific platform (e.g. programming

language and operating system).

The MDA framework is accompanied by various modelling standards and specifi-
cations, such as the Unified Modeling Language (UML) [54] and the MOF Model to
Text Transformation Language (MOFM2T) [53]], which not only allow these models
to be created but also support automatic transformations between them. Indeed, much
of these standards, especially UML, have been implemented in software tools to assist
with the development of software systems; a notable example is the Eclipse Modeling
Framework provided by the Eclipse IDE (https://www.eclipse.org/modeling/emf/).

While it is not the purpose of this PhD to be completely compliant with the
MDA framework, the framework is loosely followed to ensure that the developed
languages, and all related research outputs, are appropriate for providing guideline-

based pervasive healthcare. Thus, for this PhD:

e The CIM corresponds to a conceptual model of the disease management

process for patients with chronic diseases (which is presented in Ch. [3)).

* The PIM specialises the CIM for guideline-based pervasive healthcare systems
and is an aggregate of the overall system model (presented in Ch.[3)), reference
information model (Ch. @) and guideline model (Ch. [6)) that are developed as
part of this thesis.

* The PSM specialises the PIM for a specific implementation and therefore
corresponds to the reference implementation of the developed knowledge

representation language (which is presented in Ch.[5]and[7).


https://www.eclipse.org/modeling/emf/
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2.3 Formal Methods

Formal methods are mathematically-based techniques for specifying, developing
and verifying systems. For this thesis, the CIM and PIM are specified formally such
that they are given a precise mathematical interpretation, which also opens up the
possibility to formally verify that the reference implementation (i.e. the PSM) satisfies
all the requirements, assumptions and properties specified in the PIM. Axiomatic set
theory is used to specify the CIM and PIM due to its simplicity, general applicability
and amenability to mathematical analysis, while four systems for developing and
verifying the reference implementation were considered: Alloy [35], USE (UML-
based Specification Environment) [24], VDM (Vienna Development Method) [[19]]
and Rosette [85]. These four candidates were selected after consultation with experts
in model-driven engineering and formal methods; as detailed in the following sub-
sections, these systems all support the specification and verification of arbitrary
models. However, Rosette is finally adopted since it is executable and can automate

verification.

2.3.1 Alloy

Alloy (https://alloytools.org/) is based on relational logic, such that all aspects of
the system are represented as relations (i.e. where relations are represented as sets
of tuples) and operations over those relations [35]. To verify that the system model
satisfies certain properties, assertions can be added to the specification which are
checked automatically by Alloy using bounded model checking. In other words,
for each assertion, Alloy searches for a counterexample within a bounded size to
demonstrate that the assertion is invalid; if none is found, then either the assertion is
valid or the bound should be relaxed to search for larger counterexamples.

While Alloy provides facilities for automated verification of system properties,
it provides minimal support for defining complex functions to manipulate elements
in the relations. In fact, it is not possible for the user to instantiate relations with
concrete elements, which would be necessary to formalize and execute the GDM
(gestational diabetes mellitus) guideline in the case study. As a result, Alloy is

deemed inappropriate for the requirements of this research.


https://alloytools.org/
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2.3.2 USE

As its name suggests, models are specified in USE (available at http://www.db|
informatik.uni-bremen.de/projects/USE-2.3.1/) using UML [24], and unlike Alloy,
USE allows the user to create specific instances of the specified models and perform
operations on them. Furthermore, expressions in OCL (Object Constraint Language)
can be incorporated into the models to specify invariants over them as well as to
specify the pre- and post-conditions of the model operators. Every time a model
is instantiated or operated on, USE can check whether any of the constraints are
violated.

However, in USE, limited support is provided for formal verification; constraints
are checked in relation to a specific instance of the model, thus it relies heavily on
manual testing unlike Alloy, which can search for counterexamples automatically.
For this research, this means that the reference implementation can only be verified
in USE by formalising and testing different example guidelines, which may be

impractical given their potential complexity.

233 VDM

Similar to USE, specifications in VDM [19] can be executable, allowing the user
to prototype, explore and manipulate specific instances of models. Invariants, pre-
and post-conditions can also be added to the specifications and checked during
execution. However, tool support is also provided, specifically the Overture tool (http:
/loverturetool.org/) for performing combinatorial testing as well as proof obligation
generation. Combinatorial testing enables the user to automatically generate and
execute large of number of test cases by iterating through combinations of sets of
user-defined values, while proof obligations specify the conditions that must be
proven to ensure that the specification, when executed, will not run into any errors.
While VDM provides more support than USE for verifying model instances,
combinatorial testing and proof obligations may not be the most appropriate for
this research. Since the models for this thesis should apply to all applications of
guideline-based pervasive healthcare systems, the models are hypothesised to be very
complex. Thus even with tool support, combinatorial testing may prove intractable

and unable to cover the most significant edge cases. Furthermore, it is generally


http://www.db.informatik.uni-bremen.de/projects/USE-2.3.1/
http://www.db.informatik.uni-bremen.de/projects/USE-2.3.1/
http://overturetool.org/
http://overturetool.org/
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accepted that formal proofs of correctness are too expensive to perform, thus proving

correctness, while useful, is also considered outside the scope of this research.

2.3.4 Rosette

Rosette (https://emina.github.io/rosette/) is a language and system that extends the
Racket programming language with constructs for program verification, debugging,
synthesis as well as “angelic execution” [85]. Thus similar to USE and VDM,
specifications implemented in Rosette are also executable, and concrete instances
of the specifications can be checked during run-time against its invariants and pre-
and post-conditions, all of which can be specified as assertions. However, one main
advantage of Rosette over VDM and USE is that like Alloy, Rosette can automatically
search for counter-examples that violate the specified assertions, thus not requiring
the user to manually create test cases to checks for errors.

To achieve this, Rosette compiles the specifications into logical constraints that
can be solved using off-the-shelf solvers (e.g. Z3 [18]). However, the main limitation
of this approach is that these constraints are not always possible to solve and that it
cannot be known in advance whether they are solvable or not. In other words, for this
PhD, it is possible (and indeed likely) that the PIM may be too complex for Rosette
to verify the reference implementation against. However, it is believed that Rosette
can nevertheless provide useful insights for verifying the reference implementation
against the PIM. Furthermore, testing is still an option since Rosette is executable,

thus making Rosette the most appropriate out of the four candidate systems.


https://emina.github.io/rosette/




Chapter 3

The Architecture Model

3.1 Introduction

One of the key challenges in designing knowledge-based systems is choosing the
appropriate representation of knowledge. As early as the 1980s, it is recognised that
knowledge representation languages must achieve a fine balance between expressive-
ness and efficacy [90]; the chosen representation must be adequately expressive to
capture the required concepts, but at the same time, it should not be unnecessarily
complex. This ensures that represented knowledge can be maintained and reasoned
with efficiently.

Therefore, to arrive at an appropriate knowledge representation for this thesis,
a model-driven approach is employed in which the general process of managing a
patient’s condition is modelled and formalized. This chapter in particular focuses on
the architecture models, which capture the “set of principal design decisions” about a
system [[78]]. In the context of this thesis, these models correspond to the computation
independent model (CIM) and the platform independent model (PIM) of the overall
system, since they provide the foundation on which the four research questions are
answered. The RIM and GLM, although part of the PIM, relate to detailed design
decisions and are presented in subsequent chapters.

In Sec. [3.2] related models for representing clinical guidelines and disease man-
agement are presented, followed in Sec.[3.3|by a description and formal specification

of a generic data flow model on which the rest of the thesis is based. This model
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is independent of any domain, thus it is specialised into a CIM and overall PIM for
pervasive healthcare, the complete details of which are presented in Sec. and [3.5]
respectively. The validation of the CIM and PIM using a complete clinical guideline
is reserved for Ch.[§] but in Sec.[3.6] an application of the PIM is demonstrated, using
a small portion of the GDM clinical practice guideline as an example. Finally, the

models are discussed in Sec.[3.71

3.2 Related Work

3.2.1 Control Flow Representations of Clinical Guidelines

Automated guideline-based systems have long been developed to provide decision
support to clinicians [33]] by executing formalised versions of clinical guidelines.
Depending on the system’s purpose, different formalisms have been adopted, which

can be divided into the following three categories [58]|:

* Document models that encapsulate the properties of guideline documents (e.g.

their target audiences).

* Decision trees and probabilistic models that capture the algorithmic knowledge

in guidelines.

» Task-network models that represent clinical guidelines as networks of tasks

and may subsume the other models.

Of relevance to this thesis are the task-network models as they enable clinical
guidelines to be formalised such that the complete disease management process
can be automated. The main exemplars of task-network models include GLIF3 [7],
ASBRU [68]], GLARE [80], and PROforma [76l], and in general, they represent
clinical guidelines as hierarchical plans that contain constructs for decisions and
actions as well as embedded sub-plans [58]]. The PROforma language, for example,
distinguishes between Actions, Enquiries (which may be considered as a special
type of action [58]]), Decisions and Plans (which are collections of other tasks) [[76].
Note that although rule-based languages have also been developed to formalise clin-

ical knowledge, most notably the Arden Syntax [63]] and the openEHR Guideline
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Definition Language [84], they are considered out-of-scope as the formalised produc-
tion rules cannot intrinsically capture the complexity of clinical guidelines, which
typically involve multiple steps that unfold over time [58]].

Regardless of the specific formalism, task-network models encapsulate the control
flow (i.e. the logical ordering) between different tasks over time [S58]]. As a result,
they assume a centralized system architecture in which a supervisory component
controls the execution of guidelines. To reduce reliance on such components, Shalom
et al. in 2015 proposed a projection mechanism whereby self-contained portions of a
clinical guideline are identified for execution in parallel with the overall plan [70].
This mechanism was implemented in the MobiGuide system, which as described
in Sec. [I.4] contains two decision support systems, a front-end system running on
the patient’s smartphone to execute guideline fragments locally; and a back-end
system running on hospital servers to execute the overall guideline and “project” the
appropriate portions to recipient devices [[/0]. While this projection mechanism can
be extended to an arbitrary number of “local” devices, it still requires a supervisory

component to project guideline fragments.

3.2.2 Data Flow Representations of Disease Management

Instead of modelling the control flow in clinical guidelines, a possible alternative is
to focus on the data flow between each process. Such data flow models have been
applied to represent disease management, a typical example of which is described by
Carson, Cramp, Morgan and Roudsari in 1998 for the design and evaluation of clinical
decision support systems [[12]]. Their model comprises a sequence of three main
processes controlling the patient state: one to monitor the patient, another to make the
appropriate clinical decisions and the third to effect the chosen decision. Their model
was not formalised to enable the automatic execution of clinical guidelines; instead,
it was applied conceptually to capture the different levels of disease management,
from the business level to the patient level [12].

Similar data flow models have also been proposed for studying intelligent agents,
which form one of the main approaches to research in artificial intelligence [62]].
Defined as entities that can perceive their environment through sensors and act upon

it via actuators, intelligent agents can be divided into four categories of increasing
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complexity [62], from simple reflex agents that can only apply simple rules to
determine the appropriate action given the current percept to utility-based agents that
can not only maintain a conception about the state of the world but also maximise
the expected utility of their actions.

Such agent-based approaches have also emerged as a new paradigm in software
engineering [14], and in 2003, Kephart and Chess proposed a model comprising
four processes, namely Monitor, Analyze, Plan and Execute, to represent the self-
management of computing systems [38]]. Lasierra, Alesanco and Garcia (2014) then
adapted the Kephart and Chess model for the healthcare domain, developing the
HOTMES ontology for seamless integration of heterogeneous data in telemedicine

systems [43]].

3.3 Generic Model of Data Flow

3.3.1 Model of a Single Process

In contrast to the typical approaches for formalising clinical knowledge, this thesis
focuses on capturing the data flow between different processes to remove the reliance
on a centralised controller, whether for executing guidelines or projecting guideline
fragments. In particular, guidelines are represented as a network of data flow pro-
cesses executing in parallel. In this way, guideline knowledge and reasoning can be
flexibly distributed across the components of a pervasive healthcare system such that
they can provide decision support independently of each other, thereby achieving the
“holonic” multi-agent architecture presented in Sec. [I.2.1]

More formally, a data flow process is modelled as a tuple containing:

An ID (/d) to distinguish it from other processes.

A data state (DataState) for storing previous data input into the process.

A control state (ControlState) which determines when the process is activated.

A specification (InstSpec) of the instructions for the process when it is acti-
vated.
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Process = Id x DataState x ControlState x InstSpec 3.1

Since this chapter focuses on the architecture model, the details of the data state,
control state and instruction specification are left unspecified; it is sufficient to note
that they fully determine how any input data is operated on by a process at any given
time. In particular, processes are modelled to execute at every time instant (regardless
of whether they are activated or not), and each execution comprises the following

three steps:

* Generate new output data using the input data and current date-time.

» Update the data state of the process based on the input and output data as well

as the current date-time.

» Update the control state of the process based on the input and output data as

well as the current date-time.

Let the function execute represent the overall execution of a process, and let
generateData, updateDataState and updateControlState represent the functions for
each of the three steps. They have the following signatures and satisfy the following

invariant:

execute : Process X & (Data) x DateTime — Process x & (Data) (3.2)
generateData : DataState x ControlState x InstSpec x & (Data)
x DateTime — & (Data) (3.3)
updateDataState : DataState x ControlState X InstSpec x & (Data)
X DateTime — DataState 3.4
updateControlState : Id x DataState x ControlState x & (Data)

x DateTime — ControlState (3.5)
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Invariant 3.1. Let p be an arbitrary process, d;, an input data set and ¢ a date-time

stamp. Furthermore, let execute(p,din,t) = (Pour,dour)- Then:

71 (Pour) = 71 (P) A Ta(Pour) = Ta(p) N
m(pour) = updateDataState(my(p), m3(p), a(p),din U dous,t) N
73(pour) = updateControlState(m;(p), m(p), m3(p),din U dous,t) N
dows = generateData(m(p), m3(p), Ta(p), din,t)

The specification of updateDataState, generateData and updateControlState de-
pends on the specifics of the adopted formalism and will therefore not be detailed
until subsequent chapters. However, it is useful to note that as implied by the invariant
(Inv. [3.1), a process is assumed to never change its identifier nor its instructions,
which intuitively means that it can never be transformed into other process. Indeed,
the signatures of updateDataState and generateData reveal that the behaviour of a
process is not affected by its ID; the process ID is required by updateControlState to
ensure that only the relevant data can update its control state, while the rest of the
process behaviour is specified completely by its instruction specifications.

By updating the control state independently of the instructions of a process, a
clear separation of concerns is ensured between when a process is activated and what
the process does when activated. In fact, let isProcessActivated be a function that
returns a boolean indicating whether the process is activated or not. This function

only depends on the control state of the process as well as the current datetime:
isProcessActivated : ControlState X DateTime — Boolean 3.6)

If isProcessActivated returns false, then generateData should return an empty
set of output data regardless of everything else. Conversely, if isProcessActivated
returns true, the output of generateData should be independent of the process control

state. This leads to the following two invariants:

Invariant 3.2. Let 54, be an arbitrary data state, s.,; a control state, s;,, an instruc-

tion specification, d;, an input data set and ¢ a date-time stamp. Then:

—isProcessActivated(scy,t) = generateData(sgasa, Sciri, Sinsts dinst) = {}
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Invariant 3.3. Let s4,, be an arbitrary data state, s.,y1 and s..,» two different control
states, s;,5; an instruction specification, d;, an input data set and ¢ a date-time stamp.
Then:

isProcessActivated(scy1,t) N isProcessActivated(seyp,t) =

generateData(SdamvSctrll7sinstvdin7t) = generateData(SdamvSctrlZasinstudimt)

3.3.2 Model of a Process Network

While it is possible to model all disease management tasks as one conglomerate
process, it is useful for system design and development to divide the tasks into a
network of processes. For this thesis, which focuses only on the clinical aspects
of disease management, it is assumed that the processes in the network are fully
connected and that data flows instantaneously between them. Furthermore, the
processes are modelled to execute in parallel; in other words, there is no notion
of execution order between the processes. Thus a process network can simply be

modelled as a set of processes:
ProcessNetwork = & (Process) 3.7)

Let the function executeNetwork represent the execution of a process network at
a given time instant. It is analogous to execute for individual processes (Eq.[3.2)) and

has the following signature:

executeNetwork : ProcessNetwork x & (Data) x DateTime

— ProcessNetwork x & (Data) (3.8)

At each time instant, processes in a network output generate and share data
with each other, which in turn can affect the data they generate. Therefore, during
execution, the processes in a network are modelled to continue generating data until
a closure is reached. Afterwards, based on all the generated data, all processes
update their data state and control state before the next time instant. This leads to the

following two invariants:
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Invariant 3.4. Let p,,, be an arbitrary process network, d;;, an input data set and ¢ a
date-time stamp. Furthermore, let (poyu;, dour) = executeNetwork(pper,din,t), then:

duut = {genemteData(nz(p), Y% (p), 7T4(p>7din U daut,t) ’ pe pnel}

Invariant 3.5. Let p,,, be an arbitrary process network, d;, an input data set and ¢ a

date-time stamp. Furthermore, let (poyu;, dour) = executeNetwork(pper,din,t), then:

Pour = {(m(p),
updateDataState(m(p), m3(p), Ta(p),din U dous, 1),

updateControlState(m)(p), m(p), 3 (p),din U dous,t),
74(p)) | P € Pnet}

Note that executeNetwork does not invoke execute on individual processes. This
ensures that at each time instant, each process can only exhibit one data state and one
control state. However, it is trivial to show that for a single process, executeNetwork
induces the same behaviour as execute, provided that the output data is not a relevant

input to the process.

3.4 The Computation Independent Model

The definitions and invariants presented in Sec. [3.3] constitute a generic model of
data flow processes which is to be specialised into a CIM and PIM for the clinical
domain. In particular, the adopted CIM is based on those of Carson et al. (1998) [12]]
and Lasierra et al. (2014) [43] but adapts them for a different purpose, namely for
facilitating the execution of clinical knowledge.

By definition, the CIM is independent of any technology platform. Therefore,
unlike that of Lasierra et al. (2014), the CIM abstracts away the existence of computer
systems and represents the complete disease management process at the conceptual
level, with a clear distinction between the clinical semantics of each process and the
manner in which each process is executed. Thus whereas the Monitor and Execute
tasks are considered by Lasierra et al. (2014) to be the entry and exit points of their

system respectively [43]], the CIM does not assume specific points of entry or exit for
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each type of task. For example, although the process of diagnosing a fever and the
process of prescribing a medication may both require confirmation from the clinician,
they are considered as two different types of processes in the CIM, namely that of
diagnostic and therapeutic decision-making respectively.

More specifically, the CIM represents the disease management process as consist-
ing of four processes controlling the environment as shown in Fig. Monitoring
(M), Analysis (A), Decision (D), and Effectuation (E). Rounded rectangles with solid
borders represent processes within the CIM, while the rounded rectangle with dash
borders represent an external entity (viz. the environment). Furthermore, the arrows
represent data flow within the CIM, with inbound arrows indicating the types of data
that are operated on by the process and output arrows indicating the types of data
generated. Thus Fig. [3.1| shows, for example, that Monitoring processes operate on
physical stimuli and control instructions to generate low-level concepts as output.

More formally, the CIM can be specified by defining the following subsets of the

generic data flow model, with subscript ¢, indicating that it is specific to the CIM:

ProcessNetworkcpy C ProcessNetwork
= P (Processciu) 3.9
Processcpy C Process

= Monitoring -y U Analysis

U Decisioncpy U Effectuationqp, (3.10)
Datacpyy C Data

= PhysicalStimulus -, U LowLevelConcept

U HighLevelConcept ;U ActionPlancyy

U PhysicalActioncpy, U Controllnstructioncyy  (3.11)

Furthermore, the CIM satisfies the following two invariants, which specify,
respectively, that a process can only operate on and generate data of specific types
(as shown in Fig.[3.T)). Note that since these two invariants do not form part of the

developed archetype and guideline language, they are not given a number:
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Fig. 3.1 The MADE computation independent model of disease management.

Invariant. Let P denote a specific process type (e.g. Monitoring ). Din the type
of data it accepts (as shown in Fig. such as PhysicalStimulus qy). Furthermore,
let p be an arbitrary process in P, d;,; and d;;,» two input data sets (not necessarily in

D;,) and t a date-time stamp. Then:

dinl N Din =dip N Din =
generateData(my(p), 73 (p), wa(p),din1,t) =
generateData(m(p), 73(p), Ta(p), din2, 1)

Invariant. Let P denote a specific process type (e.g. Monitoring ), Dous the type
of data it outputs (as shown in Fig. 3.1} such as LowLevelConceptcp,). Also, let p
be an arbitrary process in P, d;, an input data set and ¢ a date-time stamp. Then:

generateData(my(p), m3(p), a(p),dinst) C Dy

Like the model of Carson et al. [12], the CIM includes processes for monitoring
the patient and for performing the associated actions. However, the clinical decision
making process has been partitioned into two separate processes, namely Analysis
and Decision, to distinguish between diagnostic and therapeutic decision-making
respectively. Furthermore, unlike either the Carson et al. or the Kephart and Chess
model as adopted by Lasierra et al. [43]], our MADE model accounts for the possi-
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bility of the system to monitor both the state of the patient as well as the patient’s
surroundings and to perform actions which affect the patient state indirectly via
changes in his or her surroundings or in the functioning of the system itself.

Thus the four processes (Monitoring, Analysis, Decision and Effectuation) are
defined as follows:

* Monitoring (M) is the process of making observations about the environment,
including both the internal as well as the external environment of the patient.
This involves processing and assigning meaning to physical stimuli, transform-
ing them to low-level concepts (i.e. data) about the state of the environment.
For a diabetic patient for example, a Monitoring process may be to measure

their blood glucose and physical exercise intensity levels regularly.

* Analysis (A) is the process of making abstractions from the low-level concepts,
transforming them into high-level, more meaningful concepts (i.e. information)
about the environment. In the clinical context, Analysis can therefore be
seen as a diagnostic process, which may, in the simplest case, only involve
a single assessment of the patient but can include on-going assessments as
well [66]. Examples include determining from the measured data whether the
patient is exhibiting good glycaemic control and is being compliant with the
recommended physical exercise levels.

* Decision (D) is the process of deciding on the appropriate plan (i.e. course
of action) given the current state of the environment and can therefore be
seen as therapeutic decision-making. For example, if the patient has poor
control over their blood glucose levels, then a Decision process may produce
a recommendation to begin insulin therapy. In general, the Decision process
also includes some scheduling as well as planning, as the resources required to
execute the plan, such as sensors and actuators, may not be available. However,

for simplicity, we will assume that these resources are always available.

* Effectuation (E) is the process of performing the decided course of action,
with the intention of bringing about a change in the patient’s state, such as
administering insulin to reduce the patient’s blood glucose levels. The course of
action need not affect the patient’s state directly; it may also involve changing
the patient’s external environment or controlling another MADE process, such
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as changing the frequency at which the patient’s state is analysed or the specific

physical stimuli that are monitored.

Although the final aim of this thesis is to support the formalisation and execution
of clinical knowledge, it should be noted that at the computation independent level,
no assumption is made regarding the specific reasoning mechanism employed for
each type of MADE process. For example, there are many different approaches
to performing a diagnosis [94] which differ not only by their representation of
knowledge, but also by their representation of time and state changes as well as
by their inferencing method. However, despite these differences, they can all be
conceptually modelled as an Analysis process as, by definition, the task of diagnosis
is one of determining the appropriate explanations (high-level concepts) given the
observations (low-level concepts) [94]. The only restriction is that each MADE

process should conform to the definitions and invariants presented.

3.5 The Platform Independent Model

3.5.1 Overview

The CIM reveals that to fully support a patient, the knowledge-based system must
be able to support all four types of processes (Monitoring, Analysis, Decision and
Effectuation). However, to derive a knowledge representation from the CIM, a few
changes are required to convert it to a corresponding PIM. For example, software
systems cannot interact with the patient directly but can only instead interact through
interfaces provided by external components. In other words, although user interfaces
can comprise arbitrarily complex sensors, they cannot provide physical stimuli
directly to a software system. Likewise, the system cannot execute physical actions
directly but must rely on an interface with the appropriate actuators.

In fact, it may be the case that manual intervention is needed to complete a
process or confirm the output of a process. For example, an action plan resulting
from a decision may require verification by a clinician before it is executed by the
system. Similarly, a complex analysis of patient data may be performed manually
before being input into the system to make the appropriate decision. Thus taking
these factors into account, the adopted platform independent model (PIM) for disease
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Fig. 3.2 The MADE platform independent model of disease management.

management is as shown in Fig.[3.2] This model can be formalised in an analogous
manner to that for the CIM (Sec. [3.4)); the main difference is that in the PIM, the
Monitoring process takes measurements as inputs while the Effectuation process
outputs action instructions. Furthermore, unlike the CIM, each process can send its
outputs to and receive inputs from the user interface.

Although each type of process is depicted in Fig. as a unified whole, they can
in fact be decomposed into a set of parallel processes as shown in Fig. [3.3] with the
dashed borders delineating the high-level MADE processes and the solid lines the
decomposed sub-processes. This decomposition reflects the fact that the management
of a disease often requires multiple, concomitant tasks to be performed in parallel.
Thus although the MADE processes can be distributed en-bloc across the devices
of the pervasive healthcare system, such that each process is completely performed
by one (but not necessarily the same) device, it is also possible to distribute smaller
sub-processes instead, thereby maximising the number of distribution options and
the potential benefits of distribution.

For example, consider the guideline on obesity published by the National Institute
for Health and Clinical Excellence (NICE) in the UK, which states that for adult
patients, clinical intervention may involve some combination of diet, physical activity,
drugs and surgery [52]]. This decision may be modelled as four separate decisions
for diet, physical activity, drugs and surgery respectively, each of which will be
made based on a possibly overlapping set of patient information, such as the patient’s
physical ability and degree of obesity. The derivation of each piece of information can,
in turn, be modelled as an individual Analysis process, and likewise, the performance

of different measurements and the execution of different plans can be modelled
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Fig. 3.3 The MADE platform independent model with parallel decomposition shown
explicitly. For simplicity, the flow of control instructions is not shown.

as concurrent Monitoring and Effectuation processes respectively. As a result, the

MADE processes will be decomposed in parallel as exemplified in Fig.[3.3]

3.5.2 Formal Specification

The overall MADE PIM can be formalised in an analogous manner to the MADE
CIM presented in Sec. [3.4] Indeed, since all research outputs relate to the MADE
PIM, no distinction is made in the remainder of this thesis between specifications of
the generic data flow model and their specialisation to the MADE PIM. Therefore,
unless otherwise indicated, the set Process for example shall henceforth refer to the
set of all MADE processes in the PIM (instead of all generic data flow processes).

As implied in Fig. four sub-types of MADE processes and six sub-types of
MADE data are distinguished:

Process = Monitoring U Analysis
U Decision U Effectuation (3.12)
Data = Measurement U Observation
U Abstraction U ActionPlan

U Actionlnstruction U Controllnstruction (3.13)
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Furthermore, analogous to the CIM, the PIM satisfies the following two invariants,
which specify, respectively, that a process can only operate on and generate data of

specific types:

Invariant 3.6. Let P denote a specific process type (e.g. Monitoring), D;, the type
of data it accepts (as shown in Fig. [3.2] such as Measurement). Furthermore, let p
be an arbitrary process in P, d;,1 and d;,» two input data sets (not necessarily in D;;,)

and ¢ a date-time stamp. Then:

dinl N Din =dipp N Din =
generateData(my(p), w3 (p), wa(p),din1,t) =
generateData(my(p), 73 (p), ma(p),din2, 1)

Invariant 3.7. Let P denote a specific process type (e.g. Monitoring), D, the type
of data it outputs (as shown in Fig. [3.2] such as Measurement). Also, let p be an

arbitrary process in P, d;, an input data set and ¢ a date-time stamp. Then:

generateData(my(p), w3 (p), Ta(p),din,t) C Doy

]

However, unlike the CIM, two categories of processes are distinguished: “proxy’
processes and non-proxy processes. As mentioned in Sec. certain processes
may require manual intervention, thus they are differentiated from the automatable,
non-proxy processes by their ID. More specifically, if a process has an ID in the
set of proxy IDs (Proxyld), which is a subset of Id, then it is categorised as a proxy
process that requires manual intervention. As such, all output data generated by that

process cannot affect any other processes, which gives rise to the following invariant:

Invariant 3.8. Let p be an arbitrary processes, d;, an input data set and ¢ a date-time

stamp. Furthermore, let (pour, dous) = execute(p,din,t), then:

m(p) € Proxyld =
Vp2 € Process, diyy € & (Data), t, € DateTime.

execute(pa,dim,12) = execute(pa,diny U dpys, 1)
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W

. we routinely monitor fasting urinary ketones [M] in women with
GDM. The patient measures ketonuria using urine strips [M]. Monitor
ketonuria routinely means to measure ketones in the urine every da

at fasting conditions [M]. ... The results of ketonuria could be: a)
positive (++); b) positive (+); c) negative (+/-); d) negative (-);
e) negative (--). ... In case of ketonuria detection (the number of
ketonuria measurements with result “positive” is equal or higher than
3 in a period of time of one week) [A]:- If the patient was COMPLIANT
with the prescribed diet [A], the nurse decides to increase the
carbohydrates intake either at dinner or at bedtime: the amount of
carbohydrates at dinner or at bedtime is increased by 1 unit (10

grams [D]). L

Fig. 3.4 Extract from the MADE mark-up version of the GDM guideline [61] leading
to a decision to increase carbohydrates intake. The MADE mark-up is indicated by
underlining followed by inserted [M] for Monitoring, [A] for Analysis and [D] for
Decision.

3.6 Application Example

It is outside the scope of this chapter to illustrate the use of the PIM on a full clinical
guideline, but as a small example, consider the extract shown in Fig. [3.4] which is part
of the narrative guideline adopted by MobiGuide for managing gestational diabetes
mellitus (GDM); this fragment in particular relates to the decision to increase the
carbohydrates intake of the GDM patient. In consultation with expert clinicians, a
manual mark-up was performed on the extract to identify M, A, D and E processes
as indicated in Fig. by underlining followed by an inserted [M] for Monitoring,
[A] for Analysis and [D] for Decision. In this fragment, no Effectuation processes
were identified.

From the mark-up, a corresponding MADE process model as shown in Fig. [3.5|
was constructed and was validated informally by the expert clinicians as an accurate
representation of the knowledge in the original extract. The arrows in the figure
depict the flow of data from one process to another, showing, for example, that
the decision to increase carbohydrates intake depends on the analysis of fasting
urinary ketone levels and carbohydrates intake levels. In this case, the specific logical
condition for triggering the decision is the conjunction of detection of ketonuria and
compliance to dietary prescription. Similarly, the figure also shows the required

input and target output for the detection of ketonuria; underlying that at a lower-level
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Fig. 3.5 Fragment of the MADE process model corresponding to the text extract
from the GDM guideline shown in Fig.

of abstraction (not shown) is the logical condition governing the Analysis process,
which is presence of three or more positive ketonuria measurements in one week.

Note that Fig. [3.5]does not show the process to “monitor fasting urinary ketones”
despite it being a Monitoring process conceptually. This is because the process is to
be performed completely manually by the patient, thus it is considered external to
the system (and therefore the model). As a result, Fig. [3.5/only shows urinary ketone
levels being input into into the system, specifically into the process for analysing
ketonuria. On the other hand, consultations with expert clinicians revealed that the
decision to increase carbohydrates intake need not be performed manually by the
nurse as indicated in Fig. [3.4] Therefore, the decision process can be automated and
included in the Fig.[3.3]

Although shown graphically, this MADE model for the guideline extract can be
formalised in the same manner as the MADE CIM and PIM, the results of which may
then facilitate the identification of an appropriate distribution of processes across
the pervasive healthcare system. For example, since the processes shown in Fig.
require patient interaction, they may be best deployed to a device that remains close
to the patient (e.g. a smartphone). On the other hand, if a process is highly complex
(which may be determined from its specification), or if a process requires interaction

with a clinician, then it may be best deployed to a back-end server.
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3.7 Discussion

3.7.1 Serial Decomposition of MADE Processes

While the complete results of formalizing the GDM guideline are reserved for
subsequent chapters, it is useful at this point to review the high-level design decisions
implied by the adopted PIM and CIM as they ultimately determine what can and
cannot be represented. In particular, Fig. [3.3]implies that each type of MADE process
M, A, D and E) can only be decomposed into parallel processes but not serial
processes. In other words, it has not been considered how these MADE processes
might also be decomposed into a series of sub-processes by considering the sub-steps
that constitute a MADE process.

For example, a diagnosis of influenza may be modelled as involving two steps,
the first to analyse in parallel all the individual symptoms of influenza (e.g. fever,
diarrhoea and sneezing [S1]), and the second to analyse the combination of symptoms
present. Likewise, a decision to start a drug therapy may be decomposed into a
sequence of sub-steps for deciding on the exact drug dosage, administration frequency
and the follow-up procedure. The result of such serial decomposition is shown
schematically in Fig. in which three parallel Analysis processes (delineated by
the dashed borders) are modelled using two, three and one sub-processes respectively
(delineated by the solid borders).

Although such serial decomposition enables more fine-grained representations of
disease management, it is not incorporated into the PIM as it is hypothesized that
such flexibility is unnecessary and introduces extra complexity to the model and
ultimately to the developed knowledge representation language and related outputs.
For example, different processes may be best decomposed into different numbers
of serial processes, and the conceptual nature of each intermediate result may be
different even for the same type of process (M, A, D or E), all of which must be
modelled in the PIM.

3.7.2 Nested MADE Networks

As mentioned in Sec. data flow models similar to the MADE CIM and PIM have

been used to characterize the self-management of computer systems. This suggests
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Fig. 3.6 Serial decomposition of the MADE model. For simplicity, only the Analysis
processes are shown.

Monitoring Analysis Decision Effectuation
(M) (A) (D) (E)
¢—I f
|

Monitoring Analysis Decision Effectuation
(M) (A) (D) (E)

Fig. 3.7 Nesting of MADE networks. For simplicity, the external components are not
shown.

the addition of nested MADE networks to the PIM, with the inner MADE networks
controlling outer MADE networks. For example, as shown in Fig. an Analysis
process may itself be monitored, the results of which are then analysed and used
to formulate a plan that is then acted upon to change the behaviour of the Analysis
process.

Such nesting may be useful in modelling changes to the process due to changes
in system performance. For example, in the event of connectivity issues between the
different devices, the inner MADE network can adjust the functioning of the outer
MADE network as appropriate. However, while useful, a clear separation of concerns
should be maintained between the clinical aspects of maintaining a patient’s health
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and the technical aspects of maintaining the system behavior. The latter requires
technical knowledge and is therefore be outside the scope of the PIM, which is
designed to capture clinical processes.

Nevertheless, nested MADE networks need not be solely applied to addressing
technical issues. Medically related issues, such as non-compliance to a treatment
regime, should also be monitored and accounted for. An inner MADE network for
diabetic patients may, for example, monitor their compliance to recommended diet
and propose alternative treatments in case of deviations, such as administering insulin.
However, it is hypothesised that such issues can also be fully modelled without use
of nesting; compliance is simply a type of Analysis and the alternative treatments
can form part of a Decision process. Thus like serial decomposition, support for
nesting would simply introduce unnecessary complexity to the PIM and knowledge

representation.



Chapter 4

The Reference Information Model

4.1 Introduction

The MADE PIM presented in Sec. [3.5]is designed to be both independent of any
system-specific detail and applicable across different clinical applications, thus
providing an appropriate starting point for developing the MADE knowledge rep-
resentation language for pervasive healthcare systems. This requires formalizing
the model to arrive at an appropriate syntax and semantics for the language, and
this formalization is divided into two parts in this thesis: one part to model the
data flowing between the different MADE processes and the other part to model the
MADE processes themselves.

Indeed, to maximise their interoperability and adaptability, such separation of
concerns between data and processes is generally accepted as good practice in systems
that manage electronic health records (EHR). For example, since its establishment
in 2003, the openEHR Foundation (https://www.openehr.org/) has proposed various
standards for adaptable and interoperable EHR systems, including a reference model
(RM) for representing clinical data [83]] and a guideline definition language for
enabling computerized clinical decision support [84]. Similarly, founded in 1987,
Health Level Seven International (HL7, https://www.hl7.org/) has published standards
such as the Arden Syntax for formalising clinical knowledge [63] and the virtual

medical record (vMR) for representing data for clinical decision support [37].


https://www.openehr.org/
https://www.hl7.org/
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This chapter focuses on the formal specification of the data flowing between
MADE processes, which will be referred to as the MADE reference information
model (RIM) and is analogous to the openEHR RM and HL7 vMR. Thus following
a description of related work in Sec.[4.2] the complete specification of the MADE
RIM is detailed in Sec.[4.3] To ensure unambiguity and to enable formal analysis,
the specification is formalised using axiomatic set theory, the notation for which is
summarised in Table[I.1] Furthermore, using the same example presented in Sec. [3.6
a simple application of the MADE RIM will be demonstrated in Sec. .4} while
its validation using a complete clinical guideline is reserved for Ch.[8] Finally, the
results are discussed at the end of the chapter (i.e. Sec.[4.3).

4.2 Related Work

To maximise re-use, EHR systems should generally be adaptable to different clini-
cal applications, each of which may exhibit different requirements on clinical data.
Therefore, these EHR systems generally adopt a multi-level modelling approach to
representing clinical data, in which an application-independent model is implemented
in the system and specialised during runtime. For example, openEHR distinguishes
between its reference model, which is designed to capture the generic data types
required in a clinical statement, and domain content models, which specialise the ref-
erence model for specific clinical applications by detailing their semantic constraints
in the form of archetypes [[83, 4]. Only the reference model is implemented in soft-
ware, which allows the resulting system to be reused in different clinical applications,
provided that the appropriate domain model is provided during run-time.

Similarly for HL7 v3, its reference information model is designed to represent
all clinically relevant “messages”, which need not be limited to clinical decision
support. Depending on the specific problem domain, the requirements for which
are represented as a domain analysis model, the HL7 RIM may be specialised into
different domain information models (DIM) [16]. Example domains include clinical
genomics and emergency medical services, but of particular interest is the virtual
medical record (vMR), which was developed to support clinical decision support and

is comparable to the openEHR reference model.
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As part of the MobiGuide project, the HL7 vMR model (first release) was adopted
to support interoperability between the back-end servers of hospitals and the wearable
healthcare technologies of patients. It was observed however [26} 45] that the HL7
vMR model was unable to capture all the necessary data requirements, and the
solution of extending the vMR data types and relaxing their definitions was proposed
and demonstrated. However, to best support the exchange of data in the special case
of wearable and mobile healthcare technologies, this thesis proposes an alternative of
developing a new RIM based specifically on the requirements of pervasive healthcare.

Similar to the openEHR RM and HL7 vMR, the new RIM is designed to be
generic and to allow specialisation into the appropriate DIMs. However, the new RIM
is also designed to be concise instead of comprehensive, since pervasive healthcare
systems may be required to process large data streams (e.g. from sensors) on devices
with limited computing capabilities (e.g. smartphones instead of back-end servers).
For example, clinical observations in openEHR are modelled to contain data of
arbitrary complexity (including lists, tables and trees), as well as optional state and
protocol information (also of arbitrary complexity) [82]]. Such detail and flexibility,
while useful, may introduce unnecessary processing costs to the pervasive healthcare
system as well as unnecessary complexity to the knowledge representation language.

Furthermore, neither the openEHR RM nor HL'7 vMR explicitly models delayed
and/or out-of-order arrival of data items, which may frequently occur in the pervasive
healthcare setting and can affect the support provided to the patient. Indeed, by being
based on the MADE PIM, the new RIM is also explicitly designed to reflect the data
requirements of pervasive healthcare, such as the processing of low-level sensor data
which are not explicitly modelled by the openEHR RM and HL.7 vMR.

4.3 The MADE Data Types

As specified in Eq. [3.13] there are six main data types in the MADE RIM: mea-
surements, observations, abstractions, action plans, action instructions and control
instructions. They are each constructed from a combination of 10 primitive data
types, namely Id, Boolean, Nominal, Enumerated, Count, Proportion, Dimensioned,

DateTime, Duration and Schedule, all of which adopt conventional semantics. For
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example, the data type Dimensioned represents quantities that are characterised by a

real-number magnitude (e.g. 4.5) and a unit (e.g. mmol/L).

4.3.1 Measurements

One of the six high-level MADE data types represents measurements, which are
data items that result from ‘“an empirical estimation of an objective property or
relation” [77] about the environment and may not have an immediate clinical inter-
pretation. Examples include accelerometer, magnetometer and goniometer data from
which measures of the patient’s motor function can be derived [39]. In the MADE
model, measurements are quantified using a dimensioned number and are associated
with a valid date-time, which indicates when the measurement holds, i.e. the instant
of measurement. Furthermore, as with other MADE data types, all measurements
include an identifier to distinguish between different sensed physical stimuli as well
as a transaction date-time which, as opposed to a valid date-time, indicates when the
data item is known to the system. For example, if a patient’s blood glucose level
is measured at 10:00 but entered into the system two hours later at 12:00, then the
measurement’s valid and transaction time would be 10:00 and 12:00 respectively.

More formally, measurements are specified as follows:

Measurement = MeasurementType x TransactionDateTime

X ValidDateTime X Dimensioned, where “4.1)
MeasurementType = Id “4.2)
TransactionDateTime = DateTime 4.3)
ValidDateTime = DateTime 4.4)

4.3.2 Observations

The result of processing measurements by a Monitoring process is an observation,
which is a low-level fact about the environment that has a direct clinical interpretation
but, as shown in Fig. still requires further analysis for clinical decisions to be
made. In the MADE model, two types of observations are distinguished: those
for observed properties and those for observed events. This is analogous to the
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distinction made by Shahar in 1997 between parameters and events in his framework
for knowledge-based temporal abstractions [67], wherein parameters are defined as
“ameasurable aspect or a describable state of the world” and events as “the occurrence

of an external volitional action or process”.

Observation = ObservedProperty U ObservedEvent 4.5)

Observed properties are observations about the physical objects in the environ-
ment, e.g. blood glucose level. Like measurements, observed properties are only
valid at a specific time point, thus they also contain a single valid date-time stamp.
However, they need not be quantified using dimensioned values. For example, blood
type may be categorised into A, B, AB or O and is therefore a nominal data type,
while burn severity may be assigned an ordered grade of either 1, 2, or 3 and is
therefore an enumerated data type. Other possible data types for property values are

boolean, count and proportion:

ObservedProperty = PropertyType X TransactionDateTime
x ValidDateTime X PropertyValue, where 4.6)
PropertyType = Id 4.7
PropertyValue = Boolean U Nominal U Enumerated

U Count U Proportion U Dimensioned 4.8)

The second type of observation (viz. observed event) relates to events which

occur in the environment. These events may include [13]:
 Activities, which are homogeneous events with a duration but no natural end
goal (e.g. running on a treadmill).

* Accomplishment, which is not homogeneous but has a culmination (e.g. climb-

ing a mountain).

* Achievement, which is instantaneous and has a culmination (e.g. administering

an insulin dosage).
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 State, which is homogeneous and has a starting point but does not have a

meaningful duration or culmination (e.g. a patient being diabetic).

Unlike observed properties, observed events in the MADE RIM can only be
characterised by a Boolean value indicating whether the corresponding event occurred
or not. All relevant properties of events, e.g. exercise intensity, are captured by the
observed properties of the objects involved. Furthermore, all observations relating
to events are associated with a pair of date-time stamps marking the start and end
time of an event; in the simple case of instantaneous events, such as state transitions,

these two date-time stamps are equal:

ObservedEvent = EventType X TransactionDateTime

X ValidDateTimeRange X Boolean, where 4.9)
EventType = Id (4.10)
ValidDateTimeRange = DateTime x DateTime, such that 4.11)

Vv € ValidDateTimeRange. m(v) < m(v)

4.3.3 Abstractions

Abstractions result from the removal of irrelevant information from some given
entities [11]. Thus compared with observations, abstractions in the MADE PIM may
exhibit more abstract values and may be valid over an extended time period. For
example, an abstraction of physical activity observations may compute a summary
of patient’s degree of activity over the month, while another abstraction of blood
glucose observations may detect multiple hyperglycaemic episodes in the past week.

As aresult, abstractions are modelled to also contain a valid date-time range and

an abstraction value that can be of any numerical or categorical data type:

Abstraction = AbstractionType x TransactionDateTime
x ValidDateTimeRange X AbstractionValue, where 4.12)
AbstractionType = Id (4.13)
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AbstractionValue — Boolean \J Nominal U Enumerated

U Count U Proportion U Dimensioned 4.14)

4.3.4 Action Instructions

To specify the action plans of a Decision process, it is useful to first specify the
outputs of an Effectuation process (viz. action and control instructions) since they
form the main constituents of an action plan. In general, an action is something that
is done intentionally (as opposed to events which only occur) [89], and in the MADE
model, two types of actions (and therefore action instructions) are distinguished:
homogeneous actions and culminating actions. Note that for simplicity, actions and

action instructions will not be distinguished where no ambiguity exists.

Actionlnstruction = HomogeneousAction U CulminatingAction (4.15)

Firstly, actions are referred to as homogeneous if they do not have a clear end goal
and can be divided into sub-parts that retain the same overall properties, for example
a continuous activity such as running on a treadmill. Therefore, the corresponding
instructions are characterised by a starting date-time stamp, a rate at which the action
should be performed (e.g. running at 7 kph) as well as a duration (e.g. for 20 minutes):

HomogeneousAction = ActionType X TransactionDateTime

X StartDateTime X Rate x Duration, where (4.16)
ActionType = Id 4.17)
StartDateTime = DateTime (4.18)

Rate = Dimensioned 4.19)

Unlike homogeneous actions, culminating actions have a clear end goal that must
be achieved, such as administering 30 units of basal insulin in the evening. Therefore,
although instructions for such actions also have a target start date-time, they exhibit

a well-defined target goal state instead of a duration and rate:
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CulminatingAction = ActionType X TransactionDateTime
xStartDateTime X GoalState,where (4.20)
GoalState = Boolean U Nominal U Enumerated

U Count U Proportion U Dimensioned 4.21)

4.3.5 Control Instructions

Control instructions are used to determine when its target process should be activated.
In the MADE model, all processes are assumed to be pre-existent and can only be
re-scheduled and/or paused or resumed by a control instruction. Furthermore, to
allow correct temporal ordering of multiple control instructions irrespective of any
potential transaction delays, these control instructions are also characterised by a

valid date-time stamp to indicate when they should be effected:

Controllnstruction = TargetProcess x TransactionDateTime

x ValidDateTime x (Schedule U {NULL}) x (Status U {NULL}), where = (4.22)

TargetProcess = Id (4.23)

Schedule = RepeatPattern x Repeatlnterval (4.24)
RepeatPattern = & (DateTime) (4.25)
RepeatInterval = Duration U {NEVER, ALWAYS } (4.26)
Status = {PAUSED, RUNNING }, such that (4.27)

Ve € Controllnstruction. —(m4(c) = NULL A 7s(c) = NULL)

As specified above, control instructions may contain a special NULL element in
place of a new schedule or a new status for the target process, which indicates that
the target process should continue to operate under its existing schedule or status
as appropriate. However, since control instructions would serve no function if both
their schedule and status are absent (i.e. if both are NULL), they must contain a new

schedule or a new status for the target process or both.
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Furthermore, in the MADE PIM, all processes run continually unless instructed
otherwise by a control instruction. Thus a schedule in the MADE RIM comprises
a possibly empty set of starting date-time stamps (i.e. the repeat pattern) which
indicates when a process should start being activated as well as a duration (i.e. the
repeat interval) which indicates how often the pattern should be repeated (if ever).
For example, the starting pattern may dictate the process to start executing on Mar.
30, 2020 at 6:00 am, while the repeat interval may dictate the process to continually
execute every week. Sentinel values NEVER and ALWAYS indicate that the target
process should, respectively, never and continuously be activated at each time instant
beyond its starting pattern.

4.3.6 Action Plans

In general, disease management may involve complex plans comprising sequential,
parallel, iterative, unordered and/or cyclical activities [58), |65]. However, since
pervasive telemedicine systems often operate continuously over long periods of
time, they are modelled in this thesis to operate on cyclic parallel plans only, which,
through the use of the appropriate schedules, can also be transformed into sequential
and non-cyclical plans. Therefore, without loss of functionality, an action plan
is modelled as containing a set of scheduled control and action instructions, each

specifying when a MADE process or physical action should be executed:

ActionPlan = PlanType x TransactionDateTime x ValidDateTime

x P (ScheduledControl,ScheduledHomogeneousAction

ScheduledCulminatingAction), where (4.28)
PlanType = Id (4.29)

ScheduledControl = TargetProcess x (Schedule U {NULL})
X (Status U {NULL}) (4.30)

ScheduledHomogeneousAction = ActionType X Schedule
X Rate X Duration 4.31)

ScheduledCulminatingAction = ActionType X Schedule
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x GoalState, such that (4.32)
Vp € ActionPlan. (Vi, j € my(p). m (i) = m(j) =i=j) A
Vk € ScheduledControl. —~(m (k) = NULL A m3(k) = NULL)

The first condition on an action plan ensures that each of its scheduled control
and action instruction refers to a different target process or action type. In other
words, there cannot be more than one instance of the same type of action or control
instruction in the action plan, which prevents the occurrence of internal inconsis-
tencies such as scheduling the same process simultaneously to always and never
execute. Furthermore, like that for control instructions, the second condition ensures
that scheduled control instructions must contain a new schedule or a new status or
both.

4.4 Application Example

As an example application of deriving a domain information model from the MADE
RIM, consider the clinical guideline fragment reproduced in Fig. and represented
in Fig. [3.5]as a MADE PIM. According to this fragment, patients with gestational
diabetes mellitus (GDM) are to track their urinary ketone levels and compliance
with their dietary prescription. If positive ketonuria (presence of urinary ketones) is
detected and the patient has been compliant with her prescribed diet, then she may
increase her carbohydrates intake once for subsequent dinners. Thus overall, the
MADE RIM can be specialised into the following domain information model (DIM)
for this guideline fragment, which comprises 5 data types, namely 1 observation, 2

abstractions, 1 action instruction and 1 action plan:

UrinaryKetoneLevel C ObservedProperty, such that (4.33)
Vk € UrinaryKetoneLevel. m (k) = URINARY KETONE LEVEL A
ma(k) € {-- -, +/-,+,++}
Ketonuria C Abstraction, such that (4.34)

Vk € Ketonuria. (k) = KETONURIA A m4(k) € {POSITIVE}



4.5 Discussion 51

DietCompliance C Abstraction, such that (4.35)
Ve € DietCompliance. m)(c) = DIET COMPLIANCE
A m4(c) € {COMPLIANT}
DietaryPlan C ActionPlan, such that (4.36)
Vp € DietaryPlan. m)(p) = DIETARY PLAN
A Ji € my(p). i € ScheduledCulminatingAction

A 71 (i) = CHANGE DIET INSTRUCTION

ChangeDietlnstruction C CulminatingAction, such that (4.37)

Vi € ChangeDietlnstruction. m (i) = CHANGE DIET INSTRUCTION

The values for urinary ketones, ketonuria and carbohydrates sufficiency are
inferred from the original guideline text shown in Fig. For example, it is stated
that the results of measuring urinary ketones can be: “a) positive (++); b) positive
(+); ¢) negative (+/-); d) negative (-); e) negative (--)”. Furthermore, while it is
unclear from the extract what is the complete set of action and control instructions
that “increase carbohydrates intake” entail, the plan at least involves the action to
increase carbohydrates intake, which is a culminating action. Hence the existential
quantifier 3 is used to specify that each instance of this action plan must at least
contain such a scheduled culminating instruction. To effectuate this change, there is

a need for a corresponding specification for the culminating action instruction.

4.5 Discussion

4.5.1 Appropriateness of the MADE RIM

A key premise for developing this MADE RIM instead of adopting an existing one is
that the MADE RIM may be more appropriate for use in pervasive healthcare systems.
In particular, unlike typical reference models such as those for openEHR and HL7
presented in Sec. 2] the MADE RIM is based on the MADE PIM for pervasive
telemedicine systems and is explicitly designed to be concise and to distinguish

between transaction and valid datetimes. However, while it is not the aim of this
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chapter to provide clinical validation of the MADE RIM, it can be noted that one
missing feature from the MADE RIM is quality-of-data (QoD) awareness properties.

Due to the uncontrolled nature of the daily living environment, clinical data may
suffer from noise and many other sources of error, including measurement errors due
to movement artefacts or from incorrectly positioned sensors. Therefore, to ensure
the best clinical support for the patient, such potential inaccuracies should be taken
into account when processing data items, such as by using quantified probabilities
and utility functions or by means of a multi-dimensional measurement of QoD such
as that proposed by [42]] which encompasses accuracy, dependability, cost, timeliness
and quality-of-evidence. That said, quality awareness reflects a technical concern
and should therefore be separated from the clinical concerns of pervasive healthcare

systems, which is the focus of this thesis.

4.5.2 Interoperability with Clinical Information Systems

Since the MADE RIM is designed specifically for pervasive telemedicine systems,
it does not aim to replace the function of existing standards in clinical information
systems, including openEHR and HL7. As a result, in order to store the MADE data
items in such systems, which may be necessary due to legal and ethical reasons for
example, a systematic procedure must also be developed for translating between the
MADE RIM and standards in use.

A comparison between the specifications of the different models reveals that the
MADE data types can be mapped onto the existing openEHR RIM and HL7 vMR
DIM as shown in Table 4.1} Although there is not a one-to-one mapping between
the data types, the openEHR and HL'7 data types can still distinguish between all
MADE data types through judicious use of their attributes. However, it has been
shown [26] 145]] that certain extensions are nevertheless required to capture all the data
requirements in pervasive healthcare systems. For example, [26, 45] demonstrated
that transaction times should be added to vMR clinical statements; this holds also for

openEHR classes.



4.5 Discussion

53

Table 4.1 The correspondence between the data types in the MADE RIM and those
in the openEHR RIM and HL.7 vMR.

MADE RIM openEHR RIM HL7 vMR
Measurement Observation Observation Result
Observation

Abstraction Evaluation

Action Plan Instruction Observation Order,
Action Instruction  Activity Procedure Order and/or

Control Instruction

Substance Administration Order







Chapter 5

The Archetype Language

5.1 Introduction

While the MADE RIM presented in the previous chapter may be sufficient for
representing all types of clinical data, it does not support the specification of well-
formedness constraints on the data items. For example, it is possible to assign a value
of 15 ms~2 to a body temperature, or a value of -73 °C to a prescribed target level of
carbohydrates intake, both of which clearly lack any valid clinical interpretation. To
capture these restrictions, OpenEHR extends its Reference Model with the notion of
an archetype, which is “a computable definition, or specification, for a single, discrete
clinical concept” [44]. Similarly, the HL7 standard relies on the use of templates,
each of which is “an expression of a set of constraints on the RIM which is used to
apply additional constraints to a portion of an instance of data” [32].

For the MADE RIM, an archetype language is developed and presented in
this chapter to specify these well-formedness constraints on the MADE data items,
which may then be used to check the validity of any instantiated MADE data item.
The syntax for the language is specified using the extended Backus-Naur form
(EBNF) [34], although for simplicity, white space separating the EBNF elements
are assumed and will not be explicitly specified. Furthermore, as summarised in
Table 5.1} certain syntactic constructs from Rosette will be re-used, all of which are
written in all capitals to distinguish from other syntactic elements. Indeed, since

the language is implemented as a set of libraries on top of Rosette, it supports all
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Table 5.1 Summary of the Rosette syntax that may appear in the EBNF expressions.

EBNF Element Corresponding Rosette Construct

ID An identifier, e.g. x.

SYMBOL A symbol, i.e. an arbitrary atomic value, the syntax for which
is the same as that for ID but preceded with *. E.g. ’x.

LAMBDA-EXPR A lambda expression, which creates a function.
E.g. (lambda (x) (+ x 1)).

NATURAL A natural number. E.g. 1, 2, 3, etc.

BOOLEAN A boolean value (#t for true and #£ for false)
RATIONAL A rational number. E.g. 1.2, 2.5, etc.

EXPR An arbitrary expression.

constructs that are inherently provided by Rosette as well as those that arise from the
implementation of the language.

In Sec.[5.2] the complete syntax of the MADE archetype language is presented
along with an informal description of its semantics and examples of its usage. This is
followed by an explanation of its reference implementation in Sec.[5.3] A mixture
of testing and formal verification is used to verify the implementation, the process
and results for which is described in Sec.[5.4] Finally, this chapter concludes with a
discussion in Sec.

5.2 Language Specification

5.2.1 Basic Data Types

Since the MADE RIM is built on top of 10 primitive data types, namely Id, Boolean,
Nominal, Enumerated, Count, Proportion, Dimensioned, DateTime, Duration and
Schedule, expressions in the archetype language may involve manipulating and
instantiating them. This sub-section focuses on the 7 non-temporal, basic data types,

i.e. Id, Boolean, Nominal, Enumerated, Count, Proportion, Dimensioned, while the
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next sub-section focuses on the remaining three temporal data types, i.e. DateTime,
Duration and Schedule.

Identifiers are inherently supported by Rosette, thus for simplicity, no additional
syntactic forms for constructing and manipulating Ids are provided by the MADE
archetype language. For the 6 other non-temporal primitive data types, they can be
instantiated in the same manner as any other structure in Rosette. More specifically,

instantiations of the these primitive data types exhibit the following forms:

boolean-instance : ’(bool’, EXPR, ’)’;
nominal-instance : ’(’, ID, EXPR, ’)’;
enumerated-instance : ’(°, ID, EXPR, ’)’;
count-instance : ’(count’, EXPR, ’)7;
proportion-instance : ’(proportion’, EXPR, ’)7;

dimensioned-instance : ’(dimensioned’, EXPR, EXPR, ’)?;

As expected, EXPR should return a value of the appropriate type when instantiat-
ing a primitive data type. For example, for boolean instances, EXPR should always
evaluate to true or false when executed. Furthermore, since Nominal and Enumerated
each represent a family of data types, the members of which can only be determined
when formalising a clinical guideline, no specific identifiers are associated with
them. This ensures, for example, that a ‘high’ blood glucose level can be interpreted
differently than a ‘high’ urinary ketone level, even though their values are both ‘high’.
Finally, for dimensioned instances, a second expression is required to produce a
symbol that represents its units of measurement.

As with all other structures in Rosette, instances of these basic data types can
be compared for equality using the eq? procedure. Additionally, the procedures
get-type, get-value and valid? are provided by the MADE archetype language,
which respectively returns the type of the instance, the value of its expression, and
whether its value is of the appropriate type. Example invocations of the procedures
are as follows. Note that for simplicity, unit conversion is not supported, thus in the

MADE archetype language, 1000 m is not equal to 1 km.

> (eq? (dimensioned 1000 ’m) (dimensioned 1 ’km))
#£f
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> (eq? (count (- 11 2)) (count (* 3 3)))
#t

> (get-type (bool #t))

#<procedure:bool>

> (get-value (proportion (+ 3 1)))

4

> (valid? (bool 4))

#f

> (valid? (proportion (+ 3 1)))

#t

For enumerated and dimensioned instances, comparators are also supported,
specifically enum>? and enum<? for enumerated instances and dim>?, dim>=7,
dim<? and dim<=? for dimensioned instances. Example invocations of these
procedures are as follows, where test-enum is an enumerated data type with values

>low, ’normal and *high:

> (enum>? (test-enum ’low) (test-enum ’high))

#f

> (enum<? (test-enum ’low) (test-enum ’high))

#t

> (dim>? (dimensioned 5 ’m) (dimensioned 5 ’m))
#f

> (dim>=7 (dimensioned 5 ’m) (dimensioned 5 ’m))
#t

> (dim<? (dimensioned 1 ’m) (dimensioned 15 ’m))
#t

> (dim<=?7 (dimensioned 1 ’m) (dimensioned 15 ’m))
#t

5.2.2 Temporal Data Types

The temporal data types (i.e. DateTime, Duration and Schedule) can be instantiated

and manipulated in a similar manner as the basic data types presented above, except
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that they exhibit a more complex form and supports more complex operations.
Firstly, duration instances comprise four fields representing the number of days,

hours, minutes and seconds in the duration:
duration-instance : ’(duration’, EXPR, EXPR, EXPR, EXPR, ’)’;

The procedures dur+ and dur- are provided for adding and subtracting two
durations. Furthermore, to compare whether one duration is equal, larger than, and
less than another, the procedures dur="7, dur>? and dur<? are provided. Note that
these comparators can take into account the equivalence between different units of
time, such that 1 day is equal to 24 hours and 1 hour is equal to 60 minutes, etc. In
particular, this means that dur=7 is not equivalent to eq?, as the latter compares
each individual field for equality. Some examples of invoking these procedures are

as follows:

> (dur+ (duration 1 0 O 0) (duration O 30 O 15))
(duration 1 30 0 15)

> (dur- (duration 1 30 0 15) (duration 0 30 0 15))
(duration 1 0 0 0)

> (dur>? (duration 1 0 0 0) (duration 0 30 0 15))
#f

> (dur<? (duration 1 0 0 0) (duration 0 30 0 15))
#t

> (dur=? (duration 1 0 0 0) (duration O 23 59 60))
#t

> (eq? (duration 1 0 0 0) (duration O 23 59 60))
#f

Date-time instances comprise six fields representing the year, month, day, hour,

minute and second.

datetime-instance :
’(datetime’, EXPR, EXPR, EXPR, EXPR, EXPR, EXPR, ’)?;

Durations can be added and subtracted from date-time instances using the pro-

cedures dt- and dt+. Furthermore, two date-time instances can be compared for
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equality, greater than and less than using the procedures dt=7, dt>7 and dt<?. For
convenience, the comparators dt>=7 and dt<=? are also supported. Note that these
operators on date-time stamps can adjust for carry-overs, such that subtracting 1 day
from March 1 would, for example, return Februrary 29 on leap years and February

28 otherwise. Some examples of invoking these procedures are as follows:

> (dt- (datetime 2020 3 1 15 0 0) (duration 1 0 0 0))

(datetime 2020 2 29 15 0 0)

> (dt+ (datetime 2020 2 29 15 0 0) (duration 1 0 0 0))

(datetime 2020 3 1 15 0 0)

> (dt>? (datetime 2020 3 1 0 0 0) (datetime 2020 2 29 24 30 0))
#f

> (dt<? (datetime 2020 3 1 0 0 0) (datetime 2020 2 29 24 30 0))
#t

> (dt=7 (datetime 2020 3 1 0 30 0) (datetime 2020 2 29 24 30 0))
#t

Recall that schedules are defined in the MADE RIM as follows (Eq. §.24] to
Eq.[4.26):

Schedule = RepeatPattern x RepeatInterval
RepeatPattern = & (DateTime)

RepeatInterval = Duration U {NEVER, ALWAYS }

This translates to the following syntactic form for schedules in the MADE

archetype language, which contains two expressions:
schedule-instance : ’(schedule’, EXPR, EXPR, ’)’;

The first expression must evaluate to a list of date-time instances, while the second
must evaluate to a duration or a boolean value, where true represents ALWAYS and
false NEVER. For example, executing the following line of code creates a schedule
(with identifier test-schedule) that starts on March 15, 2020 at 17:00:00 and
March 19, 2020 at 15:30:00, repeating weekly:



5.2 Language Specification 61

> (define test-schedule
(schedule (list (datetime 2020 3 15 17 0 0)
(datetime 2020 3 19 15 30 0))
(duration 7 0 0 0)))

Unlike durations and date-time stamps, operations for manipulating and com-
paring schedules are not supported by the MADE archetype language. Instead, the
procedure on-schedule? is provided that checks whether an input date-time stamp

lies on the input schedule or not. For example:

> (on-schedule? test-schedule (datetime 2020 3 12 15 30 0))
#f
> (on-schedule? test-schedule (datetime 2020 3 15 17 0 0))
#t
> (on-schedule? test-schedule (datetime 2020 3 22 17 0 0))
#t
> (on-schedule? test-schedule (datetime 2020 3 22 17 30 0))
#f

5.2.3 Measurement Archetypes

Types of measurements are specified using the following syntactic form:

measurement-archetype :
’(define-measurement’, ID, units, [LAMBDA-EXPR], ’)?;
units : SYMBOL;

ID is the identifier for the specified measurement type, while units specify
the measurement’s unit of measure. Furthermore, the optional lambda expression
specifies an arbitrary invariant on the measurement value; it must return true or false.
For example, the following syntax creates an archetype for body temperatures that
is measured in °C and accepts any numerical value larger than or equal to -273
(absolute zero). Note that for simplicity, each measurement archetype can only
have one specific unit of measurement; convsersions, such as from °C to °F, are not

supported.
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> (define-measurement body-temperature ’celsius
(lambda (d) (dim>=? d (dimensioned -273 ’celsius))))

5.2.4 Observation Archetypes

As specified in the MADE RIM, observations can relate to either events or properties.
For observed events, which can only take Boolean values by definition, the sole
purpose of their archetypes is to assign the appropriate identifiers. As a result, all
archetype specifications for observed events exhibit the following syntactic form, in
which the string #: event is a keyword to indicate that the observation archetype is
for observed events:

observed-event-archetype

’(define-observation’, ID, ’#:event)’;
To specify archetypes of observed properties, the syntactic form is as follows:

observed-property-archetype
>(define-observation’, ID, type, [LAMBDA-EXPR], ’)°
| ’>(define-observation’, ID, ’nominal’, value, {value}, ’)’
| ’(define-observation’, ID, ’enumerated’, value, {valuel}, )’
| ’(define-observation’, ID, ’dimensioned’, units,
[LAMBDA-EXPR], °)’;
type : ’bool’ | ’count’ | ’proportion’;
value : SYMBOL;

As with measurement archetypes, ID is the identifier for the specified observed
property type, while the optional lambda expression is an arbitrary invariant over
the property’s value. type specifies the type of values (e.g. dimensioned, Boolean,
etc.) that can be associated to instances of ID. If a nominal value is expected,
then a non-empty list of acceptable values must be provided; the same is true for
enumerated values, but in this case the list must also be ordered (from least to most).
If a dimensioned value is expected, then the units of measurement must be provided.

For example, the following syntax creates an archetype for an observation about
the severity of a burn (ordered from 1st which is least severe to 4th which is most

severe):
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> (define-observation

burn-severity enumerated ’1st ’2nd ’3rd ’4th)

Note that whenever an archetype is specified to contain nominal or enumerated
values, an appropriate ID is automatically provided by the MADE archetype language
to instantiate those nominal or enumerated data items. More specifically, if id is the
ID for the specified archetype, then id-value-space would be the identifier for the
nominal or enumerated data items. Thus the value for a 3rd degree burn would be

instantiated as follows:

> (burn-severity-value-space ’3rd)

5.2.5 Abstraction Archetypes

Specifications for abstraction archetypes have the same syntactic form as those for
observed properties, except that the procedure is define-abstraction instead of

define-observation:

abstraction-archetype
>(define-abstraction’, ID, type, [LAMBDA-EXPR], ’)°
| ’(define-abstraction’, ID, ’nominal’, value, {value}, ’)’
| ’(define-abstraction’, ID, ’enumerated’, value, {valuel}, ’)’
| ’(define-abstraction’, ID, ’dimensioned’, units,
[LAMBDA-EXPR], ’)7;

For example, an abstraction archetype to indicate whether a patient has exercised

for a sufficient amount or not may be specified as follows:

> (define-abstraction exercise-sufficiency bool)

5.2.6 Action Plan Archetypes

Specifications for action plan archetypes comprise an identifier followed by one
or more lists of targets indicating the scheduled instructions that may be contained
within the action plan. For lists of the form (homogeneous-action ...) and

(culminating-action ...), the targets denote the permitted action types of
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scheduled homogeneous actions and scheduled culminating actions respectively.
For lists of the form (control ...), the targets denote the permitted target pro-

cesses of scheduled control instructions. Formally, using EBNF notation:

action-plan-archetype

’(define-action-plan’, ID, target-list, {target-list}, ’)’;
target-list:

homogeneous-action-list | culminating-action-list

| control-list;
homogeneous-action-list

> (homogeneous-action’, target, {target}, ’)’;
culminating-action-list

>(culminating-action’, target, {target}, ’)’;
control-list : ’(control’, target, {target}, ’)7’;
target : SYMBOL;

For example, an archetype for penicillin prescriptions may be specified as follows:

> (define-action-plan penicillin-prescription

(culminating-action ’administer-penicillin))

5.2.7 Action Instruction Archetypes

Two types of action are defined in the MADE RIM: homogeneous and culminat-
ing. For homogeneous actions, which contain a dimensioned rate and a duration,
the archetype specification has a similar form as that for measurements, but with
the addition of the keyword #:homogeneous to distinguish it from archetypes for
culminating actions. Furthermore, the lambda expression, if present, accepts two

arguments instead of one (namely the rate and the duration of the action):

homogeneous-action-archetype
>(define-action-instruction’, ID, ’#:homogeneous’, units,
[LAMBDA-EXPR], °)?’;

For culminating actions, which contain a goal state, the archetype specification
has a similar form as that for observed properties and abstractions, but with the

additional keyword #: culminating:
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culminating-action-archetype
>(define-action-instruction’, ID, #:culminating, type,
[LAMBDA-EXPR], )’

| ’(define-action-instruction’, ID, #:culminating,
‘nominal’, value, {valuel}, ’)°

| ’>(define-action-instruction’, ID, #:culminating,
Jenumerated’, value, {value}, ’)’

| >(define-action-instruction’, ID, #:culminating,
’dimensioned’, units, [LAMBDA-EXPR], ’)’;

An archetype for administering penicillin may, for example, be specified as

follows:

> (define-action-instruction administer-penicillin #:culminating

dimensioned ’mg)

5.2.8 Control Instruction Archetypes

Specifications for control instruction archetypes comprise an ID and a non-empty list

of symbols indicating the permissible target processes:

control-instruction-archetype

>(define-control-instruction’, ID, target, {target}, ’)’;

For example, an archetype for controlling decisions relating to anti-inflammatory

prescriptions (e.g. ibuprofen and aspirin) may be specified as follows:

> (define-control-instruction control-anti-inflammatory-meds

‘prescribe-ibuprofen ’prescribe-aspirin)

5.2.9 Archetype Verifier

Apart from the syntactic forms presented above, the MADE archetype language also
provides two extra solver-aided syntactic forms to support the verification of clinical
guidelines: a verifier presented in this section and a getter in the next. The verifier,
verify-archetype, is a procedure that checks whether the input archetype (e.g.
id) is logically consistent or not:
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> (verify-archetype id)

If the specification of id does not contain logical inconsistencies, then it returns
an example instance of the archetype that satisfies its specification; otherwise it
returns (unsat), meaning no satisfiable instance can be found. For example, the
following code checks the logical consistency of the burn-severity archetype, the
result for which is an instance of burn-severity, specifically a 1st degree burn
observed on Dec. 15, 2019 at 00:00:00:

> (verify-archetype burn-severity)
Example #<procedure:burn-severity>:
#(struct:burn-severity #f #(struct:datetime 2019 12 15 0 0 0)

#(struct:burn-severity-value-space 1st))

The result indicates that the specification, although not necessarily valid in the
clinical context, is at least satisfiable. In contrast, the following specification of room
temperature, which requires its value to be both greater than 100 and lower than 0°C,

is unsatisfiable, such that executing verify-archetype would return (unsat):

> (define-observation room-temperature dimensioned ’celsius
(lambda (d) (and (dim>? d (dimensioned 100 ’celsius))
(dim<? d (dimensioned O ’celsius)))))
> (verify-archetype room-temperature)
Example #<procedure:room-temperature>:

(unsat)

5.2.10 Archetype Getter

For every archetype specified, a getter is also provided that will generate a symbolic
instance of that archetype, i.e. an instance of that archetype with placeholders that
can subsequently be populated by Rosette with concrete values. Each getter, get-id,
where id is a placeholder for the archetype’s identifier, exhibits at least one of the

following syntactic forms:

symbolic-archetype-instance
’(get-’, ID, [2 * datetime], ’)’
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| >(get->, ID, 2 * [2 * datetime]l, ’)’

| >(get-’, ID, [2 * datetime], {target}, ’)’

| >(get-’, ID, [2 * datetime], [schedule-length], ’)’;
schedule-length : NATURAL;

For all archetype specifications, the getter accepts two optional date-time stamps
as input to indicate the range of permissible values for the year, month, day, hour,
minute and second of all date-time stamps of the generated archetype instance. If
the date-time pair is not provided, then by default all date-time stamps are fixed to
Dec. 15, 2019 hr:00:00, with the value of hr ranging from 0 to 23 inclusive. For
observed event and abstraction archetypes, which are valid over a date-time range, a
second pair of date-time stamps can be provided such that the valid start date-times
and valid end date-times can range over different values.

Apart from the date-time pair, getters for action plan archetypes also accept as
input a list of targets, which specifies the scheduled instructions that are contained
within the generated symbolic instance of the action plan. If no list is provided,
then the generated action plan will contain a scheduled instruction for all targets
specified in the archetype. Indeed, getters for action plan archetypes also assume the
specification of the corresponding action instructions. Finally, for control instruction
archetypes, an optional natural number can be provided to the getter to specify the
number of starting date-time stamps contained within its schedule.

As an example, the following is a symbolic instance of burn-severity created

by executing get-burn-severity:

> (get-burn-severity)
(get-burn-severity)
(burn-severity

#f

(datetime 2019 12 15 dt-part$0 0 0)
(burn-severity-value-space

{[(= 0 enum-val$0) 1st] [(= 1 enum-val$0) 2nd]

[(= 2 enum-val$0) 3rd] [(= 3 enum-val$0) 4thl}))

As expected, the datetime of the observation is set to the default value, with
dt-part$0 being a symbolic integer for the valid hour of the observation. Sim-
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ilarly, enum-val$0 is a symbolic integer that, depending on its value, determine
whether the observation is a 1st degree burn (enum-val$0 equals 0), 2nd degree
burn (enum-val$0 equals 1), etc. Note that the boolean value on line 2 (in this with
value #f) is an extra flag on all instances of MADE data to indicate whether they are
proxy or not, i.e. whether they can be used directly by the MADE processes or not.
Although this flag is not part of the MADE RIM and is unnecessary, since proxy and
non-proxy data can be given different Ids, it is introduced to simplify the process
of specifying the MADE archetypes, as it avoids the need to specify two different
archetypes to represent the same clinical data, one for non-proxy instances and the

other proxy.

5.3 Reference Implementation

5.3.1 Implementation of the Data Types

Implementing the archetype language in Rosette involves implementing the constructs
necessary for the MADE RIM as well as the appropriate macros to transform the
language syntax into the appropriate Rosette constructs. The reader is referred to the
source code (available at https://github.com/nlsfung/MADE-Language/tree/master/
rim) for the full details of the implementation, but to summarise, each data type
specified in the MADE RIM is implemented as a structure in Rosette (Fig. [5.1)),
which in many ways is analogous to a class in object-oriented programming. More
specifically, a structure in Rosette is a record that can contain multiple fields, and it
supports inheritance as well as interfaces.

For example, as shown at the bottom of Fig.[5.1] all data structures for the MADE
RIM implement the typed interface. Since Rosette does not inherently support type-
checking, the typed interface provides two methods for type-checking purposes:
get-type, which returns the structure type of the input instance, and valid?, which
checks whether the input instance satisfies some criteria specific to its type. For
example, executing valid? on a date-time stamp checks whether, amongst other
things, all fields are integers, the month ranges from 1 to 12 and the day from 1 to 28,
29, 30 or 31 depending on the year and month. Similarly, the valid? method for

action plans checks, for example, whether it contains a list of scheduled instructions.
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Rosette for the MADE RIM.
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Although not shown in the figure, there is generally a direct correspondence
between the components of a data type in the MADE RIM and the fields of the
implemented structure. For example, recall that a scheduled homogeneous action is
modelled as follows (Eq. F.31):

ScheduledHomogeneousAction =

ActionType x Schedule x Rate x Duration

This translates to the following in Rosette:

(struct scheduled-homogeneous-action

(action-type schedule rate duration) ...)

The struct keyword declares a new structure type, in this case with the iden-
tifier scheduled-homogeneous-action, and it contains four fields as expected:
action-type, schedule, rate and duration. The ellipses at the end is where the
appropriate interfaces are implemented; for scheduled homogeneous actions, this
means, for example, implementing valid? to ensure that the rate field contains a
dimensioned value, the duration field a duration, etc.

The six main data types in the MADE RIM (namely, measurement, observation,
abstraction, action plan, action instruction and control instruction) are implemented
similarly as Rosette structures, but not all components were translated into fields.
More specifically, since every instance of a structure remembers its type (which can
be retrieved using get-type), it is not necessary for MADE data items to contain
a separate ID field to specify its type. In fact, as shown in Fig. the primitive
datatype ID is not implemented at all; where an explicit identifier is necessary, such
as for target processes in control instructions, a symbol is used in place of the ID.

Furthermore, since the main purpose of the MADE archetype (and guideline)
language is to capture the clinical knowledge in guidelines, the reference implemen-
tation assumes that all MADE data are generated on time. As a result, transaction
date-times are not implemented as a field but as a method to ensure that they are equal
to the valid date-times of the MADE data (valid start date-times for observed events

and abstractions or start date-times for action instructions). For example, recall that a
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measurement is modelled as follows (Eq. 4.1):

Measurement = MeasurementType x TransactionDateTime

x ValidDateTime X Dimensioned

In Rosette, the measurement datatype is implemented as follows:

(struct measurement made-data (valid-datetime value)

#:transparent

#:methods gen:transaction

[(define (transaction-datetime self)
(measurement-valid-datetime self))]

#:methods gen:typed

[(define/generic super-valid? valid?)
(define (get-type self) measurement)
(define (valid? self)

(and (datetime? (measurement-valid-datetime self))
(dimensioned? (measurement-value self))
(super-valid? (measurement-valid-datetime self))
(super-valid? (measurement-value self))
(super-valid? (made-data (made-data-proxy-flag self)))

N

It is outside the scope of this thesis to explain the full details of the syntax, but
to summarise, the first line shows that the measurement structure inherits from
made-data, which contains a field for the proxy flag, and it extends made-data with
two additional fields, one for its valid date-time and the other for its measurement
value. The measurement ID is not implemented, while the transaction date-time is
implemented as the method transaction-datetime, which returns the valid-date-
time of the measurement (lines 4 and 5). Furthermore, as expected, the get-type
method (line 8) returns measurement, while the valid? method (line 9) checks,
amongst other things, that valid-datetime contains a date-time stamp (line 10)

and value a dimensioned value (line 11).
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5.3.2 Implementation of the Syntactic Forms

The data structures presented above provide the groundwork on which macros are
implemented which transform the syntactic forms of the archetype language into
the appropriate Rosette constructs. The implementation details are available at
https://github.com/nlsfung/M ADE-Language/tree/master/lang; to summarise, each
archetype is transformed into a structure that inherits from the appropriate MADE
data type while re-implementing the typed interface. More specifically, for every
archetype structure, get-type returns its identifier and valid? checks whether its
instances satisfy its specification. For example, consider the archetype for body

temperature, which is reproduced below:

(define-measurement body-temperature ’celsius
(lambda (d) (dim>=? d (dimensioned -273 ’celsius))))

This is expanded into the following source code in Rosette:

(struct body-temperature measurement ()
#:transparent
#:methods gen:typed
[(define/generic super-valid? valid?)
(define (get-type self) body-temperature)
(define (valid? self)
(and (super-valid?

(measurement (made-data-proxy-flag self)
(measurement-valid-datetime self)
(measurement-value self)))

(eq? (dimensioned-units (measurement-value self))
’celsius)
((lambda (d) (dim>=?7 d (dimensioned -273 ’celsius)))

(measurement-value self))))])

As expected, body-temperature inherits from measurement (line 1), the
get-type procedure returns body-temperature instead of measurement (line

5) and the valid? procedure checks whether the unit of measurement is ’celsius
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and whether the measurement value is larger than or equal to 273 (lines 11 to 14).
The super-valid? procedure (lines 4 and 7) ensures that instances of body temper-
ature also satisfy the specification of measurements, for example, whether its valid
date-time is indeed a date-time stamp and whether its value is dimensioned.

Apart from the data structure, the implemented macros also define for each
archetype a getter that, as explained before, returns a symbolic instance of that
archetype. In Rosette, all symbolic instances must be constructed from symbolic
integers, Booleans, bit-vectors and uninterpreted functions, the latter two of which are
not applicable for the reference implementation. In other words, to create symbolic
instances of an archetype, the getter must instantiate the corresponding data structure
and populate the fields with either symbolic or concrete values as appropriate.

In the case of the body temperature archetype, executing the getter get-body-
temperature without any arguments returns a symbolic body temperature with a
variable hour (dt-part$0) in its date-time stamp and a variable temperature value
(dim$0), but the unit is fixed to ’celsius:

> (get-body-temperature)
(body-temperature #f (datetime 2019 12 15 dt-part$0 0 0)

(dimensioned dim$0 ’celsius))

Such getters are used by the verify-archetype procedure to check for incon-
sistencies in the archetype specification. Given the archetype identifier (e.g. id),
executing verify-archetype is, in effect, equivalent to executing the following

code in Rosette:
(solve (assert (valid? (get-id))))

solve is a procedure provided by Rosette that attempts to find the appropriate
values for all symbolic integers, Booleans, bit-vectors and uninterpreted functions
such that the input assertions are satisfied. For verify-archetype, the assertion
is that get-1id returns a valid instance of archetype id. If (unsat)is returned, this

means that the archetype specification contains inconsistencies.
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5.4 Verification of Implementation

The reference implementation was verified using both informal testing and formal
verification. As summarised in Table arbitrary archetypes were manually speci-
fied such that each data structure in the implementation would be instantiated at least
once. For each of these archetypes, verify-archetype was executed to ensure that
its specification is satisfiable, and the resulting solutions were manually checked
against the specification of the MADE RIM. Where possible, inconsistencies were
also purposefully introduced to the archetype specifications to ensure that they are
properly detected by verify-archetype. As expected, all tests passed, the details
for which are available at https://github.com/nlsfung/MADE-Language/blob/master/
exp/TestArchetypes.rkt/ and also included in Appendix

5.5 Discussion

5.5.1 Expressiveness of the MADE Archetype Language

Discounting the use of optional lambda expressions, which allow for arbitrarily
complex specifications, the MADE archetype language is very simple. For example,
it is not possible to specify that an action plan must contain certain combinations of
scheduled instructions, or that certain combinations are mutually exclusive. Similarly,
control instruction archetypes cannot constrain the possible schedules and statuses of
its instances. In fact, a simple inspection of openEHR’s Archetype Description Lan-
guage (ADL) reveals that it can support constraints not only on individual attributes
(i.e. fields) but also on other constraints or groups of constraints as well [81], thus
highlighting the inadequacies of the MADE archetype language.

However, the main purpose of this thesis is not to develop a comprehensive
archetype language but to enable the representation of clinical guideline knowledge
for guideline-based pervasive healthcare systems and to support its formal verification
and validation. In this respect, it is crucial that the MADE RIM and the MADE
archetype language are not overly restrictive. Once they have been fully verified and

validated, further research can be conducted to develop a more powerful archetype
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Table 5.2 Summary of the tests conducted for each implemented data structure.
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language. In fact, the openEHR ADL is independent of the openEHR RIM and may
therefore be re-implemented for the MADE RIM.

5.5.2 Utility of the Solver-Aided Syntactic Forms

Given the simplicity of the MADE archetype language, it is clear that the utility of
verify-archetype is also relatively limited. In fact, unless lambda expressions are
used, it is trivial to create an instance of an archetype that satisfies its specification.
For example, consider a control instruction archetype, which always exhibit the

following form:
(define-control-instruction id ’target-1 ’target-2 ...)

Where id and ’target-1, ’target-2, etc. are placeholders for the actual
archetype name and target processes. A valid instance of this archetype would simply
be:

(id #f (datetime 2019 12 15 0 0 0) ’target-1 (void) #f)

However, as the archetype language becomes more complex in the future, it is
expected that Rosette’s solver-aided facilities will also become increasingly useful.
In fact, by creating symbolic instances of the archetypes using the getters, Rosette
may also be used to analyse clinical guidelines, which may in turn help identify

issues while formalising them.



Chapter 6

The Guideline Model

6.1 Introduction

The previous two chapters focus on formalising the data flow in the MADE PIM,
deriving from it a reference information model as well as an archetype language. In
this chapter, the MADE guideline model is specified, which is the counterpart of the
MADE reference information model but for processes instead of data. This chapter
starts with the related work in Sec. [6.2] wherein the features of existing guideline
representation languages are summarised. Although it has already been established
in Sec. that these existing languages focus on control flow instead of data flow,
it is nevertheless useful to review how individual tasks are modelled. This in turn
guides the detailed specification of the MADE processes, which is presented in full
in Sec.[6.3] As with the MADE RIM, an application of the MADE guideline model
is demonstrated in Sec. [6.4] by means of the GDM example presented in Sec. [3.6]
while its validation using the complete GDM guideline is reserved for Ch.[§] The
chapter concludes with a discussion in Sec. [6.5]

6.2 Related Work

In 2003, Peleg et al. identified eight different dimensions for comparing guideline
representation languages [38]: 1) overall organisation of guideline plans, 2) speci-

fication of guideline intentions, 3) models of medical actions, 4) decision models,
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5) expression languages, 6) data abstractions, 7) models of medical concepts, and
8) models of patient information. Of particular relevance are the specification of
guideline intentions, decision models and expression languages as they directly relate
to the processing of clinical data. The remaining five dimensions mainly relate to the
representation of the data and are therefore outside the scope of this chapter.

In general, decision models can be divided into two categories [66]: decision
trees and decision tables. Although interchangeable, decision trees are more suitable
in cases where the evaluation of one decision criteria can affect the applicability of
the remaining criteria, while decision tables are best for modelling decision crite-
ria that should be evaluated independently of each other. As a result, to simplify
the process of formalising clinical guidelines, guideline representation languages
typically support combinations of decision models; examples include GLIF3 [7],
PROforma [76]] and Prodigy [36]. Indeed, since guideline-based systems are tra-
ditionally designed to provide decision support to clinicians, existing guideline
representation languages generally also support user confirmation and ranking of
alternatives [58]]. Furthermore, some languages, e.g. ASBRU [65] 68]], support the
specification of guideline goals and intentions to control the execution of a plan.
For example, if a goal is achieved, then the plan being executed may be terminated
automatically or recommended for termination.

To specify the decision criteria and guideline goals, guideline languages typically
rely on the use of expression languages that can support various operations on patient
data items [58]], including arithmetic, comparisons, first-order logic, temporal logic
and conditionals. For example, GLIF3 relies on the GELLO expression language,
which is standardised by HL7 and is based on the general-purpose Object Constraint
Language (OCL) for specifying constraints and conditions on UML models [15].
Thus like OCL, GELLO is a declarative, object-oriented language but is specifically
adapted for clinical decision support.

Other guideline representation languages rely on similar expression languages,
but they all assume the existence of all the required patient data items. To query
abstractions that must be generated from available data, Shahar et al. in 2004 pro-
posed the DeGeL framework [[69] that integrates, amongst other things, a sub-system
(Spock [92]]) for executing guidelines and a sub-system (IDAN [3]]) for performing

knowledge-based temporal abstractions. Such separation of procedural and declara-
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tive reasoning tasks is also exhibited by the MADE PIM, but unlike typical guideline
representation languages, a key aim of the MADE guideline model is to decompose

the guideline knowledge into data-driven, parallel processes.

6.3 The MADE Process Types

6.3.1 Generic MADE Process

Recall from Eq. [3.1|that a data flow process is modelled to comprise four components:
an ID (Id), a data state (DataState), a control state (ControlState) and an instructions
specification (InstSpec). As implied in Fig.[3.2] the MADE guideline model extends
this generic data flow model by introducing four sub-types of data flow processes,
each of which processes patient data differently and therefore exhibits a different
instructions specification: MSpec for Monitoring, ASpec for Analysis, DSpec for

Decision and ESpec for Effectuation processes:

InstSpec = MSpec U ASpec U DSpec U ESpec (6.1)

Despite these differences, their basic behaviour remains unchanged as governed
by the invariants [3.1]to[3.8] In fact, it is assumed for MADE processes that a data
state simply comprises the set of all data previously input into the process. Although
the data state should in practice be optimised to reduce memory consumption and
computational costs, such as by removing irrelevant data, these are non-functional
requirements and are therefore outside the scope of this thesis. The main requirement
of the data state is that when a process executes at a given date-time, the result, as
governed by updateDataState, updateControlState and generateData in Inv. [3.1] is
unaffected by whether the data is newly input into the process or is pre-existent in its
data state.

More formally, the data state of a process is defined as follows and satisfies the

following invariants:
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DataState = & (Data) (6.2)

Invariant 6.1. Let s.,; be an arbitrary control state, s;,5; an instruction specification,
t a date-time stamp. Furthermore, let 54, be an arbitrary data state and d;, a data set.
Then:

upda[eDataState(sdam;Sctrlysinstydinat) = Sdata U din

Invariant 6.2. Let i be an arbitrary process ID, s.,; an arbitrary control state, s;,s; an
instruction specification, ¢ a date-time stamp. Furthermore, let 5441, Sqaa2 be two

arbitrary data states and d;;,1, diz2 two data sets. Then:

Sdatal Y din1 = Sdata2 U ding =
[updateControlState(i, s gasa1 , Scirt din1 , 1) = updateControlState(i, Sgasa2 , Sctri, din2, 1)

A genemlé’Data(Sdaml ; sctrlasinst;dinht) = generateData(sdata27SctrhSinstydinbt)]

Furthermore, recall that control instructions can only re-schedule and/or pause
or resume a process as specified by Eq. [4.22] thus like these control instructions,
the control state of a MADE process is modelled to comprise a schedule, which in
turn consists of a repeat pattern and repeat interval (Eq. #.24) as well as a status,
which can either be paused or running (Eq.#.27). Thus a process is activated (i.e.
isProcessActivated returns true) if and only if the process is running and the current

date-time is on its schedule. This leads to the following definition and invariant:

ControlState = Schedule X Status (6.3)

Invariant 6.3. Let sc,y = ((7par,Tint); Ssiar) be an arbitrary control state and ¢ an

arbitrary date-time stamp. Then:

isProcessActivated(Scyi,t) < [Ssar = RUNNING A onSchedule((rpat, Tint ), ))
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As implied by the semantics of schedule-instance and on-schedule? in
the MADE archetype language (Sec.[5.2.2)), a date-time stamp is considered on a
schedule if it overlaps with a date-time stamp in the repeat pattern, or it occurs on or
after any date-time stamp in the repeat pattern (if the repeat interval is ALWAYS), or
it occurs an integral number of repeat intervals after a date-time stamp in the repeat
pattern (if the repeat interval is a duration). Thus, onSchedule has the following

signature and satisfies the following invariant:
onSchedule : Schedule x DateTime — Boolean (6.4)

Invariant 6.4. Let s = (754, 7in/) be an arbitrary schedule and ¢ a date-time stamp.
Then:

onSchedule(s,t) = [(riny = NEVER = 3x € 1pgy. t = X) A
(Fint = ALWAYS = 3X € rpgs. 1 > X) A

(Fint € Duration = 3x € rpg, n € Not =n- riy +x)]

When updating the control state of a process, updateControlState checks whether
there is a control instruction in its data state or input data that is targeted at the
process and is valid at the input date-time. If yes, then the schedule and status of
the process are replaced by those in the control instruction (unless it equals to NULL
in which case the corresponding attribute is left unchanged). Thus more formally,
updateControlState satisfies the following two invariants, which govern, respectively,

the updating of the schedule and status of a process:

Invariant 6.5. Let p = (i, Sqgara, Scirl; Sinst) b an arbitrary process, with ¢, = (Ssched
Sstar1 ). Furthermore, let d;, an input data set, ¢ the current date-time stamp and
(Ssched2, Sstar2) e the output of updateControlState(i, s gasa, Sctri, din,t). Then:

Ssched2 7é Sschedl <
Ad € {d | d € di, U Sgasq N d € Controllnstruction} .

m(d)=iAm3(d) =t A\ ms(d) # NULL A 7t4(d) # Sschedt
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Invariant 6.6. Let p = (i, Sqata; Scirl, Sinse) b€ an arbitrary process, wWith ey = (Ssched1
Ssrar1)- Furthermore, let d;, an input data set, ¢ the current date-time stamp and

(Ssched2, Ssiar2) be the output of updateControlState(i,Sgasa, Sctri, din,t). Then:

Sstar2 7£ Sstatl <

Ad € {d | d € din U Sgaq N d € Controllnstruction} .
T (d) =iA 7T3(d) =t A 7155(d) # NULL A ﬂs(d) 2 Sstarl

The invariants above specify the behaviour of the functions updateDataState
and updateControlState for all MADE processes. As expected, the functionality of
generateData depends on the specific type of process, but since a MADE network
can comprise an arbitrary number of processes, it is assumed for simplicity that each
MADE process can only output at most one data item at each time instant. L.e.:

Invariant 6.7. Let p = (i, Sgasa,Scni, Sinse) b€ an arbitrary process, d;, an input data

set and ¢ the current date-time. Then:

‘generateData(sdataa Sctrls Sinst din ’ t) | S 1

6.3.2 Monitoring Processes (MSpec)

Conceptually, Monitoring processes are responsible for making observations about
the environment, including both the internal as well as the external environment of
the patient. Since a Monitoring process can output either an observed property or an
observed event, its specification can be divided into the two corresponding categories,

ie.
MSpec = PropertySpec U EventSpec (6.5)

For simple observed properties such as blood glucose levels, it is envisaged that
Monitoring processes would act as a channel that directly converts a measurement to
the corresponding observed property. However, in other cases, it may be necessary

to perform digital signal processing on the raw measurements, such as to remove
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noise and to detect salient features of the input measurement streams. Therefore, for

Monitoring processes that output observed properties, their specification comprises:
* A time window indicating the duration beyond which data is considered irrele-
vant.

* A mathematical function that accepts a set of measurements as input and

returns the appropriate property value for the output observed property.

* An output type identifying the specific type of observed property to output.

More formally, the specification of Monitoring processes for observed properties
can be defined as follows:

PropertySpec = TimeWindow x ValueFunction X OutputType, where (6.6)

TimeWindow = Duration 6.7)
ValueFunction = & (Measurement) — PropertyValue (6.8)
OutputType = Id (6.9)

Note that the transaction and valid date-times of an observed property is auto-
matically set to be the date-time of execution. Therefore, only the property type
and property value need specifying. Whenever a Monitoring process for observed
properties is activated, all input data (including those stored in its data state) are
filtered using the time window and then fed into the value function, resulting in an
output observed property with the specified output type and computed value. Thus,

more formally, generateData satisfies the following invariant:

Invariant 6.8. Let p = (i,S4a1a,Sciri, Sinse) be an arbitrary Monitoring process for
observed properties, with s;,;; = (w, f,0). Furthermore, let d;, be the input data
set and ¢ the current date-time. Then assuming isProcessActivated returns true (i.e.

assuming the process is activated):

generateData(sdatm Sctrls Sinst dim t) =

{(o,1,1, f(filterMeasurement (S 414 U din,t,w))) }
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filterMeasurement is a function that filters out any input MADE data items that
are either not measurements or not relevant at the current date-time (i.e. its valid date-
time lies beyond the current date-time window). In other words, filterMeasurement

has the following signature and satisfies the following invariant:

filterMeasurement : &?(Data) x DateTime x TimeWindow

— P (Measurement) (6.10)

Invariant 6.9. Let d;, be an arbitrary data set, ¢ a date-time stamp and w a time

window. Then:

filterMeasurement(d;,,t,w) =

{d|d € dy Nd e Measurement \ m3(d) > (t —w) A m3(d) <t}

Unlike observed properties, observed events can exhibit a start and an end, and
they can only be assigned a boolean value to indicate whether they occurred or not.
Thus Monitoring processes for observed events are specified to comprise:

* A time window and predicate specifying the conditions that indicate the start

of the event.

* A time window and predicate specifying the conditions that indicate the end

of the event.

* An output type identifying the specific type of observed event to output.

EventSpec = EventTrigger x EventTrigger X OutputType (6.11)
EventTrigger = TimeWindow X TriggerPredicate (6.12)
TriggerPredicate = &7 (Measurement ) — Boolean (6.13)

As with the time window in PropertySpec, the time windows in EventSpec are
used to filter out irrelevant measurements. The remaining measurements are input
into the predicates to determine if the start or end of the event is detected. If the start
is detected, the Monitoring process will then search for the most recent date-time at
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which the end is detected (which may be before or equal to the current date-time).
This time period between the end date-time and start (i.e. current) date-time then
becomes the valid date-time range of the output event (with value false to indicate that
the event has not occurred). Similarly, if the end is detected at the current date-time,
the process will search for the most recent date-time starting from which the event
occurred. If neither the start or end is detected, then it is not known whether the
event is occurring or finished occurring; as a result, no event will be generated by the
process.

More formally, for Monitoring processes that output observed events, the function

generateData satisfies the following three invariants, which respectively specifies:

* The appropriate ID and transaction date-time of any output observed event.
» The necessary and sufficient conditions for an output event to be generated.

» The appropriate valid start times and end times for false events (i.e. events that

did not occur).

* The appropriate valid start times and end times for true events (i.e. events that

did occur).

Invariant 6.10. Let p = (i,S4asa; Sceri; Sinse) be an arbitrary Monitoring process for
observed events, with o being its target output type. Furthermore, let d;, be the input
data set, ¢ the current date-time and d = (Oour, trans, (Estarts tena),b) be an arbitrary
observed event. Then:

generateData(sdamvSctrlysinstvdimt) = {d} = (Oout =0 A tyans = t)

Invariant 6.11. Let p = (i, Syara; Scirl; Sinse) be an arbitrary Monitoring process for ob-
served events, with i,y = ((Wstart, Pstart); Wends Pend ), 0 )- Furthermore, let d;,, be the
input data set and ¢ the current date-time. Then assuming isProcessActivated(sqy,t)

returns true:

(generateData(Sqatas Scirt; Sinst dinst) = {} <
[~ 3tinner € DateTime. tipper <t A

Dend(filterMeasurement(diy U Saaza, tinners Wend) ) /\
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Dstart(filterMeasurement(diy, U Sgara, ', Wstart) )] A\
[—3tinner € DateTime. tipper <t A
Pstart (ﬁlterMeasurement(din U Sdatas tinner Wsmrt)) N

Dend(filterMeasurement(diy U Sgaa,t, Wena))))

Invariant 6.12. Let p = (i,S4aza; Sceri, Sinse) be an arbitrary Monitoring process for
observed events, with Siuse = ((Wstares Pstart)y (Wends Pend ), ©)- Furthermore, let d;, be
the input data set, 7 the current date-time and { (0, fyrans, (fsiarts tend ), FALSE) } be the
output of generateData(Sgasa,Sctrl, Sinst, din,t). Then:

tend =1 N\
Dstare(filterMeasurement (diy, U Sgatastends Wstart)) /\
Pend(filterMeasurement (diy, U Sgaras tstarts Wend)) N\

Ytimer € DateTime. tgur < tinner < tend =

—Pend(filterMeasurement (diy, U Sgara, tinners Wend))

Invariant 6.13. Let p = (i,S4aza; Sceri, Sinse) De an arbitrary Monitoring process for
observed events, with iy = ((Wstares Pstart)y Wends Pend ), ©)- Furthermore, let d;, be
the input data set, 7 the current date-time and { (0, tans, (tstart, tena), TRUE) } be the
output of generateData(Susa,Sctrl, Sinst, din,t ). Then:

tend =1 N\
Pend(filterMeasurement(diy, U Sqatastends Wend)) N
Pstari(filterMeasurement (din U Sgatas tstart; Wstart) ) /\
Vtinner € DateTime. tyare < tinner < lend =

Pstart (ﬁlterMeasurement(din U Sdata, tinner Wstarl) )

6.3.3 Analysis Processes (ASpec)

An Analysis process is the process of making abstractions from low-level concepts
(i.e. observations) about the environment. In general, producing an abstraction

involves removing irrelevant information from the low-level concepts, which, in the
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MADE guideline model, involves a combination of the following two procedures as
implied in Sec.[4.3.3}

* Reducing the range of possible values a concept or a combination of concepts
can take, such as converting a real-valued blood glucose observation into a
grade indicating the degree of hyperglycaemia (i.e. high blood glucose) the
patient is experiencing.

* Combining observations such that the final result relates to a patient condition
that spans an extended period of time. Examples include determining whether
the patient is exhibiting good glycaemic control (i.e. stable blood glucose

levels) over a period of 7 days.

Thus similar to the functionality of the IDAN sub-system in DeGeL [5]], Analysis
processes are designed to produce temporal abstractions, i.e. abstractions on data over
an extended period of time. However, unlike IDAN which adopts a knowledge-based
temporal abstraction methodology, Analysis processes rely on generic mathematical
expressions to perform an abstraction, which is akin to the expressions featured
in existing guideline representation languages. In particular, the specification of

Analysis processes is modelled to comprise:
* An output type identifying the specifying type of abstraction to output.

* A set of abstraction triplets, each containing:

— A time window for filtering out expired observations.

— A predicate on the filtered observations that specifies the condition under

which an abstraction should be generated.
— An abstraction function that accepts a set of observations as input and

returns the value of the abstraction (if one is generated).

ASpec = OutputType x P (TimeWindow x AbstractionPredicate
x AbstractionFunction), where (6.14)
AbstractionPredicate = &7 (Observation) — Boolean (6.15)

AbstractionFunction = & (Observation) — AbstractionValue (6.16)
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Like observed events, abstractions are valid over a date-time range [21]]. However,
unlike observed events, abstractions are not generated by detecting start and end
conditions. Whenever an Analysis process is activated, it iterates through its set of
abstraction triplets, and during each iteration, it filters out all expired observations and
checks whether the remaining observations satisfy the abstraction predicate or not. If
satisfied, the Analysis process applies the corresponding abstraction function to the
filtered observations and generates an abstraction with the appropriate abstraction
value. The transaction date-time and valid start date-time of the output abstraction
(if any) is equal to the current date-time, while the valid end date-time is equal
to the closest date-time in the future after which the abstraction is no longer valid
(given the existing data). Thus unlike typical guideline representation languages,
which only performs “point” abstractions as necessitated by the decision points in the
guideline, Analysis processes in the MADE guideline model are designed to generate
“temporally extended” abstractions independently of the time points at which they
may be required for decision-making.

As an example, consider an Analysis process for detecting a fever from body
temperature observations. Suppose for this example that a fever is defined as two
or more body temperatures above 37°C within a period of five hours, and let the
body temperature observations be as shown by the crosses in Fig.[6.1] Now, if the
Analysis process is executed at 18:00, then there will be three observations (at 14:00,
15:30 and 17:00 respectively) that lie within the 5-hour time window and are above
the threshold. Therefore, a fever abstraction will be generated as the conditions for
a fever are all met. As shown in Fig.[6.1] the valid start date-time will equal 18:00
(i.e. the time of execution), while the valid end-time will equal 20:30. After 20:30,
the fever abstraction will no longer be valid as there will only be one observation (at
17:00) that exceeds the threshold and still lies within the same 5-hour time window.

More formally, for Analysis processes, generateData satisfies the following three

invariants, which specify respectively that:
* generateData returns an abstraction if and only if at least one abstraction
predicate is satisfied given the filtered data.

* The abstraction ID equals the output type, while the transaction date-time and

valid start date-time equal the current date-time.
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Fig. 6.1 An example to illustrate the valid date-time range of an abstraction. Here,
the objective is to detect fever (at 18:00), which is defined as two or more body
temperatures above 37°C within a 5-hour window.

* The valid end date-time marks the end of the maximum time interval during

which the abstraction is valid given the existing input data.

Invariant 6.14. Let p = (i,S4qa, Scuri, Sinse) b€ an arbitrary Analysis process, with

Sinst = (0, {(w1,p1,/1), (W2, P2, f2),- -+, (WN, PN, fn) }). Furthermore, let d;, be the
input data set and ¢ the current date-time. Assuming isProcessActivated(sqy,t)

returns true, then:

generateData(Sdataasctrlysinstydinat) = {} <

Vn e {1,2,--- ,N}. =pu(filterObservation(din U Sgara,t, Wn))]

Invariant 6.15. Let p = (i, Sgasa,Scnri, Sinst) b€ an arbitrary Analysis process, d;, be
the input data set, ¢ the current date-time and (0our, trans, (fstarts tena), v) an arbitrary

abstraction. Then:

generateData(sdata’Sctrlasinstadinvt) = {(Ooutattmnm (tstartatend)av)} =

(Oout =0 N typans =1 Nlspary = t)

Invariant 6.16. Let p = (i, Sguq,Scni, Sinse) be an arbitrary Analysis process, with
Sinst = (07 {(Wl , D1 7f1)7 (W27p27f2)7 Ty (WNupNqu)})‘ Furthermore’ let di" be the
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input data set, ¢ the current date-time and (0, ¢, (¢sars, tena ), v) be the output of invoking

generateData (S qzas Scirts Sinst, din,t). Then:

Ine{1,2,--- ,N}. Vtiuner € DateTime > tgay.
Linner < Tend <=

[pn(filterObservation(diy, U Sgasa, tinners Wn)) N\

fa(filterObservation(din U Sgaia,tinners Wn)) = V]

As expected, filterObservation is the counterpart of filterMeasurement for filter-
ing out any input MADE data items that are neither observations nor valid within
at the current date-time window. For observed properties, an observation is invalid
if its valid date-time stamp lies beyond the current date-time window. For observed
events, an observation is invalid if its valid date-time range shares no overlap with the
current date-time window. Formally, filterObservation has the following signature

and satisfies the following invariant:

filterObservation : & (Data) x DateTime x TimeWindow
— P (Observation) (6.17)

Invariant 6.17. Let d;, be an arbitrary data set, ¢ a date-time stamp and w a time

window. Then:

filterObservation(d;y,t,w) =
{d|d € dy Nd e ObservedProperty A m3(d) > (t —w) A m3(d) <t} U
{d|d € dy Nde ObservedEvent \ my(m3(d)) > (t —w) A my(m3(d)) <t}

6.3.4 Decision Processes (DSpec)

Decision processes decide on the appropriate plan (i.e. course of action) given the
current state of the environment as captured by the abstractions produced by Analysis
processes. Since Decision processes (and all other MADE processes) are modelled to

execute in parallel during the patient’s daily life, the MADE guideline model adopts
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decision tables to represent decision-making; decision trees can only be simulated by
judicious use of multiple Decision and Effectuation processes. In fact, since MADE
processes are modelled to only output at most one data item, alternative plans can
also only be generated using multiple Decision processes, one for each plan.

More specifically, Decision processes are modelled to comprise:

* A plan template that can be instantiated into an actual action plan for effectua-
tion. It in turn comprises a plan type that identifies the type of action plan to
instantiate as well as a set of three different types of instruction templates spec-
ifying the control, homogeneous action and culminating action instructions

that constitute the plan.

* A set of decision criterion that determines when the plan template should be
instantiated. Each criterion is a function that returns true or false given a set of
input abstractions.

DSpec = PlanTemplate x & (DecisionCriterion), where (6.18)
PlanTemplate = PlanType x & (ControlTemplate

U HomogeneousActionTemplate U CulminatingActionTemplate) (6.19)

DecisionCriterion = & (Abstraction) — Boolean (6.20)

Unlike Monitoring and Analysis processes, Decision processes do not require
a time window. This is because the only abstractions that are relevant for Decision
processes during execution are those that are valid at the current date-time. These
abstractions are checked against the decision criteria, and if any criterion is triggered,
an action plan will be instantiated from the plan template. The valid date-time
of the output action plan is equal to the current date-time, and the schedule of
each instruction in the plan is computed from the current date-time and the relative
schedule of the corresponding template.

More formally, let filterAbstraction be a function for filtering abstractions, which
is largely equivalent to the functions filterObservation and filterMeasurement for fil-

tering observations and measurements respectively. However, since the abstractions
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generated by Analysis processes may extend into the future and may therefore be
superseded with other, more recent abstractions, filterAbstraction removes abstrac-
tions based not only on their valid date-time range but also on the presence of other
abstractions of the same type but with more recent transaction date-times. Thus,
filterAbstraction has the following signature and satisfies the following invariant:

filterAbstraction : & (Data) x DateTime — & (Abstraction) (6.21)
Invariant 6.18. Let d;, be an arbitrary data set and ¢ a date-time stamp. Then:

filterAbstraction(d;,,t) =
{d|d € di Nd € Abstraction \ my(m3(d)) >t A m(m3(d)) <t A
~Idinner € din. T (dinner) = (d) AN (dinner) > (d) A

77:2(77:3 (dinner)) Z VA | (77:3 (dinner)) S t}

Furthermore, let instantiatePlan be a function for instantiating the given plan
template at the given date-time. It has the following signature and satisfies the
following invariant, which ensures that:

* The instantiated plan has the same type as the input plan template.

* The transaction and valid date-time of the action plan are set to the given

date-time.

» All scheduled instruction templates are instantiated accordingly in the output

action plan.

instantiatePlan : PlanTemplate x DateTime — ActionPlan (6.22)

Invariant 6.19. Let ps,,, be an arbitrary plan template and ¢ a date-time stamp.
Then:

instantiatePlan(piemp,t) = (T (Premp) 1,1,

{instantiateScheduledInstruction(i,t) | i € T (Premp)})
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Instantiating an instruction template involves, amongst other things, converting
its relative schedule (if present) into a concrete schedule. In the MADE guideline

model, a relative schedule comprises:

* A duration indicating the rounding factor with which to round the input date-

time.
* A list of durations which specify the starting pattern for the schedule.

* A repeat interval, which may be a duration or the values ALWAYS or NEVER
as specified in Eq. [4.26]

RelativeSchedule = Duration x & (Duration) X Repeatlnterval (6.23)

For example, a relative schedule for measuring blood glucose levels might
indicate that the patient should start the blood glucose measurements on the next day
at 7:00, 9:00, 13:00 and 20:00, repeating daily. When instantiated on May 14, 2020,
for example, the actual schedule for monitoring blood glucose levels would start on
May 15, 2020 at 7:00, 9:00, 13:00 and 20:00, and this schedule would repeat daily
thereafter.

More formally, let instantiateSchedule be a function for instantiating a relative
schedule at the given date-time. It has the following signature and satisfies the

following invariant:
instantiateSchedule : RelativeSchedule X DateTime — Schedule (6.24)
Invariant 6.20. Let r be an arbitrary relative schedule and ¢ a date-time stamp. Then:

instantiateSchedule(r,t) =

({p+round(t,m (r)) | p € m(r)},m3(RelativeSchedule))

Apart from a relative schedule, instruction templates also contain the neces-
sary elements to populate the corresponding elements in the instantiated sched-
uled instructions. For example, templates for scheduled homogeneous actions (i.e.
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HomogeneousActionTemplate) also contain an action type, rate and duration, thus
they are formally defined as follows, with instantiateScheduledInstruction satisfying

the following invariant for scheduled homogeneous actions:

HomogeneousActionTemplate =

ActionType x RelativeSchedule x Rate x Duration (6.25)

Invariant 6.21. Let i be a template for an arbitrary scheduled homogeneous action,

and let 7 be an arbitrary date-time stamp. Then:

instantiateScheduledInstruction(i,t) =

(71 (i), instantiateSchedule(m (i)t ), w3(i), w4 (7))

For scheduled culminating actions, their templates comprise an action type, a

relative schedule and a goal state. L.e.:

CulminatingActionTemplate =

ActionType x RelativeSchedule x GoalState (6.26)

Invariant 6.22. Let i be a template for an arbitrary scheduled culminating action,

and let 7 be an arbitrary date-time stamp. Then:

instantiateScheduledInstruction(i,t) =

(71 (i), instantiateSchedule(m,(i),t), m3(i))

For scheduled control instructions, their templates comprise a target process, an
optional relative schedule and an optional process status. If a relative schedule is not
provided, then the instantiated scheduled control instruction should also not contain

a schedule. This leads to the following definition and invariant:

ControlTemplate =
TargetProcess x (RelativeSchedule U {NULL}) X (Status U {NULL})  (6.27)
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Invariant 6.23. Let i be a template for an arbitrary scheduled control instruction,

and let 7 be an arbitrary date-time stamp. Then:

[m2(i) = NULL = instantiateScheduledInstruction(i,t) =
(mi (i), NULL, 73 (i))] A
[m2(i) € RelativeSchedule = instantiateScheduledInstruction(i,t) =

(71 (i), instantiateSchedule(m, (i),t), m3(i))]

The invariants thus far, namely Inv.[6.19]to[6.23] specify how an action plan is to
be instantiated from a plan template. A Decision process instantiates an action plan
if and only if the filtered abstractions satisfy one or more of its decision criterion.

This leads to the following two invariants, which specify respectively that:
* An action plan is generated if an only if at least one decision criterion is
satisfied.
* The output action plan (if any) is an instantiation of the plan template at the

current date-time.

Invariant 6.24. Let p = (i,S4a1a,Sciri, Sinst) b€ an arbitrary Decision process, with
Sinst = (Dtemp,{c1,¢2,- -+ ,cn }). Furthermore, let d;, be the input data set and ¢ the

current date-time. Assuming isProcessActivated(s.y,t) returns true, then:

generateData(Syazas Scirls Sinst, din, 1) = {} <
Vn e {1,2,--- ,N}. =c,(filterAbstraction(diy U Sgarast))]

Invariant 6.25. Let p = (i,S4a1a, Sciri, Sinse) be an arbitrary Decision process, d;, be

the input data set, ¢ the current date-time and d,,,,; an arbitrary action plan. Then:

generateData(sdataaSctrlasinstadinat) = {dout} =

dyus = instantiatePlan(7 (Sing), 1)
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6.3.5 Effectuation Processes (ESpec)

Conceptually, effectuation involves performing the decided the course of action, with
the intention of bringing about a patient’s state (whether directly or via changes in
the patient’s external environment). In the MADE guideline model, Effectuation

processes comprise:

* A specification of the target scheduled instructions to effectuate. These targets
are identified by its type of action plan, its type of target instruction (which
may be an action type for action instructions or a target process for control
instructions) as well as a predicate that must be satisfied by the effectuated

instruction.

* An output type identifying the specific type of instruction to output.

ESpec = P (TargetScheduledInstruction) x OutputType (6.28)
TargetScheduledInstruction = PlanType x
(ActionType U TargetProcess) X InstructionPredicate (6.29)
InstructionPredicate = (ScheduledControl U
ScheduledHomogeneousAction U ScheduledCulminatingAction)
— Boolean (6.30)

When activated, an Effectuation process filters out any action plans that are
not valid at the current date-time and extracts, from the remaining action plans, all
relevant scheduled instructions based on the specified targets. From these remaining
scheduled instructions, the Effectuation process then determines if any should be
effectuated. Scheduled control instructions are effectuated immediately (if they
match the targets) while scheduled action instructions are only effectuated if the
current date-time matches their schedule.

Note that since all scheduled instructions already specify their action type (for
action instructions) or target process (for control instructions), it is not necessary for
the Effectuation process to also specify an output type. However, by keeping the
target input and output types separate, the scheduled instructions can be specified
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at a different level of abstraction than the effectuated instruction. For example, the
schedule may simply indicate that the patient should exercise for 3 hours, while
the effectuated instruction may specify explicitly that the patient should run on a
treadmill.

More formally, generateData for Effectuation processes satisfies the following
four invariants. The first invariant indicates that an instruction can be generated only
if a scheduled instruction matches one of the specified targets. The remaining three
invariants specify respectively that the contents of the output homogeneous action
instruction, culminating action instruction and control instruction must match those

of the corresponding scheduled instruction.

Invariant 6.26. Let p = (i, Squza; Sciri, Sinst) be an arbitrary Effectuation process, with
Sinst = ({x1,X2,+ -+ ,xn },0). Furthermore, let d;, be the input data set and # the current

date-time. Assuming isProcessActivated(s.y,t) returns true, then:

Vn e {1,2,--- \N}. Va € filterPlan(s g U din,1). Vy € m4(a).
71 (xa) 7 T (a) V T (xn) 7 () V -7 (xa) (v)] =

generateData(sdataa Sctrls Sinst dim t) = {}

Invariant 6.27. Let p = (i, Sqaza; Sciri; Sinst) b€ an arbitrary Effectuation process, with
Sinst = ({x1,x2,- -+ ,xn },0). Furthermore, let d;, be the input data set, 7 the current
date-time and d,,, an arbitrary MADE data item. Then:

[generateData(sgasa, Scirts Sinsts dinst) = {dous } N
dows € HomogeneousAction| =
(71 (dous) = 0 N T (dpur) =1 N W3(dpus) =1 A
In e {1,2,--- ,N}. Ja € filterPlan(sga1q U din,1). Ty € ma(a).
71 (xn) = 1 (a) A o (xn) = 701 (y) A 73(x) () A
onSchedule(my(y),t) A Tta(dous) = m3(y) A s (dour) = 74 (y)]

Invariant 6.28. Let p = (i, S4asa, Scuri, Sinst) be an arbitrary Effectuation process, with

Sinst = ({x1,x2, -+ ,xn},0). Furthermore, let d;, be the input data set, ¢ the current
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date-time and d,,, an arbitrary MADE data item. Then:

[generateData(sgasa, Sctrt, Sinsts dinyt) = {dou } N
dour € CulminatingAction| =
(71 (dows) = 0 N Mo (dour) =1t N\ W3(dps) =1 A
dn e {1,2,---,N}. Ja € filterPlan(sgg1q U din,t). Jy € ma(a).
1 (xn) = i (a) A T (xn) = 701 (¥) A 703(xa) (¥) A
onSchedule(my(y),t) N\ mta(dow) = m3(y)]

Invariant 6.29. Let p = (i, Sqasa; Sciri, Sinst) be an arbitrary Effectuation process, with
Sinst = ({x1,x2,- -+ ,xn },0). Furthermore, let d;, be the input data set, 7 the current
date-time and d,,; an arbitrary MADE data item. Then:

[generateData(sgau, Scirt, Sinsts diny t) = {dour } N
dou € Controllnstruction] =
(701 (dous) = 0 N T (dpus) =1 N W3(dpus) =1 A
dn e {1,2,--- ,N}. Ja € filterPlan(sg41q U din,t). Jy € m4(a).
1 (xn) = M1 (@) A 2 (xn) = 701 (y) A 73(xa) (¥) A
4 (dour) = M2(y) A 75 (dour) = 73(y)]

As expected, filterPlan is a function for filtering out MADE data items that are
either not action plans or are irrelevant at the current date-time. However, unlike
measurements, observations and abstractions, an action plan is considered relevant if
(and only if) there does not exist another action plan with the same plan type and a
more recent valid date-time. This ensures that the instructions of an action plan will

continually be effectuated until the plan itself is replaced. More formally,
filterPlan : &?(Data) x DateTime — &?(ActionPlan) (6.31)
Invariant 6.30. Let d;, be an arbitrary data set and ¢ a date-time stamp. Then:

filterPlan(d;y,t) ={d | d € di N\ d € ActionPlan \ —3dipper € dip.
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dinner € ActionPlan N\ T (dinner) =m (d) N T3 (dinner) >3 (d) N T3 (dinner) < l‘}

6.4 Application Example

As an example application of the MADE guideline model, consider the clinical
guideline fragment that was introduced in Sec. and for which a MADE domain
information model was derived in Sec.[d.4] As shown in Fig.[3.5] this fragment com-
prises three processes, namely an Analysis process (AnalyseKetonuria) for analysing
the presence of ketonuria, a Decision process (Decidelncrease Carbohydrates) for
deciding to increase the patient’s carbohydrates intake, as well as an Effectuation pro-
cess (EffectuateCarbohydratesintake) for effectuating the increase in carbohydrates
intake.

Based on the guideline fragment (Fig. [3.4) and the corresponding MADE PIM,

the Analysis process (AnalyseKetonuria) can be formalised as follows:

AnalyseKetonuria C Analysis, such that (6.32)
Vp € AnalyseKetonuria. m;(p) = ANALYSE KETONURIA A
71 (ma(p)) = KETONURIA A mo(m4(p)) = {(ONE WEEK,
[Adin. |{d |d € din N\ d € UrinaryKetoneLevel \ ms(d) € {+,++}}| >3],
[Adi,. POSITIVE])}

As expected, AnalyseKetonuria outputs ketonuria (KETONURIA) abstractions,
and it operates on data within a 7-day time window. For this process, the condition
for generating an abstraction is the presence of three or more “positive” urinary
ketone levels (+ or + +) in the filtered data, and the resulting value for the ketonuria
abstraction is “positive” (POSITIVE).

Similarly, the Decision process (DecidelncreaseCarbohydrates) is formalised as
follows. This process only has one decision criterion (7, (74 (p))), namely to check
whether ketonuria is positive and whether the patient is compliant with her diet. If
satisfied, the Decision process then instantiates the dietary plan (DIETARY PLAN)
to increase carbohydrates intake by 10 g. The exact schedule for when to increase
carbohydrates intake is not specified by the guideline fragment (except that it should
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be at dinner or at bedtime), so for this example, it is assumed that carbohydrates
intake should be increased starting from the following day at 19:00 (repeating daily).

DecidelncreaseCarbohydrates C Decision, such that (6.33)

Vp € DecidelncreaseCarbohydrates.

71 (p) = DECIDE INCREASE CARBOHYDRATES A
71 (71 (ma(p))) = DIETARY PLAN A

m(m(ma(p))) = {(CHANGE DIET INSTRUCTION,

(ONE DAY, {19:00},ONE DAY),10G)} A
m(ma(p)) = {[Adin. (3d € djy. d € Ketonuria N\ m4(d) = POSITIVE) A
(3d € diy. d € DietCompliance N m4(d) = COMPLIANT)]}

Finally, the Effectuation process (EffectuateCarbohydrateslntake) can be for-
malised as follows. It searches for dietary plans (DIETARY PLAN) and effectuates
the instructions for adjusting the patient’s diet (CHANGE DIET INSTRUCTION). Note
that this process is a proxy process as the instruction (to increase carbohydrates intake)
must be performed manually by the patient herself. As a result, the output instruction
type (CHANGE DIET PROXY) is a proxy version of CHANGE DIET INSTRUCTION.

EffectuateCarbohydratesIntake C Effectuation, such that (6.34)
Vp € EffectuateCarbohydratesintake.
71 (p) = EFFECTUATE CARBOHYDRATES INTAKE A
w1 (ms(p)) = {(DIETARY PLAN, CHANGE DIET INSTRUCTION, Ad;,;. TRUE)} A

m(ms(p)) = CHANGE DIET PROXY
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6.5 Discussion

6.5.1 Expressiveness of the Guideline Model

In theory, the MADE guideline model is Turing complete as it supports conditional
branching as well as the reading and writing of arbitrary amounts of memory. How-
ever, each process type is given a specific clinical interpretation, thus in this respect
they exhibit limited expressiveness. For example, Decision processes in the MADE
guideline model can ultimately be reduced to if-then-else expressions, with the condi-
tion being the decision criteria and the result being the instantiated action plan. This
is in contrast with the traditional notion of planning in artificial intelligence, which
typically involves a complex reasoning procedure for creating a plan from basic plan
components [8]].

Indeed, compared with typical guideline representation languages, the MADE
guideline model provides less intrinsic support for representing tasks that require
manual intervention. A clear example is support for alternative plans, which is
typically provided by other guideline representation languages. However, the main
purpose of the MADE guideline model is to enable pervasive healthcare systems to
provide guideline-based support to patients, which it achieves by capturing the data
flow instead of control flow in clinical guidelines. In this way, the MADE guideline
model intrinsically allows all processes to be distributed and executed in parallel
by such systems. Furthermore, given the potential amounts of data that must be
processed, it is envisaged in the pervasive healthcare setting that many processes

should be automated by the system.

6.5.2 Computability of the Guideline Model

One typical advantage of reduced expressiveness in computer-interpretable languages
(including knowledge representation languages) is increased amenability to analysis.
Ideally, the MADE processes should be free from errors during execution, especially
since they are designed for clinical purposes. Therefore, by keeping the MADE guide-
line model simple, it is envisaged that the process of verifying its implementation

and formalised guidelines will also be facilitated.
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In fact, the MADE processes are designed to guarantee termination during
execution, provided that the user-provided functions (e.g. predicates and decision
criteria) do not contain arbitrary recursions and/or iterations. The processes do
not support arbitrary branching, and their behaviour can all be captured using non-
recursive functions or primitive recursive functions applied over a finite domain, such
as the set of input data.

For MADE networks, there is a clear sequential flow of data from Monitoring to
Effectuation processes, and as implied by Inv. [3.5] control instructions cannot affect
the control states of the processes in the same time instant that they are generated. As
a result, even though MADE networks are designed to generate data until a closure
is reached (as specified by Inv. [3.4), this closure is always finite and can always
terminate. The only assumption is that the different types of MADE data items do
not overlap, such that an culminating action instruction, for example, cannot also be
an observed property.

Furthermore, because only data and not control is communicated between pro-
cesses, concurrency problems such as live locks and dead locks will not occur.
Although the MADE models do assume perfect communication between processes
(Sec.[3.3.2), and problems may clearly arise if data are in any way delayed, this is a
technical concern and is therefore considered outside the scope of the MADE models,
which only focus on the clinical concerns of pervasive healthcare.

However, although MADE processes (and MADE networks) may be guaranteed
to terminate, their behaviour may not always be deterministic. More specifically, non-
deterministic behaviour may be exhibited by Monitoring, Analysis and Effectuation

processes under the following respective conditions:

» The conditions indicating the start of an observed event overlap with those
indicating the end of the same event for a Monitoring process, such that the

process cannot always distinguish whether the event has started or ended.

* The abstraction triplets of an Analysis process are not mutually exclusive, such
that multiple triplets may be triggered at the same time, each resulting in an

abstraction with potentially a different value and valid date-time range.

» The target scheduled instructions of an Effectuation process are not mutually

exclusive, such that multiple instructions may require effectuation at the same
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time, even though all processes by definition can output at most one data item

at each time instant.

One possible solution to this non-deterministic behaviour is to allow processes to
output a set of data items instead of only a single data item. In this way, an Analysis
process, for example, can be specified to output all the abstractions corresponding to
all the triggered abstraction triplets. However, this approach will not in fact address
the root cause of the problem, which is that the specifications of the processes are not
mutually exclusive. For example, it is clearly nonsensical for a Monitoring process
to return two contradictory observations at the same time to indicate that an event
has both started and ended. As a result, it is hypothesised that a more appropriate
solution to this non-deterministic behaviour is to provide tool support to detect it

during run-time or during the formalisation of clinical guidelines.






Chapter 7

The Guideline Language

7.1 Introduction

In this chapter, the MADE guideline language is presented, which is the counterpart
to the MADE archetype language but for the guideline model instead of the refer-
ence information model. In particular, this guideline language builds on top of the
MADE archetype language such that the tasks specified in clinical guidelines can
be formalised into MADE processes. Indeed, since it is also implemented on top of
Rosette, the MADE guideline language supports all constructs provided by Rosette as
well as those exposed by the implementation of the language (including the MADE
RIM and the MADE guideline model). However, this chapter only focuses on the
constructs directly relevant for formalising guidelines.

In Sec.[7.2] the complete syntax of the MADE guideline language is presented
using the same EBNF notation explained in Sec. and adopted in Sec.[5.2] The
semantics of the MADE guideline language is also described with examples in
Sec. and in Sec. its reference implementation is explained. To verify
the implementation, invariants on the MADE guideline model are checked against
the implementation using Rosette’s solver-aided features, the details of which are
presented in Sec. Finally, this chapter concludes with a discussion in Sec.
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7.2 Language Specification

7.2.1 MADE Data Items

Since MADE processes operate on MADE data items, specifications in the MADE
guideline language may involve manipulating and instantiating them. As described
in Sec. archetypes are transformed into structures (that inherit from the appro-
priate MADE data type), thus MADE data items are instantiated in the same manner
as other structures in Rosette. More specifically, the syntax for instantiating a MADE

data item is as follows:
data-item : ’(’, ID, EXPR, {EXPR}, ’)’;

ID is the identifier of the structure to instantiate, and each expression assigns
a value to the corresponding field in the structure; in other words, there must be
the same number of expressions as there are fields in the structure (including fields
inherited from parent structures).

Furthermore, let struct-id be an identifier for a structure and let field-id be
an identifier for a field in struct-id. Then struct-id-field-id is the procedure
for extracting the value of field-id from the given instance of struct-id. For

example, the following commands:

1. Creates a new structure type with Id parent-struct and field parent-field.

2. Creates a new structure type with Id test-struct that inherits from the

structure parent-struct and contains an extra field test-field.

3. Instantiates test-struct with a value of 10 for parent-field and 20 for
test-field.

4. Retrieves the values of parent-field and test-field in the instantiated

test-struct.

> (struct parent-struct (parent-field))

> (struct test-struct parent-struct (test-field))
> (define test-instance (test-struct 10 20))

> (parent-struct-parent-field test-instance)

10
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> (test-struct-test-field test-instance)
20

As expected, the fields of each MADE item varies according to their type, whether
they are measurement, observations (for properties or events), abstractions, action

plans, action instructions (homogeneous or culminating) or control instructions:

* Measurements (measurement) inherit the proxy flag (proxy-flag) from the
generic MADE data structure (made-data) and contain fields for their valid

date-time (valid-datetime) and value (value).

* Observations for properties (observed-property) also inherit proxy-flag
and contain the fields valid-datetime and value. However, observations
for events (observed-event) contain a field for a valid date-time range

(valid-datetime-range) instead of a singular valid date-time.

* Abstractions (abstraction), like observed events, inherit proxy-flag and

contain the fields valid-datetime-range and value.

* Action plans (action-plan), apart from inheriting proxy-£flag, also contain
the fields valid-datetime and instruction-set; the latter is for the set of

scheduled instructions that constitute the plan.

* Homogeneous action instructions (homogeneous-action) also inherit the
field proxy-£flag, but they contain the fields start-datetime, rate and
duration for their starting date-time, rate and duration respectively. Culminat-
ing action instructions (culminating-action) contain the field goal-state

for their goal states instead of a rate and duration.

* Control instructions (control-instruction) inherit proxy-flag and con-
tain the fields target-process, valid-datetime, schedule and status
for their target process, valid date-time, target schedule and target status re-

spectively.

For example, the following syntax creates an archetype for an observation about
the severity of a burn and instantiates a 3rd degree burn on April 18, 2020 at 9:00
am. Various procedures are used to extract the values of the corresponding fields in
the observation:
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> (define-observation burn-severity
enumerated ’1st ’2nd ’3rd ’4th)
> (define instance
(burn-severity #f (datetime 2020 4 18 9 0 0)
(burn-severity-value-space ’3rd)))
> (observed-property-valid-datetime instance)
(datetime 2020 4 18 9 0 0)
> (observed-property-value instance)
(burn-severity-value-space ’3rd)
> (made-data-proxy-flag instance)
#£

Once extracted, the fields can be operated on such as described in Sec. [311'] for
basic data types and Sec. [5.2.2]for temporal data types. However, MADE data items
can also be compared against each other for equality using the eq? procedure, which
checks whether the two input MADE data items are of the same type and whether
each field contain values that are equal (as determined by eq?). Returning to the burn

severity example:

> (eq? instance
(burn-severity #f (datetime 2020 4 18 9 0 0)
(burn-severity-value-space ’3rd)))
#t
> (eq? instance
(burn-severity #f (datetime 2020 4 18 9 0 0)
(burn-severity-value-space ’4th)))
#f

Furthermore, as explained in Sec.[5.3.1] the transaction date-time of a MADE
data item can be retrieved using the procedure transaction-datetime. Other
procedures provided by the implementation to manipulate MADE data items include
get-type, which returns the archetype Id of the MADE data item, and valid?,
which checks whether the fields contain values of the expected type:

> (transaction-datetime instance)
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(datetime 2020 4 18 9 0 0)

> (eq? (get-type instance) burn-severity)
#t

> (valid? instance)

#t

> (valid? (burn-severity #f 100 100))

#f

7.2.2 Monitoring Processes

Recall from Sec. [6.3.2] that two types of Monitoring processes are distinguished,
those that output observed properties and those that output observed events. For
the monitoring of observed properties, the syntactic form comprises the following

components to reflect its specification (Eq.[6.6)):

* The #:property keyword.
* An identifier (ID) for the new process.

* A boolean indicating whether the process is a proxy or not, i.e. whether the

output of the process requires manual confirmation or not.

* An identifier indicating the output type of the process. This identifier should
correspond to an observed property as specified using the MADE archetype
language.

e The time window for the process, which is represented as a duration.

* The value function for the process, which is represented as a lambda expres-

sion.

monitoring-process-property :
’(define-monitoring #:property’, ID, proxy, output-type,
window, LAMBDA-EXPR, 7)7;
proxy : BOOLEAN;
output-type : ID;

window : duration-instance;
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Note that in the specification of the MADE PIM (Sec. [3.5.2), proxy processes
are distinguished from regular, non-proxy processes by their Id. However, in the
MADE guideline language, proxy processes are identified via an additional boolean
proxy flag. While unnecessary, this allows a clear distinction between the clinical
purpose of the process (as captured by its Id), and whether the process requires
manual confirmation. Furthermore, it allows the implementation to automatically
detect proxy processes and ensure that the data generated by such processes are not
operated on by other MADE processes.

The syntactic form for the monitoring of observed events (which is specified in
Eq. is equivalent to that for observed properties, except that the keyword is
#:event instead of #:property. Furthermore, instead of a time window and value
function, the syntactic form contains two trigger pairs, one to specify the conditions
indicating the start of the event and the other the end of the event. Each trigger
pair contains a time window and a predicate (expressed in the form of a lambda

expression).

monitoring-process-event
>(define-monitoring #:event’, ID, proxy, output-type,
2 * trigger, ’)’;
trigger : ’(event-trigger’, window, LAMBDA-EXPR, ’)’;

For example, the following is a contrived Monitoring process for detecting the
event that a patient is sprinting. The exercise event is considered to have started

I'in a 5-second window, and it is

if the patient’s average speed has reached 3 ms™
considered to have stopped if the patient’s average speed has dropped below 2 ms~!

in a 5-second window.

(define-monitoring #:event monitor-sprint #f sprint-event
(event-trigger
(duration 0 0 0 5)
(lambda (dSet)
(dim>=? (average (filter (lambda (d) (body-speed? d))
dSet))

(dimensioned 3 ’ms-1))))



7.2 Language Specification 111

(event-trigger
(duration 0 0 0 5)
(lambda (dSet)
(dim<? (average (filter (lambda (d) (body-speed? d))
dSet))
(dimensioned 2 ’ms-1)))))

In this example, it is assumed that sprint-event and body-speed are both
specified as appropriate using the MADE archetype language; sprint-event is an
observed event while body-speed is a measurement (with units ms~!). Furthermore,
the procedure average is assumed to be provided, although in practice, it must
also be defined by the user in Rosette. The average procedure is applied to the
body-speed measurements in the input data set and compared against the target
value of 3ms ™! for the start of the event and 2 ms ™~ for the end of the event. Since
the input data set may contain data of other types, the filter procedure, which is

provided by Rosette, is used to ensure that only the body speed is considered.

7.2.3 Analysis Processes

As with that for Monitoring processes, the syntactic form for Analysis processes
contains an identifier for the process, a Boolean proxy flag and an identifier for the
output type. However, the syntactic form for Analysis processes also contains an
arbitrary number of abstraction triplets, which in turn comprises a time window, an
abstraction predicate and an abstraction function as specified in Sec.[6.3.3] Thus

more formally:

analysis-process
’(define-analysis’, ID, proxy, output-type,
abstraction-triplet, {abstraction-triplet}, ’)°’;
abstraction-triplet : ’(’, window, 2 * LAMBDA-EXPR, ’)7;

For example, the following syntax defines an Analysis process for determining
whether the amount of exercise performed by a patient is insufficient or excessive.
Insufficient is defined as less than 5 sprints per month (30 days) and excessive over

10 sprints per 7 days.
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(define-analysis analyse-exercise #f exercise-abstraction

((duration 30 0 0 0)

(lambda (dSet) (< (count-sprints dSet) 5))

(lambda (dSet)

(exercise-abstraction-value-space ’insufficient)))

((duration 7 0 0 0)

(lambda (dSet) (> (count-sprints dSet) 10))

(lambda (dSet)

(exercise-abstraction-value-space ’excessive))))

It is assumed here that exercise-abstraction is specified as an abstraction
archetype with the nominal values >insufficient and ’excessive, the data type
for which (i.e. exercise-abstraction-value-space) is automatically provided
by the MADE archetype language. Furthermore, as with the average procedure
described in Sec. the procedure count-sprints must be defined by the user.

In this case, count-sprints can be defined as follows:

(define-syntax-rule (count-sprints dSet)
(length (filter (lambda (d)
(and (sprint-event? d)
(get-value (observed-event-value d))))
dSet)))

Apart from get-value and observed-event-value, which are provided by
the MADE archetype language and is used to extract the value of an observed
event, all other procedures (e.g. define-syntax-rule and length) are provided
by Rosette. In effect, the procedure define-syntax-rule creates a procedure
count-sprints that counts the number of data items in dSet that are sprint events

with value true.

7.2.4 Decision Processes

Apart from the process identifier, boolean proxy flag, and output type identifier,

the syntactic form for Decision processes also requires a non-empty list of instruc-
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tion templates as well as a non-empty list of decision criteria (as dictated by its
specification presented in Sec.[6.3.4):

decision-process
>(define-decision’, ID, proxy, output-type,
>(#:instructions’, inst-template, {inst-templatel}, ’)’,
>(#:criteria’, LAMBDA-EXPR, {LAMBDA-EXPR}, ’)°’, ’)?;

As implied by the syntactic form above, each decision criterion is a predicate
expressed as a lambda expression. For instruction templates, three different syntactic
forms are distinguished for specifying scheduled control instructions, scheduled

homogeneous action instructions and scheduled culminating action instructions:

inst-template

control-template | homogeneous-template | culminating-template

The syntactic form for control templates comprises a symbol specifying its target
process, a relative schedule for the process as well as a target status. Note that
in accordance to the specification of Decision processes in the guideline model,
the target schedule and status are both optional, but at least one must be present.
Furthermore, the target status is represented as a boolean (with true denoting running
and false paused), while relative schedules comprise multiple durations representing:

* The rounding factor with which to round the input date-time.
* The start pattern for the schedule.

* The repeat interval of the schedule, which can be a duration or a boolean (with

true representing always repeating and false never).

control-template
>(control-template’, SYMBOL, relative-schedule, status, ’)’° |
’(control-template’, SYMBOL, relative-schedule, )’ |
>(control-template’, SYMBOL, status, ’)’;

status : BOOLEAN;

relative-schedule

’(relative-schedule’,
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’#:rounding’, duration-instance,
*#:pattern’, duration-instance, {duration-instance},

‘#:interval’, duration-instance | BOOLEAN, °)°;

The syntactic form for homogeneous action templates comprises a symbol speci-
fying its target action type, a relative schedule, an action rate (which is a dimensioned

value) as well as an action duration:

homogeneous-template
> (homogeneous-action-template’, SYMBOL, relative-schedule,

dimensioned-instance, duration-instance, ’)7;

Finally, the syntactic form for culminating action templates comprises a symbol
specifying its target action type, a relative schedule as well as a goal state, which
can be an instance of any basic primitive value (the syntax for which is detailed in

Sec.[5.2.1):

culminating-template
>(culminating-action-template’, SYMBOL, relative-schedule,
goal-state, ’)’;
goal-state
>(’, ID, BOOLEAN | INTEGER | RATIONAL | SYMBOL, [SYMBOL], ’)7;

As an example, the following syntax specifies a Decision process to prescribe
exercise if the patient is not performing sufficient amounts of exercise. The prescribed
exercise repeats weekly and starts the day after the decision is made, and it alternates
between running at 3 ms~! for 30s starting at 7:00 in the morning and running for
5000 m starting at 17:00 in the afternoon:

(define-decision
decide-exercise #f exercise-plan
(#:instructions
(homogeneous-action-template
’sprint-action
(relative-schedule #:rounding (duration 1 0 O 0)
#:pattern (duration 0 7 0 0)
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#:interval (duration 14 0 0 0))
(dimensioned 3 ’ms-1)
(duration 0 0 0 30))
(culminating-action-template
’endurance-running-action
(relative-schedule #:rounding (duration 1 0 0 0)
#:pattern (duration 7 17 0 0)
#:interval (duration 14 0 0 0))
(dimensioned 5000 ’m)))
(#:criteria
(lambda (dSet)
(findf
(lambda (d)
(and (exercise-abstraction? d)
(eq? (abstraction-value d)
(exercise-abstraction-value-space
’insufficient))))
dSet))))

The procedure findf in the decision criteria is provided by Rosette, and it

searches for a data item in the input data set that satisfies the given lambda expression.

In this case, the lambda expression looks for a data item that is an exercise abstraction

with the value representing insufficient.

7.2.5 Effectuation Processes

Similar to those for Monitoring, Analysis and Decision processes, the syntactic form

for Effectuation processes contains an identifier for the process, a Boolean indicating

whether it is a proxy process or not, and an identifier specifying the output type

of the process. However, in accordance to its specification in the guideline model

(Sec.[6.3.3), the syntactic form for Effectuation processes also contains a non-empty

list of target schedules, each of which comprises:

* An identifier indicating the target plan type.
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* A symbol indicating the target instruction type. For control instructions, this
corresponds to the target process, while for homogeneous and culminating

action instructions, this corresponds to the action type.

* A predicate on the target scheduled instruction, represented by a lambda

expression.

effectuation-process
>(define-effectuation’, ID, proxy, output-type,
target-schedule, {target-schedule}, ’)’;
target-schedule
>(target-schedule’, ’#:plan’, ID, ’#:instruction’, SYMBOL,
‘#:predicate’, LAMBDA-EXPR, ’)’;

For example, the following Effectuation process is responsible for effectuating
the action to run for 5000 m by activating the treadmill. In this case, the instruction
predicate is specified to always return true since no extra conditions are to be attached
to the effectuated action:

(define-effectuation effectuate-running #f treadmill-output
(target-schedule #:plan exercise-plan
#:instruction ’endurance-running-action

#:predicate (lambda (inst-set) #t)))

7.2.6 MADE Process Instances

The syntactic forms presented above allow the various MADE processes in a guideline
to be specified; to execute a guideline for a specific use case, these processes must
first be instantiated. Like other data structures in Rosette, processes are instantiated
as follows, with ID being the ID of the process to instantiate, the first EXPR evaluating
to the data state of the process (i.e. a list of MADE data items) and the second EXPR

evaluating the control state of the process:
process-instance : ’(’, ID, EXPR, EXPR, ’)7;

For example, the following syntax creates an instance of analyse-exercise

that contains an empty data state and is activated every 7 days starting from Mar.
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3, 2020 at 7:00 am. Note that control state is implemented as a structure with the
identifier control-state and two fields, the first for the process schedule and
the second for the process status. Furthermore, the values of the data state and
control state can be extracted using the procedures made-process-data-state

and made-process-control-state respectively:

> (define proc-instance
(analyse-exercise
null
(control-state
(schedule (list (datetime 2020 3 3 7 0 0))
(duration 7 0 0 0))
#t)))
> (made-process-data-state proc-instance)
0]
> (made-process-control-state proc-instance)
(control-state (schedule (list
(datetime 2020 3 3 7 0 0)) (duration 7 0 0 0)) #t)

As with archetype instances, process instances can be compared against each
other for equality using eq?, which checks whether two processes have the same 1D
or not and whether their data states and control states evaluate to the same values.
Furthermore, get-type retrieves the Id of the process while valid? checks whether
all components of a process, including its states and specification, are of the correct

type or not:

> (eq? proc-instance (analyse-exercise null #f))
#f

> (eq? (get-type proc-instance) analyse-exercise)
#t

> (valid? proc-instance)

#t

> (valid? (analyse-exercise null #f))

#f
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Apart from these procedures that are common between both MADE archetype
and MADE process instances, the following procedures are also provided by the

MADE guideline language for manipulating processes:

» proxy? which accepts a process as input and checks whether it is a proxy

process or not.

* is-proc-activated? which checks whether a process is activated or not

given its control state and date-time.

* execute which executes the given process with the given list of MADE data

items at the given date-time.

* generate-data which returns the data generated by the input process with

the given list of data at the given date-time.

* update-data-state which updates the data state of the input process with
the given list of data and date-time.

* update-control-state which updates the control state of the input process

with the given list of data and date-time.

The semantics of these procedures are all as described in Ch. |3} However, for
simplicity, update-data-state, update-control-state and generate-data
accept as input a complete process instance instead of its components as specified
in Eq.[3.3]to Eq.[3.5] Furthermore, instead of outputting an updated data state and
control state respectively, both update=data-state and update-control-state
return as output a complete process instance, with the data state and control state
updated as appropriate.

Example usage of these procedures are as follows; here, the input data (in-data)
consists of two sprint events, one on Mar. 4, 2020 and the other on Mar. 13, 2020,
and the date-time of execution (cur-dt) is Mar. 17, 2020 at 7:00 am. As expected,
generate-data returns an insufficient exercise abstraction (lines 19 to 26), while
execute returns an updated process together with the output data (lines 27 to 34).
The new data state of the process is a list containing the input and output data (lines

35 to 40) and the control state of the process remains unchanged (lines 41 to 46).

> (define in-data

(list (sprint-event
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#f
(datetime-range (datetime 2020 3 4 11 0 0)
(datetime 2020 3 4 11 0 30))
#t)
(sprint-event
#f
(datetime-range (datetime 2020 3 13 11 0 0)
(datetime 2020 3 13 11 0 30))
#t)))
> (define cur-dt (datetime 2020 3 17 7 0 0))
> (proxy? proc-instance)
#f
> (is-proc-activated?
(made-process-control-state proc-instance)
cur-dt)
#t
> (define out-data (generate-data proc-instance in-data cur-dt))
> out-data
(list
(exercise-abstraction
#f
(datetime-range (datetime 2020 3 17 7 0 0)
(datetime 2020 4 12 11 0 30))
(exercise-abstraction-value-space ’insufficient)))
> (eq? (execute proc-instance in-data cur-dt)
(list (update-control-state
(update-data-state
proc-instance (append in-data out-data) cur-dt)
(append in-data out-data)
cur-dt)
out-data))
#t

> (eq? (made-process-data-state
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(update-data-state proc-instance
(append in-data out-data)
cur-dt))
(append in-data out-data))
#t
> (eq? (made-process-control-state
(update-control-state proc-instance
(append in-data out-data)
cur-dt))
(made-process-control-state proc-instance))
#t

7.2.7 MADE Network Instances

Although a MADE network is specified to comprise a set of MADE processes
(Eq. 3.7), the MADE guideline language provides for convenience the structure
made-network to instantiate and manipulate MADE networks. This structure con-
tains four fields, namely monitoring for a list of Monitoring processes, analysis
for Analysis processes, Decision for Decision and effectuation Effectuation,
and it supports the procedure execute-network for executing the given MADE
network with the given input data at the given date-time. For example, the following
syntax instantiates MADE network with the instance of analyse-exercise and
executes the network with the sprint events as described in the previous section,
with equivalent results. Note that 1ist-ref is a procedure provided by Rosette
for retrieving the contents of the given list at the given index; here it is used to,
for example, extract the updated MADE network (line 7) and output data (line 11)

resulting from execute-network.

> (define net-instance (made-network null
(list proc-instance)
null
null))

> (define net-exec-out

(execute-network net-instance in-data cur-dt))
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> (eq? (made-network-analysis (list-ref net-exec-out 0))
(list (list-ref (execute proc-instance
in-data cur-dt) 0)))
#t
> (eq? (list-ref net-exec-out 1)
(list-ref (execute proc-instance in-data cur-dt) 1))
#t

7.2.8 Data List Generator

Apart from the syntactic forms presented above, the MADE guideline language
also provides two solver-aided syntactic forms to support the verification of clinical
guidelines: a data list generator presented in this section and a verifier in the next.
Since MADE processes are modelled to operate on data sets, it is useful to instantiate
multiple symbolic instances of MADE data items for verification and validation
purposes. Therefore, a generator procedure is provided that can generate a list of
instances of the given MADE archetype over the desired date-time period. More

specifically, it accepts as input:
* An identifier specifying which archetype to instantiate.
* A date-time at which the MADE data items start to be generated.
* A date-time beyond which no MADE data items are generated.

* A repeat frequency, which can be either an integer to indicate the number of
instances of the archetype to generate or a duration to indicate how often the

archetype should be instantiated from the start date-time onwards.

* An optional list of target instruction types to include if an action plan is

instantiated.

symbolic-archetype-instance-generator :
’(generate-1list’, ID, 2 * datetime-instance, NATURAL |
duration-instance, [target-list], ’)7;
target-list : ’(list’, SYMBOL, {SYMBOL}, ’)’;
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As an example, executing the following syntax in Rosette will generate symbolic
sprint events every two hours on March 17, 2020 from 00:00 am to 11:00 pm.

> (generate-list sprint-event
(datetime 2020 3 17 0 0 0)
(datetime 2020 3 17 23 0 0)
(duration 0 2 0 0))

7.2.9 Process Verifier

Analogous to the verify-archetype procedure for verifying archetypes, the proce-
dure verify-process checks whether the input process is logically consistent or
not. It requires as input the identifier for the process to be verified, an expression
that evaluates to a list of list of archetype instances (which can be symbolic) as well
as a symbolic or concrete date-time stamp at which to simulate the execution of the

process:
process-verifier : ’(verify-process’, ID, EXPR, EXPR, ’)’;

The input list of archetype instances may be generated by combining the results of
multiple generate-1list procedures, while a symbolic date-time can be generated
by executing the following get-datetime procedure, which is an extra function
provided by the MADE guideline language to generate a date-time stamp between
the specified start and end date-times. It accepts as input an optional pair of date-time
stamps which indicate the range of permissible values for the year, month, day, hour,
minute and second of the generated date-time stamp. If the date-time pair is not
provided, then by default all generated date-time stamps are fixed to Dec. 15, 2019
hr:00:00, with the value of hr ranging from O to 23 inclusive.

symbolic-datetime : ’(get-datetime, [2 * datetime], ’)7?;

verify-process returns different results depending on the type of process being
checked. For Monitoring processes of observed properties, it checks that executing
the process at the given date-time stamp with the given data set would produce a
valid observation. In other words, verify-process checks that the Monitoring
process is indeed satisfiable. If yes, then it returns an example data set and date-time
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stamp that results in a valid observation. Otherwise, it would return (unsat), which
indicates that either the specification of the Monitoring process is erroneous, or the
input data set or date-time stamp is too restrictive. For Monitoring processes of
observed events, verify-process checks the individual satisfiability of the trigger
pairs for the start and end of an event. The conjunction of both trigger pairs are also
checked; if satisfiable, this means that for some inputs, the Monitoring process may
be non-deterministic, with its output dependent on whether the event start is detected
first or the end.

For Analysis processes, verify-process also checks that the process can output
a valid abstraction on execution (given the input data set and date-time). However,
this satisfiability property is checked for each individual abstraction triplet in the
specification. Furthermore, satisfiability is also checked for every pair of abstraction
triplet to ensure that they are all mutually exclusive. If an example data set and date-
time stamp can be found that satisfies more than one abstraction triplet, this means
that for those inputs, the output of the Analysis process may be non-deterministic.
That is, depending on the implementation of Analysis processes and/or the ordering
of the abstraction triplets, a different abstraction may be generated given the same
inputs.

Similarly, for Decision processes, verify-process checks that each individual
decision criterion is satisfiable and that the process can output a valid action plan.
However, unlike Analysis processes, combinations of decision criteria are not checked
for satisfiability since the output of a Decision process remains the same regardless
of which decision criterion is satisfied.

Finally, for Effectuation processes, verify-process checks the satisfiability of
each target schedule as well as every possible pair of target schedules. If an input
data set and date-time stamp satisfy two different target schedules, this means that the
Effectuation process should output two instructions, one for each triggered schedule.
However, this violates the specification of Effectuation processes, which can only
output at most one instruction at each time instant. Thus this overlap may lead to
indeterminate results depending on the implementation of Effectuation processes
and/or ordering of the target schedules.

As an example, the following code checks the satisfiability of an Analysis process

for exercise abstractions, which is specified in Sec.[7.2.3] The generator is used
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to generate a list of 12 sprint events in 2-hour intervals on March 17, 2020 from
00:00 am to 11:00 pm, and the execution date-time for the process is set to be March
18, 2020 at 00:00 am.

> (verify-process analyse-exercise
(l1ist (generate-list
sprint-event
(datetime 2020 3 17 0 0 0)
(datetime 2020 3 17 23 0 0)
(duration 0 2 0 0)))
(datetime 2020 3 18 0 0 0))

Since the Analysis process is specified to contain two different abstraction triplets,
verify-process returns three results on execution, namely the inputs that satisfy
the first abstraction triplet, the inputs that satisfy the second abstraction triplet, and
the inputs that satisfy both. In this case, the abstraction triplets are mutually exclusive,
thus the third result is (unsat). For simplicity, only the main parts of the output are
shown; the rest are replaced by . . . as a placeholder:

Model for abstraction triplet: O
Input data:
(#(struct:sprint-event #f ...) ...)
Current date-time:
#(struct:datetime 2020 3 18 0 0 0)
Output data:
#(struct:exercise-abstraction #f
#(struct:datetime-range #(struct:datetime 2020 3 18 0 0 0)
#(struct:datetime 2020 4 16 22 0 0))

#(struct:exercise-abstraction-value-space insufficient))

Model for abstraction triplet: 1
Input data:
(#(struct:sprint-event #f ...) ...)

Current date-time:
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#(struct:datetime 2020 3 18 0 0 0)
Output data:
#(struct:exercise-abstraction #f
#(struct:datetime-range #(struct:datetime 2020 3 18 0 0 0)
#(struct:datetime 2020 3 24 2 0 0))

#(struct:exercise-abstraction-value-space excessive))

Model for abstraction triplets: O and 1

(unsat)

7.3 Reference Implementation

7.3.1 Implementation of the Data Types

Similar to the MADE archetype language, implementing the MADE guideline lan-
guage in Rosette involves implementing the constructs necessary for the MADE
guideline model as well as the appropriate macros to transform the language syntax
into the appropriate Rosette constructs. The source code of the implementation of the
MADE guideline model can be found at https://github.com/nlsfung/made-language/
tree/master/rpm; to summarise, it builds on top of the implementation for the MADE
archetype language, with each data type specified in the MADE guideline model
implemented as a structure in Rosette.

For example, recall that a generic process (Eq.[3.1]) is modelled as follows:
Process = Id x DataState x ControlState x InstSpec

This translates to the following in Rosette:
(struct made-process (data-state control-state))

The struct keyword declares a new structure type with made-process as the
identifier, and it contains two fields: data-state and control-state. Note that
since an identifier is automatically assigned to every new structure type, it is not
necessary for the implemented MADE processes (and MADE data items) to contain

a separate ID field to specify its type.
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Furthermore, since InstSpec is modelled to remain constant over time, it is not
implemented as a field but as procedures that return the appropriate values. Indeed,
the proxy flag of a process is also implemented as a procedure that returns the
appropriate boolean value (and can be called by the generic proxy? procedure). For
example, recall that for Analysis processes (Eq. [6.14):

ASpec = OutputType x P (TimeWindow

x AbstractionPredicate X AbstractionFunction)

This translates to the following generic interface for Analysis processes, which
contain three methods:

* analysis-process-output-type to return the output type.

* analysis-process-output-specification to return the set of abstraction
triplets.

* analysis-process-proxy-flag to return the boolean proxy flag.

(define-generics analysis
[analysis-process-output-type analysis]
[analysis-process-output-specification analysis]

[analysis-process-proxy-flag analysis])

An implementation of analyse-exercise may then be as follows:

(struct analyse-exercise analysis-process ()
#:methods gen:analysis
[(define (analysis-process-output-type self)
exercise-abstraction)
(define (analysis-process-output-specification self) x)

(define (analysis-process-proxy-flag) #£)]1)

The first line states that analyse-exercise is a structure that inherits from
analysis-process (which, although not shown, inherits the data-state and

control-state fields from made-process). The second line states the process
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that analyse-exercise implements the gen:analysis interface for Analysis pro-
cesses, and this is followed by the implementations of the three methods of the
interface. In this example, the output type of the process is exercise-abstraction
while x is a placeholder for the appropriate abstraction triplets. Since the process is
not a proxy, the boolean proxy flag is false.

7.3.2 Implementation of the Invariants

All MADE process types are implemented as structures in Rosette as exemplified
above; components are implemented as either fields in the structure or as interfaces.
On the other hand, the function signatures and invariants that govern the behaviour of
the MADE processes are converted into the corresponding procedures and procedure
bodies in Rosette. For example, consider Inv. which is reproduced below and
states that if the process is not activated at the current date-time stamp (as determined

by its control state), the process will not output any data items:

Invariant. Let sy, be an arbitrary data state, s.,; a control state, s;,s; an instruction

specification, d;, an input data set and ¢ a date-time stamp. Then:
—isProcessActivated(s.y,t) = generateData(Sqaia, Scirls Sinst dinyt) = {}

Since this invariant relates to generateData, it translates to the following proce-

dure body within its implementation (i.e. generate-data):

(if (is-proc-activated?
(made-process-control-state made-proc)
datetime)

X
null)

The first line marks the start of an if-then-else branch with the condition
being the results of isProcessActivated (which is implemented as the procedure
is-proc-activated? in Rosette). If the condition returns true, then generateData
continues executing where placeholder x is. Otherwise, in accordance to the invariant,
the function returns an empty list (null). Note that since Rosette does not support
sets, they are implemented as lists instead.
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Converting an arbitrary specification into an implementation is an undecidable
problem, and it is not the intentions of this thesis to demonstrate a systematic and
automatic method for translating invariants into source code. In fact, for some low-
level operations (such as those for date-time comparisons), the specifications and
implementations are assumed and not detailed in this thesis except in the source
code. However, in general, invariants containing implications were implemented
as if-then-else expressions in Rosette. Furthermore, quantifiers may be imple-
mented using £01d1, which folds a list starting from the left-most element, while sets
can be constructed using a combination of map, append, filter and other similar

operations.

7.3.3 Implementation of the Syntactic Forms

The implemented data structures and procedures as presented above provide the
groundwork for the implemented macros which transform the syntactic forms of
the guideline language into the appropriate Rosette constructs. The source code for
the implemented macros are available at https://github.com/nlsfung/made-language/
tree/master/lang; to summarise, each process specification is transformed into a
structure that inherits from the appropriate MADE process data structure while re-
implementing its interface. Clinical guidelines can then be formalized into a Rosette
program by extending the structures and implementing the interfaces to return the
appropriate values. Subsequently, during execution, the structures are instantiated as
concrete data items.

As with the MADE archetypes, each specified process also re-implements the
typed interface, such that get-type returns the identifier of the specified process
and valid? checks whether instances of that process satisfy the specifications of
the MADE guideline model. For example, recall the specification of the process for
analysing exercise, which is reproduced below with LAMBDA acting as a placeholder

for actual lambda expressions:

(define-analysis analyse-exercise #f exercise-abstraction
((duration 30 0 O 0) LAMBDA LAMBDA)
((duration 7 O O 0) LAMBDA LAMBDA))

This is effectively expanded into the following source code in Rosette:


https://github.com/nlsfung/made-language/tree/master/lang
https://github.com/nlsfung/made-language/tree/master/lang

w

7.3 Reference Implementation 129

(struct analyse-exercise analysis-process ()
#:transparent
#:methods gen:analysis
[(define (analysis-process-output-type self)
exercise-abstraction)
(define (analysis-process-output-specification self)
(list (abstraction-triplet (duration 30 0 O 0)
LAMBDA LAMBDA)
(abstraction-triplet (duration 7 O 0 0)
LAMBDA LAMBDA)))
(define (analysis-process-proxy-flag self) #f)]

#:methods gen:typed
[(define/generic super-valid? valid?)
(define (get-type self) analyse-exercise)
(define (valid? self)
(and (valid-spec? self)
(super-valid?
(made-process (made-process-data-state self)

(made-process-control-state self)))))])

As expected, analyse-exercise inherits from analysis-process and re-
implements its corresponding gen:analysis interface. The output type of the pro-
cess is exercise-abstraction, and it contains two abstraction triplets, one with
a time window of 30 days and the other 7. Furthermore, to support type-checking,
analyse-exercise re-implements the gen:typed interface, with get-type re-
turning the identifier analyse-exercise and valid? checking that the Analy-
sis process contains a valid specification. The super-valid? procedure checks
that the data state and control state of all instances of the process are valid, while
valid-spec? checks whether the re-implemented methods return the appropriate re-
sults. Although not shown in the example above, for Analysis processes, this means

ensuring that analysis-process-output-type returns an output type and that
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analysis-process-output-specification indeed returns a list of abstraction
triplets.

The syntactic forms for Monitoring, Decision and Effectuation processes are
implemented similarly, the details of which can be found in the source code. For
the data list generator, it is implemented as a procedure that recursively calls the
appropriate archetype getter to obtain a list of MADE data items. More specifically,

the implemented algorithm is as follows:

1. Obtain getter for the input MADE archetype.

2. If the repeat frequency is a duration:

(a) Set current date-time to be the start date-time

(b) If current date-time is past the end date-time, return an empty list.

(c) Otherwise, call the archetype getter with the current date-time as input.
This would generate an instance of archetype at the current date-time.

(d) Set the start date-time to equal the current date-time plus the repeat
frequency.

(e) Call the data list generator again with the new start date-time.
3. If the repeat frequency is an integer:

(a) If repeat frequency is 0, return an empty list.
(b) Otherwise, call the archetype getter with the start and end date-times

as input. This would generate an archetype instance between those

date-times.

(c) Decrement the repeat frequency by 1 and call the data list generator

again.

To ensure that the output data list is meaningful, generate-data-1ist also as-
serts that all data items in the list are valid and unique, which is automatically enforced
when executing Rosette’s solver-aided facilities, including the verify-process
procedure. In effect, given a list of possibly symbolic data items (d-1ist) and
a possibly symbolic date time stamp (dt), invoking verify-process on a pro-

cess (p) entails checking if executing generate-data, which is the implemen-
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tation of genmerateData, can result in a valid MADE data item. In other words,

verify-process is largely equivalent to the following code in Rosette:

(solve
(assert
(and (not (null? (generate-data p d-list dt)))
(valid? (list-ref (generate-data p d-list dt) 0)))))

The main discrepancy is that verify-process checks individual portions of
their specification instead of the complete process. For example, recall that executing
verify-process on Analysis process checks the satisfiability of individual abstrac-
tion triplets as well as pairs of abstraction triplets. Thus in essence, verify-process
creates simplified copies of a process p, each of which is checked independently
using Rosette.

7.4 Verification of the Reference Implementation

Apart from guiding the implementation, the invariants were also translated into
assertions for verifying the implementation using Rosette. This translation involves

two steps:

* Defining the necessary symbolic constants to represent arbitrary real, integer
or Boolean values for the assertion. Bitvectors and uninterpreted functions are
also supported by Rosette, but they are not useful for verifying the reference
implementation. Furthermore, arbitrary structures and lists, while useful, are
not supported by Rosette, thus these must be instantiated in advance and

populated with values (possibly symbolic) for Rosette to verify.

» Strengthening the invariant ensure that the resulting assertion for Rosette to

verify is tractable.

For example, consider the implementation of Inv. presented in Sec. In
theory, to verify that the body of generate-data satisfies Inv.[3.2] it is necessary to
consider all valid control states, date-time stamps as well as substitutes for x. Now
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recall that:

ControlState = Schedule x Status
Schedule = &7 (DateTime) X Repeatlnterval

Repeatinterval = Duration U Boolean

Since arbitrary lists are not supported, the assertion can be simplified to only
verify schedules with exactly one date-time stamp. In fact, a date-time stamp contains
six different integers representing the year, month, day, hour, minute and second,
so to ensure that the verification process is tractable, it may be decided that for all
date-time stamps, only one field (e.g. the hour) is assigned a symbolic value while
the others are assigned concrete values (e.g. 2019-12-12 hr:30:15). To simplify the
assertion even further, it may also be decided to set the control state status to true
(so that the process is running) and to assign the repeat interval a symbolic Boolean
value instead of a duration (which is another structure comprising 4 integers). Finally,
the data state of the process and the data set input into generate-data may both be
assumed to be empty, but to ensure that generateData can produce a non-empty data
set, the substitute for x may be an arbitrary data item. This results in the following

strengthened version of Inv. [3.2}

Invariant. Let#; and r; be arbitrary natural numbers (ranging from 0 to 23 inclusive),
b an arbitrary boolean value and s;,;; an instruction to return TRUE. Furthermore,
let sqr = (({(2019,12,12,#,30,15)},b), TRUE) and ¢ = (2019,12,12,1,,30,15).
Then:

—isProcessActivated(scy1,t) = generateData({}, Sy, Sinst, { },1) = {}

In Rosette, this can be implemented as follows, with generate-data-x being
a special implementation of generateData that returns true when the process is

executed:

(define-symbolic hrl integer?)
(define-symbolic hr2 integer?)

(define-symbolic b boolean?)
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(define c-state
(control-state
(1ist (datetime 2019 12 12 hril 30 15)) b))
(define t (datetime 2019 12 12 hr2 30 15))
(verify
(assert
(implies (not (is-proc-executed? c-state t))
(null? (generate-data-x null c-state null t)))))

On executing the verify method, Rosette returns (unsat) to inform the user that
the input assertion is valid. Otherwise, Rosette returns a counter-example that violates
the assertion. In this way, all 38 invariants are successfully verified, the assertions for
which are available at https://github.com/nlsfung/made-language/tree/master/inv.

Note that since these invariants relate to the specification of MADE processes
only, the implementations for the data list generator and process verifier were not
formally verified. Instead, they were checked by testing on example processes, such
as the Analysis process analyse-exercise introduced in Sec. the results
for which are presented in Sec. (for generate-list) and Sec. (for
verify-process) and are manually verified to be correct. Such testing procedure
was also performed on an example Monitoring, Decision and Effectuation process,
the details of which are available at https://github.com/nlstung/MADE-Language/
blob/master/exp/TestProcesses.rkt and included in Appendix [B]

7.5 Discussion

7.5.1 Comprehensibility of the Language

One typical feature of knowledge representation languages is that it is not only
computer-interpretable, but also human-readable; this allows the user to easily inspect
the stored knowledge and understand the reasoning performed by the knowledge-
based system. Therefore, although it is not the purpose of this thesis to produce a
commercial knowledge representation language and system, it is useful to discuss
the comprehensibility of the MADE guideline language and possible improvements
that can be made.


https://github.com/nlsfung/made-language/tree/master/inv
https://github.com/nlsfung/MADE-Language/blob/master/exp/TestProcesses.rkt
https://github.com/nlsfung/MADE-Language/blob/master/exp/TestProcesses.rkt
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In particular, the MADE guideline language relies heavily on the syntax of
Rosette (and Racket), especially for defining lambda expressions, thus it may not be
accessible to users that are not already familiar with these programming languages.
To address this issue, extra syntactic forms can be introduced to raise the level of
abstraction of the MADE guideline language, such that lambda expressions can,
for example, be expressed using the infix notation typical of mathematical and
logical expressions (instead of the prefix notation adopted by Rosette). To improve
re-usability, the syntax of existing languages for the medical domain may also be
adopted. For example, in 1997, Shahar presented a knowledge-based method for
performing temporal abstractions [67], the syntax for which may be adopted for
specifying Analysis processes. Similarly, the GELLO expression language, which
is standardised by HL7 [15]], may also be adopted in place of arbitrary lambda
expressions. However, this requires the semantics of the languages to be equivalent

to avoid confusion.

7.5.2 Utility of the Solver-Aided Forms

It is outside the scope of this thesis to perform a full evaluation of the solver-aided
syntactic forms , but it can be observed that the process verifier is sound, i.e. if an
error is detected, then there is definitely an error in the specified process. For example,
if a data set can be found that satisfies two different abstraction triplets in an Analysis
process, then it is clear that under those circumstances, the output of that Analysis
process will be non-deterministic since more than one abstraction triplet is triggered.
However, this assumes that there is no redundancy in the specified processes. For
example, it may be the case that the overlapping abstraction pairs are equivalent to
each other, in which case the same outputs would be produced regardless.
Furthermore, it can be observed that the process verifier is incomplete. In other
words, even if no errors are detected, it can not be guaranteed that the process is
free from errors. In fact, one key limiting factor for the process verifier is that it
requires the user to provide a list of symbolic data items to test. If the list is too
restrictive, then no errors will be detected. On the other hand, if the list is too flexible
(i.e. it includes too many symbolic constants), then Rosette may not terminate in

a reasonable amount of time or it may run out of memory. Thus, the user must be
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familiar with both the specified process and the limitations of Rosette to arrive at an

appropriate data set for the verifier.






Chapter 8

Case Study

8.1 Introduction

In previous chapters, the underlying models and resulting languages for representing
MADE data and processes were presented. A reference implementation of the
languages was also developed, tested and formally verified using Rosette. In this
chapter, the MADE languages are validated by applying them to a clinical guideline,
specifically the one for gestational diabetes mellitus (GDM) [22] that was developed
as part of the MobGuide project to validate the MobiGuide system (Sec. [T.4).
Defined as glucose intolerance that started or was first recognized during preg-
nancy [[1], gestational diabetes occurs in approximately 7 % of pregnancies [1]] and
may lead to complications such as excessive birth weight, future diabetes and res-
piratory distress for the newborn child [46]. To prevent these adverse outcomes,
patients are required to monitor their blood glucose levels regularly and frequently,
the results of which are then traditionally reviewed during outpatient visits. This
places a burden on the hospital as well as inconveniencing the patient [48], thus
various studies have been conducted on the benefits of telemedicine on patients with
gestational diabetes. An example of such research is by Garcia-Saez et al., who
presented the GDM guideline [22] that was adopted by the MobiGuide project [57].
To test its clinical applicability, the MADE languages are used to formalize this
GDM guideline into a program that can be executed and analysed using Rosette. In

Sec.[8.2] an overview of the clinical guideline is presented, followed by an explanation
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of the adopted procedure for validating the MADE languages in Sec. [8.3] The results
are presented in Sec.[8.4]and discussed in Sec.

8.2 Guideline Overview

The full gestational diabetes guideline on which the MADE languages were applied
was developed as part of the MobiGuide project and released by Goldstein et al. in
2014 [25]]. To summarise, it originated from a narrative guideline produced by Rigla
et al. in 2013 for MobiGuide [61]], from which the fragment shown in Fig. [32[] was
extracted. However, the full guideline extends the narrative version by including
more details on how GDM patients can be supported during their daily lives [22].
The result is 13 different semi-formal workflows, such as that shown in Fig. [8.1| for
managing urinary ketone levels. The dashed back border indicates the part of the
workflow that can be derived directly from the guideline fragment shown in Fig.
everything outside the bordered area are extensions to that fragment.

In general, each workflow starts with a measurement action (blue rectangle) and
ends with one or more plans (orange rectangles), each of which is a placeholder for
another workflow or a recommendation for the patient or clinician. For Fig.
the workflow is executed after every measurement of ketonuria (specifically of
urinary ketone levels), and it may lead to decisions such as monitoring ketonuria
twice weekly (MONITOR TWICE/WEEK), doing nothing and increasing carbohydrates
at dinner. Each of these decisions are predicated on specific conditions that are
represented by the blue or orange diamonds; for example, the figure shows that if
the measured urinary ketone levels is not positive and is in fact negative for two
weeks, then this will lead to the decision to monitor ketonuria twice weekly (which is
another workflow). Note that starting a new workflow generally implies terminating
the current one, and some details, such as the definition of “positive” ketonuria,
are inferred from other parts of the guideline or from the narrative version of the
guideline.

All 13 semi-formal workflows in the guideline share the same characteristics
as exemplified in Fig. [8.1] and their full details are reproduced in Appendix|[C| By
formalising them using the MADE languages, these workflows serve as input to
validate the clinical applicability of the MADE languages and the underlying models.
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8.3 Validation Procedure

8.3.1 Formalization of the Guideline

As shown previously in Fig. [I.4] the adopted procedure for validating the MADE
languages can be roughly divided into two steps. The GDM guideline is first for-
malised using the MADE languages into a Rosette program, which is subsequently
verified using Rosette to not contain any unexpected errors. While it is beyond
the scope of this thesis to develop a comprehensive methodology for formalising
clinical guidelines, the process of formalising the GDM workflow was guided by the

following seven rules, which were generally applied on the workflows in order.

Rule 1. Each measurement action becomes a Monitoring process. Thus, the action
to measure ketonuria in Fig. [§.1)may be formalised into a process for monitoring

urinary ketone levels.

Rule 2. The target of the measurement action becomes an observation archetype.
This means that from the action to measure ketonuria, urinary ketone observations
can be derived, which is an observed property with five grades as specified in the
guideline extract (Fig.[3.4): - -, -, +/-, + and + +. Although the workflow implies
that urinary ketone level is a measurement instead of observation, it is modelled as
an observation instead because it has a direct clinical interpretation and is directly

used in the workflow to determine which plans to execute.

Rule 3. Each condition in the workflow becomes an abstraction triplet (in an Analysis
process). As an example, consider the condition of negative ketonuria for two weeks
(which leads to the decision to monitor ketonuria twice weekly). This condition
translates to an abstraction triplet with a time window of two weeks, an abstraction
predicate that returns true if and only if all input urinary ketone levels are negative (i.e.
- - or -), and an abstraction function that returns the value “negative” (for ketonuria

abstractions).

Rule 4. Each identified abstraction triplet is associated with an Analysis process and
abstraction archetype. Depending on the other conditions in the clinical guideline,
the abstraction triplet for negative ketonuria may become its own Analysis process,
or it may be grouped together with other abstraction triplets to form an Analysis
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k)

process. In any case, this abstraction triplet also implies the necessity of a “ketonuria’
abstraction with at least one possible value, namely “negative”; other abstraction

values may be implied by other abstraction triplets.

Rule 5. Each identified abstraction triplet is associated with a decision criterion
in at least one Decision process. For the ketonuria abstraction, only one Decision
process is required to detect whether ketonuria has been negative for two weeks; this
process is responsible for deciding to monitor ketonuria twice weekly. If negative
ketonuria can lead to other decisions, then it should be incorporated into other

Decision processes as appropriate.

Rule 6. Each plan in the workflow becomes an action plan in the formalized guide-
line. Returning to the negative ketonuria example, the resulting action plan is to
monitor ketonuria twice weekly, which although not shown in Fig. is a differ-
ent workflow. As a result, this action plan contains control instructions to start all
the MADE processes derived from the other workflow. Furthermore, by executing
another workflow, it is implied that the current workflow is no longer active, thus
the action plan should also contain control instructions for disabling or rescheduling
the corresponding MADE processes (depending on the requirements of the new

workflow and other remaining workflows).

Rule 7. Each identified action plan is associated with the necessary Effectuation
processes and instruction archetypes to effectuate it. For example, to disable the
workflow shown in Fig. the appropriate control instructions and Effectuation
processes may be required to disable the Analysis process for generating ketonuria
abstractions as well as the Decision process for monitoring ketonuria twice weekly.
The Monitoring process for urinary ketone levels (ketonuria) may also require re-

scheduling depending on the requirements of the new workflow.

8.3.2 Verification of the Formalised Guideline

It is beyond the scope of this thesis to validate that the formalized guideline is a clini-
cally accurate translation of the workflows. However, the formalized guideline was
tested and verified using the verify-archetype and verify-process procedures
to help assure that it is free from potential run-time errors.
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As described in Sec. [5.2.9] verify-archetype is a procedure provided as
part of the MADE archetype language to check whether an archetype is logically
consistent. If any of the MADE archetypes in the formalised guideline contain
inconsistencies, such as a measurement value that must be greater than 50 and less
than O, verify-archetype would return (unsat); otherwise, a concrete instance
of the archetype would be returned.

Similarly, as explained in Sec. verify-process is a procedure provided as
part of the MADE guideline language to check the satisfiability of MADE processes.
Thus, for each MADE process derived from the GDM guideline, verify-process is
used to check whether a set of input data can be found that would result in the output
of a data item. Depending on the type of process being verified, the procedure also
checks whether the MADE process is completely unambiguous. However, to verify
a MADE process, verify-process also requires the input of an appropriate set of
symbolic input data, which must be manually derived by inspecting the guideline.
For example, since the decision to monitor ketonuria twice weekly is conditional on
the detection of negative ketonuria, at least one symbolic ketonuria abstraction must
be provided to verify this Decision process.

8.4 Validation Results

8.4.1 Formalised Guideline

The full details of the formalized guideline, which total around 2700 lines or 90
pages, can be found online at https://github.com/nlsfung/MADE-Language/tree/
master/exp/gdm and are divided into two files: GdmIM.rkt which contains the
archetypes that constitute the domain information model for GDM, and GdmPM. rkt
which contains the MADE processes that constitute all the tasks specified in the
GDM guideline. To summarise, the formalized guideline comprise a total of 55
processes, specifically 0 Monitoring, 4 Analysis, 22 Decision and 29 Effectuation
processes, all of which are connected together by the flow of 50 types of MADE
data, specifically 0 Measurement, 8 Observation, 8 Abstraction, 14 Action Plan, 3
Action Instruction and 17 Control Instruction archetypes. An overview of all the
MADE archetypes and MADE processes derived from the GDM guideline can be
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found in Appendix [D} as an example, shown below are the archetypes for urinary
ketone observations (urinary-ketone) and ketonuria abstractions (ketonuria),
together with the specification of the process for analyzing urinary ketone levels

(analyse-urinary-ketone):

(define-observation urinary-ketone enumerated

I /4 4 044)

(define-abstraction ketonuria enumerated

’negative ’positive)

(define-analysis analyse-urinary-ketone #f ketonuria
((duration 7 0 0 0)
(lambda (d-list)
(let* ([uk-list (filter (lambda (d) (urinary-ketone? d))
d-1list)]1)
(andmap (lambda (d)
(enum<? (observed-property-value d)
(urinary-ketone-value-space ’-/+)))
uk-list)))
(lambda (d-list) (ketonuria-value-space ’negative)))
((duration 7 0 0 0)
(lambda (d-list)
(let* ([uk-list (filter (lambda (d) (urinary-ketone? d))
d-1list)1)
(> (rosette-count
(lambda (d)
(enum>? (observed-property-value d)
(urinary-ketone-value-space ’-/+)))
uk-1list)
2)))

(lambda (d-list) (ketonuria-value-space ’positive))))
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As expected, the example above conforms to and extends the formal specifications
presented in Sec. 4.4|and Sec. specifically Eq.[4.33|for the specification of urinary
ketone levels, Eq. [4.34] for ketonuria abstractions and Eq. [6.32] for the process for
analysing ketonuria. For example, as mentioned in Sec. [4.4] the value space for
urinary ketone levels (line 2) was inferred from the clinical guideline to contain the
values - -, -, +/-, + and ++. Furthermore, it was inferred from the workflow that
ketonuria abstractions exhibit two values (line 5): negative and positive. This is
leads to two abstraction triplets in the process for analysing ketonuria, one for each
possible abstraction value:

e If urinary ketone levels are all negative for one week, then ketonuria is negative
(lines 8 to 16).

* If there are more than two positive urinary ketone levels in one week, then

ketonuria is positive (lines 17 to 27).

8.4.2 Verification Results

The verify-archetype procedure was used to verify each MADE archetype for the
GDM guideline; as expected, each archetype was satisfiable and can be instantiated
into a concrete data item. For example, the following was the result of verifying

urinary-ketone:

Example #<procedure:urinary-ketone>:
#(struct:urinary-ketone #f #(struct:datetime 2019 12 15 0 0 0)

#(struct:urinary-ketone-value-space --))

Similarly, the verify-process procedure was used to verify each MADE pro-
cess for the GDM guideline, the results of which were also as expected. The inputs
used to verify each MADE process are detailed in Appendix [E] and as an example,

the following code was used to verify analyse-urinary-ketone:

> (verify-process
analyse-urinary-ketone

(list (generate-list
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Fig. 8.2 The data set generated by verify-process to demonstrate the satisfiability
of the first abstraction triplet of analyse-urinary-ketone, which is the detection
of negative ketonuria levels in the past week.

urinary-ketone
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 31 24 0 0)
5))
(get-datetime (datetime 2019 12 1 0 0 0)
(datetime 2019 12 31 24 0 0)))

The data generator (generate-1list) was used to generate a list of 5 symbolic
urinary-ketone instances, each with a valid date-time between Dec. 1 and Dec.
31, 2019. Furthermore, the execution date-time for the process was also set to lie
within the same range, and these inputs were used by verify-process to check
whether for analyse-urinary-ketone each single abstraction triplet and each pair
of abstraction triplets are satisfiable. As expected and as shown in Fig.[8.2]and[8.3]
an example data set was generated for each abstraction triplet, thus demonstrating
their satisfiability. Furthermore, no data set was found that satisfies both the first
and second abstraction triplet, which implies correctly that the two abstraction
triplets are mutually exclusive. For cases in which the abstraction triplets are not
mutually exclusive, the abstraction triplets may be strengthened or separated into
different processes, the appropriate choice for which depends on the specific clinical

requirements.
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Fig. 8.3 The data set generated by verify-process to demonstrate the satisfia-
bility of the second abstraction triplet of analyse-urinary-ketone, which is the
detection of positive ketonuria levels in the past week.

8.4.3 Other Observations

All automatable portions of the clinical guideline was successfully formalised and
verified using the MADE languages. However, it is useful to note that some non-
automatable portions of the guideline were not formalized. An example is the
workflow for deciding the appropriate hypertension plan for the patient (Fig. [C.§),
which must be executed by the clinician in a hospital setting and is therefore outside
the scope of the MADE languages. Indeed, although measurement actions in the
workflow clearly correspond to Monitoring processes, zero measurement archetypes
and zero Monitoring processes were formalized as the original guideline does not
specify what the raw measurements are and how they should be processed.
Furthermore, of the 51 action points (orange rectangles) in the guideline, 15 were
not formalized explicitly as they represent simple notifications about the state of
the patient instead of a recommendation to perform certain actions. Returning to
the ketonuria workflow for example, the notification to schedule a meeting is not
modelled explicitly since it is not clinically relevant per se but merely serve as an
indication of an underlying, clinically relevant situation. In this case, the clinically
relevant condition is that the patient exhibits positive ketonuria while being compliant
with her prescribed carbohydrates intake level. On the other hand, while increasing
carbohydrates dinner intake also involves a notification to the patient, it is modelled
explicitly (as a culminating action) since the notification relates to a distinct and

clinically significant concept.
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Finally, apart from or in addition to starting a new workflow, certain action
points in the workflow can modify future executions of the same workflow. For
example, as indicated by the workflow shown in Fig. the decision to increase
carbohydrates intake should only be made the first time the patient exhibits positive
ketonuria while being compliant with her diet prescription; subsequent occurrences
of the same condition requires the patient to schedule a meeting with the clinician.
Such workflows can be formalized by first decomposing them into multiple children
workflows, with one child activating another. Thus returning to the example, the
ketonuria workflow can be decomposed into two workflows, the first for increasing
carbohydrates intake and the second for scheduling a meeting (which is activated
by the first). In this way, the decomposed workflows can be formalized as usual by
following the rules presented in Sec. [8.3.1]

8.5 Discussion

8.5.1 Clinical Appropriateness of the MADE Languages

Previously, it has been argued that the MADE languages are as expressive as conven-
tional guideline representation languages; in this chapter, it is demonstrated using
a clinical guideline for gestational diabetes mellitus that the MADE languages can
indeed capture all the knowledge required to automate the provision of pervasive
support to patients. However, it was noted that certain non-automatable aspects of
the guideline cannot be formalized, most notably the measurement actions in the
guideline workflows.

While these measurement actions are intended to be performed outside the system
(by the patient using off-the-shelf sensors), it may nevertheless be useful to capture
such knowledge to provide contextual information for the rest of the formalized
guideline. For example, the definition of positive ketonuria (i.e. more than 2 positive
urinary ketone levels) may in fact depend on the exact frequency of measurements
performed by the patient (once every day). One simple solution to include this
knowledge is to add comments to the formalized guideline (which is supported
by Rosette), but a more formal approach may be more appropriate to support the

verification and testing of formalized guidelines.
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Furthermore, the MADE languages in their current form are unable to capture
simple user notifications, such as those to remind the patient to perform a task.
Indeed, it is also not possible to personalise the formalised guideline according to
patient preferences, which is an important usability feature for providing knowledge-
based decision support to patients [S7]. For example, dinnertime must be made
explicit (e.g. 7 pm) to formalize the decision process to increase carbohydrates
intake; individual adjustments can only be made by directly accessing and changing
the formalized guideline before deployment. For more complicated tasks, such as
the administration of drugs, other “algorithmic” knowledge that cannot be expressed
using the MADE languages may be necessary to adjust the properties of the task (e.g.
dosage) depending on the patient’s specific circumstances.

Although such knowledge is clearly useful, they are outside the scope of the
MADE formalism since its purpose is to capture the relevant clinical processes in a
clinical guideline and enable their distribution and parallel execution for pervasive
support. However, the MADE formalism may be augmented with other existing
languages that are designed specifically to capture such kinds of knowledge. For
example, Klimov and Shahar in 2013 presented the iALARM language which is
explicitly designed for managing alerts [41]. Similarly, Florence et al. in 2015
presented a patient-oriented prescription programming language (POP-PL), which is
a language for specifying prescriptions, including instructions for modifying drug
dosage [20].

8.5.2 Utility of the Solver-Aided Features

For this thesis, the verify-archetype and verify-process procedures were
mainly used to assure that no programming errors were present in the formalized
clinical guideline. While it is beyond the scope of this thesis to fully evaluate the
usefulness of these procedures in validating the clinical correctness of the formal-
ized guidelines, these procedures have successfully detected overlaps within the
specifications of individual processes (such as between pairs of abstraction triplets).
However, one clear limitation of these procedures is that they can only verify individ-
ual archetypes and individual MADE processes but not complete MADE networks.

Manual testing is still required to verify complete guidelines, which may not be
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the most appropriate given the potential complexity of clinical guidelines and the
resulting MADE networks. For example, it may be useful to check that two mutually
exclusive Decision processes will never be activated at the same time, but this can
never be fully guaranteed with testing alone.

Therefore, it is useful to extend the MADE languages to include procedures
for verifying MADE networks, but unlike verifying individual processes, verifying
MADE networks may involve intractably large streams of data. In fact, attempts at
verifying the invariants for the MADE network all proved to be intractable except for
small networks and a few data items. As a result, verifying MADE networks may
require raising the level of abstraction by removing irrelevant details about the specific
data items and MADE processes to be verified. For example, the problem of verifying
MADE networks may be reduced to a more abstract, state transition problem, which
may then be solvable using state-of-the-art model checking algorithms, such as
IC3 [9].






Chapter 9

Conclusions

9.1 Introduction

Guideline-based pervasive healthcare systems can extend evidence-based healthcare
beyond the traditional healthcare setting. It is all the more crucial then to have
demonstrable system resilience, quality of clinical information and correct operational
logic in a highly distributed environment. To this end, the MADE guideline language
(and the accompanying MADE archetype language) were developed to represent
clinical guidelines in the context of pervasive healthcare. In Sec.[9.2] the research
questions presented in Sec. [1.3[are reviewed in light of the research presented in
this thesis. This is followed by a review and discussion of the general research
contributions of this thesis in Sec.[9.3] Finally, possible future research directions
and future outlook are presented in Sec. [0.4]and [9.5|respectively.

9.2 Research Questions

Main RQ. How can pervasive and knowledge-based support be provided to patients?

This thesis focuses on the provision of guideline-based support to patients, which
traditionally assumes a fixed and centralized system architecture for executing clin-
ical guidelines. On the other hand, components of a pervasive healthcare system

may require dynamic reconfiguration in response to factors such as changing clinical
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requirements, evolving patient preferences and unreliable communications environ-
ments. Therefore, in Ch. 3| a new architectural model is presented for representing
disease management as a network of four types of data flow processes: Monitoring
(M), Analysis (A), Decision (D) and Effectuation (E). These processes are modelled
to execute in parallel such that they can be flexibly distributed across system com-
ponents and provide support independently of each other, thereby avoiding a single
point of failure.

This architectural model was formalized and developed into an archetype lan-
guage (Ch.[dand Ch.[5) as well as a guideline language (Ch. [|and Ch.[7) to represent
the data and processing requirements in clinical guidelines. Furthermore, the ap-
propriateness of the MADE models and languages were all validated in Ch. [§| by
formalizing a complete clinical guideline (for gestational diabetes mellitus). Since
only data and not control is communicated between the processes, live locks and
dead locks are guaranteed to not occur. In addition, arbitrary feedback loops are not
permitted in the MADE model, thus the execution of a formalised guideline will
always terminate provided that each individual MADE process terminates. However,
as explained in Sec.[I.5] the MADE models and languages do not address the tech-
nical performance issues that might be affect pervasive healthcare systems. These
include the potential need to process large data streams in real-time as well as the
specific mechanisms with which a pervasive healthcare system can re-distribute its
functionality.

RQ 1. What is an appropriate knowledge representation language for formalising

clinical guidelines for pervasive healthcare systems?

The knowledge representation language presented in this thesis is derived in
two stages from an architectural model presented in Ch. [3|for representing disease
management. In the first stage, which is presented in Ch. [6] the MADE processes
that constitute the architectural model were given detailed and formal semantics
using axiomatic set theory. Thus, each type of MADE process was specified as
a set with specific properties, and their behaviour were specified using function
signatures and logical invariants. From this guideline model, which comprises a total

of 28 set definitions, 13 function signatures and 38 logical invariants, the syntax and
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semantics of the guideline representation language were derived in the second stage
and presented in Ch.

The appropriateness of the language was validated in Ch. [§|by formalizing the
complete GDM guideline into a network of 55 MADE processes, all of which were
verified to behave as expected using the solver-aided facilities of Rosette. Since
MADE processes do not allow arbitrary branching, they are all guaranteed to termi-
nate. Furthermore, evidence from the formalising the GDM guideline suggests that
the MADE guideline language is sufficiently expressive to formalise all automatable
parts of clinical guidelines. However, it was observed that non-automatable parts
cannot be formalised, such as manual measurements of blood glucose. Customisation
of clinical guidelines according to patients’ personal preferences are also currently

not supported by the MADE language.

RQ 2. What is an appropriate representation for patient data in the context of

pervasive healthcare?

As with the representation for clinical guidelines, the representation for patient
data is directly derived from the architectural model presented in Ch. [3] but by
giving detailed and formal semantics to the data flow instead of the MADE processes.
Six types of MADE data were distinguished, namely Measurement, Observation,
Abstraction, Action Plan, Action Instruction and Control Instruction, each of which
was formally specified using axiomatic set theory in Ch. [l The resulting MADE
reference information model comprises 32 set definitions, and it was in turn developed
into an archetype language in Ch.[5]to enable the specification of sub-types of MADE
data.

In Ch. [§] the appropriateness of the language was validated by formalizing the
complete GDM guideline, deriving from it 50 MADE archetypes. It was observed that
the MADE reference information model is comparable to similar models proposed
by openEHR and HL7. However, it was also noted that since this research focuses
on the clinical concerns of guideline-based pervasive healthcare, issues relating to
quality-of-data are ignored, which are particularly pertinent due to the uncontrolled

nature of the daily living environment.

RQ 3. What is an appropriate design and implementation of the guideline execution
engine for guideline-based pervasive healthcare systems?
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It is outside the scope of this thesis to produce a commercial guideline-based
pervasive healthcare system; instead, this thesis aims to produce a reference im-
plementation which can serve as a gold standard for future implementations that
better reflect the non-functional requirements of pervasive healthcare systems. To
achieve this, the implementation of the language was derived directly from the formal
specifications of the MADE data and MADE processes presented in Ch. {f] and Ch. [6]
The results, which comprise a set of libaries on top of Rosette, were presented in
Ch.5|and Ch. [7] respectively.

For the reference implementation, appropriateness is determined by its preserva-
tion of the semantics of the MADE models. Thus as presented in Ch. [/, Rosette’s
solver-aided facilities were used to assure that the implementation complies with the
38 logical invariants that govern the behaviour of MADE processes. Finally, Ch. [§]
demonstrates how the implemented libraries can be used to formalise a complete

guideline into a Rosette program that can be executed and formally verified.

RQ 4. What extensions can be incorporated into the guideline execution engine (and
associated language) to support the verification and validation of formalised clinical

guidelines?

Formalizing clinical guidelines is a non-trivial task. Therefore, while it is outside
the scope of this thesis to develop a knowledge acquisition tool, the MADE languages
were extended with constructs to support the formal verification of the formalized
guidelines as demonstrated in Ch. [§] In Ch.[5] the MADE archetype language was
presented which allows constraints on sub-types of MADE data to be specified. These
constraints can be checked for consistency using the verify-archetype procedure
and, if verified, can be used to automatically generate example data items using
the appropriate getters. In turn, these generated data can be used to simulate the
execution of a guideline and to formally verify individual MADE processes by using

the verify-process procedure described in Ch.

9.3 Research Contributions

The research presented in this thesis has contributed to both the theoretical and
applied areas of science in the context of pervasive healthcare. More specifically:
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* The MADE computational independent model (CIM) was developed and
presented in Ch. 3| for representing the data flow in disease management. This
model was used in the thesis to develop a guideline representation language for
guideline-based pervasive healthcare systems, but because it does not assume
any specific application or system infrastructure, it may also provide a useful
framework for analysing and designing other types of pervasive healthcare
systems. For example, the MADE CIM may be used as a general framework
to elicit the functional requirements of pervasive healthcare systems and to
understand their deployment across the available system components.

* To represent the data flow between MADE processes, a verified reference
information model (RIM) and archetype language was developed and presented
in Ch.[dand Ch. [5|respectively. While the MADE RIM and archetype language
forms part of the overall MADE guideline representation language, they can be
applied independently of the guideline language to model clinical data for other
types of pervasive healthcare systems. In this way, interoperability between the
different systems can be achieved, such that different components of different
systems may be easily integrated together to provide specific decision support
functionality as required by each different clinical application (or combinations

of applications).

 The MADE guideline language was developed and presented in Ch. [and Ch.
to formalize clinical guidelines in the context of pervasive healthcare. Unlike
typical guideline representation languages which focus on the control flow
between tasks, the MADE guideline language models the data flow between
tasks, thereby removing the need for a centralized supervisory component
to control the execution of formalized guidelines. Since models similar to
the MADE CIM have been developed to represent intelligent agents and
autonomous systems, the MADE guideline language may be applicable to
other domains as well (such as for managing an industrial process instead of a

patient).

* In Ch.[5]and Ch.[7] the reference implementation of the MADE archetype
language and the MADE guideline representation language is presented. The

reference implementation was verified against the specifications of the MADE
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data and MADE processes using Rosette and is designed to serve as a gold
standard from which more optimal implementations can be derived and com-
pared against. Furthermore, by making use of Rosette’s capabilities to execute
and analyse programs, the reference implementation also provides a means
for testing and verifying guidelines that are formalized using the MADE

languages.

A method for formalizing clinical guidelines using the MADE languages
was presented in Ch. ] It comprises 7 general rules for identifying MADE
archetypes and MADE processes in a clinical guideline, and it was applied
to formalize a complete clinical guideline (for gestational diabetes mellitus).
Although the guideline was presented using semi-formal workflows instead of
natural language English, these rules can be generalised to directly formalise
narrative guidelines. The main prerequisite is that the guideline should be
readily divided into measurement tasks, decision criteria and therapeutic plans,

as these are the main components of the semi-formal workflows.

9.4 Future Directions

9.4.1 Evaluation of the MADE Languages

The MADE languages were validated using a complete clinical guideline for ges-

tational diabetes mellitus, which was developed by a team of expert clinicians

and was demonstrated to be clinically relevant in patient trials of the MobiGuide

project. However, since the MobiGuide system comprises a fixed number (viz. 2)

of knowledge-based systems, the main premise of this thesis, which is to support

an arbitrary distribution of knowledge, remains to be evaluated for clinical rele-

vance. Therefore, in collaboration with clinicians, patients and other stakeholders,

the MADE languages and their clinical value should be fully evaluated by designing,

implementing and deploying “n-ary” guideline-based pervasive healthcare systems

for GDM and other clinical applications.
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9.4.2 Improvements to the MADE Languages

By fully evaluating the MADE languages, extensions to them can also be identified for
future implementation. For example, it has already been established that the MADE
guideline language does not currently support partial specification of processes, which
may be useful to formalize tasks that must be manually performed and therefore
not fully detailed in the clinical guideline. Personalization of guideline knowledge
is also not supported; to account for individual differences in, e.g. personal habits
and drug dosage requirements, the guideline knowledge must be directly accessed
and modified by the clinician before execution. Finally, the MADE languages rely
heavily on mathematical expressions to capture the data and processing requirements
of clinical guidelines. While fully expressive, these expressions may not be easily
interpreted by clinicians and other stakeholders, thus there may be a need to raise the

level of abstraction of the MADE languages.

9.4.3 Development of a Knowledge Acquisition Tool

In this thesis, work has been conducted on the application of Rosette to verify
clinical guidelines that have been formalized using the MADE languages. In the
future, this work can be extended into a full knowledge acquisition tool, which,
for example, can include a graphical user interface to formalize clinical guidelines,
to develop and execute test data as well as to visualize the test and verification
results. Furthermore, formal verification of complete MADE networks instead of
individual MADE processes should also be investigated, such as to ensure that

mutually exclusive MADE processes would never be activated at the same time.

9.5 Future Outlook

The continual development of computing technologies, such as in artificial intel-
ligence, has enabled and is expected to enable the rise of increasingly intelligent
pervasive healthcare systems for an increasing range of applications. For example,
Yu et al. in 2021 investigated the use of deep neural networks to predict the health
and wellbeing of shift workers [93]], while in that same year Prabhu, O’Connor

and Kieran presented a deep learning model for detecting and counting exercise
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repetition [59]]. Although these examples focus of on physical health, growing re-
search has also been and is expected to be conducted on mental health; an example
of such research by Motalebi and Abdullah involved the use of Amazon Alexa to
deliver cognitive-behavioural conjoint therapy to patients with post-traumatic stress
disorder [50].

As pervasive healthcare systems become more prevalent, there is also increasing
research on methods to not only enable patient empowerment but also encourage it.
For example, Smirnova, Eriksson and Fagerstrgm in 2021 presented thirteen factors
that can affect the initial uptake and continual use of mobile health applications,
including the availability of measurable outcomes as well as the affordability and
flexibility of the application [[74]. Furthermore, in the context of gamification, Sienel,
Miinster and Zimmermann examined how different models of game players may be
used to personalise fitness apps with different gaming elements [[73]].

As implied by these examples, research into pervasive healthcare systems has
generally been divided along clear disparate lines, each one focusing on a particular
technology, application or concern in general. However, as the the field continues
to mature, it is expected that growing synergies will be established between these
different research lines. The MADE models presented in this thesis may, for example,
be used as a basis for machine learning algorithms, while the outputs of MADE

processes may guide the personalisation of healthcare-related games.
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Appendix A

Test Cases for the MADE
Archetypes

The following is the source code (re-formatted to fit the page size) for all the 17
archetypes used to verify the implementation of the MADE RIM. This source code
is also available at https://github.com/nlsftung/MADE-Language/blob/master/exp/

TestArchetypes.rkt, and the details of the MADE RIM can be found in Ch. 4]

#lang rosette/safe

(require "

../lang/VerifySyntax.rkt"
../lang/IMSyntax.rkt"
../lang/NomEnumSyntax.rkt"
../rim/BasicDataTypes.rkt")

(provide (all-defined-out))

; This file contains the specification of the archetypes used to

; test the implementation of the MADE archetype language. Please
; refer to Table 5.2 and Sec. 5.4 of the PhD thesis for more

; details about the tests. The specific; outputs of each test

; are documented as comments in this specification.


https://github.com/nlsfung/MADE-Language/blob/master/exp/TestArchetypes.rkt
https://github.com/nlsfung/MADE-Language/blob/master/exp/TestArchetypes.rkt
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; > (verify-archetype arch-01)

; Example #<procedure:arch-01>:

; #(struct:arch-01 #f #(struct:datetime 2019 12 15 0 0 0)
; #(struct:dimensioned dim$0 units))

(define-measurement arch-01 ’units)

; > (verify-archetype arch-02)
; Example #<procedure:arch-02>:
; (unsat)

(define-measurement arch-02 ’units (lambda (v) #f))

; > (verify-archetype arch-03)

; Example #<procedure:arch-03>:

; #(struct:arch-03 #f #(struct:datetime 2019 12 15 0 0 0)
;  #(struct:arch-03-value-space a))

(define-observation arch-03 nominal ’a ’b ’c)

; > (verify-archetype arch-04)

; Example #<procedure:arch-04>:

; #(struct:arch-04 #f #(struct:datetime 2019 12 15 0 0 0)
; #(struct:count 0))

(define-observation arch-04 count)

; > (verify-archetype arch-05)
; Example #<procedure:arch-05>:
; (unsat)
(define-observation arch-05 count
(lambda (d) (and (> (get-value d) 50) (< (get-value d) 10))))

; > (verify-archetype arch-06)
; Example #<procedure:arch-06>:
; #(struct:arch-06 #f #(struct:datetime-range
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b
b

)

#(struct:datetime 2019 12 15 1 0 0)
#(struct:datetime 2019 12 15 23 0 0))
#(struct:bool bool-val$0))

(define-observation arch-06 #:event)

b
I
b
b
s

I

> (verify-archetype arch-07)

; Example #<procedure:arch-07>:
; #(struct:arch-07 #f #(struct:datetime-range

#(struct:datetime 2019 12 15 1 0 0)
#(struct:datetime 2019 12 15 1 0 0))

#(struct:arch-07-value-space b))

(define-abstraction arch-07 enumerated ’a °’b)

s
s
b
b
s

)

; > (verify-archetype arch-08)

Example #<procedure:arch-08>:

#(struct:arch-08 #f #(struct:datetime-range
#(struct:datetime 2019 12 15 1 0 0)
#(struct:datetime 2019 12 15 1 0 0))
#(struct:proportion 11))

(define-abstraction arch-08 proportion

s
2

b

(lambda (d) (> (get-value d) 10)))

> (verify-archetype arch-09)

; Example #<procedure:arch-09>:

(unsat)

(define-abstraction arch-09 proportion

b
’
b
2

b

(lambda (d) (eq? (get-value d) #f)))

; > (verify-archetype arch-10)
; Example #<procedure:arch-10>:
; #(struct:arch-10 #f #(struct:datetime 2019 12 15 0 0 0)

(#(struct:scheduled-homogeneous-action arch-13
#(struct:schedule (#(struct:datetime 2019 12 15 0 0 0))
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; {2773771508841512397:23})

; #(struct:dimensioned dim$0 units)

; #(struct:duration dur-part$0 dur-part$l dur-part$2
; dur-part$3))))

(define-action-plan arch-10 (homogeneous-action ’arch-13))

; > (verify-archetype arch-11)

; Example #<procedure:arch-11>:

; #(struct:arch-11 #f #(struct:datetime 2019 12 15 0 0 0)

i (#(struct:scheduled-culminating-action arch-15

; #(struct:schedule (#(struct:datetime 2019 12 15 0 0 0))
5 {2128385024956610424:2}) #(struct:count 0))))

(define-action-plan arch-11 (culminating-action ’arch-15))

; > (verify-archetype arch-12)
; Example #<procedure:arch-12>:
; #(struct:arch-12 #f #(struct:datetime 2019 12 15 0 0 0)

R (#(struct:scheduled-control proc-1 #(struct:schedule

; (#(struct:datetime 2019 12 15 0 0 0))

; {-1411548690416635397:2}) status$0)

; #(struct:scheduled-culminating-action arch-15

; #(struct:schedule (#(struct:datetime 2019 12 15 0 0 0))
5 {-2807555162316629719:2}) #(struct:count 0))))

(define-action-plan arch-12 (culminating-action ’arch-15)

(control ’proc-1))

; > (verify-archetype arch-13)

; Example #<procedure:arch-13>:

; #(struct:arch-13 #f #(struct:datetime 2019 12 15 0 0 0)
; #(struct:dimensioned dim$0 units)

;  #(struct:duration dur-part$8 dur-part$9

; dur-part$10 dur-part$11))

(define-action-instruction arch-13 #:homogeneous ’units)
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; > (verify-archetype arch-14)

; Example #<procedure:arch-14>:

; (unsat)

(define-action-instruction arch-14 #:homogeneous ’units
(lambda (r v) #£))

; > (verify-archetype arch-15)

; Example #<procedure:arch-15>:

; #(struct:arch-15 #f #(struct:datetime 2019 12 15 0 0 0)
; #(struct:count 0))

(define-action-instruction arch-15 #:culminating count)

; > (verify-archetype arch-16)

; Example #<procedure:arch-16>:

; (unsat)

(define-action-instruction arch-16 #:culminating bool
(lambda (v) (eq? v 1)))

; > (verify-archetype arch-17)

; Example #<procedure:arch-17>:

; #(struct:arch-17 #f proc-1

; #(struct:datetime 2019 12 15 0 0 0)

; #(struct:schedule (#(struct:datetime 2019 12 15 0 0 0))
H {1484878925140550989:2}) #<void>)

(define-control-instruction arch-17 ’proc-1 ’proc-2)






Appendix B

Test Cases for the MADE
Processes

The following is the source code used to manually verify the implementation of

the data list generator (generate-1ist) and process verifier (verify-process)
presented in Sec. and Sec.[7.2.9|respectively. This source code is also available
at https://github.com/nlsfung/MADE-Language/blob/master/exp/TestProcesses.rkt,

and for conciseness, the test results are not documented as part of the source code.

#lang rosette/safe

(require "

../lang/IMSyntax.rkt"
../lang/PMSyntax.rkt"
../lang/VerifySyntax.rkt"
../rim/BasicDataTypes.rkt"
../rim/TemporalDataTypes.rkt"
../rim/MadeDataStructures.rkt"
../rpm/MadeProcess.rkt"
../rpm/MonitoringProcess.rkt"
../rpm/AnalysisProcess.rkt"
../rpm/DecisionProcess.rkt"

../rpm/EffectuationProcess.rkt")


https://github.com/nlsfung/MADE-Language/blob/master/exp/TestProcesses.rkt
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(provide (all-defined-out))

; This file contains the tests performed to verify the

; implementation of generate-list and verify-process.

; Specification of the relevant MADE archetypes.

(define-measurement body-speed ’ms-1)

(define-observation sprint-event #:event)

(define-abstraction exercise-abstraction nominal

insufficient ’sufficient ’excessive)

(define-action-plan exercise-plan
(homogeneous-action ’sprint-action)

(culminating-action ’endurance-running-action))

(define-action-instruction sprint-action

#:homogeneous ’ms-1)

(define-action-instruction endurance-running-action

#:culminating dimensioned ’m)

(define-action-instruction treadmill-output

#:culminating dimensioned ’m)

; Specification of the processes (and associated procedures).
(define-syntax-rule (average dSet)
(dimensioned
(/ (foldl (lambda (d result)
(+ (get-value (measurement-value d)) result))
0
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dSet)
5)
‘ms-1))

(define-monitoring #:event monitor-sprint #f sprint-event

(event-trigger
(duration 0 0 0 5)
(lambda (dSet)

(dim>=? (average (filter (lambda (d) (body-speed? d))

dSet))

(dimensioned 3 ’ms-1))))

(event-trigger
(duration 0 0 0 5)
(lambda (dSet)

(dim<? (average (filter (lambda (d) (body-speed? d))

dSet))

(dimensioned 2 ’ms-1)))))

(define-syntax-rule (count-sprints dSet)
(length (filter (lambda (d)

(and (sprint-event? d)

(get-value (observed-event-value d))))

dSet)))

(define-analysis analyse-exercise #f exercise-abstraction

((duration 30 0 0 0)

(lambda (dSet) (< (count-sprints dSet) 5))

(lambda (dSet)

(exercise-abstraction-value-space ’insufficient)))

((duration 14 0 0 0)

(lambda (dSet) (and (> (count-sprints dSet) 10)

(lambda (dSet)

(< (count-sprints dSet) 15)))
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(exercise-abstraction-value-space ’sufficient)))
((duration 7 0 0 0)
(lambda (dSet) (> (count-sprints dSet) 10))
(lambda (dSet)

(exercise-abstraction-value-space ’excessive))))

(define-decision
decide-exercise #f exercise-plan
(#:instructions
(homogeneous-action-template
’sprint-action
(relative-schedule #:rounding (duration 1 0 O 0)
#:pattern (duration 0 7 0 0)
#:interval (duration 14 0 0 0))
(dimensioned 3 ’ms-1)
(duration 0 0 0 30))
(culminating-action-template
’endurance-running-action
(relative-schedule #:rounding (duration 1 0 0 0)
#:pattern (duration 7 17 0 0)
#:interval (duration 14 0 0 0))
(dimensioned 5000 ’m)))
(#:criteria
(lambda (dSet)
(findf
(lambda (d)
(and (exercise-abstraction? d)
(eq? (abstraction-value d)
(exercise-abstraction-value-space
’insufficient))))
dSet))))

(define-effectuation effectuate-running #f treadmill-output
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(target-schedule #:plan exercise-plan
#:instruction ’endurance-running-action

#:predicate (lambda (inst-set) #t)))

; Execution of verify-process and generate-list.
(verify-process monitor-sprint
(generate-list body-speed
(datetime 2019 3 10 0 0 0)
(datetime 2019 3 10 0 0 59)
3)
(datetime 2019 3 10 0 1 0))

(verify-process analyse-exercise
(generate-list sprint-event
(datetime 2020 3 17 0 0 0)
(datetime 2020 3 17 23 0 0)
(duration 0 2 0 0))
(datetime 2020 3 18 0 0 0))

(verify-process decide-exercise
(generate-list exercise-abstraction
(datetime 2020 3 1 0 0 0)
(datetime 2020 3 15 23 0 0)
i)
(datetime 2020 3 15 0 0 0))

(verify-process effectuate-running
(generate-list exercise-plan
(datetime 2020 3 1 0 0 0)
(datetime 2020 3 15 23 0 0)
iy
(datetime 2020 3 15 0 0 0))






Appendix C

Clinical Guideline for Gestational
Diabetes Mellitus

The following pages contain 13 semi-formal workflows that are reproduced from [25]]
and together constitute a complete clinical guideline for gestational diabetes mellitus
(GDM). These workflows have been developed as part of the MobiGuide project to
validate the clinical relevance of the MobiGuide system (Sec.[I.4) [22] and are used
as inputs in this research to validate the MADE languages and underlying models.
Of these 13 workflows, 2 relate to the management of blood glucose (BG), 2 to
urinary ketone levels (ketonuria), 1 to diet compliance, 1 to physical activity (PA)
compliance and 7 to blood pressure (BP).
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Fig. C.1 Part 1 of 2 of a workflow for monitoring blood glucose four times daily

(source: [23]).
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Measure BG

If
BG level
is normal

Is “second
DO BAD
NOTHING ? measurement
in past week”

MONITOR
DAILY

Fig. C.3 Workflow for monitoring blood glucose for two days each week, four times
each day (source: [23])).

C.2 Ketonuria Monitoring Plan Flow

Measure Ketonuria

If Ketonuria is
positive (>2
positive results
in 1 week)

DO MONITOR
NOTHING DAILY

Fig. C.4 Workflow for monitoring ketonuria (urinary ketones) twice weekly

(source: [23]).
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Fig. C.5 Workflow for monitoring ketonuria daily (source: [23]).
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C.3 Diet Monitoring Plan Flow

Insertion of a diet BAD

compliance
(MORE/LESS)

If 2 non-
compliance
(more/less) in
PAST week

DO

Noti atient
NOTHING fyp

about importance
of following diet

Fig. C.6 Workflow for monitoring diet (source: [25]]).

C.4 Exercise Monitoring Plan Flow

NO YES

Message to reinforce Message to

compliance on recognize good
duration of PA being compliance
practiced

Fig. C.7 Workflow for monitoring exercise once weekly (source: [25])).
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C.5 Blood Pressure Monitoring Plan Flow

BP diagnosis by
caregiver ??

Is chronic
hypertension ?
(mediator)

If BP
abnormal (*)

NORMAL BP Chronic BP Gestational

monitoring plan monitoring plan Hypertension (GH)
monitoring PLAN

Fig. C.8 Workflow for choosing the initial blood pressure (BP) monitoring plan
(source: [23]).

BP measurement

Target-organ YES

damage (entry in
PHR) ?

sBP >= 140

and/for
YES | YES dBP >= 90*

Notification to caregiver: consider
start or adjust DRUGS treatment.
Notification to Patient: need to start
or adjust DRUGS treatment, pls
schedule a meeting with your doctor.

No DRUG
treatment (Do <€
nothing)

NO

Fig. C.9 Workflow for monitoring blood pressure every 2 days in the context of
chronic hypertension (source: [23]]).
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BP measurement

00D measurements

40 < sBP and dBP < 90) for moreé
than 2 weeks [allowing up
to 1 omission]

uspicion
confirmed
(another BAD

MONITOR NO
ONCE / week

lYES

4

Do nothing

Start chronic or hypertension
monitor (according to gestational
age). Also, change status of
patient to HYPERTENSION.

Fig. C.10 Workflow for monitoring blood pressure twice weekly in the context of

normal blood pressure (source: [23]]).

BP measurement

YES — become “suspected”,
Need to measure again in -

4-6 hours

Do nothing NO

4

YES

v

Monitoring
twice a week

Start chronic or hypertension
monitor (according to gestational
age). Also, change status of
patient to HYPERTENSION.

Fig. C.11 Workflow for monitoring blood pressure once weekly in the context of

normal blood pressure (source: [25]]).
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Fig. C.12 Workflow for monitoring blood pressure every two days in the context of

gestational hypertension (source: [23]]).



190 Clinical Guideline for Gestational Diabetes Mellitus

BP
measurement

and/or
dBP = 100*) OR
proteinuri
Monitor
every2days

Fig. C.13 Workflow for monitoring blood pressure once weekly in the context of
gestational hypertension (source: [23]]).

BP
measurement

sBP = 150
and/or
dBP > 100*

Notify GROUPA — only
one (notification
threshold)

Fig. C.14 Workflow for monitoring blood pressure every few hours in the context of
gestational hypertension (source: [23])).



Appendix D

Formalised Guideline for
Gestational Diabetes Mellitus

The following is an overview (in the form of comments) of the complete source
code that resulted from formalising the GDM guideline (Appendix |[C) using the
MADE archetype and guideline languages. The complete source code, including
the comments below, is available at https://github.com/nlsfung/MADE-Language/
tree/master/exp/gdm and is divided into two files: GdmIM.rkt which contains the 50
archetypes that constitute the domain information model for GDM, and GdmPM. rkt
which contains the 55 MADE processes that constitute all the processes specified in
the GDM guideline.

D.1 GDM Domain Information Model (GdmIM.rkt)

; No measurement types are specified by the guideline.

; Eight different types of observations can be identified from
; the GDM workflows, namely for capturing:

; 1) Blood glucose levels (blood-glucocse).

; 2) Urinary ketone levels (urinary-ketone) (referred to as

; ketonuria in the guideline but renamed here avoid

; confusion with the ketonuria abstraction).


https://github.com/nlsfung/MADE-Language/tree/master/exp/gdm
https://github.com/nlsfung/MADE-Language/tree/master/exp/gdm
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2

; 3)

4)

5)
6)
7)

8)

Events of meals (meal-event) (which is implicitly required
in the guideline to detect abnormal blood glucose
measurements) .

Carbohydrates intake (carbohydrates-compliance) of a
single meal (which is qualified relative to the recommended
intake levels).

Exercise intensity (exercise-intensity) (in terms of METs).
Systolic blood pressure (systolic-blood-pressure).
Diastolic blood pressure (diastolic-blood-pressure) (which
must be distinguished from systolic BP as each observation
can only be associated with one value).

Events of conception, i.e. becoming pregnant
(conception-event) (which is required to determine the

gestational age of the patient).

Eight different types of abstractions can be identified from

the GDM workflows, namely for capturing:

1)
2)
3)

4)

5)

6)

7)
8)

Degree of glycemic control (glycemic-control).

Severity of ketonuria in the patient (ketonuria).

Degree of non-compliance to the recommended carbohydrates
intake (carbohydrates-compliance) .

Exercise compliance in the resting context
(exercise-compliance-resting).

Exercise compliance in the active context
(exercise-compliance-active).

Degree of hypertension (hypertension).

Target organ damage (target-organ-damage).

Proteinuria (proteinuria).

Three different types of action instructions can be

identified from the GDM workflows, namely for effectuating:

1

Administrations of insulin, which is assumed to be

measured in International Units of insulin
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64

65

66

67
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D.1 Domain Information Model

0 2)

;0 3)

; 17

(administer-insulin-action).

Changes in the diet (i.e. nutritional prescription),
which is assumed to be measured in grams of carbohydrates
(change-diet-action).

Increases in carbohydrates intake at dinner

(change-dinner-action). It is assumed that this instruction

can occur in conjunction with instruction 2).

different types of control instructions can be identified

; from the GDM workflows, namely for controlling:

;1)
3 2)

; 3)

3 4)

; B)

; 6)
3 7)

; 8)

5 9)

; 10)

; 11)

; 12)

; 13)

Blood glucose (BG) measurements (monitor-bg-control).
The workflow associated with changing nutritional
prescription (bg-nutrition-change-control).
The workflow associated with starting or changing insulin
therapy (bg-insulin-control).
The workflow associated with monitoring BG for two days
each week (bg-twice-weekly-control).
The workflow associated with monitoring BG every day
(bg-daily-control).
Urinary ketone measurements (monitor-uk-control).
The workflow associated with increasing dincarbohydrates
intake at dinner (uk-dinner-increase-control).
The workflow associated with monitoring urinary ketones
twice weekly (uk-twice-weekly-control).
The workflow associated with monitoring urinary ketones
daily (uk-daily-control).
Systolic blood pressure measurements
(monitor-systolic-bp-control).
Diastolic blood pressure measurements
(monitor-diastolic-bp-control).
The workflow associated with monitoring blood pressure
once each week (bp-once-weekly-control).

The workflow associated with monitoring blood pressure
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; twice each week (bp-twice-weekly-control).

; 14) The workflow associated with chronic hypertension

; (bp-chronic-control).

; 15) The workflow associated with gestational hypertension

; (every 2 days) (bp-gestational-control).

; 16) The workflow associated with gestational hypertension

; (every week) (bp-once-weekly-gestational-control).

; 17) The workflow associated with deciding to monitor BP

every few hours (bp-hourly-gestational-control).

; The twenty different instruction archetypes constitute

; 14
;1)

;0 2)
;03)
s 4)
; 5)
; 6)

57

; 8)
5 9)

; 10)

; 11)

; 12)

different types of action plans, namely for:
Monitoring blood glucose for two days every week
(bg-twice-weekly-plan).
Adjusting the prescribed insulin therapy
(adjust-insulin-plan).
Changing the nutritional prescription
(change-nutrition-plan).
Starting insulin therapy (start-insulin-plan).
Monitoring blood glucose daily (bg-daily-plan).
Monitoring urinary ketones twice a week
(uk-twice-weekly-plan).
Changing the carbohydrates intake at dinner (or before
bed-time) (increase-dinner-intake-plan)
Monitoring urinary ketones daily (uk-daily-plan).
Monitoring blood pressure once a week (for no hypertension)
(bp-once-weekly-plan) .
Monitoring blood pressure in the context of chronic
hypertension (chronic-hypertension-plan).
Monitoring blood pressure every two days for gestational
hypertension (gestational-hypertension-plan).
Monitoring blood pressure twice a week (for no

hypertension) (bp-twice-weekly-plan).
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13) Monitoring blood pressure once a week (for gestational
hypertension) (gestational-weekly-plan).
14) Monitoring blood pressure every few hours in the context

of gestational hypertension (gestational-hours-plan).

D.2 GDM Domain Process Model (GdmPM. rkt)

b

; No monitoring processes are specified by the guideline.

analyse-blood-glucose (ABG) analyses blood glucose (BG)

measurements to determine the patient’s degree of glycemic

control, which can be:

a) Good (BG levels are normal for a month)

b) Poor (A single abnormal BG value)

c) Meal-compliance poor (>= 2 abnormal BG values in a week but
diet compliant).

d) Meal-incompliance poor (>= 2 abnormal BG values due to diet
incompliance).

e) Non-related poor (>= 2 abnormal BG values at different
intervals)

f) Very poor (>= 2 abnormal BG values exceeding a given
threshold) .

analyse-urinary-ketone (AUK) analyses urinary ketone (UK)
measurements to detect the patient’s degree of ketonuria,
which can be:

a) Negative (UK levels are negative in 1 week)

b) Positive (> 2 positive results in 1 week)

analyse-carbohydrates-intake (ACI) analyses carbohydrates
intake (CI) of patient to determine his or her degree of
compliance to the pre-determined diet, which can be:

a) Insufficient (At least one single negative CI level in a
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2

week)

b) Non-compliant (At least two non-compliance in a week)

analyse-blood-pressure (ABP) analyses blood pressure (BP)
measurements, both systolic and diastolic, to determine the
patient’s degree of high blood glucose, which can be:

a) High (sBP >= 140 and/or dBP >= 90)

b) Very high (sBP >= 150 and/or dBP >= 100)

c) Normal (sBP < 140 and dBP < 90 for more than 2 weeks)

d) Sustained high (2 high measurements in 6 hours)

e) Extremely high (sBP >= 160 and dBP >= 110)

decide-bg-twice-weekly (DBg2Wk) relates to the decision to
adjust blood glucose monitoring to two days each week instead
of daily. The decision criteria involves the following
abstraction(s):

1) glycemic-control (’good)

It affects the following actions and processes:

1) monitor-blood-glucose (two days every week)

2) decide-bg-nutrition-change (disabled)

3) decide-bg-insulin (disabled)

4) decide-bg-twice-weekly (disabled)

5) decide-bg-daily (enabled after 7 days)

decide-bg-daily (DBgDaily) relates to the decision to adjust
blood glucose monitoring to daily (instead of two days each
week). The decision criteria involves the following
abstraction(s):

1) glycemic-control (2 abnormal values in a week)

It affects the following actions and processes:

1) monitor-blood-glucose (daily)

2) decide-bg-nutrition-change (enabled after 7 days)

3) decide-bg-insulin (enabled after 7 days)
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; 4) decide-bg-twice-weekly (enabled after 7 days)
; 5) decide-bg-daily (disabled)

; decide-bg-insulin (DBgInsulin) is a proxy process for deciding
; to start insulin therapy. The decision criteria involves the

; following abstraction(s):

1) glycemic-control (not ’good or ’poor)

; 2) ketonuria (’positive)

It affects the following actions and processes:

1) decide-bg-nutrition-change (disabled)

; 2) decide-bg-twice-weekly (disabled)

; 3) decide-bg-insulin (disabled)

; 4) decide-bg-twice-weekly-post-insulin (enabled after 7 days)
; 5) decide-bg-insulin-adjust (enabled after 7 days)

; 6) administer-insulin-action (4 times each day)

(Note: Since the guideline does not specify the amount of

insulin to prescribe, its set to an arbitrary value of -1.

; decide-bg-twice-weekly-post-insulin (DBg2WkPostInsulin)
; relates to the decision to adjust blood glucose monitoring to

; two days each week instead of daily (after the prescription of

insulin). The decision criteria involves the following

; abstraction(s):

1) glycemic-control (’good)
It affects the following actions and processes:

1) monitor-blood-glucose (two days every week)

; 2) decide-bg-insulin-adjust (disabled)
; 3) decide-bg-twice-weekly-post-insulin (disabled)
; 4) decide-bg-daily-post-insulin (enabled after 7 days)

; decide-bg-daily-post-insulin (DBgDailyPostInsulin) relates to

; the decision to adjust blood glucose monitoring to daily

(instead of two days each week) after the prescription of
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93 ; insulin. The decision criteria involves the following

o4 3 abstraction(s):

os 3 1) glycemic-control (2 abnormal values in a week)

96 ; It affects the following actions and processes:

97 3 1) monitor-blood-glucose (daily)

9¢ ; 2) decide-bg-insulin-adjust (enabled after 7 days)

9% 3 3) decide-bg-twice-weekly-post-insulin (enabled after 7 days)
1w ; 4) decide-bg-daily-post-insulin (disabled)

101

102 ; decide-bg-insulin-adjust (DBgInsAdjust) is a proxy process for
13 ; adjusting the insulin therapy for the patient. The decision
104+ 3 criteria involves the following abstraction(s):

s ; 1) glycemic-control (1 abnormal value detected).

ws ; It affects the following actions and processes:

107 ;3 1) administer-insulin-action.

108

o ; decide-bg-nutrition-change (DBgCarb) is a proxy process for
1o ; changing the nutritional prescription of the patient due to
1 ; poor glycemic control. Specifically, the decision criteria
112 ; involves the following abstraction(s):

us 3 1) glyemic-control (’meal-compliant-poor)

14 3 2) ketonuria (’negative)

s ; It affects the following actions and processes:

16 3 1) decide-bg-twice-weekly (disabled)

7 ; 2) decide-bg-nutrition-change (disabled)

118 3 3) decide-bg-insulin (disabled)

119 3 4) decide-bg-twice-weekly-post-nutrition (enabled after 7 days)
120 ; 5) decide-bg-insulin-post-nutrition (enabled after 7 days)
21 ; 6) change-diet-action (4 times each day)

12 ; Note: Since the guideline does not specify a concrete

123 ; nutrition change, its set to an arbitrary value of -1.

124

s ; decide-bg-twice-weekly-post-nutrition (DBg2WkPostNutrition)
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; relates to the decision to adjust blood glucose monitoring to
; two days each week instead of daily (after the changing
; nutrition prescription). The decision criteria involves the

; following abstraction(s):

1) glycemic-control (’good)
It affects the following actions and processes:

1) monitor-blood-glucose (two days every week)

; 2) decide-bg-twice-weekly-post-nutrition (disabled)
; 3) decide-bg-insulin-post-nutrition (disabled)
; 4) decide-bg-daily-post-nutrition (enabled after 7 days)

; decide-bg-daily-post-nutrition (DBgDailyPostNutrition) relates

; to the decision to adjust blood glucose monitoring to daily

(instead of two days each week) after the changing nutrition

; prescription. The decision criteria involves the following

; abstraction(s):

1) glycemic-control (2 abnormal values in a week)
It affects the following actions and processes:

1) monitor-blood-glucose (daily)

; 2) decide-bg-insulin-post-nutrition (enabled after 7 days)
; 3) decide-bg-twice-weekly-post-nutrition (enabled after 7 days)
; 4) decide-bg-daily-post-nutrition (disabled)

; decide-bg-insulin-post-nutrition (DBgInsulinPostNutrition) is

; a proxy process for deciding to start insulin therapy (after

changing nutrition prescription).

; The decision criteria involves the following abstraction(s):

1) glycemic-control (not ’good or ’poor)
It affects the following actions and processes:

1) decide-bg-twice-weekly-post-nutrition (disabled)

; 2) decide-bg-insulin-post-nutrition (disabled)
; 3) decide-bg-twice-weekly-post-insulin (enabled after 7 days)
; 4) decide-bg-insulin-adjust (enabled after 7 days)
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3

5) administer-insulin-action (4 times each day)
(Note: Since the guideline does not specify the amount of

insulin to prescribe, its set to an arbitrary value of -1.

decide-uk-twice-weekly (DUk2Wk) relates to the decision to
adjust urinary ketone monitoring to two days each week instead
of daily. The decision criteria involves the following
abstraction(s):

1) ketonuria (’negative)

It affects the following actions and processes:

1) monitor-urinary-ketones (two days every week)

2) decide-uk-dinner-increase (disabled)

3) decide-uk-twice-weekly (disabled)

4) decide-uk-daily (enabled after 7 days)

decide-uk-daily (DUkDaily) relates to the decision to adjust
urinary ketone monitoring to daily (instead of two days each
week). The decision criteria involves the following
abstraction(s):

1) ketonuria (’positive)

It affects the following actions and processes:

1) monitor-urinary-ketones (daily)

2) decide-uk-dinner-increase (enabled after 7 days)

3) decide-uk-twice-weekly (enabled after 7 days)

4) decide-uk-daily (disabled)

decide-uk-dinner-increase (DUkCarb) relates to the decision to
increase carbohydrates intake at dinner. The decision criteria
involves the following abstraction(s):

1) ketonuria (’positive)

2) carbohydrates-compliance (not ’insufficient)

It affects the following actions and processes:

1) decide-uk-dinner-increase (disabled)
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; 2) decide-uk-twice-weekly (disabled)
; 3) decide-uk-daily (disabled)
; 4) decide-uk-twice-weekly-post-dinner (enabled after 7 days)

; b) change-dinner-action (daily)

; decide-uk-twice-weekly-post-dinner (DUk2WkPostDinner) relates
; to the decision to adjust urinary ketone monitoring to two

; days each week instead of daily (after increasing carbohydrates

intake at dinner). The decision criteria involves the following

; abstraction(s):

1) ketonuria (’negative)
It affects the following actions and processes:

1) monitor-urinary-ketones (two days every week)

; 3) decide-uk-twice-weekly-post-dinner (disabled)
; 4) decide-uk-daily-post-dinner (enabled after 7 days)

; decide-uk-daily-post-dinner (DUkDailyPostDinner) relates to

; the decision to adjust urinary ketone monitoring to daily

(instead of two days each week) after increasing carbohydrates

intake. The decision criteria involves the following

; abstraction(s):

1) ketonuria (’positive)
It affects the following actions and processes:

1) monitor-urinary-ketones (daily)

; 2) decide-uk-twice-weekly-post-dinner (enabled after 7 days)
; 3) decide-uk-daily-post-dinner (disabled)

; decide-bp-once-weekly (DBplWk) relates to the decision to
; adjust blood pressure monitoring to once a week instead of
; twice a week. The decision criteria involves the following

; abstraction(s):

1) hypertension (’normal)

It affects the following actions and processes:
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1) monitor-blood-pressure (once every week)

; 2) decide-bp-once-weekly (disabled)
; 3) decide-bp-twice-weekly (enabled after 7 days)

; decide-bp-twice-weekly (DBp2Wk) relates to the decision to
; adjust blood pressure monitoring to twice a week instead of
; once a week. The decision criteria involves the following

; abstraction(s):

1) hypertension (’high)
It affects the following actions and processes:

1) monitor-blood-pressure (twice every week)

; 2) decide-bp-once-weekly (enabled after 7 days)
; 3) decide-bp-twice-weekly (disabled)

; decide-bp-chronic (DBpChronic) is a proxy process for starting

; the chronic blood pressure monitoring plan. The decision

criteria involves the following abstraction(s):
1) hypertension (’sustained-high)
It affects the following actions and processes:

1) monitor-blood-pressure (every two days)

; 2) decide-bp-once-weekly (disabled)
; 3) decide-bp-twice-weekly (disabled)
; 4) decide-bp-chronic (disabled)

; decide-bp-gestational (DBpGestational) is a proxy process for
; starting the gestational blood pressure monitoring plan. The

; decision criteria involves the following abstraction(s):

1) hypertension (’sustained-high)
It affects the following actions and processes:

1) monitor-blood-pressure (every two days)

; 2) decide-bp-once-weekly (disabled)
; 3) decide-bp-twice-weekly (disabled)
; 4) decide-bp-gestational (disabled)
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b

; B) decide-bp-once-weekly-gestational (enabled after 7 days)

6) decide-bp-hourly-gestational (enabled after 7 days)

decide-bp-once-weekly-gestational (DBplWkGestational) relates
to the decision to adjust blood pressure monitoring to once a
week instead of every two days (in the gestational hypertension
plan). The decision criteria involves the following
abstraction(s):

1) hypertension (not ’very-high or ’extremely-high)

2) proteinuria (false)

It affects the following actions and processes:

1) monitor-blood-pressure (once a week)

2) decide-bp-once-weekly-gestational (disabled)

3) decide-bp-hourly-gestational (disabled)

4) decide-bp-two-days-gestational (enabled after 7 days)

decide-bp-two-days-gestational (DBp2DaysGest) relates to
decision to adjust blood pressure monitoring to every two days
instead of once a week (in the gestational hypertension
workflow). It is equivalent to the process decide-
bp-gestational except that the decision criteria involves:
1) hypertension (’very-high or ’extremely-high)

2) proteinuria (true)

It affects the following actions and processes:

1) monitor-blood-pressure (every two days)

2) decide-bp-once-weekly-gestational (enabled after 7 days)
3) decide-bp-hourly-gestational (enabled after 7 days)

4) decide-bp-two-days-gestational (disabled)

decide-bp-hourly-gestational (DBpHoursGest) is a proxy process
for deciding to adjust blood pressure monitoring to every few
hours (e.g. 4) instead of once a week (in the gestational

hypertension workflow). The decision criteria involves:
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1) hypertension (not ’very-high or ’extremely-high)
2) proteinuria (true)

It affects the following actions and processes:

1) monitor-blood-pressure (every 4 hours)

2) decide-bp-once-weekly-gestational (disabled)

3) decide-bp-hourly-gestational (disabled)

effectuate-administer-insulin is a proxy process for

administering insulin.

effectuate-change-diet is responsible for effectuating the

change to the patient’s diet (due to poor glycaemic control).

effectuate-change-dinner is responsible for effectuating the

change to the patient’s carbohydrates intake at dinner (due to

; positive ketonuria).

effectuate-monitor-bg is responsible for effectuating any

changes to the monitoring of blood glucose.

effectuate-bg-nutrition-change is responsible for effectuating

; the decide-bg-nutrition-change process.

effectuate-bg-insulin-control and its two variants,
effectuate-bg-insulin-post-nutrition-control and
effectuate-bg-insulin-adjust-control, are responsible for

effectuating the ’decide-bg-insulin process.

effectuate-bg-twice-weekly-control and its two variants,
effectuate-bg-twice-weekly-post-nutrition-control and
effectuate-bg-twice-weekly-post-insulin-control, are responsible

for effectuating the decide-bg-twice-weekly process.
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effectuate-bg-daily-control and its two variants,
effectuate-bg-daily-post-nutrition-control and
effectuate-bg-daily-post-insulin-control, are responsible for

effectuating the decide-bg-daily process.

effectuate-monitor-uk-control is responsible for effectuating

changes to the monitoring of urinary ketones (uk).

effectuate-uk-dinner-increase is responsible for effectuating

the ’decide-uk-dinner-increase process.

effectuate-uk-twice-weekly-control and its variant,
effectuate-uk-twice-weekly-post-dinner-control, are responsible

for effectuating the ’decide-uk-twice-weekly process.

effectuate-uk-daily-control and its variant,
effectuate-uk-daily-post-dinner-control, are responsible for

effectuating the ’decide-uk-daily process.

effectuate-monitor-systolic-bp-control is responsible for
effectuating changes to the monitoring of systolic blood

pressure (bp).

effectuate-monitor-diastolic-bp-control is responsible for
effectuating changes to the monitoring of diastolic blood

pressure (bp).

effectuate-bp-once-weekly-control is responsible for

effectuating the decide-bp-once-weekly process.

effectuate-bp-twice-weekly-control is responsible for

effectuating the decide-bp-twice-weekly process.
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2

effectuate-bp-chronic-control is responsible for effectuating

the decide-bp-chronic process.

effectuate-bp-gestational-control and its variant,
effectuate-bp-two-days-gestational-control, are responsible for

effectuating the decide-bp-gestational process.

effectuate-bp-once-weekly-gestational-control is responsible
for effectuating the ’decide-bp-once-weekly-gestational

process.

effectuate-bp-hourly-gestational-control is responsible for

effectuating the ’decide-bp-hourly-gestational process.



Appendix E

Verification of the Formalised
Guideline

The following is the source code used to verify the MADE processes that resulted
from formalising the GDM guideline. This source code is also included as comments
in https://github.com/nlsfung/MADE-Language/tree/master/exp/gdm/GdmPM.rkt,
and it details the data used to verify each MADE process. Note that for variants of
the same process, the same inputs were used to verify them. Thus for simplicity, they

are not included within this appendix.

(verify-process
analyse-blood-glucose
(list (generate-list
blood-glucose
(datetime 2019 12 2 7 0 0)
(datetime 2019 12 3 24 0 0)
(duration 0 12 0 0))
(generate-list
meal-event
(datetime 2019 12 2 6 0 0)
(datetime 2019 12 3 24 0 0)
(duration 0 12 0 0))


https://github.com/nlsfung/MADE-Language/tree/master/exp/gdm/GdmPM.rkt

24

25

26

27

29

30

w

34

35

36

37

208 Verification of the Formalised Guideline

(generate-list
carbohydrate-intake
(datetime 2019 12 2 6 0 0)
(datetime 2019 12 3 24 0 0)
(duration 0 12 0 0)))
(get-datetime (datetime 2019 12 3 19 0 0)
(datetime 2019 12 3 19 0 0)))

(verify-process

analyse-urinary-ketone

(list (generate-list
urinary-ketone
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 31 24 0 0)
5))

(get-datetime (datetime 2019 12 1 0 0 0)

(datetime 2019 12 31 24 0 0)))

(verify-process

analyse-carbohydrates-intake

(list (generate-list
carbohydrate-intake
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 31 24 0 0)
5))

(get-datetime (datetime 2019 12 1 0 0 0)

(datetime 2019 12 31 24 0 0)))

(verify-process
analyse-blood-pressure
(list (generate-list
systolic-blood-pressure
(datetime 2019 12 1 0 0 0)
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(datetime 2019 12 15 24 0 0)

2)
(generate-list
diastolic-blood-pressure

(datetime 2019 12 1 0 0 0)

(datetime 2019 12 15 24 0 0)

2))

(get-datetime (datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)))

(verify-process

decide-bg-twice-weekly

(list (generate-list
glycemic-control
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2))

(get-datetime (datetime 2019 12 1 0 0 0)

(datetime 2019 12 15 24 0 0)))

(verify-process

decide-bg-daily

(list (generate-list
glycemic-control
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2))

(get-datetime (datetime 2019 12 1 0 0 0)

(datetime 2019 12 15 24 0 0)))

(verify-process
decide-bg-insulin

(list (generate-list
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glycemic-control

(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)

2)
(generate-list

ketonuria

(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)

2))

(get-datetime (datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)))

(verify-process
decide-bg-twice-weekly-post-insulin
(list (generate-list
glycemic-control
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2))
(get-datetime (datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)))

(verify-process

decide-bg-daily-post-insulin

(list (generate-list
glycemic-control
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2))

(get-datetime (datetime 2019 12 1 0 0 0)

(datetime 2019 12 15 24 0 0)))

(verify-process



112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

211

decide-bg-insulin-adjust
(list (generate-list
glycemic-control
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2))
(get-datetime (datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)))

(verify-process
decide-bg-nutrition-change
(list (generate-list
glycemic-control
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2)
(generate-list
ketonuria
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2))
(get-datetime (datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)))

(verify-process
decide-bg-twice-weekly-post-nutrition
(list (generate-list
glycemic-control
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2))
(get-datetime (datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)))
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(verify-process

decide-bg-daily-post-nutrition

(list (generate-list
glycemic-control
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2))

(get-datetime (datetime 2019 12 1 0 0 0)

(datetime 2019 12 15 24 0 0)))

(verify-process
decide-bg-insulin-post-nutrition
(list (generate-list
glycemic-control
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2))
(get-datetime (datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)))

(verify-process

decide-uk-twice-weekly

(list (generate-list
ketonuria
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2))

(get-datetime (datetime 2019 12 1 0 0 0)

(datetime 2019 12 15 24 0 0)))

(verify-process

decide-uk-daily
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(list (generate-list
ketonuria
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2))
(get-datetime (datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)))

(verify-process
decide-uk-dinner-increase
(list (generate-list

ketonuria
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)

2)

(generate-list
carbohydrates-compliance
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)

2))
(get-datetime (datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)))

(verify-process
decide-uk-twice-weekly-post-dinner
(list (generate-list
ketonuria
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2))
(get-datetime (datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)))
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(verify-process

decide-uk-daily-post-dinner

(list (generate-list
ketonuria
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2))

(get-datetime (datetime 2019 12 1 0 0 0)

(datetime 2019 12 15 24 0 0)))

(verify-process

decide-bp-once-weekly

(list (generate-list
hypertension
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2))

(get-datetime (datetime 2019 12 1 0 0 0)

(datetime 2019 12 15 24 0 0)))

(verify-process

decide-bp-twice-weekly

(list (generate-list
hypertension
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2))

(get-datetime (datetime 2019 12 1 0 0 0)

(datetime 2019 12 15 24 0 0)))

(verify-process
decide-bp-chronic

(list (generate-list
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hypertension
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2))
(get-datetime (datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)))

(verify-process

decide-bp-gestational

(list (generate-list
hypertension
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2))

(get-datetime (datetime 2019 12 1 0 0 0)

(datetime 2019 12 15 24 0 0)))

(verify-process
decide-bp-once-weekly-gestational
(list (generate-list
hypertension
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2)
(generate-list
proteinuria
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2))
(get-datetime (datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)))

(verify-process
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decide-bp-two-days-gestational
(list (generate-list
hypertension
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2)
(generate-list
proteinuria
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2))
(get-datetime (datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)))

(verify-process
decide-bp-hourly-gestational
(list (generate-list
hypertension
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2)
(generate-list
proteinuria
(datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)
2))
(get-datetime (datetime 2019 12 1 0 0 0)
(datetime 2019 12 15 24 0 0)))

(verify-process
effectuate-administer-insulin
(list (generate-list

adjust-insulin-plan
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(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)
(get-datetime (datetime 2019 12 7 20 0 0)
(datetime 2019 12 7 20 0 0)))

(verify-process
effectuate-administer-insulin
(list (generate-list
start-insulin-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)
(get-datetime (datetime 2019 12 7 20 0 0)
(datetime 2019 12 7 20 0 0)))

(verify-process

effectuate-change-diet

(list (generate-list
change-nutrition-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)

(get-datetime (datetime 2019 12 7 20 0 0)

(datetime 2019 12 7 20 0 0)))

(verify-process
effectuate-change-dinner
(list (generate-list
increase-dinner-intake-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)
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(get-datetime (datetime 2019 12 7 20 0 0)
(datetime 2019 12 7 20 0 0)))

(verify-process
effectuate-monitor-bg
(list (generate-list
bg-twice-weekly-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)
(generate-list
bg-daily-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)
(get-datetime (datetime 2019 12 7 20 0 0)
(datetime 2019 12 7 20 0 0)))

(verify-process
effectuate-bg-nutrition-change
(list (generate-list

bg-twice-weekly-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1
(generate-list
change-nutrition-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
i)
(generate-list
start-insulin-plan
(datetime 2019 12 7 0 0 0)
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(datetime 2019 12 7 24 0 0)

1)
(generate-list

bg-daily-plan

(datetime 2019 12 7 0 0 0)

(datetime 2019 12 7 24 0 0)

1)

(get-datetime (datetime 2019 12 7 20 0 0)
(datetime 2019 12 7 20 0 0)))

(verify-process
effectuate-bg-insulin-control
(list (generate-list

bg-twice-weekly-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)

(generate-list
change-nutrition-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)

(generate-list
start-insulin-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1

(generate-list
bg-daily-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)

(get-datetime (datetime 2019 12 7 20 0 0)
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(datetime 2019 12 7 20 0 0)))

(verify-process
effectuate-bg-twice-weekly-control
(list (generate-list

bg-twice-weekly-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)

(generate-list
change-nutrition-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)

(generate-list
start-insulin-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1

(generate-list
bg-daily-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)

(get-datetime (datetime 2019 12 7 20 0 0)
(datetime 2019 12 7 20 0 0)))

(verify-process
effectuate-bg-daily-control
(list (generate-list
bg-twice-weekly-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
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1)
(generate-list

bg-daily-plan

(datetime 2019 12 7 0 0 0)

(datetime 2019 12 7 24 0 0)

1)

(get-datetime (datetime 2019 12 7 20 0 0)
(datetime 2019 12 7 20 0 0)))

(verify-process
effectuate-monitor-uk-control
(list (generate-list
uk-twice-weekly-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)
(generate-list
uk-daily-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)
(get-datetime (datetime 2019 12 7 20 0 0)
(datetime 2019 12 7 20 0 0)))

(verify-process
effectuate-uk-dinner-increase
(list (generate-list

uk-twice-weekly-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1

(generate-list

uk-daily-plan
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(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)

(generate-list
increase-dinner-intake-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)

(get-datetime (datetime 2019 12 7 20 0 0)
(datetime 2019 12 7 20 0 0)))

(verify-process
effectuate-uk-twice-weekly-control
(list (generate-list

uk-twice-weekly-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
i)

(generate-list
uk-daily-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
i)

(generate-list
increase-dinner-intake-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)

(get-datetime (datetime 2019 12 7 20 0 0)
(datetime 2019 12 7 20 0 0)))

(verify-process

effectuate-uk-daily-control
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(list (generate-list
uk-twice-weekly-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)

(generate-list
uk-daily-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)

1)

(generate-list
increase-dinner-intake-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)

1)
(get-datetime (datetime 2019 12 7 20 0 0)
(datetime 2019 12 7 20 0 0)))

(verify-process
effectuate-monitor-systolic-bp-control
(list (generate-list

bp-once-weekly-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1
(generate-list
bp-twice-weekly-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
i)
(generate-list
chronic-hypertension-plan
(datetime 2019 12 7 0 0 0)
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(datetime 2019 12 7 24 0 0)
1)

(generate-list
gestational-hypertension-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)

1)

(generate-list
gestational-weekly-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)

1)

(generate-list
gestational-hours-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)

1)
(get-datetime (datetime 2019 12 7 20 0 0)
(datetime 2019 12 7 20 0 0)))

(verify-process
effectuate-monitor-diastolic-bp-control
(list (generate-list

bp-once-weekly-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1

(generate-list
bp-twice-weekly-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)

(generate-list



574

575

576

577

578

579

580

581

582

584

585

586

587

588

589

590

591

592

593

594

596

597

598

599

600

601

602

603

604

605

606

225

chronic-hypertension-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1

(generate-list
gestational-hypertension-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1

(generate-list
gestational-weekly-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
i)

(generate-list
gestational-hours-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)

(get-datetime (datetime 2019 12 7 20 0 0)
(datetime 2019 12 7 20 0 0)))

(verify-process
effectuate-bp-once-weekly-control
(list (generate-list

bp-once-weekly-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1
(generate-list
bp-twice-weekly-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)



607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639
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1

(generate-list
chronic-hypertension-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)

i)

(generate-list
gestational-hypertension-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)

1)
(get-datetime (datetime 2019 12 7 20 0 0)
(datetime 2019 12 7 20 0 0)))

(verify-process
effectuate-bp-twice-weekly-control
(list (generate-list

bp-once-weekly-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1

(generate-list
bp-twice-weekly-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1

(generate-list
chronic-hypertension-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
i)

(generate-list

gestational-hypertension-plan



640

641
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647

648

649

650

651

652

653

654

655

656
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658

659

660

661

662

663

664
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669
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(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)
(get-datetime (datetime 2019 12 7 20 0 0)
(datetime 2019 12 7 20 0 0)))

(verify-process

effectuate-bp-chronic-control

(list (generate-list
chronic-hypertension-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)

(get-datetime (datetime 2019 12 7 20 0 0)

(datetime 2019 12 7 20 0 0)))

(verify-process
effectuate-bp-gestational-control
(list (generate-list
gestational-hypertension-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
i)
(generate-list
gestational-weekly-plan
(datetime 2019 12 7 0 0 0)
(datetime 2019 12 7 24 0 0)
1)
(get-datetime (datetime 2019 12 7 20 0 0)
(datetime 2019 12 7 20 0 0)))

(verify-process

effectuate-bp-once-weekly-gestational-control
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673 (list (generate-list

674 gestational-hypertension-plan

675 (datetime 2019 12 7 0 0 0)

676 (datetime 2019 12 7 24 0 0)

677 1)

678 (generate-list

679 gestational-weekly-plan

680 (datetime 2019 12 7 0 0 0)

681 (datetime 2019 12 7 24 0 0)

682 1)

683 (generate-list

684 gestational-hours-plan

685 (datetime 2019 12 7 0 0 0)

686 (datetime 2019 12 7 24 0 0)

687 1))

688 (get-datetime (datetime 2019 12 7 20 0 0)
689 (datetime 2019 12 7 20 0 0)))

690

o1 (verify-process

692 effectuate-bp-hourly-gestational-control
693 (list (generate-list

694 gestational-hypertension-plan
695 (datetime 2019 12 7 0 0 0)

696 (datetime 2019 12 7 24 0 0)
697 1)

698 (generate-list

699 gestational-weekly-plan

700 (datetime 2019 12 7 0 0 0)

701 (datetime 2019 12 7 24 0 0)
702 1)

703 (generate-list

704 gestational-hours-plan

705 (datetime 2019 12 7 0 0 0)



706

707

708

709
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(datetime 2019 12 7 24 0 0)
1)
(get-datetime (datetime 2019 12 7 20 0 0)
(datetime 2019 12 7 20 0 0)))
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