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Abstract

The human electroencephalogram (EEG) of sleep undergoes profound changes with age. These 

changes can be conceptualized as “brain age”, which can be compared to chronological age to 

reflect the degree of deviation from normal aging. Here, we develop an interpretable machine 

learning model to predict brain age based on two large sleep EEG datasets: the Massachusetts 

General Hospital sleep lab dataset (MGH, N = 2,532; ages 18 to 80); and the Sleep Hearth Health 

Study (SHHS, N = 1,974; ages 40 to 80). The model obtains a mean absolute deviation of 7.6 

years between brain age (BA) and chronological age (CA) in healthy participants in the MGH 

dataset. As validation, a subset of SHHS containing longitudinal EEGs 5.2 years apart shows an 

average of 5.4 years increase in BA. Participants with significant neurological or psychiatric 

disease exhibit a mean excess brain age, or “brain age index” (BAI = BA - CA) of 4 years relative 

to healthy controls. Participants with hypertension and diabetes have a mean excess brain age of 

3.5 years. The findings raise the prospect of using the sleep EEG as a potential biomarker for 

healthy brain aging.
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Introduction

Human sleep undergoes robust and predictable changes with age, reflected in both overall 

sleep architecture and electroencephalogram (EEG) oscillations/waveforms. At the level of 

sleep architecture (macro-structure), older participants sleep earlier and wake earlier; have 
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shorter sleep duration, increased sleep fragmentation and reduced percentages of rapid eye 

movement (REM) sleep, as well as (at least in males) deep non-REM (NREM) sleep 

(Mander et al., 2017; Scullin, 2017). At the level of EEG micro-structure, older participants 

exhibit reduced slow waves during deep sleep (Carrier et al., 2001; Larsen et al., 1995), 

decreased sleep spindle amplitude, density, and duration (Purcell et al., 2017), and less phase 

coupling between slow oscillations and sleep spindles (Helfrich et al., 2017). However, no 

study has yet addressed the inverse problem: how accurately can a person’s age be predicted 

from the sleep EEG? What factors make a person’s “brain age” (BA) older or younger than 

their chronological age (CA)?

Brain age serves as a potential aging biomarker where the variation of brain age between 

individuals of the same chronological age may carry important information about the risk of 

cognitive impairment, neurological or psychiatric disease, or death. Various biomarkers of 

aging have been proposed to better predict lifespan and functional capability, ranging from 

molecular and cellular levels to structural level biomarkers. At the molecular and cellular 

level, aging-related biomarkers include leucocyte telomere length (Kruk et al., 1995), 

Ink4/Arf locus expression (Krishnamurthy et al., 2004), N-glycan profile (Vanhooren et al., 

2010), mitochondrial DNA deletions (Eshaghian et al., 2006), and DNA-methylation status 

at CpG sites across the genome (Petkovich et al., 2017), among others. At the structural 

level, brain anatomy changes dramatically throughout life (Raz and Rodrigue, 2006). For 

example, cortical volume (Cole, 2017), thalamic volume (Redline et al., 2004), and white 

matter integrity (Mander et al., 2017), each decreases with aging. Using magnetic resonance 

images (MRI), chronological age can be predicted with mean absolute deviation (MAD) of 5 

years in healthy participants (Franke et al., 2010). Various diseases, including Alzheimer’s 

disease, schizophrenia, epilepsy, traumatic brain injury, bipolar disorder, major depression, 

cognitive impairment, diabetes mellitus, and HIV, are associated with excess brain age, i.e. 

older MRI brain age than chronological age (Cole, J. et al., 2017; Cole, 2017; Cole and 

Franke, 2017; Cole, J.H. et al., 2017; Franke et al., 2012; Franke et al., 2010).

Alongside these biomarkers, EEG-based brain age is a complement with several potential 

advantages: (1) EEG-based brain age could reflect functional changes rather than structural 

changes; (2) EEG is more participant friendly, has less costs and contraindications, and in 

principle could be measured by home-based devices; (3) EEG-based brain age could 

facilitate repeated within-participant measures to assess the effectiveness of interventions, 

such as medications (Roehrs and Roth, 2010) or brain stimulation (Tasali et al., 2008) that 

aim to preserve and/or improve brain function and life span.

Here we describe an EEG-based brain age and “brain age index” (BAI), i.e. the difference 

between brain age and chronological age, developed using two large sleep EEG datasets: the 

Massachusetts General Hospital sleep lab (MGH) dataset (Biswal et al., 2017; Sun et al., 

2017), and the Sleep Hearth Health Study (SHHS) (Dean et al., 2016; Quan et al., 1997; 

Redline et al., 1998). We identify participants with significant neurological or psychiatric 

disease in the MGH dataset, and train the model only on EEGs from participants without 

these diseases. The effects of different EEG electrode choices are also investigated. The 

model is then validated on a longitudinal cohort from a subset of the SHHS dataset without 

neurological or cardiovascular disease. We correlate the mean deviation of brain age from 
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chronological age with clinical covariates and diseases. Finally, to interpret the BAI, we 

derive a model-based age norm, which can be compared to show how EEG features 

contribute to BAI.

Material and Methods

Dataset

The Partners Institutional Review Board approved retrospective analysis of the de-identified 

polysomnogram (PSG) dataset, acquired in MGH between 2008 and 2012, without requiring 

additional consent for its use in this study. The EEG signals contain 6 channels: frontal (F3-

M2 and F4-M1), central (C3-M2 and C4-M1) and occipital (O1-M2 and O2-M1), each 

referenced to the contralateral mastoid. EEG signals are sampled at 200Hz. The signals are 

segmented into non-overlapping 30-second epochs. Each PSG is scored by one of seven 

EEG technicians according to the American Academy of Sleep Medicine (AASM) standards 

(AASM, 2007). Epochs are scored as one of five stages: wake (W), rapid eye movement 

(REM), Non-REM stage 1 (N1), Non-REM stage 2 (N2) and Non-REM stage 3 (N3). The 

inclusion criteria include participants (1) age between 18 to 80 years; (2) who underwent 

diagnostic PSG (not split night study); and (3) with a clinical diagnosis available from five 

years before to one year after the PSG recording from the hospital database. To remove the 

potentially confounding effect of imputing missing sleep stages, we exclude EEGs with 

missing sleep stages and investigate their effect on the brain age in the supplementary 

material (Figure S1).

We define a participant as “having significant neurological or psychiatric disease” if they 

have at least one neurological or psychiatric diagnosis in Table S1 (supplementary material) 

in the medical record from five years before to one year after the PSG recording. This 

definition is similar to those used in prior studies of MRI brain age, e.g. Brain Images of 

Normal Participants (BRAINS) (Job et al., 2017), Open Access Series of Imaging Studies 

(OASIS) (Marcus et al., 2010), (Steffener et al., 2016) and (Cole et al., 2015). Although 

some evidence suggests sleep apnea may be a risk factor for dementia, the relationship 

remains uncertain (Ding et al., 2016). We therefore do not exclude participants with sleep 

apnea. However, we compare BAIs for participants without sleep apnea (apnea-hypopnea 

index (AHI) <5) vs. those with moderate to severe apnea (AHI>15) using a t-test. We refer 

to participants without significant neurological or psychiatric disease as “healthy”.

In total, we identify 2,532 participants, 167 of whom have significant neurological or 

psychiatric diseases. Table 1 provides summary statistics for the dataset. Self-reported 

medication intake collected at the time of PSG recording is reported in supplemental Table 

S2.

We also use a subset of the SHHS dataset (Dean et al., 2016; Quan et al., 1997; Redline et 

al., 1998), which contains repeated EEGs from the same participant in two visits about 5 

years apart, making it possible to evaluate the longitudinal reliability of our model at the 

population level. The participant inclusion criteria are: (1) having EEGs from both visits; (2) 

chronological age between 40 to 80 years at both visits (minimum age in SHHS is 40); (3) 

having EEG and sleep stage scoring of high quality according to SHHS specifications (Table 
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S3); and (4) having no neurological or cardiovascular disease (Table S3). We also exclude 

EEGs with missing sleep stages. As a result, 987 EEGs from SHHS visit 1 and 987 paired 

EEGs from visit 2 are used. The average difference in the chronological age between the two 

visits is 5.2 years. Unlike the MGH dataset, the SHHS dataset uses two EEG channels (C3-

M2 and C4-M1) and is scored according to R&K standard (Rechtschaffen, 1968). To make 

scoring consistent across datasets, we combine S3 and S4 in SHHS to match the scoring of 

N3 in the MGH data. Summary statistics for the SHHS dataset are shown in Table 2.

EEG Preprocessing and Artifact Removal

EEG signals are notch-filtered at 60Hz to reduce line noise, and bandpass filtered from 

0.5Hz to 20Hz to reduce myogenic artifacts. For 30s-epochs, those with absolute amplitude 

larger than 500uV are removed to minimize movement artifacts. Epochs containing flat EEG 

for more than 2 seconds are also removed. We also exclude EEGs contaminated by 

electrocardiogram (ECG), indicated by 1Hz harmonic in the EEG spectrogram. To reduce 

inter-participant variance, the amplitude of each EEG channel is normalized to have zero 

median and unit interquartile range across the whole night. The total amount of data 

removed by these preprocessing procedures is 7% in the MGH dataset and 9% in the SHHS 

dataset.

Feature Extraction

For age prediction, we extract features from sleep EEG used in sleep staging in our previous 

work (Sun et al., 2017). We extract 102 features from each 30-second epoch covering both 

time and frequency domains, as summarized in Table S4. For each EEG recording, we 

average the features in each of the 5 sleep stages over time, yielding 102 × 5 = 510 features 

per EEG. The features are log-transformed to render feature distributions approximately 

Gaussian. Subsequently, these features are z-transformed to have zero mean and unit 

standard deviation in the training set. The same z-transformation is applied to the testing set.

Brain Age Prediction

The model minimizes an objective function J(w, b) with two terms: (1) mean squared 

prediction error; and (2) magnitude of the covariance between CA and BAI:

J(w, b) = BAI2 + λ ∣ Cov(CA, BAI) ∣

where BAi = softplus(wTxi + b) = ln[1 + ewTxi+b], i.e. a linear combination of EEG features 

followed by a softplus function to ensure positivity of BA; 

BAI2 = ∑i = 1
N (BAIi)

2 ∕ N = ∑i = 1
N (BAi − CAi)

2 ∕ N is the mean squared prediction error; and 

Cov(CA, BAI) = ∑i = 1
N ∣ (CAi − CA )(BAIi − BAI ) ∣ is the average absolute correlation 

(covariance) between the chronological age CAi and brain age index BAIi. Minimizing the 

first term ⟨BAI2⟩ encourages the model to produce predictions BA that are accurate (close to 

CA). Minimizing the second component cov(CA, BAI) encourages deviations of BA from 

CA to be uncorrelated with CA. The second component is weighted by a hyperparameter λ 
which tradeoff between the two components.
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To determine the optimal hyperparameter λ, we randomly select 300 EEGs from the training 

set to serve as internal validation data. We perform grid search on λ ranging from [0, 1, 5, 

10]. We find the hyperparameter with the highest performance on the internal validation set. 

The performance metric for each hyperparameter is evaluated using corr(CA, BA) – 

∣corr(CA, BAI)∣, where corr(·) denotes Pearson’s correlation. A larger corr(CA, BA) and a 

smaller ∣corr(CA, BAI)∣ indicate better model performance. Here the metric is correlation 

instead of covariance or prediction error, since correlation is normalized and comparable 

among different hyperparameter values. Once the optimal hyperparameter with the best 

validation performance is determined, the validation set is combined with the rest of the 

training set, and the model is re-trained using the optimal hyperparameter.

We maintain strict separation of training and testing participants to achieve statistically 

unbiased estimates of model’s performance. The reported results are based on the testing set, 

unless stated.

Results

EEG-Based Brain Age Prediction

The MGH dataset (N = 2,532) was partitioned into a healthy training set (N = 1,343) used to 

train the model, and a testing set (N = 1,189) to evaluate model performance. In the testing 

set, 167 had significant neurological or psychiatric disease (Table S1); the remaining 1,022 

were healthy. A comparison between these two groups is presented in subsection 

“Correlation between Disease and Brain Age Index”.

We first compared age prediction performance using the sleep macro-structure features 

(Mander et al., 2017; Redline et al., 2004) (30 features, Table S5) vs. using the 510 sleep 

micro-structure EEG features, on the testing set. As shown in Figure 1, the mean absolute 

deviation (MAD) of BA from CA using macro-structure features was much higher (23.3 

years) than that using EEG features (7.8 years), and the correlation was weaker (0.46, 95% 

CI 0.42 – 0.50) than that using EEG features (0.82, 95% CI 0.80 – 0.84). The results suggest 

that the effects of age on brain activity are more consistently reflected in sleep EEG (micro-

structure) than in sleep stage composition (macro-structure). The progression of EEG 

features with age is further illustrated by a two-dimensional visualization of the feature 

space in Figure S2.

In Figure 2, we show spectrograms of sleep EEGs from 6 typical individuals, arranged as a 

“confusion matrix”, where rows show participants with CA in young (18 – 30 years), 

intermediate (40 – 50 years), and older groups (60 – 80 years) from top to bottom, and 

columns with BA in three groups from left to right. The participants positioned along the 

diagonal line are examples of participants with matched CA and BA. As an example, the 

middle right panel indicated by * shows a 48-year-old female diagnosed with hypertension, 

seizure disorder, kidney stone and arteriosclerotic heart disease, whose predicted brain age 

was 65.8 years (BAI = BA – CA = 65.8 – 48 = 17.8 years). One visually apparent 

abnormality is the relatively weaker sleep spindle density during N2 compared to healthy 

participants of similar chronological age (middle left and center panels).
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Effect of EEG Electrode Placement

Most home-based EEG devices use fewer electrodes than lab-based PSG. We therefore 

explored how EEG-based age prediction depends on the number and location of EEG 

electrodes. Prediction performance on the 1,022 healthy testing participants using different 

subsets of EEG electrodes is shown in Table 3. Using all six electrodes (2 frontal, 2 central 2 

occipital) provided the lowest prediction error (7.6 years) and the highest correlation with 

CA (0.83) (Kruskal-Wallis p-value < 0.01). If limited to recording EEG using two electrodes 

only, the frontal electrodes provided the best performance with non-significant difference 

compared to all six electrodes (p-value = 0.20); the central and occipital electrodes led to 

significantly reduced performance (p-value < 0.01). Therefore it is suggested to use frontal 

EEG electrodes if required to use fewer EEG electrodes.

Longitudinal Reliability using Two Central EEG Channels

To assess the longitudinal reliability of the brain age model at the population level, we used 

a subset of the SHHS dataset where each participant underwent two study visits, referred as 

SHHS1 and SHHS2. The dataset contains 987 adults for a total of 1,974 nights of EEG 

recorded from C3-M2 and C4-M1 only. The average increase of chronological age between 

the two visits was 5.2 years (standard deviation, SD 0.5 year) (Table 2). We trained the 

model in two ways.

First, we trained the model on 752 participants with paired EEGs (1,504 EEGs) from both 

visits and tested on the held out 235 participants with paired EEGs (470 EEGs) in both 

visits. Testing results are shown in Figure 3A and 3B. The MAD was 8.1 years on SHHS1 

and 7.8 years on SHHS2. The Pearson’s correlation was 0.66 (95% CI 0.58 – 0.73) on 

SHHS1 and 0.67 (95% CI 0.59 – 0.73) on SHHS2. The average difference in predicted BA 

between the two visits, ∆BA = BA2 – BA1, was 5.4 years (SD 9.3 years) (Figure 3C); hence 

the magnitude of the observed difference between the progression of mean chronological 

age ∆CA = CA2- CA1 and mean brain age ∆BA was ∣∆CA -∆BA ∣ = ∣5.2 – 5.4∣ = 0.2 years. 

A t-test revealed that this difference was not statistically significant (p-value = 0.7).

Second, we investigated the effect of the training population. To do this, we trained the 

model on the 2,365 EEGs from healthy participants in MGH dataset using the C3-M2 and 

C4-M1 leads only (to be consistent with SHHS EEGs). We then predicted BA on the 1,974 

paired EEGs in SHHS as the testing set. Results on the testing set are shown in Figure 3D 

and 3E. The MAD was 8.2 years on SHHS1 and 9.4 years on SHHS2. The Pearson’s 

correlation was 0.61 (95% CI 0.57 – 0.65) on SHHS1 and 0.56 (95% CI 0.52 – 0.60) on 

SHHS2. The average difference in predicted BA between the two visits ∆BA was 4.3 years 

(SD 9.6 years) (Figure 3F). In this case the difference between mean progression of 

chronological age was statistically significant (p-value <0.01, t-test), indicating that different 

populations (datasets) did introduce some systematic error. However, the magnitude of this 

difference was relatively small, ∣∆CA -∆BA∣ = ∣5.2 – 4.3∣ = 0.9 years.

The results suggest that, at the population level, the model longitudinally tracked brain aging 

when trained on either the SHHS or MGH cohorts, with a marginal error of 0.2 to 0.9 years. 

We note that these results were obtained using a restricted set of EEG electrodes (C3-M2 
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and C4-M1). Given limited channels in the SHHS EEG data, we were not able to investigate 

whether even higher accuracy is possible using a full set of channels.

Correlation between Covariates and Brain Age Index

We collected various covariates from the MGH dataset, including sleep macro-structure (i.e. 

sleep stages), the Epworth Sleepiness Scale, and measures of sleep disruption, and then 

obtained the Spearman’s correlation with BAI. For healthy participants, the covariates with 

statistically significant (p < 0.05) Spearman’s correlation are shown in ascending order in 

Table 4. The full list of all covariates is shown in Table S6 in the supplementary material. 

The amount of deep sleep (N3) showed the most negative correlation with BAI, although the 

correlation is weak. Wake time after sleep onset also showed weak but significant positive 

correlation with BAI.

One noteworthy lack of association is that BAI is statistically independent of AHI (apnea-

hypopnea index; number of apnea events per hour of sleep, used to quantify severity of sleep 

apnea). A scatter plot between AHI and CA/BA/BAI shown in Figure S3 in the 

supplementary material reveals a correlation between AHI and CA and BA, but not BAI. 

The histogram of BAI for AHI<5 and AHI>15 are shown in Figure S4, showing no 

significant difference between the two groups (t-test, p = 0.70).

The weak correlations in Table 4 indicate that BAI was relatively independent of these 

covariates. Therefore BAI can be interpreted as a relatively orthogonal metric for measuring 

sleep and brain health. In other words, BAI was robust in participants with different 

characteristics.

Correlation between Disease and Brain Age Index

We next investigated some population-level health correlates of “excess brain age”, BAI = 

BA – CA > 0. In Materials and Methods we describe criteria for significant neurological or 

psychiatric disease (Table S1), which we hypothesized to have older BA than CA. This 

hypothesis was verified in Figure 4A. BAI for the healthy group (2,365 participants) was 

around 0 years, while BAI for the group with significant neurological and psychiatric 

disease (167 participants) increased up to 4 years with a significant difference (t-test p-value 

< 0.01). Therefore, at the population level, participants with significant neurological or 

psychiatric disease had on average a brain age 4 years older than their chronological age. 

Further, in the healthy group, the MAD was 7.6 years and correlation between CA and BA 

was 0.83; while in the group with significant neurological and psychiatric disease, the MAD 

was larger at 9.5 years and correlation smaller at 0.74.

Though often not associated with any formal neurological or psychiatric or psychiatric 

diagnosis, there is biological plausibility and accumulating evidence for the idea that 

hypertension and diabetes mellitus accelerate brain aging (Gorelick et al., 2017; Gorelick et 

al., 2011). We therefore explored whether EEG brain age is sensitive to hypertension and 

diabetes. These participants were identified using the diagnosis from five years before to one 

year after the PSG recording, as well as the self-reported medication intake form collected at 

the time of PSG recording. As compared in Figure 4B, the control group was defined as 

participants taking no medications, having no diagnoses of hypertension or diabetes, and no 
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significant neurological or psychiatric disease. The control group had a mean excess brain 

age of BAI = −1.1 years (n = 472). The “contrast” group was defined as participants with 

both hypertension and diabetes, which had BAI = 2.4 years (n = 137). The attributable 

excess brain age was 3.5 years (p = 0.0002).

Model-Derived Age Norm

The parametric formulation of our brain age model allows studying individual differences at 

the level of EEG features. To do this, we first derived an “age norm”, i.e. typical EEG 

feature values at different CAs with matched BAs. Specifically, the age norm of age x was 

obtained by averaging EEG features from all healthy participants who had both CA and BA 

within [x-5, x+5] years.

The age norm showed that when following a normal aging process, the features most 

negatively correlated with age were delta band (< 4Hz) powers in stage N3 sleep in the 

occipital and central areas; and features that most positively correlate with age were theta 

band (4 – 8Hz) powers in stage N1 sleep in frontal, occipital and central areas. The details 

are described in Table S6.

Using this model-derived age norm, we could examine reasons for deviation from CA 

quantitatively. For example, Figure 5A shows the EEG spectrogram of a 29-year-old female 

with multiple medical problems, including diabetes mellitus, obesity, smoking, a 

cerebrovascular accident, congestive heart failure and acute renal failure. Her brain activity 

resembled that of a much older adult. Her brain age was 63 years. As shown in Figure 5B, 

when compared to the age norm, her sleep EEG exhibited (1) less delta to theta ratio during 

deep N3 sleep; and (2) less theta and alpha band bursts, i.e. more continual theta and alpha, 

during N2 sleep.

Note that our results only showed that BAI reflects age and pathology at the population 

level. Nevertheless this example suggested the possibility that BAI may, with further studies, 

serve as a personalized biomarker of brain health. Other examples are shown in Figure S5 – 

S7 in the supplementary material.

Discussion

The concept of differential aging – the idea that a 50-year-old can “have the heart of a 20-

year-old” or that the lungs of a 30-year-old smoker “work like they’re 80” – is useful 

clinically, and is gaining scientific traction. Similarly, while cognitive decline is a “normal” 

part of aging, some individuals clearly age better than others. In this work we have 

developed a machine learning model that leverages statistical changes across the adult 

lifespan in the pattern of brain activity during sleep. We call the predicted age “brain age”, 

or BA. Model predictions are highly correlated with chronological age (CA) (r = 0.83, MAD 

= 7.6 years) for healthy participants, and at the population level the model accurately tracks 

advancing age. More interestingly, this study presents preliminary evidence that excess BA 

(EEG brain age in excess than chronological age) reflects underlying brain pathology. In 

particular, our findings show that significant neurological or psychiatric disease accelerate 

brain aging, as do hypertension and diabetes. These findings suggest that features of brain 
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activity during sleep, reflected in EEG, can be harnessed using machine learning to provide 

an easily accessible and low-cost biomarker of brain health.

One strength of our study is the use of large datasets: 2,532 sleep EEGs from the MGH 

Sleep Lab, and 1,974 sleep EEGs from the SHHS dataset (Dean et al., 2016; Quan et al., 

1997; Redline et al., 1998). The number of EEGs involved in this study is large among 

relevant “brain age” studies (Cole and Franke, 2017). The large size of the datasets helps to 

ensure the statistical power as well and to minimize selection bias. A large training set helps 

ensure that the trained model does not overfit to a particular dataset, improving the ability to 

generalize when applied beyond the training set. A large testing set allows accurate 

statistical measurement of how accurately the model performs.

Another strength of our study is the use a parametric model, which improves model 

interpretation by inspecting each EEG feature and comparing to the age norm for each 

feature explicitly. In contrast, nonparametric or semi-parametric models such as kernel 

methods and Gaussian process models (Franke et al., 2010) estimate age based on the 

similarity to the training examples, where the contribution of each feature is involved 

implicitly. An example of interpretability is demonstrated in Figure 5.

The deviation of EEG-based BA from CA arises from multiple sources, which can be 

divided into technical and physiological sources. Potential technical sources include (1) first-

night effect, where a participant’s quality of sleep is impaired by the effect of the 

environment and polysomnographic recording; (2) constraints of the current model, which 

assumes brain age is a linear combination (though approximately due to the softplus 

function to ensure positivity) of sleep EEG features averaged separately for each sleep stage 

over the night; and (3) imputation of missing sleep stages based on Figure S1. 

Neurophysiological sources, our central interest, might arise from (1) night-to-night 

variability; (2) underlying diagnosed or undiagnosed neurological or psychiatric diseases. 

For example, sleep pathology enhances amyloidogenesis, implicated in the development of 

Alzheimer’s dementia (Ju et al., 2014). Moreover, normal glymphatic flow, required for 

clearance of amyloid and other metabolic wastes that accumulate during wakefulness, 

requires undisturbed sleep (Benveniste et al., 2017; Hladky and Barrand, 2017); (3) general 

medical health, including diabetes and cerebrovascular disease; (4) genetically-determined 

inter-individual differences in the EEG; and (5) exposure to environmental insults. Further 

studies are needed to clarify the relative contributions of the various types of 

neurophysiological sources, and to measure the association between EEG-based brain age 

and various outcomes, such as cognitive performance (Steffener et al., 2016), intelligence 

(Ujma et al., 2017) and survival (Cole, J. et al., 2017). Additional unobserved sources, such 

as diet, exercise and diseases, might also further explain the variance. An additional 

important question for future investigation is whether interventions can change the brain 

aging process and life span, and whether improvements in brain health can be effectively 

tracked using the sleep EEG.

Our study has important limitations. (1) Although we have demonstrated that the change of 

brain age after 5 years of follow up is close to 5 years at population level, our dataset does 

not allow studying variability in brain age at the individual level. Understanding the factors 
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governing changes in brain age over time and test-retest reliability at the individual level are 

important topics for further research. (2) Although we attempted to exclude participants with 

significant neurological or psychiatric disease (criteria in Table S1 and Table S3), it is 

possible that both the MGH and SHHS datasets still include a variety of health conditions 

that could affect brain health. Obtaining a large, “truly healthy” cohort is an important future 

direction that will require a prospectively controlled study. (3) We only include ages 18 to 

80. The distribution of ages in the dataset is not uniform, where most of the participants are 

at middle age. This could lead to less accurate prediction of brain age for older and younger 

participants. (4) Our model formulation is limited. Advanced algorithms such as 

convolutional neural networks, trained end-to-end from raw EEG data rather than on hand-

engineered physiologically-based features as in our model, might predict age and capture 

biologically important variability more accurately (Biswal et al., 2017; Cole, J.H. et al., 

2017). In addition, whereas we average features within the same sleep stage, representations 

learned by recurrent neural network models might provide a more powerful summary of the 

overnight EEG that utilizes more information (e.g. fragmentation of sleep stages due to high 

AHI) and more accurately reflects brain age. (5) Finally, conclusions from our present 

results are primarily limited to the population level. Although selected cases raise the 

possibility that BAI is meaningful for individuals. Our data provide no way to definitively 

determine the sources of variation at the level of individuals (e.g. biological effects related to 

brain health vs. random night-to-night variation). This is of course a classic issue in the 

clinical/biological prediction literature, where evidence for a correlation at a population level 

does not necessarily translate into a usable algorithm for individual use. Nevertheless, our 

findings form the basis for further studies and refinements. To reach individual level, first, 

further studies with more granular detail about individuals’ medical conditions (e.g. 

medication doses), neurological function (e.g. neuropsychiatric test scores) and brain 

structure (e.g. cortical thickness, total brain volume, white matter integrity, etc.) will be 

required to better understand the biological mechanism of deviations between EEG-based 

brain age and chronological age.

Conclusions

Using a machine learning model, a measure of brain age can be inferred from the pattern of 

brain activity during sleep. Our data suggest that neurological, psychiatric, and medical 

illnesses that adversely affect brain health result in the model predicting an older brain age. 

Using participants with matched chronological age and brain age, we developed an age norm 

to provide a direct interpretation of an individual’s deviation from normal aging in terms of 

EEG features. In summary, the EEG-based brain age serves as a potential biomarker which 

sets the stage for future EEG-based studies of brain health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Brain age based on two large sleep EEG datasets (NMGH=2,532 and NSHHS = 

1,974).

• Brain age tracks chronological age at the population level.

• Chronological age is predicted with mean absolute deviation of 7.6 years in 

healthy participants.

• Significant neurological and psychiatric diseases lead to a 4-year increase in 

brain age.

• Interpretation using age norms derived from matched brain age and 

chorological age.
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Figure 1. 
Scatter plot of predicted BA vs. CA using (A) sleep EEG macro-structure features 

(described in Table S5) and (B) sleep micro-structure features (described in Table S4). The 

red dashed diagonal line is the identity line where BA is equal to CA. Both plots are 

obtained from the same testing participants, including both healthy and with significant 

neurological or psychiatric disease.
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Figure 2. 
Cases in which BA matches (diagonal) or is younger or older than CA (off diagonal). Each 

panel consists of a hypnogram and the corresponding spectrogram. Spectrograms are 

calculated as the average across the 6 EEG channels. The horizontal axis is time in hours. 

The case indicated by * is described in the main text.
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Figure 3. 
(A, B) Chronological age (CA) vs. Brain age (BA) from the 470 testing EEGs in SHHS 

when trained on the other part of SHHS. The red dash line indicates identity. (D, E) CA vs. 

BA from the 1,974 testing EEGs in SHHS when trained on the healthy participants in MGH 

dataset. (C, F) Histogram of BA differences between two SHHS visits, showing tracking of 

CA at the population level. The mean difference in predicted BA was 5.4 years in (C); and 

4.3 years in (F). The dashed red line is the Gaussian fit to the histogram.
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Figure 4. 
(A) Histograms of BAI s for participants with (red) and without (blue) significant 

neurological or psychiatric disease defined in Table S1. The dashed lines show the Gaussian 

fit to these distributions. The difference of group means is 4 years. (B) Histograms of BAIs 

for participants with (red) and without (blue) hypertension and diabetes. The difference of 

group means is 3.5 years.
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Figure 5. 
(A) The hypnogram and EEG spectrogram from frontal (F), central (C) and occipital (O) 

channels. (B) The left two bars show the chronological age and brain age for this participant. 

The right parts show the top five features that contribute most positively to the older brain 

age. The blue bar is the feature value based on the model-based age norm at age 29, with the 

error bar indicating the standard deviation. The red bar is the feature value for this 

participant. The number at the top/bottom indicates the model weight associated with this 

feature.
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Table 1.

MGH Sleep Dataset Summary.

Characteristics Value

Number of EEGs 2,532 (including 167 with significant neurological or psychiatric disease*)

Age (year), median (IQR) 50 (38 – 61)

Gender Female 1,266 (50%), Male 1,266 (50%)

BMI (kg/m2), median (IQR) 29 (25 – 34)

Overall AHI (per hour), median (IQR) 5 (2 – 12)

   Normal (<5) 1,232 (48.7%)

   Mild sleep apnea (5<=AHI<15) 813 (32.1%)

   Moderate sleep apnea (15<=AHI<30) 373 (14.7%)

   Severe sleep apnea (AHI>=30) 114 (4.5%)

IQR: interquartile range; BMI: body mass index; AHI: apnea-hypopnea index (# apnea events per hour of sleep) at 4% oxygen desaturation for 
hypopnea.

*
See Table S1 in the supplementary material.
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Table 2.

Sleep Heart Health Study Dataset Summary.

Characteristics SHHS visit 1 (SHHS1) SHHS visit 2 (SHHS2)

Number of EEGs 987 987
(same participants as SHHS1)

Age (year), median (IQR) 58 (53 – 66) 64 (58 – 71)

Gender Female 609 (62%), Male 378 (38%)

BMI (kg/m2), median (IQR) 27 (25 – 30) 28 (25 – 31)

Overall AHI (per hour), median (IQR) 3 (1 – 7) 5 (2 — 11)
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Table 3.

Brain age using subsets of EEG electrodes in healthy testing participants.

Electrode Mean absolute deviation
(years) Pearson’s correlation

Frontal (F3 and F4) 9.6 0.80 (0.77 – 0.82)

Central (C3 and C4) 12.2 0.78 (0.75 – 0.80)

Occipital (O1 and O2) 10.0 0.76 (0.73 – 0.78)

All electrodes 7.6 0.83 (0.81 – 0.85)
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Table 4.
Covariates that have significant correlation with BAI (BA - CA).

Covariate Spearman's correlation

N3 time −0.11

N3 percentage −0.087

Sleep efficiency −0.082

Total sleep time −0.076

N2 time −0.065

Respiratory Disturbance Index 0.043

N1 percentage 0.058

Wake Time After Sleep Onset 0.081
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