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We theoretically and numerically investigate the instabilities driven by diffusiophoretic
flow, caused by a solutal concentration gradient along a reacting surface. The important
control parameters are the Péclet number Pe, which quantifies the ratio of the solutal
advection rate to the diffusion rate, and the Schmidt number Sc, which is the ratio of
viscosity and diffusivity. First, we study the diffusiophoretic flow on a catalytic plane in
two dimensions. From a linear stability analysis, we obtain that for Pe larger than 8π mass
transport by convection overtakes that by diffusion, and a symmetry-breaking mode arises,
which is consistent with numerical results. For even larger Pe, nonlinear terms become
important. For Pe > 16π, multiple concentration plumes are emitted from the catalytic
plane, which eventually merge into a single larger one. When Pe is even larger (Pe � 603
for Schmidt number Sc = 1), there are continuous emissions and merging events of the
concentration plumes. The newly found flow states have different flow structures for
different Sc: for Sc � 1, we observe the chaotic emission of plumes, but the fluctuations
of concentration are only present in the region near the catalytic plane. In contrast, for
Sc < 1, chaotic flow motion occurs also in the bulk. In the second part of the paper,
we conduct three-dimensional simulations for spherical catalytic particles, and beyond
a critical Péclet number again find continuous plume emission and plume merging, now
leading to a chaotic motion of the phoretic particle. Our results thus help us to understand
the experimentally observed chaotic motion of catalytic particles in the high Pe regime.
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1. Introduction

Self-propulsion at the micrometre scale frequently occurs in nature (Bray 2000; Lauga
& Thomas 2009; Jeanneret et al. 2016; Lauga 2016). For example, microorganisms
self-propel to search for nutrients, different temperatures or sunlight. Inspired by such
motile biological organisms, extensive studies on artificial microswimmers have been
done over the last one and a half decades, especially on self-propelled phoretic particles
(Golestanian, Liverpool & Ajdari 2007; Jiang et al. 2010; Maass et al. 2016; Jin, Krüger
& Maass 2017; Moran & Posner 2017; Bär et al. 2020; Qi et al. 2020). Also, dissolving or
chemically reacting droplets can show such phenomena (Krüger et al. 2016; Li et al. 2019;
Vajdi Hokmabad et al. 2019; Lohse & Zhang 2020). A typical feature of the self-propelled
particles is that, instead of swimming with appendages, they can propel themselves by
converting free energy from the environment into kinetic energy (Ebbens & Howse 2010;
Ramaswamy 2010).

The driving mechanism behind the propulsion of phoretic particles is diffusiophoresis
(Anderson 1989). Note that in some literature the terminology ‘diffusio-osmotic effect’
is used to indicate the same mechanism. The basic feature is that whenever there exists a
tangential concentration gradient on the surface of the particle, there is an induced flow
within the interaction layer adjacent to the surface, as shown in figure 1. Since the layer
is much thinner than the size of the object, the flow is conveniently described with a
slip velocity at the surface (Golestanian et al. 2007). This effect can also be generalized
to other coupled fields such as the temperature or the electric fields. The resulting flows
are, respectively, referred to as thermo-phoretic or electro-phoretic (Long, Stone & Ajdari
1999; Squires & Bazant 2006; Piazza 2008; Moran & Posner 2011).

The classical mathematical framework for the study of self-propelled particles has
often neglected the effect of solute advection (Golestanian et al. 2007). Michelin, Lauga
& Bartolo (2013), however, it has revealed that the Péclet number Pe is an important
parameter controlling the motion of self-propelled particles. Here Pe is the ratio of
the solute advection to the diffusion rates. Through a linear stability analysis and
corresponding simulations, Michelin et al. (2013) found that when Pe is larger than the
critical value Pecr = 4, a spherical active particle by dissolution and chemical reaction
exhibits a motion in a preferred direction which breaks the rotational symmetry of the
system. Later, Michelin & Lauga (2014) performed a comprehensive theoretical study on
how the moving speed of the active particle depends on Pe, and generalized the theory to
any coverage of the reacting surface.

For large enough Pe, some fascinating features can emerge. Hu et al. (2019) have
numerically observed that for large enough Péclet numbers, such an active isotropic
particle acquires chaotic trajectories. Analogously, in the problem of active droplets,
Ruckenstein (1981) also found similar helical or chaotic motions, as caused by the
interfacial Marangoni flow (Herminghaus et al. 2014; Maass et al. 2016; Suga et al. 2018).
Though the phenomena of active droplets and active particles look similar, Krüger et al.
(2016) explained that the helical trajectory of the active droplet is attributed to the coupling
between the internal flow and the direction of the nematic field, whereas such internal
flow is obviously absent in particles. In a further study, Morozov & Michelin (2019a) have
considered both Marangoni and diffusiophoretic effects into their numerical simulation,
and also demonstrate that a chaotic oscillation of the droplet can occur.
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Instabilities driven by diffusiophoretic flow

Chemical reaction

Slip velocity

Diffusiophoresis

(b)(a)

Figure 1. Schematic illustration of the catalytic particles (red) with chemical reaction and diffusiophoresis
near the interface. The product originating from the catalytic reaction at the particle surface is shown in cyan.
Panel (b) shows a close-up of panel (a). If there is a concentration gradient at the interface, a slip velocity is
induced (diffusiophoresis). Beyond a critical reaction rate (expressed as a critical Péclet number), such gradient
emerges through a linear instability.

Very recently, Michelin et al. (2020) investigated a simplified system, namely a uniform
phoretic channel. They reported spontaneous symmetry-breaking of the solute distribution
which provides a route to understanding the propulsion of isotropic active particles.
However, it remains necessary to understand how the Schmidt number (defined as the
ratio of kinematic viscosity to solute diffusivity) influences the diffusiophoretic instability.
Furthermore, the high Péclet number regime is still not fully explored, and we will see that
an interesting chaotic flow arises there.

A flow closely related to the diffusiophoretic flow is Bénard–Marangoni convection,
where a spontaneous flow instability occurs too. In that system, the flow is driven by a
surface tension difference caused by a variation of the temperature at the fluid surface
(Pearson 1958; Davis 1987; Bergeon et al. 1998; Boeck & Vitanov 2002). These two
systems share some similarities in their symmetry-breaking mechanism and with the
chaotic flow motion at high enough Péclet or Marangoni number. However, the two
systems are different problems, with diffusiophoretic flow being driven by the phoretic
velocity at the surface, and Bénard–Marangoni being driven by the difference in surface
tension.

Motivated by the above mentioned recent findings, in this paper we focus on the
instability due to chemical reactions and the resulting diffusiophoretic flow near a catalytic
interface, especially in the large Pe regime. To start with some reduced complexity, we first
consider a simplified model, namely diffusiophoretic flow over a catalytic plane, in order
to study the dynamics near the catalytic surface (see figure 2). This simplified model can
reproduce the important features of the diffusiophoretic flow, and it is also convenient
to avoid the added complexities arising from the curvature of the surface. In the second
part of the paper we go beyond the simplified model and numerically examine the plume
emission and merging phenomena for chaotically moving phoretic particles.

The paper is organized as follows. After a description of the problem set-up and the
control parameters in § 2, the linear stability analysis for the catalytic plane system is
performed in § 3. Then the numerical method and numerical set-up are provided in § 4.1.
The numerical results for the catalytic plane are presented in § 4.2. Then we extend our
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Catalytic plane

Bulk

c = 0, u = 0, v = 0

D∂yc = –α, u = M∂xc, v = 0

H

L

x

y

Figure 2. The set-up of the system with the boundary conditions. A catalytic plane is located at the bottom of
the domain. Periodic boundary conditions are applied in the x-direction.

research to phoretic particles in § 5. Finally, conclusions and a look forward to further
work are given in § 6. The details of the linear stability analysis is given in Appendix A.

2. Problem set-up and control parameters

We start with the two-dimensional system sketched in figure 2. The domain has periodic
boundary conditions on both sides and a catalytic plane at the bottom. The width and
height of the domain are denoted by L and H. The physical variables to describe the
system are the concentration of the product ĉ(x, y, t) and the velocity of the fluid û(x, y, t).
Note that all dimensional physical variables are marked with a hat (e.g. ĉ, û), while the
dimensionless ones without (e.g. c, u). At the catalytic surface, chemical reactions take
place which convert the reactant into the product. By assuming a constant reaction rate,
the concentration boundary condition of the product at the bottom plane is given by

D
∂ ĉ
∂ ŷ

∣∣∣∣
y=0

= −α, (2.1)

where D is the diffusivity of the product in the fluid and α measures the strength of the
reaction activity at the catalytic surface, i.e. the generation of solute by the reaction.

The tangential concentration gradient induces a slip velocity at the surface of the
plane. This is the so-called diffusiophoretic flow, which is parallel to the surface and
its magnitude is proportional to the tangential concentration gradient. The relationship
between the induced slip velocity and the tangential concentration gradient is given by

û|y=0 = M
∂ ĉ
∂ x̂

, (2.2)

where M is the phoretic mobility. The sign of M can either be positive or negative,
depending on the type of the solute-surface interaction (Anderson 1989). Michelin et al.
(2013) prove that the diffusiophoretic system is unstable only if Mα is positive. In this
work, we study the case M > 0 and α > 0.

The time evolution of the concentration field c(x, y, t) and the velocity field
u(x, y, t) = (u(x, y, t), v(x, y, t)) are governed by the Navier–Stokes equations and the
convection–diffusion equation. The characteristic scales for non-dimensionalization are
Mα/D for velocities, L for lengths and αL/D for concentrations. The dimensionless form
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Instabilities driven by diffusiophoretic flow

of the governing equations can then be written as

∂c
∂t

+ u · ∇c = 1
Pe

∇2c, (2.3)

∂u
∂t

+ (u · ∇)u = −∇p + Sc
Pe

∇2u, ∇ · u = 0, (2.4a,b)

where Pe is the Péclet number, characterizing the ratio of the solutal advection rate to the
diffusion rate and Sc the Schmidt number, characterizing the ratio between the momentum
and mass diffusivities,

Pe = MαL
D2 , Sc = ν

D
. (2.5a,b)

Note that for the case of fixed Pe and Sc → ∞, the pressure term in (2.4a) should be
rescaled as p′ = p/(Sc/Pe), since the pressure gradient always exists, even in Stokes flow,
where it then balances the viscous forces.

In dimensionless form, the concentration boundary condition at the catalytic plane
becomes

∂c
∂y

∣∣∣∣
y=0

= −1. (2.6)

The tangential velocity is proportional to the tangential concentration gradient, and its
dimensionless form is

u|y=0 = ∂c
∂x

, (2.7)

while the normal component of the velocity vanishes at the plane surface

v|y=0 = 0. (2.8)

Both the velocity and the concentration boundary conditions at the top wall are zero,

u|y=H = 0, c|y=H = 0. (2.9a,b)

In § 3, we have conducted the linear stability analysis with a semi-infinite domain. We
note that for aspect ratios H/L > 0.8 (discussed in § 4), the growth rate of the instability
becomes insensitive to the aspect ratio. Therefore, we can compare the results on a linear
stability analysis for a semi-infinite domain with the numerical results for a finite domain
with H/L = 1.

3. Linear stability analysis for catalytic plane

In this section, the linear stability analysis is performed to investigate the stability of the
system. In the linear stability analysis we add small amplitude perturbations to the basic
state

u = ū( y, t) + εũ(x, y, t), p = p̄( y, t) + εp̃(x, y, t), c = c̄( y, t) + εc̃(x, y, t),

(3.1a–c)

where ū, p̄ and c̄ are the basic state of the velocity, pressure and concentration fields, and
εũ, εp̃ and εc̃ are small perturbations with the coefficient ε � 1.
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A trivial solution to the basic configuration is a static state with zero velocity and
pressure. Substitute zero velocity into (2.3), the concentration field is (see Appendix A,
see also Wu, Ma & Zhou (2006, p. 144))

c̄( y, t) =
∫ t

0

1√
πPe(t − τ)

exp
[
− Pey2

4(t − τ)

]
dτ. (3.2)

For t → ∞ and any finite y, we obtain the following concentration gradient:

∂ c̄
∂y

= −1 (3.3)

at the catalytic plane.
Substituting (3.1a–c) and (3.3) into the governing equations (2.3) and (2.4a,b), with

base flow ū( y, t) = 0 and p̄( y, t) = 0, and keeping only the O(ε)-terms, we get that the
linearized governing equations are

∂ c̃
∂t

= −ṽ + 1
Pe

∇2c̃, (3.4)

∂ũ
∂t

= −∇p̃ + Sc
Pe

∇2ũ, ∇ · ũ = 0. (3.5a,b)

The boundary conditions become

∂ c̃
∂y

∣∣∣∣
y=0

= 0, ũ|y=0 = ∂ c̃
∂x

∣∣∣∣
y=0

, ṽ|y=0 = 0. (3.6a–c)

We now assume as ansatz a separation of variables and periodic behaviour in the lateral
direction, such that the perturbation can be written as

(ũ(x, y, t), ṽ(x, y, t), p̃(x, y, t), c̃(x, y, t)) = (ǔ( y), v̌( y), p̌( y), č( y)) exp(ikx + st), (3.7)

where k = 2πn and n ∈ N is the wavenumber. This is the standard normal mode analysis
(see, for example Drazin & Reid (2004)). Note that the sign of s determines the flow
stability of the system: s > 0 means exponential growth, or instability (the larger, the more
unstable), whereas s < 0 indicates stability. Combining the above equations, (3.4)–(3.7),
and the boundary conditions, we obtain the following relation which allows us to calculate
how the stability depends on Pe and Sc (detailed derivations are in Appendix A):

Pe = k

√
1 + sPe

k2

(
1 +

√
1 + sPe

k2

)(√
1 + sPe

Sc k2 +
√

1 + sPe
k2

)
. (3.8)

Assuming s = 0 in (3.8), we get the critical Pe for transition from stability to instability
for different wavenumber n,

Pecr = 4k = 8πn. (3.9)

Note that Pecr is independent of Sc.
If we combine (3.8) and its derivative with respect to n, we obtain the following function

of the maximum growth rate at different wavenumber for Sc = 1 (for a detailed derivation
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Pe = 8π

Unstable

Stable

Maximum growth rate

Increasing wavenumber n

0 50 100 150 200 250 300

0.5
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2.5

3.0

3.5

4.0

1.0

0.8

0.6

0.4

0.2

104102
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103

104

10010–2
0

Pe

Pe

Sc

(b)(a) s

s

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6

n = 7
n = 8
n = 9
n = 10
n = 11

Figure 3. (a) Stability diagram for the catalytic plane in the Pe versus Sc parameter space for wavenumber
n = 1. An eigenvalue s > 0 indicates instability. The colour represents the actual value of s, i.e. the strength of
the exponential growth. When Pe > 8π, s is positive and the system is unstable, independently of Sc. (b) Here
s as a function of Pe at various wavenumber for Sc = 1 by linear stability analysis. The wavenumber of the
curve increases from left to right. For wavenumber n, when Pe < 8πn, s is negative and the system is stable.
When Pe > 8πn, s becomes positive and the system becomes unstable towards this mode n. The function of
the maximum growth rate curve (dashed line in panel (b)) is (3.10).

see Appendix A),

s = 85
√

17 − 349
128

Pe ≈ 0.0114Pe, (3.10)

and the corresponding wavenumber is

nmax =
⌊

31 − 7
√

17
32π

Pe

⌉
≈ 
0.0213Pe�, (3.11)

where the symbol 
 � represents the calculation of the nearest integer.
The exponential growth rate s as obtained from (3.8) as function of Pe and Sc for

the case of n = 1 is shown in figure 3(a). Moreover, s as a function of Pe for different
wavenumbers and Sc = 1 is plotted by the solid curves in figure 3(b). The dashed line
shows the maximum growth rate curve, which is (3.10). The way to calculate figure 3 from
(3.8) is explained in Appendix A.

The linearized diffusion–convection equation, (3.4), helps us to understand the physical
mechanism of the diffusiophoretic instability. If there is local concentration variation at the
surface, the diffusion term (1/Pe)∇2c smoothens out the local concentration difference,
which makes the system stable. In contrast, dominance of the advection term −u · ∇c
will increase the concentration difference, such that the system becomes unstable. Thus it
can be seen that the competing mass transport by diffusion and advection determines the
instability, which is quantified by Pe. If Pe is above a critical value, the advection term
results in positive feedback, which amplifies the disturbance and leads to the instability.

4. Simulation of catalytic plane

We now numerically study the diffusio-omostic instability. The objective of the numerical
simulation is to understand the effect of the nonlinear terms and random initial
perturbation which are ignored in the linear stability analysis.
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0.5 1.0 1.5 2.0
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Figure 4. (a) Normalized growth rate of the dominant unstable mode s/s0 for Pe = 50 and 628 with different
aspect ratio H/L, where s0 is the growth rate obtained at H/L = 2. It can be seen that when H/L � 0.8, the
growth rate becomes insensitive to the aspect ratio. (b) Mesh refinement test with growth rate s versus the
number of grid points in one dimension. For the case of Pe = 628, the percentage change of s is less than 1 %
when the grid resolution increases from 401 × 401 to 801 × 801.

4.1. Numerical set-ups
The fluid motion and concentration field are solved using direct numerical simulation of
the Navier–Stokes equations and diffusion–convection equation in Cartesian coordinates.
Equations (2.3)–(2.4a,b) are spatially discretized using the central second-order finite
difference scheme. Along both horizontal and vertical directions, homogenous staggered
grids are used. The equations are integrated by a fractional-step method with the nonlinear
terms computed explicitly by a low-storage third-order Runge–Kutta scheme and the
viscous terms computed implicitly by a Crank–Nicolson scheme (Verzicco & Orlandi
1996; van der Poel et al. 2015). The simulations are then conducted with the concentration
and the velocity boundary conditions written in (2.6)–(2.9a,b). We first examine how
the growth rate responds to the domain size. Figure 4(a) shows that when the aspect
ratio H/L � 0.8, the growth rate of the instability becomes insensitive to the aspect
ratio. Besides, the mesh refinement test is given in figure 4(b), from which we see the
convergence of the growth rate when the number of grid points in one direction has reached
roughly 300. Therefore, we chose H/L = 1 and the mesh 401 × 401 for all our phoretic
channel simulations.

The initial condition is the fluid at rest and a constant concentration gradient along the
y-direction (see (3.3)). Then a small sinusoidal perturbation is added to the concentration
field to trigger the instability,

δc = 10−4 sin(2πnx), (4.1)

where n is the wavenumber of the perturbation.

4.2. Nonlinear saturation
To quantify the long term growth of the instability, we examine how the kinetic energy
Ek = (1/A)

∫
A(v2/2) dS (A is the whole domain and v is the velocity) changes in time. An

example time series of Ek is shown in figure 5, which corresponds to the case of Sc = 1 and
Pe = 125. The result suggests that after the initial perturbation, there is a transient stage
during which the kinetic energy grows exponentially, i.e. Ek ∼ e2st. As a consistency test,
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          of plumes
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e2st Simulation with nonlinear terms

Simulation with linear terms only

0 1Concentration

t = 3 t = 7 t = 10 t = 20(b)(a) (c) (d )

Figure 5. Time evolution of the kinetic energy Ek for the case Pe = 125 and Sc = 1 with random perturbation
from simulations with only linear terms (blue solid curve) and with both linear and nonlinear terms (red solid
curve). The kinetic energy Ek is in a logarithmic scale. For the case with both linear and nonlinear terms, the
growth of Ek levels off near time-instant b, compared with that with only linear terms, because of nonlinear
saturation. The process is divided into two subprocesses: plume generation; plume growth and merging. During
the first subprocess, Ek grows exponentially Ek ∼ e2st. The points at the curve represents four states in the
process, of which the concentration fields are shown in time-instants a–d, respectively. Plume generating (time
instant a): triggered by a perturbation, the kinetic energy increases exponentially. Plume growing and merging
(time instants b–d): as Ek reaches around 0.02, the kinetic energy reaches a plateau; at the same time the
plumes emerge in the concentration field. The plumes grow and merge with each other. In the end, only one
major plume remains in the field (time instant d).

our simulation confirms that the involvement of nonlinear terms in the simulation does
not change the initial growth rate s. However, later the growth of Ek begins to level off
after some time because of nonlinear saturation. Such nonlinear saturation is common in
most linearly unstable nonlinear systems, such as Rayleigh–Bénard convection (Greenside
& Coughran 1984), Taylor–Couette flow for inner cylinder rotation (Grossmann, Lohse &
Sun 2016) or Rayleigh–Taylor instability (Haan 1989). The concentration fields at different
times show that during the saturated stage, the emitted plumes merge into a larger one, and
eventually the flow structure develops into the state with a single large plume.

Next, we compare the exponential growth rate s of the instability for various
wavenumber cases (n = 1, 2, 3) during the initial stage with exponential growth as shown
in figure 6. For the benchmark cases with only the linear terms, the data points (circles)
agree excellently with the linear stability analysis (solid curves). This result can be
regarded as further validation for our numerical code.

We further examine the situation with random initial perturbation solved with the full
equations, including nonlinear terms. The above theoretical analysis has shown that for
higher Pe, the larger wavenumber mode can be triggered. The concentration fields in
figure 7(a) provide more insight into the triggering of higher-order modes for larger Pe.
Different time instants of the concentration fields for different Pe are shown in the figure.
For Pe = 50, there is a single concentration plume generating initially. However, for larger
Pe = 125, multiple plumes are initially emitted. They undergo a merging process to form
a single large plume. After formation of the single large plume, Ek reaches the asymptotic
value shown in the time series in figure 7(b). Interestingly, for even larger Pe = 628, Ek has
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Figure 6. Theoretical (solid lines) and numerical results (circles) of growth rate s for different wavenumber
n = 1, 2, 3 and Sc = 1. The simulations are performed with only linear terms.

spiky signals within a statistically steady state as shown in figure 7(c). The corresponding
concentration fields in figure 7(a) reveal that small plumes are continuously generated from
the reacting wall, and the merging of the plumes occurs simultaneously. Such continuous
plume emission and merging can also clearly be seen in the supplementary movie available
at https://doi.org/10.1017/jfm.2021.370.

Finally, we classify the four regimes based on the three criteria:

(i) growth rate of the instability;
(ii) number of plumes generated initially;

(iii) fluctuation of the kinetic energy (Ek) after reaching the statistically steady state.

To quantify the number of generated plumes in the initial stage, we perform a Fourier
transformation of the concentration field along the reacting wall (y = 0) at the instant
when the plumes emerge (time-instant b in figure 5). The wavenumber, i.e. the initial
number of plumes (circles), is compared with the dominant wavenumber as obtained from
linear stability analysis (red dashed line) in figure 8(b). Both are in good agreement. The
dominant wavenumber is that of the maximum growth rate s at a certain Pe. Regarding
the fluctuation of Ek, we evaluate the standard deviation of Ek after reaching the statistical
steady state in figure 8(c).

The four regimes are as follows.

(i) Regime I (Pe � 8π): the system is stable.
(ii) Regime II (8π < Pe � 16π): the system becomes unstable. Single plumes generate

as can be seen in figure 8(b), and thus the dominant wavenumber is 1.
(iii) Regime III (16π < Pe � 603): the initial wavenumber n becomes larger than one,

and it increases with Pe. The trigger of the higher-order mode can be explained by
the linear stability curve in figure 6. As Pe > 16π, the perturbation of wavenumber
n > 1 becomes unstable. For high enough Pe, a higher wavenumber mode can grow
even faster than the single wavenumber mode. After a while, the individual plumes
merge into a single large one, and the system reaches an asymptotic state with
constant Ek (σ = 0 shown in figure 8(c)).
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Figure 7. (a) The concentration contours for different Pe numbers: Pe = 50, Pe = 125 and Pe = 628. The
simulations are based on random initial perturbation and performed with the full equations, including the
nonlinear terms. Four snapshots in time are plotted for each Pe. First column, beginning state; second and third
column, intermediate states; final column, final (statistical) stable state. (b,c) Time evolution of the total kinetic
energy of the velocity field for Pe = 125 (b) and 628 (c). For the case of Pe = 125, the kinetic energy in the
final stage converges, while for Pe = 628 it shows spiky and intermittent signals.

(iv) Regime IV (Pe � 603): the plume emission and merging happen continuously even
after reaching statistically steady state, and therefore Ek fluctuates with time (σ > 0).

Figure 8(a,b) indicate that the exponential growth rate and the number of plumes
generated initially can be approximately predicted by linear stability analysis. However, at
high Pe, there is a small deviation between the theory and our simulation. An explanation
is that at high Pe, various wavenumbers are excited simultaneously, such that the average
growth rate becomes lower than the maximum growth rate predicted by linear stability
analysis (3.10).

4.3. Dependence on Schmidt number
Based on the same classification criteria, we work out the full phase diagram in the (Pe,
Sc) parameter space, for 0.1 � Sc � 10. Figure 9 shows the four different regimes, namely
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Figure 8. The simulation result for the catalytic plane with nonlinear terms and random initial perturbation for
Sc = 1 and different Pe. (a) Theoretical (dashed curve, which is (3.10)) and numerical result (circle) of s as a
function of Pe, which indicates that the system becomes unstable when Pe > 8π. (b) Theoretical (dashed line,
(3.11) without rounding operation) dominant wavenumber and numerical wavenumber n calculated by Fourier
transform (circle) as a function of Pe. The result indicates that when Pe > 16π, multiple plumes are generated.
(c) Standard deviation σ of the kinetic energy for different Pe, which indicates that when Pe � 603, the kinetic
energy eventually fluctuates because small plumes are continuously generated. Thus four regimes are classified,
marked with different colours: stable (I, blue); a single wave (II, green); multiple waves which merge with each
other (III, orange); multiple waves with small plumes continuously being regenerated (IV, pink).

the stable regime (I), the single plume regime (II), the multiple plume regime with a steady
final state (III) and the regime with an unstable final state (IV). The transition points
between the stable and the unstable regime (Pe = 8π), and between the single plume
and the multiple plume regime (Pe = 16π), are insensitive to Sc. This can be understood
from the linear stability analysis where the onset s for the nth wavenumber is Pe = 8πn,
independent of Sc. However, the onset of regime IV occurs at smaller Pe, provided Sc < 1.
When Sc � 1, the onset Pe of regime IV becomes independent of Sc.

To further understand why the onset of regime IV behaves differently for Sc < 1 and
Sc � 1, we have a close inspection of the event of the plume emission and merging for
Sc = 0.1 and Sc = 1 shown in figure 10. First, for both cases when Pe is large enough,
chaotic plume emissions are observed near the catalytic surface. However, the dynamics
of the concentration plume are different for large and small Sc: for Sc = 1 as shown in
figure 10(a), the emitted small plumes gradually merge into the domain-sized plume, and
this large plume is relatively stable. Thus, the velocity and concentration fluctuations are
limited to near the vicinity of the catalytic surface without penetrating into the bulk region.
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Figure 9. The phase diagram for the case of the catalytic plane with different Sc and Pe: for Pe < 8π, the
system is stable; for 8π < Pe < 16π, the system becomes unstable and a single plume is generated; finally, for
Pe > 16π, multiple plumes are generated. For the last regime, there are two subregimes: for low Pe (orange
triangle), multiple plumes eventually merge to a single one and for higher Pe (red circle), there is a newly found
regime where the smaller plumes are continuously regenerated. The underlay colours are to guide the eyes.
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Figure 10. The concentration contours of plume emission and merging for (a) Sc = 1 and (b) Sc = 0.1 with
Pe = 754. For Sc = 1, the small plumes merge into the stable major plume, and fluctuations are limited in the
near-boundary region, while for Sc = 0.1, the plume merging causes strong fluctuations in the bulk.

In contrast, for Sc = 0.1 as shown in figure 10(b), separate plumes merge and eventually
become energetic enough to penetrate into the bulk, causing strong fluctuations in the bulk
region.

To quantify this effect, we compute the fluctuation strength, once the system has reached
the statistically steady state. It is characterized by the standard deviation of the horizontally
averaged horizontal velocity ustd( y):

ustd( y) = 〈
√

〈(u(x, y, t) − 〈u(x, y, t)〉t)2〉t〉x, (4.2)
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Figure 11. The standard deviation ustd( y) as function of the wall distance y for different Schmidt numbers
with Péclet number Pe = 754. Averaging was done of time and over the x-direction. All cases belong to
regime IV.

where u(x, y, t) is the instantaneous horizontal velocity and 〈〉 represents the average over
time or x-direction, which is denoted by the subscript. The result is plotted in figure 11.
From the figure, we find that the fluctuation is maximum at the bottom wall y = 0 since
the diffusiophoretic flow at the wall drives the fluid flow. Moreover, for Sc < 1, the strong
velocity fluctuations are not limited to the near-wall region, but also penetrate into the
bulk. In contrast, for Sc � 1, there are only large fluctuations in the near-wall region and
ustd( y) is monotonically decaying with wall distance y.

We now understand that the chaotic fluctuations observed in regime IV originate from
different physical mechanisms for small and large Sc. For small Sc, as the fluctuations are
mainly contributed from the bulk, one expects that the bulk viscous dissipation plays a
role, and thus lower onset Pe should be obtained for smaller Sc. However, it does not hold
for the situation of large Sc since the fluctuations are mainly contributed by the chaotic
plume emission close to the catalytic surface. To work out the details of the chaotic plume
emission, nonlinear stability is worthy to be conducted in the future.

As already mentioned in the introduction, our results share some similarities with those
of the Bénard–Marangoni instability. For both cases, if the Péclet or Marangoni number is
above a critical value, the system becomes unstable. Bergeon et al. (1998) comprehensively
studied the Marangoni convection and found that as the Marangoni number increases,
the plume will develop into single-roll or multiple-roll structures, which is similar to the
single wavenumber or higher-order wavenumber modes observed in regime II and III,
respectively.

As a final remark, Michelin et al. (2020) have shown the diffusiophoretic instability
in a confined phoretic channel, from which they also observe the generation of the
plumes. Note that Michelin et al. (2020) have also considered the nonlinear terms in the
advection–diffusion equation, however, for the momentum equation, they consider the case
of Stokes flow, such that the nonlinear terms and effects of Schmidt number have not been
considered. The chaotic plume emission observed in regime IV is the unique feature for
high Péclet numbers, which, however, has not been focused on in most of the previous
studies. Moreover, with an analytical calculation, we obtain the dominant wavenumber
and its growth rate for different Sc and Pe, which agrees with our simulation.
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5. Simulation of the phoretic particle

Given the analysis of the catalytic plane, we now conduct three-dimensional simulations
of a spherical phoretic particle to study the effect of plume emission and merging on the
particle motion.

5.1. Numerical set-up
The set-up is as follows: a phoretic particle is positioned at the centre of the domain, and
then due to diffusiophoresis, the particle will self-propel. The governing equations consist
of two parts. The first is the same as that in § 4.1, which is to solve the three-dimensional
version of equations (2.3) and (2.4a,b), except for the characteristic length which now
is the radius of the particle. The second part involves the governing equation for the
dynamics of the phoretic particle. However, one faces the challenge of dealing with a
moving immersed boundary condition. To deal with it, we make use of a moving least
squares (MLS) based immersed boundary (IB) method, where the particle interface is
represented by a triangulated Lagrangian mesh. For details of our MLS-based IB method,
we refer to Spandan et al. (2017). The concentration boundary condition is that the wall
normal concentration gradient is a constant ∂c/∂n = −1, which can be achieved by forcing
the concentration at the particle surface based on the concentration interpolated at the
probe located at a short distance (1 grid size) from the surface of the particle. The velocity
boundary condition is

us = ∇sc, (5.1)

where us is the surface gradient (∇s) of the concentration.
The domain size is Lx × Ly × Lz = 20R × 20R × 40R, in terms of the particle radius

R. We use uniform grids Nx × Ny × Nz = 201 × 201 × 401. Mesh refinement tests are
done at Pe = 15, 16 and 20 with doubled grid numbers in each dimension. Figure 12(a)
indicates that the result for the grid 401 × 401 × 801 is nearly indistinguishable from that
for 201 × 201 × 401.

For the spherical particle, the radius R is used as the length scale in Péclet number

Pe = MαR
D2 . (5.2)

We will present the result of phoretic particles for different Pe from 3 to 20 with Sc = 1.

5.2. Result of the phoretic particle
Similar to the case of the catalytic plane, the diffusiophoretic instability breaks the
rotational symmetry of the phoretic particle. It has been shown by Michelin et al. (2013)
that the phoretic particle breaks the symmetry when Pe is larger than 4. Therefore, as a
validation, we first simulate cases with small Pe and compare with the results obtained
from Michelin et al. (2013). In figure 12(a), we plot the numerical terminal velocity U∞.
For Pe > 4, indeed symmetry breaking occurs (e.g. figure 13(a) for Pe = 10) and the
particle moves along a straight trajectory. The terminal velocities agree with those obtained
from Michelin et al. (2013). Furthermore, in figure 12(b) we check whether the terminal
velocity is sensitive to the Schmidt number Sc. Interestingly, the figure suggests that
when Sc � 1 for Pe = 8 and 12, the terminal velocity converges to a constant. However,
to understand why terminal velocity levels off, further study is needed in the future.
Regarding the grid resolution requirement, the necessary grid resolution will increase
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Figure 12. (a) The terminal velocity U∞ of phoretic particles as function of Pe for Sc = 1. The result from
the axisymmetric simulation by Michelin et al. (2013) is shown as blue solid curve. Our results for the
full three-dimensional case of different grid size are indicated by red circles (grid 201 × 201 × 401) and
green squares (grid 401 × 401 × 801). The points for Pe > 15 indicate the average terminal velocity and the
range of fluctuations is shown by the solid bars. The motion of the phoretic particle is divided into three
different regimes: stable; symmetry breaking; and chaotic motion due to plume generation. (b) The normalized
terminal velocity of different Sc for the case Pe = 8 and 12. The velocity is normalized by the terminal
velocity at Sc = 40. The result shows that when Sc > 1, the terminal velocity converges to a constant. (c) The
temporal autocorrelation function of the unit direction vector for three different Pe for Sc = 1. The temporal
autocorrelation indicates whether the particle performs chaotic motion or not.

dramatically for very large Sc. In order to run as many cases as possible to fully explore
the phase diagram, we stick to Sc = 1 for the rest of our simulations.

After this validation we now extend the calculations to higher Pe. Multiple plumes
emission and merging occur at the surface of the phoretic particle (e.g. figure 13(b) for
Pe = 60), which is similar to that observed for the catalytic plane. The continuously
emitted plumes change the direction of the phoretic particle and lead to chaotic motion.

To characterize the motion of the particle, we calculate the mean temporal
autocorrelation of the particle direction,

〈eu(t) · eu(t + 	t)〉 = 1
T

∫ T

0
eu(t) · eu(t + 	t) dt, (5.3)

where eu(t) = u(t)/|u(t)| is the unit direction vector of the particle velocity at t.
The integral upper limit T is chosen large enough to achieve statistical stationary.
The autocorrelation for different Pe is shown in figure 12(c). When Pe = 20, the
autocorrelation becomes considerably less than 1 with increasing 	t, which means that
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Figure 13. The concentration cross-section from three-dimensional simulations of an isotropic catalytic
particle for Pe = 10 and 60; again, Sc = 1. The simulation is at a domain Lx × Ly × Lz = 20R × 20R × 40R, in
terms of the particle radius R. The grids are 201 × 201 × 401. To better demonstrate the chaotic trajectory, the
motion of the particle in panel (b) is projected to x–z plane. (a) Here Pe = 10, the particle moves in a straight
way; (b) Pe = 60, plumes are generated at the surface of the particle, which starts to move irregularly.

the particle starts to meander in different directions. The chaotic behaviour of the particle
has also been shown by the fluctuation of velocity in figure 12(a), which is represented by
the solid bars. Interestingly, for Pe � 15, the average velocity (the red circle) still lies near
the result by Michelin et al. (2013), but for larger Pe, the velocity shows larger fluctuation,
i.e. more chaotic behavior.

Thus we can classify the motion for a phoretic particle into three regimes:

(i) Pe < 4, the particle remains stable;
(ii) 4 < Pe � 15, symmetry breaking occurs and the particle moves straight;

(iii) Pe � 15, the particle moves chaotically.

Figure 13(b) shows that the plumes are continuously generated and merge, which alters
the concentration distribution and steers the moving direction of the phoretic particle. This
shows that our newly found regime IV in figure 9 leads to the chaotic motion for the case
of phoretic particles.

5.3. Comparison between the phoretic particle and catalytic plane
We now compare the various regimes for the catalytic plane (§ 4) with those for the
phoretic particle (§ 5). The similarity between the two set-ups is that both the instability
and chaotic flow can be observed for both set-ups. A major difference between them
is that the regimes for the catalytic plane are classified by the distinct plume dynamics
whereas the regimes for the phoretic particle are classified by the distinct particle motions.
However, both regimes II and III for the catalytic plane lead to a steady final state
with a single plume, which for the case of the phoretic particle implies straight motion.
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For classification of the particle motion, the same fate of particle motion leads one to
define only one regime despite the distinct plume dynamics during the initial transient
stage.

Another difference between the catalytic plane and phoretic particle is that the onset
Péclet numbers are different. However, this difference simply reflects that the characteristic
length scales in the definition of Pe are different for both systems.

We note that also Hu et al. (2019) numerically observed the chaotic motion of phoretic
particles. However, the plume generation and merging, which could provide a route to
understand the chaotic motion of the particle at high enough Pe, were not studied in that
paper. Besides, in the experiments of active droplets, it is also observed that the droplet can
move in a helical or even chaotic trajectory at high Pe (Suga et al. 2018; Maass et al. 2016).
Morozov & Michelin (2019b) also observed the helical and chaotic motion of the catalytic
particle. Recently, the stochastic dynamics of active particles was analysed (Gaspard &
Kapral 2018; Chamolly & Lauga 2019). Based on the stochastic approach using Langevin
equations, the active particle motion is split into a diffusive part and a ballistic part. In
our work here, it is the deterministic plume emission that is the source of the diffusive
motion, and a one-to-one comparison is difficult due to the quite different natures of the
approaches. Very recently, Vajdi Hokmabad et al. (2021) observed plume generation and
merging at the surface of a meandering chemically active droplet. This recent finding
reflects the importance of the plume dynamics in determining the droplet motion. Here,
for the diffusiophoretic particle, we have also revealed such plume generation and merging
phenomena and have related it to the instability of the flow near the surface.

6. Concluding remarks

In summary, we have studied the instability driven by diffusiophoretic effects at the
interfaces for two different systems: a catalytic plane and a spherical phoretic particle.
The Péclet number (Pe) and Schmidt number (Sc) are the parameters that determine the
states of the system.

For a catalytic plane, via linear stability analysis, we quantitatively studied the growth
of various wavenumber perturbations. With the assistance of the simulation, we have
classified four regimes for different Pe and Sc based on the exponential growth rate of
the instability, number of plumes generated initially and fluctuation of the kinetic energy
after reaching the statistically steady state (Ek). For Pe � 8π, the system is stable. For
8π < Pe � 16π, the system becomes unstable, a single plume is generated and the system
reaches a steady state eventually. For Pe > 16π, multiple plumes are generated initially,
which merge into a single one to attain a stable state eventually due to nonlinear saturation.
However, for even higher Pe (Pe � 603 for Sc = 1), small plumes are continuously
generated and merge with each other, the system remains unstable and therefore Ek
fluctuates in time.

Based on the linear stability analysis, we understand that the onset Pe between regime
I and II, and regime II and III are independent of Sc. However, there is noticeable effect
of Sc on the transition to regime IV, which is associated with different flow structures for
different Sc. For small Sc, the strong fluctuations of concentration and kinetic energy also
occur in the bulk region, whereas for large Sc, the fluctuations are only contributed by the
chaotic plume emission close to the catalytic plane. As the viscous dissipation in the bulk
plays a role for small Sc cases, lower onset Péclet numbers of regime IV are obtained for
lower Sc. However, it does not hold for large Sc.

Then we extended our research to three-dimensional simulations of the spherical
phoretic particle. Despite the geometric difference, an analogous phenomenon happens
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at the surface of the particle which triggers different particle motions. Similar to the case
of the catalytic plane, for the case at Sc = 1, when Pe > 4, the particle starts to break the
symmetry. For higher Pe � 15, also similar to the observation of the catalytic plane, the
small plumes start to be generated continuously at the surface of the particle, which will
steer the particle and lead to meandering motion. The analogous phenomenon indicates
that the chaotic motion of the phoretic particle results from the instability at the interface
driven by diffusiophoretic effects.

The present work makes a contribution to the understanding of the diffusiophoretic
instability. First, the study reveals the existence of a highly unstable regime at high Pe.
We not only study the onset Pe of the unstable mode, but also analytically work out the
dominant wavenumber as a function of Pe. For high enough Pe (regime III), multiple
plumes are emitted into the surrounding fluid. For even higher Pe (regime IV), smaller
wavelength perturbations are dominant, which leads to continuous plume generation and
subsequently to chaotic flow. Second, our results show that the diffusiophoretic instability
at the catalytic surface can eventually lead to chaotic motion of the phoretic particle.
Through simulations of the phoretic particle at high Pe, we not only see its chaotic motion,
but also observe the plume emission and merging events near the surface of the particle,
which is similar to the situation of regime IV for the case of the catalytic plane. The study
of the phoretic plane thus provides a framework to understand the motion of the phoretic
particle.

Many questions remain open. For example, how does the particle motion and flow field
change for phoretic particles in a complicated environment, such as phoretic particle near
a wall? How does the plume generation and merging change the collective behaviour of
phoretic particles? How about the effect of plume generation on rod particles rather than
spheres? Building on the insight obtained here into the mechanism behind the chaotic
motion of phoretic particles, it is worthwhile to further explore the effects of the plume
generation on the motion of particles in the more complicated set-ups as mentioned above,
in particular, on collective effects.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.370.
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Appendix A. Linear stability analysis for catalytic plane

In this appendix, the linear stability analysis is performed to investigate the stability of the
system (2.3)–(2.9a,b).

A.1. Base flow
The base flow can be obtained by assuming a static flow,

ū = 0. (A1)

Substituting (A1) into (2.4a,b) we obtain the pressure solution,

p̄ = 0. (A2)

Substituting (A1) into (2.3), we obtain

∂ c̄
∂t

= 1
Pe

∂2c̄
∂y2 ,

∂ c̄
∂y

∣∣∣∣
y=0

= −1, c̄|t=0 = 0. (A3a–c)

Denote the Laplace transform as (Liu 2017)

C̄ = L(c̄) =
∫ ∞

0
c̄ e−αt dt, c̄ = L−1(C̄) = 1

2πi

∫ i∞

−i∞
C̄ eαt dt. (A4a,b)

Note that

L
(

∂ c̄
∂t

)
= αC̄, L (1) = 1

α
. (A5a,b)

Then (A3a–c) can be transformed to

d2C̄

dy2 − PeαC̄ = 0,
dC̄
dy

∣∣∣∣
y=0

= − 1
α

. (A6a,b)

The solution of (A6a,b) that vanishes at infinity is

c̄ = 1
α

· 1√
Peα

e−y
√

Peα. (A7)

Recall that (Gradshteyn & Ryzhik 2007, p. 1110)

L−1
(

1
α

)
= 1, L−1

(
1√
Peα

e−y
√

Peα
)

= 1√
πPet

e−Pey2/4t, (A8a,b)

and use the convolution theorem. Then the concentration solution in physical space can be
obtained as (Wu et al. 2006, p. 144)

c̄ =
∫ t

0

1√
πPe(t − τ)

exp
[
− Pey2

4(t − τ)

]
dτ. (A9)

The corresponding derivative is

∂ c̄
∂y

= −
∫ ∞

ξ0

2√
π

e−ξ2
dξ, with ξ2 = Pey2

4(t − τ)
, ξ2

0 = Pey2

4t
. (A10)

Considering the limit t → ∞, i.e. ξ0 → 0, we obtain

∂ c̄
∂y

= −1. (A11)
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A.2. Perturbation flow
Substituting the base flow (A1), (A2) and (A11) into the governing equations (2.3) and
(2.4a,b) and keeping only the O(ε)-terms, we get the linearized governing equations (3.4)
and (3.5a,b). The boundary conditions are equations (3.6a–c).

The perturbation is assumed as (3.7). Substituting the perturbation term (3.7) into the
governing equations (3.4) and (3.5a,b), and rearranging the resultant equations, we obtain

(
∂2

y − k2
)

p̌ = 0, (A12)(
∂2

y − k2 − sPe
Sc

)
v̌ = ∂yp̌, (A13)

(
∂2

y − k2 − sPe
)

č = −Pev̌. (A14)

The boundary conditions are

dč
dy

∣∣∣∣
y=0

= 0,
dv̌

dy

∣∣∣∣
y=0

= k2č, v̌
∣∣
y=0 = 0. (A15a–c)

The pressure solution that decays at infinity is

p̌ = e−ky, k = 2πn, n ∈ N. (A16)

Substituting (A16) into (A13), and using the third equation in (A15a–c), the vertical
velocity is found to be

v̌ = k
s

(
e−ky − exp

(
−ky

√
1 + sPe

Sck2

))
. (A17)

Similarly, by substituting (A17) into (A14), and using the first equation in (A15a–c), the
concentration is

č = k
s2

⎛
⎜⎜⎜⎜⎝e−ky −

exp

(
−ky

√
1 + sPe

k2

)
√

1 + sPe
k2

⎞
⎟⎟⎟⎟⎠

− k
s2

√
1 + sPe

Sck2
Sc

Sc − 1

⎛
⎜⎜⎜⎜⎝

exp

(
−ky

√
1 + sPe

Sck2

)
√

1 + sPe
Sck2

−
exp

(
−ky

√
1 + sPe

k2

)
√

1 + sPe
k2

⎞
⎟⎟⎟⎟⎠ .

(A18)

It seems that (A18) could be invalid for Sc = 1 since the denominator Sc − 1 therein
is zero. However, this is not the case since the term in the brackets of the second
line also reduces to zero. By performing a Taylor series expansion of (A18) at Sc = 1
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(l’Hospital’s rule), one can easily prove that

č = k
s2

⎛
⎜⎜⎜⎜⎝e−ky −

exp

(
−ky

√
1+ sPe

k2

)
√

1+ sPe
k2

⎞
⎟⎟⎟⎟⎠−

Pe

(
1+ky

√
1+ sPe

k2

)

2sk
(

1 + sPe
k2

) exp

(
−ky

√
1 + sPe

k2

)
.

(A19)

Finally, substitute (A17) and (A18) into the second equation in (A15a–c), we can obtain
the equation (3.8) that determines the exponential growth rate s = s(k; Pe, Sc).

We now explain briefly how to use (3.8) to get the theoretical results in figure 3. Define

δ2 − 1 = sPe
k2 . (A20)

Then

Pe = Pe(δ; k, Sc) = kδ (δ + 1)

⎛
⎝δ +

√
1 + δ2 − 1

Sc

⎞
⎠ , (A21)

s = s(δ; k, Sc) = k(δ2 − 1)

δ (δ + 1)

⎛
⎝δ +

√
1 + δ2 − 1

Sc

⎞
⎠

. (A22)

Thus, for given k and Sc, we obtain the curve s versus Pe in figure 3(b) by varying δ.
Similarly, for given k, we obtain the contour s in the (Pe, Sc) plane in figure 3(a) by varying
δ and Sc.

A.3. Determination of the dominant wavenumber
The maximum growth rate, as well as the dominant wavenumber, can also be determined
from (3.8) or equivalently (A21) and (A22). To show this, we rewrite (A21) and (A22) as

κ = κ(δ; Pe, Sc) = 1

δ (δ + 1)

⎛
⎝δ +

√
1 + δ2 − 1

Sc

⎞
⎠

, (A23)

σ = σ(δ; Pe, Sc) = δ2 − 1⎡
⎣δ (δ + 1)

⎛
⎝δ +

√
1 + δ2 − 1

Sc

⎞
⎠
⎤
⎦

2 , (A24)

where

κ = k
Pe

, σ = s
Pe

. (A25a,b)

For certain Pe and Sc, the maximum growth rate is obtained by ∂ks = 0, which is
equivalent to

dσ

dκ
= dσ

dδ

(
dκ

dδ

)−1

= 0, implying
dσ

dδ
= 0. (A26)
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By solving (A26) and denoting the solution as δe, the maximum growth rate and the
corresponding dominant wavenumber are always given by

qs = σePe, k = κePe, (A27a,b)

where σe = σ(δe) and κe = κ(δe) can be obtained by substituting δe into (A24) and (A23),
respectively. Note that in general equation (A26) needs to be solved numerically. However,
for some specific Sc, it can also be solved analytically. Two examples are as follows.

Example A.1. When Sc = 1, (A23), (A24) and (A26) reduce to

κ = 1
2δ2 (δ + 1)

, σ = δ − 1
4δ4 (δ + 1)

,
dσ

dδ
= 2 + δ − 2δ2

2δ5(δ + 1)2 = 0. (A28a–c)

The corresponding solution is

δe = 1 + √
17

4
, κe = 31 − 7

√
17

16
, σe = 85

√
17 − 349
128

. (A29a–c)

Example A.2. When Sc = ∞, (A23), (A24) and (A26) reduce to

κ = 1

δ (δ + 1)2 , σ = δ − 1

δ2 (δ + 1)3 ,
dσ

dδ
= 2 + 4δ − 4δ2

δ3(δ + 1)4 = 0. (A30a–c)

The corresponding solution is

δe = 1 + √
3

2
, κe = 2

√
3 − 10

3
, σe = 4

9

(
26

√
3 − 45

)
. (A31a–c)
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