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Abstract
In this contribution, a concept is presented that combines different simulation paradigms during the engineering phase. These
methods are transferred into the operation phase by the use of data-based surrogates. As an virtual production scenario,
the process combination of thermoforming continuous fiber-reinforced thermoplastic sheets and injection overmolding of
thermoplastic polymers is investigated. Since this process is very sensitive regarding the temperature, the volatile transfer
time is considered in a dynamic process chain control. Based on numerical analyses of the injection molding process, a
surrogate model is developed. It enables a fast prediction of the product quality based on the temperature history. The
physical model is transferred to an agent-based process chain simulation identifying lead time, bottle necks and quality rates
taking into account the whole process chain. In the second step of surrogate modeling, a feasible soft sensor model is derived
for quality control over the process chain during the operation stage. For this specific uses case, the production rejection can
be reduced by 12% compared to conventional static approaches.

Keywords Production engineering · Machine learning · Digital twin · Surrogate modeling · Process chain simulation ·
Cyber physical production systems · Overmolded thermoplastic composites

1 Introduction

In today’s product development, it is a matter of course
to support the product and production engineering by vir-
tual methods. Model-based computer simulations are able
to analyze the material behavior of products and processes
using numerical methods based on finite elements or finite
difference schemes. The utilization of virtual and digital
methods reduces experimental testing and prototyping dur-
ing the product development. Furthermore, sophisticated
simulation models allow a deeper understanding of pro-
cesses and structural behavior and in particular, their inter-
action. If additionally total life cycle impacts need to be
assessed, integrated computational methods are the only
available and adequate tool to analyze different production,

� André Hürkamp
a.huerkamp@tu-braunschweig.de

1 Technische Universität Braunschweig, Institute of Machine
Tools and Production Technology, Braunschweig, Germany

2 Faculty of Engineering Technology, Department of Design,
Production & Management, Chair of Manufacturing Systems,
University of Twente, Enschede, Netherlands

use and environmental scenarios with respect to the underly-
ing complexity [1]. The more reliable the used methods and
input data are, the more meaningful the scenario assessment
will be.

In contrary to the model-based approaches used for
engineering purposes, mainly data-based machine learning
(ML) algorithms have proven their suitability for industrial
operation purposes. By continuously collecting and pro-
cessing sensor, machine and process data parallel to the
manufacturing, these methods provide an objective, data-
driven process optimization and failure detection [2–4]. In
this context, digital twins are even able to implement a data-
based control of the production [5, 6]. Several approaches
for (virtual) quality gates in manufacturing systems based
on process and machine data can be found for single pro-
cesses, but very sparse approaches for process chains [7].
If process chains are considered, the data-driven models
widely draw on product data such as intermediate and final
product properties. In [8], a digital twin of a composite
part is designed by means of sensor data and an analyt-
ical model. Only for likely critical parts additional finite
element analyses were carried out to improve the digital
twin. For injection molding, usually in-mold sensors and
machine data are used for an adequate quality prediction
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[9, 10]. There exist also recent approaches that do not
require additional sensors by using simulation data from
flow simulations in combination with neural networks to
predict the quality of injection-molded components [11, 12].
However, these approaches concentrate mainly on the single
process and not on a complete process chain.

Therefore, the objective of this paper is to demonstrate a
general concept of how engineering tools and data (i.e., the
knowledge of the system behavior and physical relations)
can be transferred from the planning and engineering phase
into the operation phase to serve as virtual quality gates
or an adaptive process chain control. The proposed model
transfer and the interaction of the simulation models is
shown in Fig. 1.

The starting point of the proposed scheme is given by
a high fidelity simulation using the finite element method
(FEM). FEM is commonly used for a model-based engineer-
ing of production processes. Due to the underlying physical
modeling of material properties and process kinematics,
it is able to compute valid part properties. In this con-
text, the Integrated Computational Materials Engineering
combines methods from computational materials science
and multi-scale mechanics considering the microstructure
of materials and the corresponding effects of process-
ing [13, 14]. Especially, in the field of composite manu-
facturing, virtual process chains are important to predict
structural properties [15]. Furthermore, detailed simulations
allow the prediction of internal temperature distributions
that can hardly be measured to ensure the required tem-
perature conditions during manufacturing [16, 17]. Since
these simulations are usually time consuming and expen-
sive to evaluate [18], a real-time suitable surrogate model
is needed for virtual quality control to stay computational
feasible.

According to [19], surrogate modeling is a technique
that uses the sampled data to build surrogate models that
are able to predict the output of an expensive computer
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Fig. 1 Interaction between simulation models and their functionality
in planning and operation

code at untried points in the parameter space. Within man-
ufacturing, the data for surrogate modeling can be derived
by structured parametric studies based on numerical sim-
ulations (process level) and/or agent-based/discrete event
simulations (process chain/manufacturing system level).
A general procedure for data-driven surrogate modeling of
FEM data is proposed by Han and Zhang [19]. Applica-
tions can be found, e.g. in the field of biomechanics [20]
or composite manufacturing [21]. An open issue in data-
driven modeling of FEM data is its inevitable problem
specificity, which is addressed by an approach of Zimmer-
ling et al. [18]. In the context of this work, the surrogate
predicts the resulting part properties based on the process
parameters.

On higher abstraction levels, process chains and manu-
facturing systems are simulated by means of discrete-event
(DE) and agent-based (AB) models [22]. With respect to
the interdependencies between the single process steps of
the process chain and interactions with further processes
within a factory, the process chain modeling and simu-
lation extends the scope of detailed process simulations.
Extending the perspective from process to process chain
and simultaneously integrating the insights from the process
perspective allows for an evaluation of the whole process
chain. In this way, the dynamic effects of changing a sin-
gle process step (e.g. reduced cycle time or parallelization
of machines) can be evaluated holistically. Furthermore,
including surrogates from detailed process simulations in
the process chain, simulation enables an integrated evalua-
tion of the interactions of parameter variations [23]. Hence,
it is possible to derive an optimal strategy for the con-
trol or evaluate the potential for the specific use case. By
further deploying data-based surrogate models on the pro-
cess chain model, an adaptive process chain control can be
achieved.

The core idea of the concept is to derive an adaptive
process chain control without extensive experimental data
mining by using only engineering data. In the outline of
this paper, the functionality of the concept is demonstrated
on a purely virtual production scenario. However, it is also
possible to combine the simulation-based approach with
other data-driven approaches based on sensor and machine
data in the operation.

2Methods

The presented work is a continuation of preliminary
works on Integrated Computational Product and Production
Engineering (icPPE) [24] and surrogate modeling [17]. In
the following, the main aspects will be discussed in terms of
improved process chain operation.
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2.1 Integrated computational product and
production engineering

Within the concept of icPPE, different simulation paradigms
are combined along the multi-scale analysis of production
systems focusing on both, the product engineering and its
corresponding production processes. In Fig. 2, a schematic
representation of icPPE is illustrated.

It distinguishes between the three levels product, process
and process chain/ factory. At each level, different
simulation methods are used with regard to the desired
level of detail. Product properties such as mechanical
performance (e.g. strength, stiffness) are mainly influenced
by structural parameters (e.g. material orientation, wall
thickness). These quantities are in turn mainly influenced
by the manufacturing process. Therefore, the process
parameters have a significant influence on the structural
parameters and, thus, on the product properties. The
relationship between process and structural parameters is
investigated in a virtual process chain using, e.g. FEM.
Since detailed FEM simulations are time-consuming at
both, product and process level, surrogate (SG) models
enable rapid parameter studies to be carried out with
sufficient physical detail. In conjunction with machine data,
the FEM data obtained at the process level is used as
input for the process chain simulation. At the process
chain/factory level, the physical detail of the processes is
less relevant. Hence, mainly AB and DE simulations are
used. On even higher aggregation levels, e.g. when a factory
represents the lowest system level, also system dynamics
(SD) is applied. Furthermore, the process chains impose
requirements on the factory and vice versa.

As process and product quality are decisive for future
competitiveness of manufacturing, icPPE strives to leverage
data of engineering methods (FEM) and process chain

Prozess Chain/
Factory Level

Process
Level

Product
Level

Parameters, Methods & Relations

Product Engineering
Production Engineering

Process Chain 
Parameters

Process 

Parameters
Structural 
Parameters

Product 
Properties

Factory 

Parameters

AB, DE, SDAB, DEFEMFEM

SGSG SG

Fig. 2 Concept of Integrated Computational Product and Production
Engineering (ICPPE) in accordance with [24]

simulation, to improve manufacturing operation. This is
accomplished by forwarding the detailed quality properties
derived by FEM simulations along multiple scales of
manufacturing. In this context, Hürkamp et al. show the
applicability and potentials of fast and accurate data-driven
surrogates of FEM simulations for the design of process
chains [24] and as virtual quality gates [17]. In addition, Filz
et al. [7] discuss the design and potentials of virtual quality
gates for future manufacturing, considering FEM surrogate
modeling as a promising approach.

2.2 Implementation concept for surrogate-based
icPPE

The implementation of a surrogate-based icPPE for
improved process chain operation is structured as two inte-
grated cyber physical production systems (CPPS). In Fig. 3,
the proposed concept is depicted. For demonstration pur-
poses, it addressees the use case of overmolded thermo-
plastic composite manufacturing described in Section 3.
However, the implementation concept is general applicable
transferable to other use cases.

The partition in two integrated CPPS is on the one hand
due to the continuous interplay between physical world
(process and process chain) and its cyber representative,
i.e. surrogate model, and on the other hand, the integration
of the quality-oriented process-specific surrogate model
within the process chain simulation linking the two cycles.
The complete concept covers eleven steps, which need
to be done consecutively. Steps 1–9 focus on model
training and engineering tasks and 10–12 on deployment
of models respectively manufacturing operation. A detailed
description on implementing a virtual quality gate on
process level based on FEM data as shown in the left cycle
in Fig. 3 (steps 1–4 and 10.1–12.1), can be found in [17].
In general, a structured design of experiment (DoE - 2) on
a FEM simulation (1) is pursued, which serves as a training
set for data-driven surrogate modeling. The surrogate
modeling (3) is based on machine learning approaches,
e.g. random forest and validated against experimental
data. Finally, the surrogate is embedded within a decision
support application, which is parameterized with sensor and
machine data, as a virtual quality gate (10.1–12.1).

The process chain level expands the approach proposed
in the previous study, by forwarding the surrogate model
build on the process level to process chain simulations
(5), e.g. integrated AB and DE simulation. Hereby, the
approach exploits the surrogate models’ property of fast
and accurately predicting the product quality properties
across the design parameter space. By defining thresholds
for the amount or density of weak spots of the spatial
surrogate model, a physics-based and process-parameter
dependent quality rate can be derived, which is integrated
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Fig. 3 Implementation concept for surrogate-based icPPE

as model parameter within the process chain simulation
(5). As for the virtual quality gate on process level, a
surrogate of a process chain simulation can be used as soft
sensor that captures the dynamics of the underlying process
chain, e.g. expected temperature of the part insert based on
process chain dynamics. This information can be interpreted
as decision support for adaptive process chain control
measures (10.2–12.2), like reheating the organo sheet. In
order to derive the soft sensor, a process chain simulation
is carried out (6), taking into account the operational state
specific quality rate modeled on process level. Analogous
to process level surrogate modeling, a structured DoE on
the process chain simulation (7) is calculated (e.g. change
in ambient temperature, machine failures). Based on the
simulation output, machine learning is applied with one or
more target variables (8). Again, the soft sensor should be
validated within an experimental setup or by supplementary
measurements during production (9).

3 Use case study for themanufacturing of
overmolded thermoplastic composites

Within this contribution, the expanded framework is demon-
strated by means of a manufacturing system for the produc-
tion of overmolded thermoplastic composites. Overmolded
thermoplastic composites are produced in an integrated
manufacturing process, combining thermoforming of con-
tinuously fiber reinforced thermoplastic composite sheets
(organo sheets) and injection molding of a thermoplastic
polymer that is compatible with the organo sheet’s matrix
[25, 26]. In that way, composite structures with high specific

stiffness and strength can be produced on an injection mold-
ing machine, which allows an economic production with
short cycle times.

The quality of the final structure is determined by the
resulting bond strength between organo sheet and injected
polymer since it determines to a large extend its ultimate
strength. Experimental results emphasize that this interface
bond strength depends mainly on the interface temperature
during the process, which is also considered in different
modeling approaches [17, 27, 28]. According to [17], the
contact time

tc =
∫

Tif ≥ T ∗
PP dt , (1)

is a suitable process indicator for the final part quality. It is
defined by the time the interface temperature Tif is greater
than the melting temperature T ∗

PP = 163◦C. Since the
contact time tc is hardly to measure within the process, it
is computed from injection molding simulations using the

Fig. 4 Correlation between contact time tc and bond strength σb [17]
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Fig. 5 Process chain and corresponding interface temperature of overmolded thermoplastic composite manufacturing

same process parameters as for the manufacturing of the
testing specimens. In Fig. 4, the correlation between contact
time and experimentally determined bond strength values of
cross tension specimens is depicted. Fig. 5.

It can be seen that the bond strength is strongly correlated
to the contact time and that larger contact times result in
higher bond strength values. Hence, the part quality strongly
correlates with the contact time.

3.1 Process chain for overmolded thermoplastic
composites

A schematic illustration of the process chain for man-
ufacturing overmolded thermoplastic composites and the
corresponding interface temperature Tif is shown in start-
ing from the cutting and stacking (1.), the organo sheets
are heated up from the initial temperature (T0) to the pro-
cessing temperature (2.), which is usually above the melting
temperature Tmelting of the matrix and below the oxida-
tion temperature Toxidation. The heating can either be carried
out in an infrared oven or directly by an in-mold heat-
ing device. The heated organo sheet is then transferred (3.)
by, e.g. a handling robot to the injection molding machine,
where the sheet starts to cool down due to heat convec-
tion. Hereby, it has to be ensured that the organo sheet’s
temperature when leaving the oven is high enough to com-
pensate the cooling [29]. After reaching the final position,
the organo sheet is thermoformed by closing the mold (4.)
and directly afterwards overmolded in the same tool (5.).
After a cooling phase and solidification in the mold, the
part is demolded (6.) and transferred to finishing (7.). In
addition to the ideal temperature distribution (blue curve),
a variability in the course of the temperature might occur
due to different temperature influences in the production

zone. Furthermore, possible failures along the process chain
lead to waiting times that cause too much cooling to ensure
sufficient product qualities.

3.2 Set up of the parametric study

The proposed concept is exemplary investigated for the
structure displayed in Fig. 6.

For the numerical studies, the cavity and the part insert
are discretized by 872,443 4-node tetrahedral elements. The
injection location is placed at the center of the structure.
The numerical parametric study of the injection molding
is performed in Autodesk Moldflow using polypropylene
as injection polymer. All necessary material data are taken
from the Autodesk Moldflow material database [30].

The sampling space is designed in accordance with [17].
In order to achieve a meaningful database of different

Injection
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Part 

Insert

Mold

Fig. 6 Tetrahedral mesh of the overmolded thermoplastic structure
used in the numerical studies
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process combinations with minimal computational effort,
a latin hypercube sampling [31] with n = 100 samples
is used. The minimum and maximum values and the
corresponding distribution of the process parameters used in
the parametric study are summarized in Table 1.

The melt temperature of the injected polymer Tinj =
240 ◦C is constant for all simulations. For each of the 100
full-scale simulations, the contact time tc (1) is computed
from the temperature evolution during the simulation and
stored in a database for the subsequent surrogate modeling.

3.3 Data-driven surrogatemodeling of
FE-simulation

In order to run a comprehensive study on quality properties
across the possible design space of process parameters,
a data-driven surrogate model of FE simulation is build.
The surrogate model is trained based on the sampling
data set derived in Section 3.2, taking 80 simulations as
training data and 20 simulations as testing data. The final
surrogate model is then deployed on 1000 further samples
across the parameter space to provide a sophisticated data
set for quality analysis. Due to the importance of the
interface bond strength on the final product quality, as
output feature of the surrogate model the spatial distribution
of tc is considered. As input features, the surface of the
part insert (i.e. tetrahedral mesh with nodal coordinates
x, y, z encompassing 25,351 nodes), the flow rate, mold
temperature and part insert temperature are chosen. In order
to stay computational feasible, the training data is down-
sampled to 20%, which results in a final training data set
that is sized 405,600×7. In contrast, no down-sampling is
applied for the testing data, having a test set dimension
of 507,020×7. Within data pre-processing, the features are
standardized by MinMax scaling in the range of 0 to 1.
Within previous studies, the two data-driven approaches
decision tree (DT), i.e. good fit and fast training / prediction,
and random forest (RF), i.e. best fit, have shown best
performances for surrogate modeling of FE simulation data
[17, 24, 32]. Hence, within this paper, DT and RF are
selected for the data-driven modeling. The modeling is
implemented based on the Python library scikit-learn [33]
using a 5-fold cross-validation. The model parameters of

Table 1 Investigated process parameters and the corresponding
sampling distribution

Process parameter Min Max Distribution

Part insert 20 240 Modified

Temperature in °C Log-normal

Mold temperature in °C 30 80 Uniform

Flow rate in cm3/s 10 100 Uniform

Table 2 Hyperparameter optimization for DT and RF

Method Model parameter Range # Steps Optimum

Decision tree Max depth 1–none 7 200

Min samples leaf 1–10 10 3

Random forest Max depth 10–110 6 50

Min samples leaf 1–5 3 1

# estimators 10–900 8 900

both methods are tuned according to the parameters listed
in Table 2. Here, a wider parameter spectrum is investigated
than in previous studies.

The best-found model parameters in parameter tuning
for R2 are shown in the last column of Table 2. Most of
the parameters (except of amount of estimators for RF)
lie within the defined parameter range, so that an under-
and overfitting should have not been occurred. This is also
reflected within the test data metrics shown in Table 3.
The table shows the scores based on the test data set
including their standard deviation. The metrics R2, mean
absolute error (MAE), mean squared error (MSE) and mean
maximum error (Mean Max Error) reveal the slightly better
performance and in general smaller standard deviation of
RF against DT. However, DT is much faster in training and
prediction than RF, which becomes crucial for real-time
applicability as virtual quality gate in production, especially
for complex parts. For both models, the smallest maximum
error on test data is achieved on sample 96 manufactured
under the process conditions of part insert temperature =
158.85 ◦C, mold temperature = 48.25 ◦C and flow rate =
76.15 cm3/s. Again, RF reaches a better performance with
2.1248 s as minimum max error in contrast to 4.4306 s for
DT. However, such larger errors appear very rarely, which
should not affect the overall decision on product quality.

3.4 Quality analysis

The simulation and consequently the surrogate model yields
a detailed distribution of the contact time tc. Here, we define
the quality of a part based on the quality domains defined by

Table 3 Test data metrics for FEM surrogate modeling based on DT
and RF (test score ± standard deviation)

Metric Decision tree Random forest

R2 0.9868± 0.0086 0.9919± 0.0077

MAE 0.1278± 0.0539 0.1028± 0.0549

MSE 0.2199± 0.1689 0.1338± 0.1425

Mean Max Error 7.3249± 1.8929 5.4323± 1.7371

Training time 1.39 s 133.37 s

Prediction time 0.05 s 9.27 s
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Table 4 Classification of quality values

Numerical Range Classification

value

q = 0 – “no bond”

q = 1 tc ≤ 0.4 “poor”

q = 2 0.4 < tc ≤ 1.5 “good”

q = 3 tc > 1.5 “excellent”

Hürkamp et al. [17]. For each value of tc, a discrete numeric
value q is defined in order to distinguish between “poor”,
“good” and “excellent” bond strength values. The discrete
values for the present use case are given in Table 4. The
nodes of the part insert without interface to the polymer are
denoted by q = 0.

In order to derive valuable quality criteria for the whole
part, a specific quality measure needs to be defined that
evaluates if a part will be “okay” (OK) or “not okay”
(NOK). Here, we define the part quality

Qpart = 1 − |{n|q(n) = 1}|
ntot

with 0 ≤ Qpart ≤ 1 (2)

by the number of nodes that have a poor (q=1) quality. A
value of Qpart = 1 represents a part of perfect quality. If the
areas with poor quality are too large, the structural integrity
is low and hence, the total part quality will be low.

In Fig. 7, five exemplary quality distributions are illustrated.
It can be seen that the number of poor values decreases
with increasing temperature. Furthermore, it is observed that
the quality inside the U-profile is always better than on the
outside. This is due to the fact that the flow path increases and
therefore the part insert and the plastic melt exhibit lower
temperatures and thus, lower bond strength.

3.5 Process chain simulation

In order to address the challenges associated with an
integrated process-process chain modeling and to provide
the needed insights, an integrated AB and DE modeling
and simulation approach is chosen. Core of the modeling
approach is the material flow in the sense of a passive
DE process chain model. The AB modeling principles are
consequently applied to extend the passive material flow
by active objects and their behavior, i.e. machines and
products. Going beyond the logic of passive product entities
that only enter and exit process steps in a conventional DE
model, product agents store a set of parameter values that
interact bidirectionally with machine models. Based on the
parameter values stored in a product agent, modeling an
adaptive machine control becomes feasible (e.g. product-
specific heating time based on arrival temperature before
an oven). Machines change in turn during their processing

sequence the product agent’s parameter values (e.g. part
temperature) or store additional information in the agent
(e.g. part quality).

Within this case study, the process chain model covers
the process steps from Fig. 5. Note that the present use case
represents a rather linear process chain for demonstrations
purposes. The subject to be assessed was how process chain
inherent dynamics affect the quality rate of the overmolding
process. The most critical factor for the quality of the
process is the surface temperature of the part insert at the
injection molding machine. The heating cycle inside the
infrared oven is modeled with a simplified physics-based
approach, where the end temperature of the organo sheet

T1(t) = P · t

m · c + T0 (3)

is calculated via its mass m, its specific heat capacity c,
the initial temperature T0 and a constantly applied heating
power P . The oven is controlled according to the ideal
overmolding cycle without any failures. In this case, the
heated organo sheet is directly transferred into the mold.
During this time (transfer and insertion into the mold), the
organo sheet starts to cool down. Its cooling behavior is
approximated based on an empirical cooling curve that was
measured and parametrized. The current temperature T (t)

T (t) = (T1 − TA) · e−at + TA (4)

depends on the cooling rate a = 0.011 s−1, the ambient
temperature TA and the part temperature after the heating
cycle T1. At this point of the process chain simulation, the
FEM-surrogate model calculates the part quality based on
the arrival temperature at the mold.

For the use case, ten scenarios, each with 10,000 parts
were designed. Within this factorial scenario assessment
five different ambient temperatures of 10, 15, 20, 25 and 30
°C in the production zone and two different machine failure
probabilities of 5% and 10% are combined. The ambient
temperature in the production zone can vary seasonally (e.g.
in summer and winter) and more dynamically over a day
(e.g. open gates upon a delivery). These fluctuations are
also accompanied by the cooling process during the transfer
from the oven into the injection mold. Although, injection
molding is an established manufacturing process for high
production volumes, the process is subjected to infrequent
failures. For the sake of simplicity, it is assumed that
failures only occur during demolding. Those failures in the
injection molding machine model are attributed to clamping
or sticking to the wrong side of the tool. The resulting time
delay at the injection molding machine causes waiting times
at the oven after the heating cycle, which consequently leads
to a longer cooling time and lower arrival temperature at
the mold. Additionally, the part temperature before heating
varies, which in turn affects the temperature after the
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Fig. 7 Exemplary illustration of different qualities based on the com-
puted contact time tc and corresponding quality values computed
from the RF surrogate model: a Tin = 180.28◦C, Qi = 0.8807;

b Tin = 186, 03◦C; Qi = 0.9062, c Tin = 188.80◦C, Qi = 0.9636;
d Tin = 205.53◦C, Qi = 0.9895; e Tin = 219, 09◦C Qi = 0.9929

heating (with constant P and t) cycle. These fluctuations are
for example attributed to direct sunlight exposure, closeness
to a heat source (e.g. the oven itself) or storage conditions.

In Fig. 8, the quality rate is determined for each scenario
with respect to the ambient temperature and the failure
probability. Here, we observe a significant increase of the
quality rate when the mean temperature in the production
zone increases from 10 to 15°C. This behavior indicates
the temperature sensitivity of the production process. Based
on the temperature of the organo sheet when arriving at
the oven and the corresponding waiting times, the product
quality is predicted. In particular, it is determined if a part
will be OK or NOK. In Fig. 9, a map of the resulting
qualities for the standard scenario with 20 °C mean ambient
temperature and a failure rate of 5% is depicted.

From the results, it can be seen that for a perfect
process (total time between leaving oven and starting the
thermoforming process is 12 s) with a defined heating
power of the oven, the product’s quality is ensured
almost temperature independent. Only for relatively cold
sheets below 3.5°C, the quality criterion is not fulfilled.
Furthermore, an increase in tolerable transfer times is
observed with increasing temperatures.

Without the scenario assessment, a constant threshold
would probably be introduced to sort out parts after
a significant downtime. In Fig. 9, an exemplary fixed
threshold of 15 s is drawn to show the potential of the
proposed dynamic, physical modeling. By this threshold,

Fig. 8 Quality rate vs. production zone temperature for failure
probabilities of 5% and 10%

the quality map is divided into three areas. All parts with a
larger transfer time than the threshold are contained in area
(I). Without the physical knowledge from the surrogate, all
parts in this area would be denoted as failure parts and they
would have been sorted out before further processing. Since
the surrogate predicts the quality based on the complete part
temperature history, also larger waiting times would lead to
OK parts, when the initial temperature was large enough. In
this particular example, 12% of the discarded parts would
still be OK. In addition, we observe in area (II) only NOK
parts, although they are under the threshold. Hence, a fixed
threshold could also lead to NOK parts without rejecting
defective parts before processing. Finally, only the parts
contained in area (III) would be denoted as OK parts when
a fixed threshold for the transfer time is used as control
variable. In comparison with the total number of OK parts,
this would extremely narrow down the process window.
Although, the present use case study represents a rather
linear process chain, the installation of physical information
shows an significant impact on the number of accepted or
rejected parts.

The case study underlines the potential of using the
dynamic process chain surrogate modeling approach:
neglecting the (potentially volatile) transfer time as impor-
tant state variable leads to a significant share of NOK parts
(3.6% in the investigated use case). Although, using a fixed
threshold for the transfer can help to reduce the share of

Fig. 9 Quality analysis for a virtual production scenario with mean
T0 = 20◦C and failure probability of 5%
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NOK parts, it leads to a significant amount of parts that
are falsely declared as NOK which eventually results in an
inefficient utilization of resources.

3.6 Transfer into operation

In order to enable an adaptive process chain control (cf.,
Fig. 1 top right), a model-based soft sensor for process
chain control is proposed by transferring the process chain
simulation into operation. This is done analogously to the
surrogate based transfer of FEM simulation into operation
as a virtual quality gate by data-driven surrogate modeling
(cf. Fig. 3, steps 8–12). Drawing on the process chain DoE
in the previous subsection, a solid data base for surrogate
modeling is compiled. The data set covers the above-
described 10 scenarios. Besides the ambient temperature
and failure probability, the temperature at leaving the
oven as well as the transfer time is considered as input
features. Those features are easy to measure in a real
production environment, which makes them appropriate
for the parametrization of the soft sensor to predict the
expected product quality before actual processing of the
organo sheet. For demonstrative purposes, a simple model
benchmark without intensive feature tuning is carried out.
The benchmark encompasses the models DT (max depth:
None; min samples per leaf: 2), logistic regression (LR;
epochs: 400; epsilon: 1E-5; learning rate: line search) and
RF (estimators: 100; no restrictions on tree depth and
minimum samples per leaf). For model evaluation a train-
test-split, i.e. .8/.2, stratified on product quality due to
high class imbalance is done. The final test set includes
57 NOK parts within the summer scenario (30°C ambient
temperature, 5% failure probability) and 437 NOK parts
at winter scenario (10°C ambient temperature, 10% failure
probability).

The surrogate modeling results listed in Table 5 indicate
a high classification accuracy, with no misclassifications
for DT and RF on test data and only a few false positives
for the OK class by the LR approach. According to the
LR model, those 32 misclassified parts would have been

Table 5 Metrics for test data of process chain surrogate modeling

DT/RF LogR

Metric OK NOK OK NOK

True pos. 18321 1679 18321 1647

False pos. 0 0 32 0

Precision 1.000 1.000 0.998 1.000

Recall 1.000 1.000 1.000 0.981

Accuracy 1.000 0.998

manufactured, although it is likely to result in a bad
product quality. Those surrogate models, which still have
to be experimentally validated, can be deployed as a soft
sensor for active decision support on process chain control
based on only a few easy to measure and/or calculate
variables.

4 Conclusion

Within this paper, a novel concept of combining and
transferring different engineering and planning simulation
paradigms into the operation stage by data-driven surrogate
modeling is presented for the production of overmolded
thermoplastic composites. Based on a detailed parametric
study of injection molding simulation, a data-driven
surrogate is developed that is able to predict physical
reliable product qualities based on the given process
parameters. Hereby, RF performs slightly better than DT.
However, DT is much faster in training and prediction
than RF. In order to assess different production scenarios,
the surrogate is transferred into a process chain simulation
to derive process parameter-dependent quality rates. From
the results, it is observed, that for cold production zones
(below 15°C) the quality rate significantly decreases.
This is an interesting finding to be considered for the
production in regions with strong seasonal variations in
temperature. In addition to the planning support, the
model is again transferred into the operation stage by a
second step of surrogate modeling. Once more a parametric
study is conducted, this time based on process chain
simulation. Based on the parametric study, a soft sensor
for adaptive process chain control is derived. The soft
sensor captures process chain dynamics like machine
failures and transfer times. In the investigated use case
example the dynamic model was able to reduce the
production reject of 12%. Furthermore, the dynamic model
enables a real-time decision on material processing, e.g.
reheating, by model-based prediction of the expected
product quality based on easy to measure variables. Hence,
it leads to a better utilization of production resources. The
studied models (DT, RF, LogR) show an overall good
performance.

In the present use case, the part quality is limited to
the evaluation of only one variable (contact time tc). In
real-world production environments, also other variables
such as pressure influence the quality and need to be
introduced in future works. Furthermore, an improvement
of the surrogate modeling may be achieved by adding
model reduction techniques for the data generation and pre-
processing. Eventually, the developed concept needs to be
tested and experimentally validated.
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In summary, this contribution shows the potential of
transferring already well-established methods for engineer-
ing purposes into the operation stage. With sophisticated
simulation models, the main features of the system behav-
ior can be implemented into CPPS already during product
development without large experimental or sensorization
effort. After start of production, of course, it can then be
further improved by continuously accruing production data.

Author contribution A. Hürkamp, conceptualization, methodology,
writing—original draft preparation, review and editing, visualization;
S. Gellrich, conceptualization, methodology, writing—original draft
preparation, visualization; A. Dér, methodology, writing—original
draft preparation, visualization; C. Herrmann, resources, writing-
review and editing, supervision, funding acquisition; K. Dröder,
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