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A B S T R A C T   

Entropy production in a system affects the efficiency of the system because it minimizes the output of the system. 
For the better performance of the system, it is very important to minimize the entropy production. Entropy 
generation is always observed in any irreversible process while it remains constant in any reversible process. 
Second law of thermodynamics play an important in the optimization of entropy generation rate. The main 
objective of this investigation is to minimize the entropy production through an inclined channel filled with 
Rabinowitsch fluid. For the better results, we will visually show the entropy generation under the account of two 
different cases. In the first case, we will choose the viscosity and thermal conductivity of the fluid as a constant 
and for the second case, viscosity and thermal conductivity will be treated as a variable. Further, the comparison 
of both the cases will be given under the effects of fluidic parameters. The Exact solutions of velocity and energy 
equations are obtained for the constant properties model with the help of MATHEMATICA software, while for 
the second model, the solution of the velocity profile is obtained in terms of analytic form with the help of 
MATHEMATICA version 11.0. The regular perturbation method is selected to solve the energy equation due to its 
complexity and presented the temperature profile in the form of an approximate analytical solution. In the end, 
the analytical solutions for total entropy and Bejan number for both cases are obtained with the help of 
Mathematica version 11.0. A small amount of entropy is observed at the bottom of the channel and maximum 
entropy is noted at the ciliated walls under the effect of Brinkman number. Maximum value of the entropy 
number is observed for the case of variable properties as compared to the uniform properties, which showed that 
the variable liquid properties are the best choice to minimize the entropy of the system and to increase the 
efficiency of the system.   

1. Introduction 

The peristaltic flow is an important mechanism, which deals with the 
area of contraction and expansion of wave occurring along with the walls of 
the inclined channel. The peristalsis takes place usually in the evolution of 
bolus through the esophagus, the embryo transfer through the uterine 
cavity, chyme promotion advancement in the gastrointestinal area, urine 
flow through the ureter and the vasomotion of blood in vessels. Due to its 

excessive usage in numerous fields of science, many researchers have been 
studied the peristaltic transfer under a different arrangement to highlight 
some modern applications in nuclear industry, such as peristaltic pump, 
movement of dangerous fluids and heart-lungs machines etc. It is well 
known that the non-Newtonian liquid is commonly use in the industries and 
physiology. The analysis on the peristaltic transfer of non-Newtonian fluid 
has the great interest of the researchers due to its massive applications in 
medicine and bioengineering. 
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The Rabinowitsch fluid is a non-Newtonian fluid that can address 
the complicated physiological functions of the non-Newtonian model 
and it also depict the features of shear thinning or pseudo plastic (e.g. 
polymer solutions and blood plasma etc.), shear thickening or dilatant 
(like, sand and polyethylene glycol etc.) and Newtonian or viscous (e.g. 
air and water). It is observed that various investigations based on heat 
transfer analysis have been performed on Rabinowitsch fluid model in 
wavy channel, inclined channel, curved channel and duct [1–3] under 
the consideration of uniform and variable liquid properties etc. But no 
such work has dealt with entropy generation in an inclined ciliated 
walled channel using Rabinowitsch fluid. The important studies related 
to peristaltic and cilia motion on the non-Newtonian fluids with the 
account of entropy generation are cited in the next paragraph. 

Ellahi et al. [4] studied the entropy generation in non-Newtonian 
fluid under the influence of magnetic and slip boundary conditions 
through the moving plates. Bvp4c MATLAB package was used to nu
merically solve the set of dimensionless equations. They observed that 
the value of the Bejan number increased in Dilatant fluid for the dif
ferent values of the slip parameter. Tripathi and Beg [5] considered 
two-dimensional channel to analyze the peristaltic flow with nano
particles under the account of Buongiornio model. They reported the 
effects of Grashof number, Brownian motion parameter and thermo
phoresis parameter on the fluid flow, heat transfer and nanoparticles 
fraction. They concluded that the thermal Grashof number and the 
bolus size had an inverse relation to each other. Ali et al. [6] analyzed 
the peristaltic flow of Rabinowitsch fluid in a curved channel. They 
derived and solved the governing equations without applying sym
metric conditions. The velocity was graphically presented for the dif
ferent values of sundry parameters and it was identified that in an 
asymmetric channel, streamlines pattern for the given flow was re
trieved for large values of radius of the path. Zeeshan et al. [7] con
sidered a wavy channel to discuss the Poiseuille flow suspended by ti
tanium dioxide particles to minimize the entropy generation. They 
solved the dimensionless equations with the help of the homotopy 
method and obtained the numerical results by using software package 
BVPh 2.0. They observed that rise in the values of the electric field 
parameter resulted in the less energy loss at the middle of the channel. 
Sheremet et al. [8] reported the computational study of the entropy 
generation for hot solid blocks by using Tiwari and Das model. They 
used the finite volume method to solve the dimensionless complex flow 
equations. They observed that the heat transfer rate increases with the 
insertion of the nanoparticle in the block. Hayat et al. [9] used the 
peristaltic flow of the Williamson Nano fluid to minimize the entropy 
generation in complaint walls of channel under the effect of the mag
netic field and Joule heating. No-slip conditions were employed by 
them in the governing equations of velocity and the temperature. They 
noted that the slip parameter and the Hartmann number did not affect 
the temperature of the fluid. Bhatti et al. [10] discussed the effect of 
thermal radiation and magnetic field on Casson fluid in a metachronal 
wave. Governing equations were solved with the help of lubrication 
approximations and represented the motion of fluid, the temperature 
and the streamlines for the Hartmann number, particle volume fraction, 
Prandtl number and the Eckert number. They observed that the tem
perature profile increased versus Prandtl and Eckert numbers. Zeeshan 
et al. [11] considered the different shapes of the nano-particles in a 
viscous fluid to investigate the heat and mass transfer over a rotating 
disk. They considered cylindrical, disk and spherical shapes of the 
copper nanoparticle with water as base fluid. They presented the results 
of the entropy generation through pie charts and in tabular form. They 
observed that the spherical particles are good to minimize the entropy 
in the system. Bhatti et al. [12] presented a theoretical and a mathe
matical model for the peristaltic flow of the Nano fluid in a micro 
channel under the effects of the magnetic field. They employed the 
perturbation technique to solve the non-linear equations which were 
obtained by Debby length approximations. They observed that the 
higher values of the Brinkman number and the magnetic field increased 

the temperature of the channel. Gibanov et al. [13] numerically ex
amined the natural convection and entropy generation of the ferric 
oxide nanoparticle with water as base fluid filled in two different 
porous blocks under the effect of the mag etic field. They observed that 
the total entropy number diminished by magnetic parameter. Akbar 
and Nadeem [14] presented the applications of Rabinowitsch fluid 
model in peristalsis flow. Firstly, they developed the problem and de
fined the condition of volumetric flow rate then solved and obtained the 
exact solution of governing equations. They presented the trapping 
phenomena and plotted the graphs for the velocity with different values 
of parameter of pseudo-plasticity and flow rate. They concluded that 
the fluid is Newtonian, pseudo-plastic and dilatant for different values 
of flow rate. Singh et al. [15] analyzed the effect of the heat transfer on 
the flow of Rabinowitsch fluid in a channel. They used the approx
imation of long wavelength and low Reynolds number to examine the 
cause of heat transfer and peristaltic flow. They obtained the expres
sions for particle motion, pressure, friction force and heat to discuss 
them graphically. They concluded that the temperature increases for all 
types of fluid and size of the trapped bolus decreases with the increase 
in amplitude ratio. Ramesh et al. [16] discussed the cilia assisted hydro- 
magnetic pumping of bio rheological couple stress fluid in a horizontal 
wavy channel. MATLAB software was used to solve the system of 
equations and obtained the solution in analytical form. Their compu
tational results showed that the increasing values of the geometric, 
material and magnetic control parameters suppressed the pressure of 
fluid. Shaheen and Nadeem [17] analyzed the production of the me
tachronal wave of Sisko-fluid in a channel with ciliated walls. They 
used the homotopy perturbation technique to obtain the solution of the 
governing equations and showed the graphs of velocity and pressure 
verses power law index, Weissenberg number and length of cilia tips. 
Different results were concluded for different values of parameters. 
They observed that the velocity of the fluid is highest in the middle of 
the channel while it decreases near the walls of the channel. Vaidya 
et al. [18] discussed the flow of Rabinowitsch fluid in a porous channel 
with variable liquid properties. They noted that the consistence of the 
liquid was dependent on the width of the channel. The perturbation 
technique was applied to obtain the solution of the governing non- 
linear equations. Devaki et al. [19] examined the effects of slip 
boundary conditions on the flow of Casson fluid with heat transfer in a 
flexible channel. They concluded that the quantity and size of bolus 
varies directly with rigidly, stiffness and viscous damping force of the 
wall. Walika et al. [20] analyzed the curvilinear squeeze film bearing by 
using Rabinowitsch fluid in a medium of porous walls. Morgan-Ca
meron approximation was used to obtain the modified equations and 
solved them analytically. They expressed the pressure distribution and 
load carrying capacity. Dutta et al. [21] used Weibel's model to analyze 
the loss of heat in the human lungs. They examined that the heat loss 
and the Lewis number were inversely proportional to each other for the 
suitable physical circumstances. Nawaz et al. [22] considered the Soret 
and Duffour effect to examine the entropy production in a Williamson 
fluid by applying the magnetic field in a curved channel to present the 
fluid motion and heat transfer. They observed that the fluid velocity 
was increased by complaint nature wall while decreased by the 
damping nature under the effect of different parameters. Kefayati et al. 
[23] used the Lattice Boltzmann model to discuss the thermal non- 
Newtonian fluids under the account of porous effects. The applications 
of Lattice Boltzmann method in the fluid mechanics was reported by 
Kefayati [24]. Some recent research on the fluid flow with entropy 
generation and various flow assumptions are listed in Refs. [25–32]. 

Despite the decent amount of work on this topic, no one has yet 
studied the minimization of the entropy generation in the flow of 
Rabinowitsch fluid under the account of constant and variable liquid 
properties with complaints walls through an inclined channel. In view 
of this, the main goal of our study is to minimize the entropy generation 
in Rabinowitsch fluid under the constant and variable liquids proper
ties. Further, to identify the uniform or variable properties are the best 
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choice to minimize the entropy generation. Since, Rabinowitsch fluid is 
one of the complex non-Newtonian fluid that exhibits the features of the 
Pseudo plastic, Dilatant and Newtonian fluids. The comparison of Bejan 
number for constant and variable properties in Dilatant, Newtonian and 
Pseudo plastic fluids will also part of our objective. The important 

results of the study are represented by the graphs under the effect of the 
different parameters of interest. 

2. Problem formulation 

Peristalsis of incompressible and viscous Rabinowitsch liquid 
through an inclined, uniform and symmetrical wavy channel of length l 
is used for the problem formulation. A travelling wave is produced 
along the walls of the channel due to liquid flow moving with velocity 
v. The viscosity and thermal conductivity are taken as constant and 
variable. These quantities change according to the values of the thick
ness and temperature. The analysis is carried out for two different 
models in which constant and variable viscosity and thermal con
ductivity are considered [1–2]. The physical diagram of the problem is 
shown in Fig. 1. In Fig. 1, η is the angle of inclination; d denotes the 
wavelength; T∗ is the temperature; e stands for the mean width of the 
channel and f represents the amplitude. 

The stress tensor of Rabinowitsch fluid is defined as [1–2] 

+ =S S u
yxy xy

x
1

3
(1)  

In the above equation ω1 is known as the coefficient of pseudo- 
plasticity which is used to capture of the characteristic of the fluid, and 
other quantity ω is called the viscosity of the fluid. The rest of quantities 
ux, y and Sxy are known as velocity component along x − axis, the space 
coordinate and component of extra stress tensor. 

The dimensional of the governing equations in two dimensional 
time-dependent flow field are given by: 

Continuity equation is 
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Equations of motion along x and y direction are given as follow 

2.1. Along x-direction 

+ + = + + +u
t

u u
x

u u
y

q
x

s
x

s
y

a sinx
x

x
y

x xx xy
g

(3)  

2.2. Along y-direction 

+ + = + +
u
t

u
u
x

u
u
y

q
y

s
x

s
y

a cosy
x

y
y

y xx xy
g

(4)  

Energy equation with viscous dissipation term is 
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where, ux and uy are the velocity components in x and y directions, 
respectively, ag denotes the acceleration due to the gravity, σ is the 
density of the fluid, sxx, sxy and syyrepresent the extra stress components, 
q represents the pressure, ς is the specific heat at constant volume, 
T∗depicts temperature, κ is the thermal conductivity of the fluid. 

For simplicity, we have considered the half width of the channel. In 
view of this condition, the boundary conditions are given by 

= = = == = = =u u
y

T T T
y

| 0, | 0, | , | 0x y l
x

y y l y0 0 0 (6)  

Introducing the non-dimensional parameters as follows 

Fig. 1. Schematic diagram of the flow geometry.  

Fig. 2. Comparison with the previous study.  
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The modified form of Eqs. (1)–(5) and boundary conditions (6) are 
given by 
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Under the assumption of long wavelength and small Reynolds 
number, Eqs. (8)–(12) are given by (for simplicity, we have removed 
the bars) 
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Here we chose viscosity is a linear function of space coordinate y 

and thermal conductivity is varying linearly with respect to tempera
ture of fluid, and expressions for both properties are defined in the 
following form [26,29]: 

=y y( ) 1 (18a)  

= +( ) 1 (18b) 

Fig. 3. Effect of Brinkman number (N∗) on the entropy generation (EC) and (EV).  
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where β and α are known as the viscosity and thermal conductivity 
parameters, respectively. When α → 0 and β → 0, we get the uniform 
properties of fluid model. 

On solving Eqs. (14) and (16) with boundary conditions Eq. (17), we 
get 

= + = =S c y Q F Q q
x

F sin
F

( ), where, andxy 1 1 1 (19)  
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The procedure to obtain the solution of velocity and temperature 
are given by Vaidya et al. [1]. The quantities ai and Γi are presented in 
the appendix section. 

3. Entropy generation and Bejan number model 

The dimensional form of entropy equation is given by 
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In the presence of the variable viscosity and thermal conductivity, 
the total entropy is given as follows 
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If we let = + ( )E (1 )v y

2
1 and =E sv

N
xy

u
y2 then Eq. (22-b) takes 

the following form 

= +E E Ev v v1 2 (23) 

where Ev is called the total entropy number for the case of variable 
properties. The first and second term in the right hand side of Eq. (23) 
denotes the entropy generation due to heat transfer and fluid friction, 
respectively. With the help of Eq. (23), the final expression of total 
entropy number is given by 

= + +

+ +
+ + +
+ + +

+ +

+ +
+ +
+ +
+ +

E 1

y y
y y y
y y y

y y

2y 3y
4y 5y
6y 7y
8y 9y

10y

v 1

2 3
2

4
3

5
4

6
5

7
6

8
7

9
8

10
9

11
10

12

4
2

5
3

6
4

7
5

8
8

9
7

10
8

11
9

12

2

1

(24-a)  

=
+ +

E N y Q F a
a a y

a y a
y

( ( ))
2

3
1

v 1 0

2 3

4
2 52

(24-b)  

Fig. 4. Effect of body force parameter (F∗) on the entropy generation (EC) and (EV).  
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An irreversibility distribution is evaluated with the help of Bejan 
number which is denoted by Be.This parameter is defined as the ratio of 
entropy generation due to heat transfer to the total entropy generation. 
It is defined as 

= =Be Entropy due to heat and mass tranfer
total entropy of the system

Be
E
E

( ) ( )v v
v

v

1

(25)  

In the above equation, (Be)vdenotes the Bejan number of variable 
properties. Substituting Eq. (24-a) and (24-c) in Eq. (25), we have 
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The values of Bejan number varies from zero to unity. It is clear, for 
Be → 1 corresponds the irreversibility is dominated due to heat transfer. 
Secondly, when Be → 0 means the viscous dissipation is dominant. 

Thirdly, for Be → 0.5, the entropy production is equally produced by 
both viscous dissipation and heat transfer [22]. 

The entropy generation and Bejan number for the case of constant 
properties are obtained for α → 0 and β → 0. The calculation of these 
case is not presented here due to brevity. We denote the entropy and 
Bejan number with Ec and (Be)c for the case of constant properties. In 
this case, we treat viscosity and thermal conductivity taken as constant. 

4. Benchmarked solution 

Our solution is estimated with the solution obtained by Vaidya et al. 
[1] for the case of variable liquid properties with complaints walls. 
These estimations are presented in Fig. 2 (a)–(b) in the form of velocity 
and temperature for admissible ranges of parameters. In these figures, 
the dotted lines indicate the solution of Vaidya et al. [1] and slid red 
circles show our solution. It is noted that our solution and the solution 
of Vaidya et al. [1] are excellently matched with each other. 

5. Results and discussion 

In this section, we shall explain the effect of Brinkman number (N∗), 
body force parameter (F∗), the angle of inclination (η) and temperature 
difference parameter (Ω) on the entropy generation and the Bejan 
number for both the constant and the variable liquid properties of 
Rabinowitch fluid model. This non-Newtonian fluid model is well es
tablished model and suitable for an extensive range of shear rates i.e. 0 
to 106/s [1]. Moreover, the thermal conductivity of the fluid behaves a 
linear function of temperature between the ranges of 00 to 4000 [2]. For 
this, we chose two different cases. In the first case, we discussed the 
entropy and Bejan numbers for variable properties and second case 
with constant properties, respectively. For the better understanding of 

Fig. 5. Effect of inclination angle (η) on the entropy generation (EC) and (EV).  
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the given analysis, we assign the different notation to entropy and Bejan 
number of variable and constant properties. For this, we assign (E)v and 
(E)c to the variable and constant entropy generations. For Bejan number 
we use (Be)v and (Be)c to differentiate the Bejan number of variable and 
constant liquid properties, respectively. In the first case, we chose the 
viscosity and thermal conductivity as a variable in which viscosity is 
taken as a function of temperature. On the other hand, we chose visc
osity and thermal conductivity are constant. These flow phenomena are 
discussed for three different types of fluids namely, Dilatant, Newtonian 
and Pseudo plastic fluids. Authors developed four figures to show the 
physical behavior of entropy generation for different physical para
meters and construct four tables to present the values of Bejan number 
via non-dimensional parameters. 

The graphical representation of the effect of the pertinent para
meters on the entropy is given by Figs. (3–6) are for the Dilatant 
(φ  <  0), Newtonian (φ = 0) and the pseudoplastic fluids (φ  >  0). 
Here, we have chosen the comparative study for both the constant and 
the variable properties in order to express the results in a better way. 
The effects of Brinkman number on entropy generation for the case of 
variable and constant liquid properties are shown in Fig. 3 (a)–(b). 
From these figures, it is observed that the entropy generation increases 
with increase in the values of Brinkman number for the case of shear 
thickening, Newtonian and shear thinning fluids. The physical reason is 
that when we increase the value of Brinkman number the heat transfer 
rate enhances the viscosity of the fluid as a result, the entropy gen
eration increases. Further, the small amount of entropy is noted at the 
bottom of the channel and maximum entropy is recorded at both the 
ciliated walls of the channel. From both figures, we observed that the 
value of the entropy number is maximum for the case of variable 
properties as compared to uniform properties which means that 

variable properties are good choice to minimize the entropy of the 
system. Fig. 4 (a)–(b) reported the effects of body force parameter on 
entropy generation for both considered cases. It is observed that the 
body force parameter and entropy generation have an inverse relation 
with each other on both the ciliated walls. The body force parameter 
reduces the entropy of the system for both cases. Fig. 5 (a)–(b) depicts 
the results for the entropy (Ec) and the entropy (Ev) under the effects of 
the angle of inclination with admissible range of inclination angle 
η( = , , ,6 5 4 3) forφ  <  0, φ = 0 and φ  >  0, respectively. These 
figures reveal that the entropy of the system in ciliated wall enhances in 
the increment of inclination angles. On the other hand, the temperature 
difference parameter suppressed the entropy generation (see Figs. 6 (a) 
& (b)). The reason is that when we increase the temperature difference 
parameter, the friction in the fluid particles decreases due diminishing 
the fluid's viscosity. 

5.1. Trapping phenomenon 

The stream function ψ is calculated with the help of the following  
expression [1] 

=u
y (27)  

Figs. 7 (a)–(d), 8 (a)–(d) and 9 (a)–(f) highlights the behavior of 
trapped bolus due to the relevant parameters. Figs. 7 (a)–(c) and 8 
(a)–(c) represent the behavior of variable viscosity and angle of in
clination on the trapped bolus. It is seen that the behavior of variable 
viscosity is opposite to that of angle of inclination because the size of 
the trapped bolus increases with the increase in the variable viscosity 
and decreases for the larger values of angle of inclination. The effect of 

Fig. 6. Effect of temperature difference parameter (Ω) on the entropy generation (EC) and (EV).  
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Fig. 7. (a–d): Streamlines for the co-efficient of variable viscosity (Ω = 0.1, 0.2, 0.3, 0.4).  

Fig. 8. (a–d): Streamlines for angle of inclination (η).  
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Fig. 9. (a–f): Effect of wall tension parameter (J1), mass characterizing parameter (J2), wall damping parameter (J3), wall rigidity parameter (J4) and wall elastic 
parameter (J5) on Streamlines. 
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ψ1, ψ2, ψ3, ψ4and ψ5 on the trapped bolus is explained in Fig. 9 (a)–(f). It 
is noticed that for the increasing values of ψ1, ψ2 and ψ4, the size of the 
bolus decreases while increases for ψ3 and ψ5. 

Now, we are going to explain the maximum values of Bejan number 

for both constant and variable liquids properties under the effects of the 
pertinent parameters on Dilatant, Newtonian and pseudo plastic fluids 
by Tables 1–4. These tables are showing that the value of Bejan number 
increases versus Brinkman number, angle of inclination and tempera
ture difference parameter while an opposite behavior is highlighted 
against the body force parameter. These tables are also predicting the 
maximum values of Bejan number for the variable liquid properties. 
Moreover, Dilatant fluid is showing the higher profile of Bejan number 
as compared to Pseudo-Plastic and Newtonian one. 

6. Conclusions 

Entropy generation analysis of Rabinowitsch fluid under the effects 
of complaints walls inside an inclined channel are investigated here. 
Two cases are presented here based on constant and variable liquid 
properties. In the first case, the viscosity and thermal conductivity are 
taken as a variable while in the second case, both these quantities are 
taken as constant, respectively. The exact solution of velocity equation 
is obtained while the perturbation method is used to find the solution of 
heat equation for the case of variable liquid properties while the exact 

Table 1 
Variation of Bejan number versus Brinkman number for constant and variables properties.  
( = = = = = = = = = = = =x t F h J J J J J0.2, 0.1, 2, 0.6, , 1.5, 0.5, 0.1, 0.04, 0.4, 0.002, 0.010 6 1 2 3 4 5 ).         

N∗ α = β = 0 α = 0.5, β = 0.5 

(BC)max (BV)max 

ϕ  <  0 ϕ = 0 ϕ  >  0 ϕ  <  0 ϕ = 0 ϕ  >  0  

0.1 0.2223 0.1012 0.1119 0.2148 0.15206 0.1965 
0.2 0.3638 0.1838 0.2013 0.3536 0.2640 0.3285 
0.3 0.4618 0.2525 0.2743 0.4507 0.3498 0.4232 
0.4 0.5336 0.3106 0.3351 0.5225 0.4177 0.4946 
0.5 0.5885 0.3602 0.3865 0.5776 0.4728 0.5502    

Table 2 
Variation of Bejan number versus body force parameter for constant and variables properties.  
( = = = = = = = = = = = =x t N h J J J J J0.2, 0.1, 0.6, , 0.2, 1.5, 0.5, 0.1, 0.04, 0.4, 0.002, 0.010 6 1 2 3 4 5 ).         

F∗ α = β = 0 α = 0.5, β = 0.5 

(BC)max (BV)max 

ϕ  <  0 ϕ = 0 ϕ  >  0 ϕ  <  0 ϕ = 0 ϕ  >  0  

1 −0.4025 0.2218 0.2670 −0.2038 0.3122 0.3998 
2 0.3638 0.1838 0.2013 0.3536 0.2640 0.3285 
3 0.2711 0.1714 0.1966 0.2689 0.2478 0.3050 
4 0.2309 0.1652 0.1918 0.2453 0.2397 0.2934 
5 0.1682 0.1616 0.1764 0.2339 0.2348 0.2865    

Table 3 
Variation of Bejan number versus angle of inclination for constant and variables 
properties. (x = 0.2, t0 = 0.1, F = 2, ϵ = 0.6, N∗ = 0.2, h = 1.5, Ω = 0.5, 
J1 = 0.1, J2 = 0.04, J3 = 0.4, J4 = 0.002, J5 = 0.01).         

η α = β = 0 α = 0.5, β = 0.5 

(BC)max (BV)max 

ϕ  <  0 ϕ = 0 ϕ  >  0 ϕ  <  0 ϕ = 0 ϕ  >  0  

6 0.3638 0.18383 0.2013 0.3536 0.2640 0.3285 

5 0.5104 0.1904 0.2325 0.4522 0.2725 0.3410 

4 0.9279 0.1995 0.2349 0.9111 0.2841 0.3580 

3 −1.1736 0.2116 0.2441 −0.7852 0.2994 0.3807 

2 −0.4025 0.2218 0.2670 −0.2038 0.3122 0.3998 

Table 4 
Variation of Bejan number versus for temperature difference parameter for constant and variables properties.  

= = = = = = = = = = = =x t F N h J J J J J0.2, 0.1, 2, 0.6, , 0.2, 1.5, 0.1, 0.04, 0.4, 0.002, 0.01.0 6 1 2 3 4 5

Ω α = β = 0 α = 0.5, β = 0.5 

(BC)max (BV)max 

ϕ  <  0 ϕ = 0 ϕ  >  0 ϕ  <  0 ϕ = 0 ϕ  >  0  

1.00 0.5335 0.3106 0.3351 0.5225 0.4177 0.4946 
1.25 0.5884 0.3602 0.3865 0.5776 0.4728 0.5502 
1.50 0.6318 0.4032 0.4305 0.6214 0.5183 0.5948 
1.75 0.6668 0.4408 0.4686 0.6569 0.5566 0.6313 
2.00 0.6958 0.4739 0.5020 0.6863 0.5893 0.6618    
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solution for velocity and temperature equations is presented with the 
help of symbolic software. The important findings of this investigation 
are highlighted as follows:  

▪ The profile of entropy generation is minimizing for the case of 
variable liquid properties as compare to uniform properties.  

▪ The values of Bejan number are higher for Dilatant fluid and 
minimum in the case of a Newtonian fluid. 

▪ The variable liquid properties are best choice to minimize the en
tropy generation, i.e. we achieved the goal to guess which case is 
beneficial to increase the efficiency of the system. 

▪ The Bejan number and entropy generation are showing the in
creasing behavior verses inclination angle, Brinkman number and 
temperature difference parameter while an opposite trend is noted 
via body force parameter.  

▪ In the presented analysis, we have neglected the effects of thermal 

radiation, heat generation and magnetic field (i.e. neglecting the 
electrically conducting properties) which have important applica
tions in biomedical engineering. These suggest an interesting area 
for future analysis. 
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