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A B S T R A C T   

Mass transfer in porous media is governed, besides the species diffusion coefficient, by the porosity and the 
geometrical parameters of the materials microstructure. This paper aims at developing a methodology for the 
determination of tortuosity and constrictivity factor based on a diffusion modeling in a porous medium of neutral 
species. Tortuosity was obtained by the computation of particles trajectory. After which, constrictivity was de-
duced from the formation factor, represented by the relative diffusion coefficient. Results show that tortuosity 
evolves in the opposite direction that the porosity while constrictivity evolves in the same direction. In addition, 
both parameters further slowdown the transfer for lower porosities.   

1. Introduction 

The diffusion of aggressive ions, moisture, gases and other aggressive 
agents in porous cementitious materials is central for predicting the dur-
ability of reinforced concrete (RC) structures. In the case of marine or de- 
icing salt environments, chloride penetration induces the corrosion of re-
inforcements in RC [1]. Sulphates induces the concrete degradation [2], 
and the reaction of carbon dioxide with dissolved hydrates coupled with 
moisture transfer [3] contributes to both concrete damage and steel re-
inforcement corrosion [4]. These phenomena affect the durability of the 
materials and consequently reduces the service life of structures. The 
macroscopic properties of cementitious materials are linked directly to 
their microstructure and, more precisely, to the morphology of their pores. 
There are several parameters used to characterize the microstructure of 
cement-based materials. Porosity is one of the most used. Another essential 
parameter describing porous media is pore connectivity. This property 
directly affects the durability of cementitious materials. In fact, a high 
degree of pore connectivity means an interconnected porosity and con-
sequently the aggressive agents easily penetrate into the porous network of 
the material. Different methods are used for studying the microstructure of 
cementitious materials, such as mercury intrusion porosimetry (MIP) [5], 
nitrogen adsorption BET [6], measurement of electrical resistivity [7], 
nuclear magnetic resonance [8,9], Small-Angle scattering [10], etc. 

Moreover, due to the complexity of cementitious materials, the porosity 
and the connectivity of the pores are not sufficient to characterize their 
microstructure finely. Another morphological property represents a 
common characteristic of transport phenomena in cementitious materials, 
it is associated with the geometry of the pore structure. This geometry is 
described by two parameters: tortuosity, usually defined as the ratio of the 
mean effective path length of the fluid through a porous medium (Le) and 
the material length (L) [11,12] and constrictivity, usually defined as the 
ratio between two successive different sections of pores [5]. In recent 
studies [13–16], the fractal theory is used to characterize the transport 
properties of porous media and to establish a link with geometrical 
parameters of microstructure such as tortuosity. These works are not in-
terested particularly in cementitious materials, but are focused on porous 
media that by nature have fractal characteristics. They contribute to 
provide clearer answers about the general problem treated in this study in 
terms of identification of the geometrical parameters affecting the trans-
port phenomena in a porous medium. Regarding cementitious materials, 
electrical resistivity measurements are also proposed to establish a link 
with the morphology of the microstructure network of cementitious ma-
terials [7,17]. These approaches involve an empirical relationship ex-
pressing the tortuosity as a function of the volume fraction of pore en-
trapment. Indirect methods, such as ultrasonic methods [18], were used to 
estimate the tortuosity from the measurements of reflected waves at two 

https://doi.org/10.1016/j.icheatmasstransfer.2020.104786     

⁎ Corresponding author. 
E-mail address: mohamed-khaled.bourbatache@insa-rennes.fr (M.K. Bourbatache). 

International Communications in Heat and Mass Transfer 117 (2020) 104786

Available online 12 August 2020
0735-1933/ © 2020 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/07351933
https://www.elsevier.com/locate/ichmt
https://doi.org/10.1016/j.icheatmasstransfer.2020.104786
https://doi.org/10.1016/j.icheatmasstransfer.2020.104786
mailto:mohamed-khaled.bourbatache@insa-rennes.fr
https://doi.org/10.1016/j.icheatmasstransfer.2020.104786
http://crossmark.crossref.org/dialog/?doi=10.1016/j.icheatmasstransfer.2020.104786&domain=pdf


oblique incidence angles. However, different factors such as the geometry 
and the heterogeneity of the cementitious materials, the presence of steel 
reinforcement and moisture, make these methods less precise. Boukhatem 
et al. [19] used a soft computing approach to predict the transport tor-
tuosity of the pore system of fly ash concrete by building an intelligent 
hybrid system. In their system, a genetic algorithm was used to optimize 
the structure and the hyper- parameters of the network. The system pre-
sented in their study takes into account the effect of the porous network 
concrete in terms of porosity, and it does not consider the transport 
properties (permeation or diffusion), which are governed by the tortuosity 
and the constrictivity of the porous network. 3D reconstructions obtained 
by X-ray tomography were used to quantify the tortuosity and connectivity 
of the pores using a specific 3D-image analysis and a random walk si-
mulation [20–22]. Authors showed that this technique provides a pro-
mising non-destructive alternative for the pore-related characterization of 
cementitious materials. However, cementitious materials present a very 
fine micro porosity at nano-metric scale and the use of such approaches is 
currently limited by the spatial resolution and the precision that can be 
obtained. Several theoretical models were also used to assess the tortuosity 
of cementitious porous media [23–26], based on a certain model of the 
structure of a porous medium. However, they are very idealized. Empirical 
approaches have been also proposed to estimate a combination of the two 
parameters tortuosity and constirctivity of porous media as a function of 
porosity [27–30]. They contain parameters determined by adjusting ex-
perimental data. In contrast, these adjustable parameters vary con-
siderably depending on the materials used and on of their pores geometry 
[31], and their values reported in literature vary widely. 

The effect of pore geometry on the transport properties of cement- 
based materials makes the problem of predicting tortuosity and con-
strictivity extremely complex. Indeed, it is known that cementitious ma-
terials are very heterogeneous porous media and have a complex micro-
structure at the microscopic and nanoscopic scales [32]. The global 
behavior of these materials is then governed by local mechanisms acting at 
the pore scale. The major challenge consists of a better comprehension of 
physical phenomena that intervene at the scale of the pore, and their re-
lation with the global behavior, all this taking into account the effect of 
pore geometry. The possible solution is the use of homogenization 
methods to describe finely these very heterogeneous media at the pore 
scale. One of the widely used homogenization methods in literature is the 
periodic homogenization method [33–37]. It is mainly based on the 
method of asymptotic developments and it assumes that the micro-
structure of the medium is constituted of a periodic repetition of a certain 
basic elementary cell. In [36,37], the periodic homogenization method is 

based on a dimensional analysis of the transport equations written on the 
microscopic scale, making naturally appear dimensionless numbers char-
acterizing the problem. Recent contributions in the literature have pre-
sented asymptotic periodic homogenization studies on cementitious ma-
terials, applied to heat and moisture transfers [38–40], prediction of 
effective mechanical, diffusive, and chemo-expansive properties [41], 
diffusion-reaction problems [42], alkaline - silica reaction (ASR) [43], 
thermal conduction [44,45], modeling of calcium leaching [46], and the 
transfers of chloride ions taking into account ionic electrocapillary inter-
actions with the solid matrix [37,47–49], etc. Finally, let us cite also recent 
works using homogenization by two scales convergence methods [50,51]. 

The aim of this paper is to develop a pertinent approach to evaluate 
the tortuosity and constrictivity of porous media, mainly cementitious 
materials, by asymptotic periodic homogenization from transport equa-
tions written at the local scale for each phase of the cementitious material. 
The limitations mentioned above have been overcome and the effect of the 
pore geometry on the tortuosity and constrictivity of the material has been 
considered by rigorously incorporating the geometric characteristics of the 
microstructure. The equations of the model, developed by the upscaling 
micro-macro method, depend directly on the geometry of the porous 
medium through the homogenized parameters and the boundary value 
problem calculated numerically on microstructures of the material con-
sidered. The article is organized as follows. Section 2 presents a review of 
the homogenized model developed by asymptotic periodic homogeniza-
tion. Then, the properties of the material are calculated by numerical si-
mulations in section 3 by solving the boundary value problem which de-
pends on the microstructure of the material. Different geometries of the 
porous medium were considered for the tortuosity calculation and the 
constrictivity deduction. Finally, final conclusions are given in section 4. 

2. Double-scale asymptotic method 

The periodic homogenization method is one of many other up- 
scaling techniques used to describe the physical phenomena at the 
global scale starting from the local one. Let us consider that the porous 
material studied occupies the domain S of the three-dimensional space 
IR3, whose characteristic length is denoted L (Fig. 1). The macroscopic 
domain S is limited by the boundary ∂S. A point of the macroscopic 
domain S will be denoted x = (x1,x2,x3). The microstructure of the 
considered porous material is assumed to be periodic and constituted of 
the repetition of the elementary cell Ω = Ωs ∪ Ωf composed of a solid 
phase Ωs and a fluid phase Ωf (Fig. 1). The characteristic length of the 
elementary cell is denoted l. 

Nomenclature  

δ Constrictivity of the porous medium 
Γ Microscopic boundary of Ω 
Γff Fluid-fluid interface 
Γsf Solid-fluid interface 
χ Local variable 
Ω Microscopic domain 
Ωf Fluid phase of Ω 
Ωs Solid phase of Ω 
σ Standard deviation 
τ Tortuosity of the porous medium 
φ Porosity of the porous medium 
Δy Laplacien operator according to the microscopic co-

ordinates 
〈⋅〉 Average operator upon Ω 
(⋅)T Transposition operator 

Arithmetic mean of ⋅ 
divy Divergence operator according to the microscopic co-

ordinates 

Dhom Homogenized diffusion tensor 
I Identity tensor 
q Position vector of particle 
v Velocity of particle 
x Macroscopic coordinates 
y Microscopic coordinates 
ℱ Geometrical factor 
D Local diffusion coefficient in fluid phase 
L Macroscopic characteristic length 
l Microscopic characteristic length 
li Length path travelled by particle i 
N Number of paths 
Nbc Number of circular inclusions 
R Radius of circular inclusions 
Rmax Maximum radius of circular inclusions 
Rmin Minimum radius of circular inclusions 
Sp Specific surface 
t Time 
u Dimensionless concentration of tracer   
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The boundary of the domain Ω is noted Γ. It is composed of the solid- 
fluid interface Γsf between the solid and the fluid phases and of the fluid- 
fluid interface Γff separating two neighbouring elementary cells at the 
micro-scale. A point of the domain Ω at the elementary cell will be noted 
y = (y1,y2,y3). The characteristic length of the elementary cell l must be 
very small compared to the macroscopic characteristic length L. 

If we consider classical molecular diffusion in cementitious materials 
or ionic diffusion without electrical double layer effects [48], the diffu-
sion is governed by Fick equation or Nernst-Planck equation (without 
charge effects) and the homogenized diffusion tensor is given by1 

= +D dD I
y

1
| |

T
hom

f (1) 

where vector χ is periodic and of zero average on Ωf, solution of the 
following boundary value problem: 
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In (2), I denotes the identity tensor and ()T is the transposition op-
erator. D is the local diffusion coefficient in the fluid phase Ωf. 

In this study, the local diffusion coefficient D is assumed to be 
constant. The boundary value problem (2) then simplified to: 
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where χi represents the components of the vector χ and 〈χi〉 denotes 
the average of χi over Ω. 

In numerous references in the literature for non reactive molecular 
diffusion, authors define the ratio Dhom/D as a geometrical factor ℱ 
including porosity, tortuosity and constrictivity of the pore network, 
when the diffusion is electrically neutral, i.e. without interactions be-
tween species or at the solid-fluid interface Γsf. 

We propose in this work to focus on the most common definition of 
the geometrical factor used in literature [53–56] that is 

=D
D
hom

2 (3) 

where φ denotes the porosity and δ the constrictivity. The relationship 

(4) highlights that for the particular case of a cylindrical porous net-
work, i.e. when δ and τ are equal to 1, the ratio between Dhom and D is 
directly given by the porosity, i.e. by the reduction of the section 
through which the species diffuses. The tortuosity τ of the porous 
medium is generally defined as: 

= =
l

l

N
i

N
i

1

1
(5) 

where li denotes the i-th tortuous path, N is the number of paths and l is 
the size of the elementary cell. 

To determine the length of possible paths li, we propose to solve the 
following auxiliary (dimensionless) diffusion problem posed on the 
elementary cell with associated homogeneous Neumann boundary 
conditions: 

=
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where u presents the tracer dimensionless concentration. For this 
steady-problem, the paths (trajectories) are superimposed to the 
streamlines of problem (6). To determine trajectories, we solve the 
following equation of motion of massless particles: 

=d
dt
q v (7) 

where t denotes the time, q is the particle position vector of components 
q = (qy1

qy2
) and v is the velocity function of diffusion flux streamlines 

obtained from the solution of problem (6) as: 

u
y

u
y

v =
T

1 2 (6)  

After the determination of the trajectories of particles, we calculate 
the distance travelled by each particle. Let us notice that the path 
number is equal to the particle number injected in Ωf along the inlet 
interface Γff where the boundary condition (6c) is imposed. Indeed, the 
trajectory of each particle allows to determine one value of tortuosity τi. 
The tortuosity in the considered direction is the arithmetic average of 
all tortuosity particles according to eq. (5). 

In parallel, we will solve closure problem (3) to determine vector χ 
on the same elementary cell characterizing the porous network and 
compute the homogenized diffusion tensor Dhom from eq. (1). Then, 
from (4), we can deduce the value of the constrictivity δ for each 
considered porosity φ. This procedure will be applied in the next sec-
tion for different elementary cell geometries. 

3. Numerical simulations and parametric study 

The aim of this section is the determination of the tortuosity and 
constrictivity parameters on 2D elementary cells. 

3.1. Case of one pore with variable size 

We consider the periodic elementary cell of size (l × l), which is 
constituted of a solid domain Ωs and a fluid domain Ωf. The interface 
solid-fluid Γsf is defined quadratic Bézier curve of three points 
(P1(0,0);P2(l/2,d);P3(l,0)) for the bottom interface and (P4(0, l);P5(l/ 
2, l − d);P6(l, l)) for the top interface (Fig. 2). The positions of points P2 

and P5 varies according to the variation of parameter d ∈ [0.1 0.9] with 
a step of about 0.1, leading to porosities φ ∈ [0.486 0.943]. The finite 
element method is used to solve problems (3), (6) and (7). 

Let us apply the numerical procedure described previously to 

Fig. 1. Description of the porous material.  

1 This is a classical result well established in periodic homogenization tech-
niques whose details may be found in [48,52]. In this example, we have focused 
on a clearer picture of the results. 
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compute the tortuosity τ. It is important to underline that according to 
the geometry of the elementary cell, only χ1 is non null. Thus, we solve 
problem (3) for the variable χ1 only. The periodic boundary conditions 
(3c) are imposed on boundaries Γff

1 and Γff
2. 

The problem (6) is then solved in direction y1 by imposing Dirichlet 
boundary conditions (6c)-(6d) on Γff

1 and Γff
2 with u = 1 at y1 = 0 and 

u = 0 at y2 = l, respectively. The Neumann boundary conditions (3b) 
and (6b) of problems (3) and (6) are applied on the interface solid-fluid 
Γsf. Fig. 3(a) shows the distribution of variable χ1. 

After solving problem (3), the homogenized diffusion tensor Dhom is 
determined by using expression (1) for different values of the porosity 
φ. Fig. 3(b) shows the variation of Dhom/D versus porosity φ of the 
elementary cell of Fig. 2. As expected, we observe that the relative 
diffusion coefficient Dhom/D increases with the increase of the porosity. 

The second step of this numerical procedure consists in solving pro-
blem (6) in order to determine u in fluid domain Ωf (see Fig. 4(a)). From 
u, we determine the velocity vector given by expression (8). The equation 
of motion (7) is then solved by injecting particles on the boundary Γff

1, 
which represents the inlet of particles (Γff

2 is the outlet). The number of 
particles injected is N = 100 uniformly distributed on the inlet Γff

1. The 
time step is about Δt = 5 × 10−3s, the simulation stops when all par-
ticles reach the outlet boundary Γff

2. Figs. 4(b) and 4(c) show the tra-
jectories and velocity magnitude of particles injected for two time values. 

The determination of the elementary cell tortuosity of Fig. 2 in the 
direction y1, requires the calculation of the length of each particle 
trajectory. For any particle i (i = 1, N), the length of path li is given by: 

= + + +l t q t t q t q t t q t( ) (( ( ) ( )) ( ( ) ( )) )i y y y y
2 2

1 1 2 2
1
2 (9)  

= =l l t( )i t
t

i0
f (10) 

where Δli(t) is the increment of distance travelled at time t and tf is the 
time required for particle i to reach the outlet Γff

2. 
Fig. 4(d) shows the distance travelled by each particle. We remark 

that in the vicinity of the solid-fluid interface Γsf the paths are longer. 
Far from Γsf, the paths length becomes closer to the size of the ele-
mentary cell l. The tortuosity is finally determined from eq. (5) with 
N = 100 and for different values of porosity φ (see Fig. 5(a)). 

We remark that the squared tortuosity τ2 obtained from eq. (5) is 
lower than the ratio (Dφ/Dhom) derived from homogenization procedure. 
This means that the geometrical tortuosity effects should be completed 
by the constrictivity δ, accounting for shrinkage or enlargement between 
obstacles. All these geometrical effects are taken into account in the 
expression of the homogenized diffusion tensor Dhom. The knowledge of 
tortuosity τ and ratio (Dhom/Dφ) enables to determinate the constrictivity 
δ from eq. (4). Fig. 5(b) shows the variation of δ versus the porosity φ. 
We notice that δ increases with the increase of the porosity φ, even if its 
value is contained in the interval [0.9,1] in the configuration studied. 

3.2. Case of a circular inclusion 

Let us consider an elementary cell with a circular inclusion of radius 
R located in the center of the periodic cell of size 1 × 1 (Fig. 6). The 
radius R varies in the interval R ∈ [0.05 0.45] leading to a variation of 
the porosity in the range φ ∈ [0.3, 0.99]. 

The same procedure detailed in section 3.1 is used again for the new 
elementary cell considered here. Because of the geometrical symmetry 
of the considered unit cell, we solve problems (3), (6) and (7) only in 
the direction y1. In that case the homogenized diffusion tensor is iso-
tropic. The periodic boundary conditions are imposed on the external 
boundary (fluid-fluid interface Γff) of the elementary cell. The boundary 
of the circular inclusion represents the fluid-solid interface Γsf where 
boundary conditions (3b) and (6b) are imposed. For each value of 
porosity φ, we solve the Neumann problem (3) and we determine the 
homogenized diffusion coefficient Dhom by using eq. (1). 

Figs. 7(a) shows the variation of the relative homogenized diffusion 

coefficient Dhom/D versus the porosity φ. We notice that the homo-
genized diffusion coefficient increases with the increase of the porosity 
as observed in the example of section 3.1. The same result, which is 
intuitive, is also obtained in [48,57]. 

Then, we solve problem (6) and (7) to determine the length of all 
possible paths in direction y1 for different values of porosity. Fig. 7(b) 
shows the paths of 100 particles. We observe that the path length in-
creases in the vicinity of the circular inclusion. Far from the inclusion, 
the paths are closer to an ideal path equal to the unit cell size l = 1. 

The tortuosity τ is determined from eq. (5) for different values of the 
porosity φ. Fig. 8(a) shows the variations of the tortuosity (τ and τ2) and of 
the ratio Dφ/Dhom with respect to the porosity φ for the elementary cell of  
Fig. 6. It is important to underscore that, in the case of the circular in-
clusion, the tortuosity τ follows a quasilinear behavior with respect to the 
porosity φ. We notice also that the variation of the ratio Dφ/Dhom is non- 
linear for φ  <  0.5. The ratio Dφ/Dhom increases sharply when the porosity 
is in the vicinity of the threshold of fluid phase connectivity (φ ≃ 0.33). We 
underline that the ratio Dφ/Dhom is higher than the squared tortuosity τ2. 
The difference between Dφ/Dhom and τ2 is due to the reduction of the 
distance between neighbouring inclusions. This effect is represented by the 
constrictivity factor δ according to eq. (4), whose variation versus the 
porosity φ is plotted in Fig. 8(b). We observe that δ increases with the 
increase of the porosity, with non linear variations for porosity φ  <  0.5. 
In this range (low value of φ), the constrictivity effect is more important 
because of the decrease of the distance between solid inclusions. 

3.3. Case of a random porous media 

In this section we are interested in the case of a random bi-dimen-
sional porous medium (Fig. 9). The periodic elementary cell, of size 
1 × 1, is composed of discs representing the solid phase Ωs, the domain 
between discs is the fluid phase Ωf. The disc boundaries represent the 
solid-fluid interfaceΓsf. The external boundary of the elementary cell 
defines the fluid-fluid interface Γff. 

The circular inclusions are generated randomly, the radius R of each disc 
is chosen in the interval Rmin ⩽ R ⩽ Rmax. In addition, positions of particle 
centers are also determined arbitrarily in order to avoid the overlapping 
between discs. For that purpose, we impose that the separation distance 
between the centers of disc to all neighbouring ones to be smaller than a 
minimum distance. With this criterion, the connectivity of the fluid phase is 
guaranteed. The number of discs depends on the value of the fixed porosity. 
As a first step, we consider four values of porosity (40 % 50 % 60 % 70%).2 

Fig. 2. Description of the elementary cell.  

2 Other numerical simulations with a global porosity of the sample between 
8% and 20% could be performed to be more representative of porosities of 
classical concretes or mortars. In this example, we have focused on a clearer 
picture of the results. 
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For each porosity value, six samples are generated randomly. The chose of 6 
samples seems to be sufficient to take into account a geometric variability.  
Table 1 summarizes the geometrical properties considered for the corre-
sponding samples for all porosities. The minimum and maximum radii are 

fixed to be Rmin = Rmax/20 and Rmax = 0.15 × l where l = 1 is the size of 
the unit cell. We determine for each sample the mean radius R and the 
standard deviation σ. Finally Nbc denotes the number of circles necessary to 
reach the fixed value of the porosity. 

Fig. 3. (a) Variable χ1. (b) Variation of relative homogenized diffusion coefficient versus porosity φ.  

Fig. 4. (a) Contours of variable u. (b) Particle trajectories at t = 0.2s and (c) at t = 1.01s. (d) Path travelled by each particle.  
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The disc size distribution curve is presented in Fig. 10, for four 
values of the porosity. We remark for several samples that when the 
porosity increases, the dispersion of the size disc distribution becomes 
important. We observe that R and σ are closer for lowest porosity (see  
Table 1). Progressively, the gap increases with the increase of the 
porosity. 

As previously, we adopt the procedure outlined in section 3.1. 
Firstly, we solve the boundary value problem (3) in direction y1 and y2 

to determine the components χ1 and χ2 of vector χ. After that, we 
calculate the components of the homogenized diffusion tensor using 
(1). In that case, Dhom is an anisotropic tensor. 

In a second time, we solve the diffusion problem (6) to determine 
scalar variables u1 and u2 in direction y1 and y2 respectively. The per-
iodic boundary conditions (3c) of problem (3) are applied on the ex-
ternal fluid-fluid interfaces Γff. Neumann boundary conditions (3b) and 
(6b) of problems (4) and (6) are applied on the solid-fluid interface Γsf. 
In addition, boundary conditions (6b) are applied on Γff

3 and Γff
4 (Γff

1 

and Γff
2), when problem (6) is solved in direction y1 (in direction y2 

respectively). The Dirichlet boundary conditions (6c)-(6d) are applied 
on Γff

1 with u1 = 1 and on Γff
2 with u1 = 0 in direction y1 (on Γff

3 with 
u2 = 1 and on Γff

4 with u2 = 0 in direction y2). 
Afterwards, we solve the motion eq. (7) of massless particles by 

injecting N = 200 particles on boundary Γff
1 and on boundary Γff

3 

corresponding to the inlet, according to y1 and y2 directions. The N 
particles injected are uniformly distributed on the inlet boundaries and 
they are collected on boundaries Γff

2 and Γff
4. The velocity of particles is 

then computed from the flux diffusion streamlines obtained using the 
gradient of variables u1 and u2 as follows: 

u
y
u
y

u
y
u
y

v = v =;1

1

1

1

2

2

2

1

2

2 (11)  

Fig. 5. (a) Variation of tortuosity versus porosity φ. (b) Variation of constrictivity δ versus porosity φ.  

Fig. 6. Elementary cell with circular inclusion.  

Fig. 7. (a) Variation of Dhom/D versus porosity. (b) Path travelled by each particle for φ = 49.7%.  
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The determination of the vector position from eq. (7) enables to 
calculate the distance travelled by each particle in the two-dimensional 
porous medium. Finally, we determine the tortuosity using eq. (5) and 
we deduce the constrictivity form eq. (4). 

We use finite element method to solve problems (3), (6) and (7). The 

mesh is refined in the vicinity of solid-fluid interface Γsf (Fig. 11), where the 
code color represents the normalized size of triangular element of the mesh. 

Fig. 12(a) and 12(b) show the average3 of components χ1 and χ2 of 
vector χ in direction y1 and y2, respectively for sample number 5 with 
porosity of 40%. From vector χ, we calculate the components of 
homogenized diffusion tensor Dhom/D. The numerical values of the 
relative diagonals values D11

hom/D and D22
hom/D are summarized in  

Table 2. We notice that the values of D11
hom/D and D22

hom/D present 
some dispersion for fixed porosity (see Fig. 13) due to the difference on 
the grain size distribution presented in Fig. 10. This dispersion becomes 
more important with the increase of the porosity. 

The variations of the mean value and the standard deviation (error 
bar) of D11

hom/D and of D22
hom/D as function of porosity are presented 

in Fig. 13. In that case, the mean value is the arithmetic average on the 
samples with fixed porosity. As expected, the relative homogenized 
diffusion coefficients increase with φ. We observe that the mean values 
of D11

hom/D and of D22
hom/D are close due to the relatively large 

number of samples considered for each porosity and to the random 

process used. In this case, we can consider the homogenized diffusion 
tensor and the microstructure as (nearly) isotropic. 

Fig. 8. (a) Variation of tortuosity versus φ. (b) Variation of constrictivity versus φ.  

Fig. 9. Periodic elementary cell of the random porous medium (bi-dimensional 
case). 

Table 1 
Geometrical parameters of the six samples considered for each value of porosity.                

φ = 40% φ = 50% 

Samples 1 2 3 4 5 6 1 2 3 4 5 6  

Nbc 256 232 272 324 436 207 90 72 78 56 189 109 
min(R) × 10−3 7.55 7.54 7.51 7.50 7.50 7.59 7.66 7.63 7.95 8.79 7.61 7.65 
max(R) × 10−1 1.46 1.45 1.45 1.30 1.39 1.45 1.31 1.42 1.44 1.27 1.38 1.41 

×R 10 2 1.87 1.90 1.77 1.70 1.54 2.19 3.03 3.42 3.45 3.98 2.17 2.86 
σ × 10−2 1.99 2.15 1.97 1.73 1.42 2.11 2.93 3.25 2.93 3.57 1.93 2.58                 

φ = 60% φ = 70% 

Samples 1 2 3 4 5 6 1 2 3 4 5 6  

Nbc 20 63 43 36 36 67 30 22 28 28 24 18 
min(R) × 10−3 7.68 7.83 12.9 8.79 7.55 7.82 7.77 10.4 7.94 10.2 9.64 9.45 
max(R) × 10−1 1.38 1.42 1.11 1.26 1.41 1.12 1.43 1.41 1.33 1.27 1.07 1.43 

×R 10 2 6.76 3.63 4.63 4.96 4.90 3.46 4.59 5.54 4.85 4.83 5.38 6.13 
σ × 10−2 4.39 2.67 2.96 3.32 3.42 2.67 3.33 3.65 3.23 3.34 3.37 4.04 

3 The average is calculated on the six samples tested and listed in Table 1. 
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Figs. 14(a) and 14(b) show the trajectories in the direction y1 and y2 

respectively with a normalized magnitude velocity distribution. 
Tortuosity τ11 and τ22 are determined from eq. (5) in the direction y1 

and y2 respectively. These values are presented in Table 2 for each 
sample. 

Fig. 15 shows the variation of the mean value of the tortuosity and 
2 with respect to the porosity φ in direction y1 and y2. In the same 

figure, the variation of the mean values of the ratios Dφ/D11
hom and Dφ/ 

D22
hom versus porosity are plotted. The difference between mean value 

of τii
2 and the ratio Dφ/Dii

hom can be quantified by the constrictivity δ11 

and δ22 in direction y1 and y2 as in previous cases (Table 2). 
Fig. 16(a) shows the variation of the average constrictivity versus 

the porosity in directions y1 and y2. We note that the constrictivities 11
and 22 increase with porosity and tend to unity for high porosity 

values. In addition, we observe that the constrictivity <11 22 , except 
for porosity of 50%. This is due to the variation of homogenized dif-
fusion tensor components, which present the same behavior in Fig. 13 
(even if it is less marked). The specific surface =Sp

sf takes into 
account the size and number of inclusions composing the numerical 
porous medium. For a fixed porosity, we note that the specific surface is 
different for different samples having the same porosity (Table 2). For a 
fixed value of the porosity, the specific surface presents a dispersion 
linked to the random way of generating the random porous medium. 
This dispersion is more important for smallest porosities and decreases 
strongly for higher porosities (Fig. 16(b)). We notice that the tortuosity 
increases and constricitivity decreases with the increase of the specific 
surface Sp. Indeed, when the discs are closer, the paths length required 
to bypass the solid obstacles increases. If constrictivity is considered to 
be the ratio of smallest to highest pore sizes, the increase of Sp leads to a 
pore size decrease, which corresponds to a decrease of constricivity. 

3.4. Discussion and comparison 

In this numerical study, we are interested in the calculation of the 
geometrical parameters of porous media and in the determination of 
the tortuosity and constrictivity with particular application to ce-
mentitious materials. The first case studied concern a unit cell con-
stituted of a single pore with variable size. This simple geometry al-
lowed us to highlight the effect of constrictivity and tortuosity in the 
diffusion process in a porous media and to extract its effect from the 
macroscopic ratio Dφ/Dhom obtained by periodic homogenization and 
often used in literature. These results were confirmed by the second 
example considered (a unit cell with a circular inclusion) where the 
effects of tortuosity and constrictivity are more important. In both 
cases, we observe the decreasing of tortuosity and the increasing of 
constrictivity when porosity increases. The last more complex case 
studied is a random porous media composed of polydisperse circular 
inclusions. The variation of Dφ/Dhom is slightly different in the two 
directions due to a non perfectly isotropic granular assembly. The same 

Fig. 10. Grain size distribution curve for different porosities.  

Fig. 11. Mesh size distribution (the code color corresponds to the size of ele-
ments). 
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tendency is still observed with an amplification of the variations. In 
addition, the constrictivity in this case presents some dispersion due to 
the random way to generate the porous medium. The specific surface 
which takes into account the variation of the number and size inclu-
sions, seems to have also an important effect on the constrictivity. 

Let us now try to compare4 the order of magnitude the results ob-
tained here to some existing experimental and numerical models of the 
literature (Figs. 17 and 18). First, we propose to compare the ratio Dφ/ 
Dii

hom for random porous medium to experimental data obtained from 
diffusion test of chloride in cement paste. This experimental data are 
represented by the fitted evolution laws of the measured values. In 
addition, numerical models are used for this comparison as the results 
of Feng et al. [58] and Damrongwiriyanupap et al. [59] which give a 
good approximation of chloride diffusivity in cement paste. We notice 

Fig. 12. Numerical results for the sample number 5 with a porosity φ = 0.4. (a) Distribution of χ1. (b) Distribution of χ2.  

Table 2 
Numerical results obtained on the six different samples for each value of porosity.                

φ = 40% φ = 50% 

Samples 1 2 3 4 5 6 1 2 3 4 5 6  

Sp 30.23 27.80 30.39 34.69 42.11 28.55 17.16 15.49 16.93 14.03 25.74 19.59 
D11

hom/D 0.216 0.204 0.211 0.212 0.223 0.212 0.283 0.271 0.302 0.317 0.275 0.294 
D22

hom/D 0.211 0.215 0.216 0.219 0.218 0.215 0.296 0.278 0.275 0.266 0.311 0.288 
τ11 1.177 1.173 1.171 1.158 1.163 1.159 1.128 1.117 1.116 1.119 1.141 1.130 
τ22 1.173 1.159 1.172 1.149 1.168 1.157 1.131 1.122 1.134 1.128 1.138 1.142 
δ11 0.637 0.598 0.618 0.614 0.649 0.615 0.640 0.608 0.675 0.710 0.628 0.667 
δ22 0.619 0.625 0.635 0.631 0.636 0.623 0.670 0.626 0.625 0.600 0.710 0.660                 

φ = 60% φ = 70% 

Samples 1 2 3 4 5 6 1 2 3 4 5 6  

Sp 8.49 14.37 12.50 11.23 11.09 14.57 8.66 7.66 8.54 8.51 8.12 6.94 
D11

hom/D 0.369 0.400 0.388 0.374 0.353 0.383 0.487 0.461 0.511 0.494 0.493 0.546 
D22

hom/D 0.375 0.381 0.330 0.388 0.412 0.401 0.506 0.535 0.509 0.504 0.514 0.465 
τ11 1.100 1.100 1.093 1.102 1.117 1.107 1.068 1.092 1.094 1.076 1.072 1.063 
τ22 1.106 1.112 1.095 1.089 1.109 1.119 1.080 1.077 1.079 1.077 1.090 1.082 
δ11 0.679 0.733 0.712 0.686 0.659 0.708 0.743 0.719 0.799 0.759 0.755 0.829 
δ22 0.694 0.707 0.607 0.705 0.763 0.748 0.781 0.824 0.785 0.775 0.802 0.719 

Fig. 13. Variation of the mean value of the relative homogenized diffusion 
coefficients in direction y1 and y2 versus porosity. The error bar represents the 
dispersion (standard deviation) of the results. 

4 It is important to underscore that the comparison is mainly illustrative as 
our simulations are in 2D whereas the experimental results are obtained in 3D. 
Moreover, the latter have been fitted and sometimes extrapolated for a possible 
comparison. 
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that our results are of the same order as the experimental data for the 
high porosities, the gap becomes more important for the low porosities. 

On Fig. 18, we compare the squared tortuosity obtained for the 
random porous media of Fig. 9 to the some empirical expressions ob-
tained from numerical simulations of 2D and 3D geometry [31,60–63]. 

We remark that there is significant differences between our model and 
models of random squared overlapping inclusions [60–62]. For high 
porosities (φ  >  0.5), our model gives squared tortuosity value closer to 
those obtained in the case of the cubic and tetrahedral packings of 
monosized spherical inclusions [63]. In the case of a circular inclusion, 

Fig. 14. Numerical results for the sample number 5 with a porosity φ = 0.4. (a) Particle trajectories with the normalized velocity in direction y1. (b) Particle 
trajectories with the normalized velocity in direction y2. 

Fig. 15. Variation of the mean value of the tortuosity in direction y1 and y2 

versus porosity. 

Fig. 16. (a) Variation of constrictivity mean value versus porosity. (b) Variation of specific surface mean value versus porosity.  

Fig. 17. Comparison of Dφ/Dhom with experimental and numerical results in 
literature. 
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the model developed by Sun el al. [31], where the tortuosity is ex-
pressed with respect to porosity as τ = 1 − p ln (φ), is very closer to our 
results with p = 0.409 (see eq. (24) of [31]). 

4. Conclusion 

In this study, we presented a new approach to calculate numerically 
the tortuosity and the constrictivity of the pores network of a porous 
medium, for application to cementitious materials. In this context, the 
asymptotic periodic homogenization method was used to calculate a 
homogenized diffusion coefficient of non-reactive and non-charged 
particles. The latter is directly related to the geometry of the porous 
medium microstructure considered by means of the formation factor. It 
has been shown that the diffusion coefficient increases with the in-
crease in the porosity. Then, the monitoring of particles injected in the 
porous network allowed calculating numerically the tortuosity of the 
medium. It was noted that the calculated tortuosity value is lower than 
the relative diffusion coefficient, which derives from the homogeniza-
tion procedure. The difference is attributed to the constrictivity factor, 
which is deduced from this difference. In addition, the study presented 
in this paper aims at considering the effect of various parameters 
characterizing the microstructure, such as porosity, grain size dis-
tribution, specific surface of the pores and geometry of the porous 
medium, on the tortuosity and the constrictivity of pore network. The 
results indicate that:  

• The values of the constrictivity evolve as the porosity. Regarding the 
tortuosity, its evolution is inversely proportional to the porosity of 
the medium.  

• The grain size distribution affects the values of the tortuosity and 
constrictivity of the pore network, due to the variation of the spe-
cific surface. In fact, for the same porosity, the tortuosity increases 
and the constrictivity of pore network decreases with the increase in 
the specific surface. In this case, the solid inclusions are larger and 
closer, they induce an increase in the paths necessary to get around 
the solid phase in the medium.  

• For representative cells with generated inclusions, the study proved 
that the length of the particle path increases in the vicinity of the 
inclusions which oppose their trajectory. Consequently, a smaller 
constrictivity of the pore network and a slightly higher tortuosity 
were observed.  

• Finally, concerning the most realistic case where the microstructure 
of the material is generated in a random way, the calculated tortu-
osity and constrictivity are different in the main directions of the 
medium due to the anisotropy of the microstructure. 

This work provides fundamental data for a better understanding of 
the tortuosity and constrictivity of pore networks of complex materials. 
However, the geometries considered in this study allow obtaining 
porosities that can correspond to those of usually cement pastes and 
mortars. On the other hand, the case of concrete, with lower porosity 
(sometimes < 15%), was not tackled in this study. It is therefore pos-
sible subsequently to extend this work to analyze in depth the effect the 
microstructural parameters governing the durability of concrete. We 
can consider the implementation of an approach allowing studying 
geometries corresponding to those of cementitious materials with very 
low porosities and in 3D dimensions for more realistic microstructure 
models. 

Declaration of Competing Interest 

The authors whose names are listed immediately below certify that 
they have NO a_liations with or involvement in any organization or 
entity with any _nancial interest (such as honoraria; educational grants; 
participation in speakers' bureaus; membership, employment, con-
sultancies, stock ownership, or other equity interest; and expert testi-
mony or patent-licensing arrangements), or non-_nancial interest (such 
as personal or professional relationships, a_liations, knowledge or be-
liefs) in the subject matter or materials discussed in this manuscript. 

Acknowledgements 

The authors would like to express their sincere thanks to the NEEDS 
program for having supported this work. 

References 

[1] A. Aït-Mokhtar, O. Amiri, O. Poupard, P. Dumargue, A new method for determi-
nation of chloride flux in cement-based materials from chronoamperometry, Cem. 
Concr. Compos. 26 (2004) 339–345. 

[2] M. Singh, R. Siddique, A. Aït-Mokhtar, R. Belarbi, Durability properties of concrete 
made with high volumes of low-calcium coal bottom ash as a replacement of two 
types of sand, J. Mater. Civ. Eng. 28 (2016) 04015175. 

[3] M. Qin, A. Aït-Mokhtar, R. Belarbi, Two-dimensional hygrothermal transfer in 
porous building materials, Appl. Therm. Eng. 30 (2010) 2555–2562 Selected Papers 
from the 12th Conference on Process Integration, Modelling and Optimisation for 
Energy Saving and Pollution Reduction. 

[4] P. Turcry, L. Oksri-Nelfia, A. Younsi, A. Aït-Mokhtar, Analysis of an accelerated 
carbonation test with severe preconditioning, Cem. Concr. Res. 57 (2014) 70–78. 

[5] O. Amiri, A. Aït-Mokhtar, M. Sarhani, Tri-dimensional modelling of cementitious 
materials permeability from polymodal pore size distribution obtained by mercury 
intrusion porosimetry tests, Adv. Cem. Res. 17 (2005) 39–45. 

[6] Q. Zeng, K. Li, T. Fen-Chong, P. Dangla, Pore structure characterization of cement 
pastes blended with high-volume fly-ash, Cem. Concr. Res. 42 (2012) 194–204. 

[7] R. He, H. Ma, R.B. Hafiz, C. Fu, X. Jin, J. He, Determining porosity and pore net-
work connectivity of cement-based materials by a modified non-contact electrical 
resistivity measurement: experiment and theory, Mater. Des. 156 (2018) 82–92. 

[8] Z. Hu, M. Wyrzykowski, K. Scrivener, P. Lura, A novel method to predict internal 
relative humidity in cementitious materials by 1h nmr, Cem. Concr. Res. 104 (2018) 
80–93. 

[9] A. Plassais, M.-P. Pomiès, N. Lequeux, P. Boch, J.-P. Korb, D. Petit, Micropore size 
analysis in hydrated cement paste by nmr, Comptes Rendus de l’Académie des 
Sciences-Series IIC-Chemistry 4 (2001) 805–808. 

[10] A.J. Allen, J.J. Thomas, Analysis of c–s–h gel and cement paste by small-angle 
neutron scattering, Cem. Concr. Res. 37 (2007) 319–324. 

[11] M. Rangelov, S. Nassiri, Empirical time-dependent tortuosity relations for hydrating 
mortar mixtures based on modified archie’s law, Constr. Build. Mater. 171 (2018) 
825–838. 

[12] R. Zhong, M. Xu, R.V. Netto, K. Wille, Influence of pore tortuosity on hydraulic 
conductivity of pervious concrete: characterization and modeling, Constr. Build. 
Mater. 125 (2016) 1158–1168. 

[13] B. Xiao, S. Wang, Y. Wang, G. Jiang, Y. Zhang, H. Chen, M. Liang, G. Long, X. Chen, 
Effective thermal conductivity of porous media with roughened surfaces by fractal- 
Monte Carlo simulations, Fractals 28 (2020) 2050029. 

[14] M. Liang, C. Fu, B. Xiao, L. Luo, Z. Wang, A fractal study for the effective electrolyte 
diffusion through charged porous media, Int. J. Heat Mass Transf. 137 (2019) 
365–371. 

[15] B. Xiao, W. Wang, X. Zhang, G. Long, J. Fan, H. Chen, L. Deng, A novel fractal 
solution for permeability and kozeny-carman constant of fibrous porous media 
made up of solid particles and porous fibers, Powder Technol. 349 (2019) 92–98. 

[16] A.M. Rad, B. Ghahraman, M. Sadegh, Revising tortuosity and multi-fractal as-
sumptions of unsaturated hydraulic conductivity from critical path analysis of 

Fig. 18. Comparison of 2 with numerical results in literature.  

M.K. Bourbatache, et al.   International Communications in Heat and Mass Transfer 117 (2020) 104786

11

http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0005
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0005
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0005
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0010
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0010
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0010
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0015
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0015
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0015
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0015
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0020
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0020
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0025
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0025
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0025
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0030
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0030
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0035
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0035
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0035
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0040
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0040
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0040
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0045
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0045
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0045
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0050
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0050
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0055
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0055
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0055
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0060
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0060
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0060
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0065
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0065
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0065
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0070
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0070
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0070
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0075
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0075
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0075
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0080
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0080


percolation theory, Geoderma 352 (2019) 213–227. 
[17] X. Zeng, L. Chen, K. Zheng, C. Ling, H. Zhu, H. Liu, P. Wang, K. Li, Z. Liu, M. Wang, 

Electrical resistivity and capillary absorption in mortar with styrene-acrylic emul-
sion and air-entrained agent: improvement and correlation with pore structure, 
Constr. Build. Mater. 255 (2020) 119287. 

[18] Z.E.A. Fellah, S. Berger, W. Lauriks, C. Depollier, C. Aristegui, J.-Y. Chapelon, 
Measuring the porosity and the tortuosity of porous materials via reflected waves at 
oblique incidence, The Journal of the Acoustical Society of America 113 (2003) 
2424–2433. 

[19] B. Boukhatem, R. Rebouh, A. Zidol, M. Chekired, A. Tagnit-Hamou, An intelligent 
hybrid system for predicting the tortuosity of the pore system of fly ash concrete, 
Constr. Build. Mater. 205 (2019) 274–284. 

[20] M.A.B. Promentilla, T. Sugiyama, T. Hitomi, N. Takeda, Quantification of tortuosity 
in hardened cement pastes using synchrotron-based x-ray computed micro-
tomography, Cem. Concr. Res. 39 (2009) 548–557. 

[21] Z. Ranachowski, D. Jóźwiak-Niedźwiedzka, P. Ranachowski, M. Dabrowski, 
S. Kudela, T. Dvorak, The determination of diffusive tortuosity in concrete speci-
mens using x-ray microtomography, Arch. Metall. Mater. 60 (2015) 1115–1119. 

[22] Y.-S. Wang, J.-G. Dai, X-ray computed tomography for pore-related characterization 
and simulation of cement mortar matrix, NDT and E International 86 (2017) 28–35. 

[23] L. Shen, Z. Chen, Critical review of the impact of tortuosity on diffusion, Chem. Eng. 
Sci. 62 (2007) 3748–3755. 

[24] M. Shafikhani, S. Chidiac, A holistic model for cement paste and concrete chloride 
diffusion coefficient, Cem. Concr. Res. 133 (2020) 106049. 

[25] R.A. Patel, Q.T. Phung, S.C. Seetharam, J. Perko, D. Jacques, N. Maes, 
G.D. Schutter, G. Ye, K.V. Breugel, Diffusivity of saturated ordinary portland ce-
ment-based materials: A critical review of experimental and analytical modelling 
approaches, Cem. Concr. Res. 90 (2016) 52–72. 

[26] Y. Dhandapani, M. Santhanam, Investigation on the microstructure-related char-
acteristics to elucidate performance of composite cement with limestone-calcined 
clay combination, Cem. Concr. Res. 129 (2020) 105959. 

[27] M. Barrande, R. Bouchet, R. Denoyel, Tortuosity of porous particles, Anal. Chem. 79 
(2007) 9115–9121. 

[28] J. Comiti, M. Renaud, A new model for determining mean structure parameters of 
fixed beds from pressure drop measurements: application to beds packed with 
parallelepipedal particles, Chem. Eng. Sci. 44 (1989) 1539–1545. 

[29] E. Mauret, M. Renaud, Transport phenomena in multi-particle systems—i. limits of 
applicability of capillary model in high voidage beds-application to fixed beds of 
fibers and fluidized beds of spheres, Chem. Eng. Sci. 52 (1997) 1807–1817. 

[30] L. Pisani, Simple expression for the tortuosity of porous media, Transp. Porous 
Media 88 (2011) 193–203. 

[31] Z. Sun, X. Tang, G. Cheng, Numerical simulation for tortuosity of porous media, 
Microporous Mesoporous Mater. 173 (2013) 37–42. 

[32] S.-Y. Chung, J.-S. Kim, D. Stephan, T.-S. Han, Overview of the use of micro-com-
puted tomography (micro-ct) to investigate the relation between the material 
characteristics and properties of cement-based materials, Constr. Build. Mater. 229 
(2019) 116843. 

[33] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic 
Structures, Volume 374, American Mathematical Soc. (2011). 

[34] J. B. Keller, Effective behavior of heterogeneous media, in: Statistical mechanics 
and statistical methods in theory and application, Springer, 1977, pp. 631–644. 

[35] E.S. Palencia, Non-homogeneous Media and Vibration Theory, Lecture Notes in 
Physics 127, (1980). 

[36] J.-L. Auriault, P. Adler, Taylor dispersion in porous media: analysis by multiple 
scale expansions, Adv. Water Resour. 18 (1995) 217–226. 

[37] K. Bourbatache, O. Millet, A. Aït-Mokhtar, Ionic transfer in charged porous media. 
Periodic homogenization and parametric study on 2d microstructures, Int. J. Heat 
Mass Transf. 55 (2012) 5979–5991. 

[38] F. Bennai, K. Abahri, R. Belarbi, A. Tahakourt, Periodic homogenization for heat, 
air, and moisture transfer of porous building materials, Numerical Heat Transfer, 
Part B: Fundamentals 70 (2016) 420–440. 

[39] W. Mchirgui, O. Millet, O. Amiri, R. Belarbi, Moisture transport in cementitious 
materials. Periodic homogenization and numerical analysis, Eur. J. Environ. Civ. 
Eng. 21 (2017) 1026–1042. 

[40] W. Mchirgui, O. Millet, O. Amiri, Modelling moisture transport for a predominant 
water vapour diffusion in a partially saturated porous media, Eur. J. Environ. Civ. 
Eng. 17 (2013) 202–218. 

[41] E. Bosco, R. Claessens, A.S. Suiker, Multi-scale prediction of chemo-mechanical 
properties of concrete materials through asymptotic homogenization, Cem. Concr. 
Res. 128 (2020) 105929. 

[42] T. Fatima, N. Arab, E.P. Zemskov, A. Muntean, Homogenization of a re-
action–diffusion system modeling sulfate corrosion of concrete in locally periodic 
perforated domains, J. Eng. Math. 69 (2011) 261–276. 

[43] R. Rezakhani, M. Alnaggar, G. Cusatis, Multiscale homogenization analysis of al-
kali–silica reaction (asr) effect in concrete, Engineering 5 (2019) 1139–1154. 

[44] K. Miled, O. Limam, Effective thermal conductivity of foam concretes: homo-
genization schemes vs experimental data and fem simulations, Mech. Res. Commun. 
76 (2016) 96–100. 

[45] P. Xiao, Z. Yifeng, W. Peng, L. Dan, Estimation of thermal conduction in hollow- 
glass-beads-filled cement-based composites by variational asymptotic homo-
genization method, Appl. Therm. Eng. 114191 (2019). 

[46] V. Nguyen, B. Nedjar, H. Colina, J.-M. Torrenti, A separation of scales homo-
genization analysis for the modelling of calcium leaching in concrete, Comput. 
Methods Appl. Mech. Eng. 195 (2006) 7196–7210. 

[47] K. Bourbatache, O. Millet, A. Aït-Mokhtar, Multi-scale periodic homogenization of 
ionic transfer in cementitious materials, Heat Mass Transf. 52 (2016) 1489–1499. 

[48] K. Bourbatache, O. Millet, A. Aït-Mokhtar, O. Amiri, Modeling the chlorides 
transport in cementitious materials by periodic homogenization, Transp. Porous 
Media 94 (2012) 437–459. 

[49] J. Turjanicová, E. Rohan, V. Lukeš, Homogenization based two-scale modelling of 
ionic transport in fluid saturated deformable porous media, Comput. Math. Appl. 78 
(2019) 3211–3235. 

[50] G. Allaire, R. Brizzi, J.-F. Dufrêche, A. Mikelić, A. Piatnitski, Ion transport in porous 
media: derivation of the macroscopic equations using upscaling and properties of 
the effective coefficients, Comput. Geosci. 17 (2013) 479–495. 

[51] G. Allaire, R. Brizzi, A. Mikelić, A. Piatnitski, Two-scale expansion with drift ap-
proach to the Taylor dispersion for reactive transport through porous media, Chem. 
Eng. Sci. 65 (2010) 2292–2300. 

[52] K. Bourbatache, O. Millet, A. Aït-Mokhtar, O. Amiri, Chloride transfer in cement- 
based materials. Part 1. Theoretical basis and modelling, Int. J. Numer. Anal. 
Methods Geomech. 37 (2013) 1614–1627. 

[53] T.B. Boving, P. Grathwohl, Tracer diffusion coefficients in sedimentary rocks: cor-
relation to porosity and hydraulic conductivity, J. Contam. Hydrol. 53 (2001) 
85–100. 

[54] T. Ishida, P.O. Iqbal, H.T.L. Anh, Modeling of chloride diffusivity coupled with non- 
linear binding capacity in sound and cracked concrete, Cem. Concr. Res. 39 (2009) 
913–923. 

[55] J. Beaudoin, R. Feldman, P. Tumidajski, Pore structure of hardened Portland ce-
ment pastes and its influence on properties, Adv. Cem. Based Mater. 1 (1994) 
224–236. 

[56] Q.T. Phung, N. Maes, E. Jacops, D. Jacques, G.D. Schutter, G. Ye, Insights and issues 
on the correlation between diffusion and microstructure of saturated cement pastes, 
Cem. Concr. Compos. 96 (2019) 106–117. 

[57] K. Bourbatache, O. Millet, A. Aït-Mokhtar, O. Amiri, Chloride transfer in cement- 
based materials. Part 2. Experimental study and numerical simulations, Int. J. 
Numer. Anal. Methods Geomech. 37 (2013) 1628–1641. 

[58] P. Feng, C. Miao, J.W. Bullard, A model of phase stability, microstructure and 
properties during leaching of Portland cement binders, Cem. Concr. Compos. 49 
(2014) 9–19. 

[59] N. Damrongwiriyanupap, S. Scheiner, B. Pichler, C. Hellmich, Self-consistent 
channel approach for upscaling chloride diffusivity in cement pastes, Transp. 
Porous Media 118 (2017) 495–518. 

[60] A. Koponen, M. Kataja, J. Timonen, Tortuous flow in porous media, Phys. Rev. E 54 
(1996) 406–410. 

[61] A. Koponen, M. Kataja, J. Timonen, Permeability and effective porosity of porous 
media, Phys. Rev. E 56 (1997) 3319–3325. 

[62] A. Nabovati, A.C.M. Sousa, Fluid flow simulation in random porous media at pore 
level using lattice boltzmann method, in: F.G. Zhuang, J.C. Li (Eds.), New Trends in 
Fluid Mechanics Research, Springer, Berlin Heidelberg, Berlin, Heidelberg, 2009, 
pp. 518–521. 

[63] M.M. Ahmadi, S. Mohammadi, A.N. Hayati, Analytical derivation of tortuosity and 
permeability of monosized spheres: a volume averaging approach, Phys. Rev. E 83 
(2011) 026312.  

M.K. Bourbatache, et al.   International Communications in Heat and Mass Transfer 117 (2020) 104786

12

http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0080
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0085
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0085
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0085
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0085
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0090
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0090
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0090
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0090
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0095
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0095
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0095
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0100
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0100
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0100
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0105
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0105
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0105
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0110
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0110
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0115
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0115
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0120
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0120
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0125
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0125
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0125
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0125
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0130
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0130
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0130
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0135
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0135
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0140
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0140
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0140
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0145
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0145
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0145
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0150
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0150
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0155
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0155
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0160
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0160
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0160
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0160
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0165
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0165
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0170
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0170
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0175
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0175
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0180
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0180
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0180
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0185
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0185
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0185
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0190
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0190
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0190
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0195
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0195
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0195
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0200
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0200
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0200
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0205
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0205
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0205
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0210
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0210
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0215
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0215
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0215
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0220
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0220
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0220
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0225
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0225
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0225
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0230
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0230
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0235
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0235
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0235
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0240
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0240
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0240
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0245
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0245
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0245
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0250
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0250
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0250
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0255
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0255
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0255
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0260
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0260
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0260
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0265
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0265
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0265
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0270
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0270
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0270
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0275
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0275
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0275
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0280
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0280
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0280
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0285
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0285
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0285
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0290
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0290
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0290
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0295
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0295
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0300
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0300
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0305
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0305
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0305
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0305
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0310
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0310
http://refhub.elsevier.com/S0735-1933(20)30314-6/rf0310

	Determination of geometrical parameters of the microstructure of a porous medium: Application to cementitious materials
	Introduction
	Double-scale asymptotic method
	Numerical simulations and parametric study
	Case of one pore with variable size
	Case of a circular inclusion
	Case of a random porous media
	Discussion and comparison

	Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References




