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Abstract
Extreme weather and climate events associated with El Niño and La Niña cause massive societal
impacts. Therefore, observations and forecasts are used around the world to prepare for such
events. However, global warming has caused warm El Niño events to seem bigger than they are,
while cold La Niña events seem smaller, in the commonly used Niño3.4 index (sea surface
temperature (SST) anomalies over 5◦ S–5◦ N, 120–170◦ W). We propose a simple and elegant
adjustment, defining a relative Niño3.4 index as the difference between the original SST anomaly
and the anomaly over all tropical oceans (20◦ S–20◦ N). This relative index describes the onset of
convection better, is not contaminated by global warming and can be monitored and forecast in
real-time. We show that the relative Niño3.4 index is better in line with effects on rainfall and
would be more useful for preparedness for El Niño and La Niña in a changing climate and for El
Niño—Southern Oscillation research.

1. Introduction

The greatest source of seasonal climate variability is
the El Niño—Southern Oscillation (ENSO), which
drives changes in rainfall and surface temperatures
worldwide (van Oldenborgh et al 2005). ENSO fore-
casts provided by WMO global producing centers
(GPCs) are used to inform regional and national fore-
casts and associated advisories and are routinely used
by a wide range of users around the world to anticip-
ate climate fluctuations, for instance in agriculture,
public health, water management, and commodity
markets.

A key role is played by ENSO indices, which are
used tomonitor events in order to determine when an
ENSO event is ‘declared.’ These declarations are often
the trigger for early action in anticipation of expec-
ted climate conditions. For instance, in 2015, Kenyan
forecasters took note of the ‘strong ElNiño’ forecasted
by GPCs and alerted the general public and appropri-
ate government ministries. Advisories went out, for

instance, to the health and agriculture sectors to plan
for flooding and reduce potential impacts. In addition
to government action, humanitarian organizations
such as the Red Cross mobilized early actions to limit
possible damage. Despite the imperfect correlation
between the strength of El Niño, extreme event tele-
connections, and humanitarian impacts, people often
conflate these parameters and act more readily when
the event is declared ‘strong.’ In this case, Kenya-wide
precipitation indeed turned out to be 35%above aver-
age, but only a few local extreme precipitation events
caused damage.

Following the 2015/16 ‘strong’ El Niño, condi-
tions more similar to La Niña appeared. However,
GPCs disagreed on whether there would be an event
and whether its strength would be greater than ‘weak.’
As a result, forecasters in East Africa were reluctant to
provide strong advisories to key actors in the region.
The following drought across the Horn of Africa,
although only partly attributable to La Niña (Uhe
et al 2018), was poorly anticipated, and is estimated
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Figure 1. Ten-year running means (green) of July–June averaged ENSO indices (red) 1900/01–2019/20, as well as the detrended
index proposed here. (a) SOI index from CRU (Allan et al 1991, Können et al 1998) (multiplied by−1 so that El Niño is positive,
La Niña negative). (b) Niño3.4 index (K) based on ERSST v5 (Huang et al 2017). (c) Index reconstructed from GPCC
precipitation analyses (Schneider et al 2018) using monthly Niño3.4 teleconnections (K). (d) Relative Niño3.4 index (K)
proposed in this paper, based on ERSST v5. (e) Trend in the tropical Pacific 1900–2020 (K/ppm) in the ERSST v5 dataset and (f)
HadSST4 dataset.

to have affected 26.5 million people by June 2017
(Office for the Coordination of Humanitarian Affairs
(OCHA) 2017).

In this paper, we demonstrate that the ‘extremely
strong’ categorization of the 2015/16 El Niño and the
‘weak’ categorization of the 2016 La Niña may have
put both forecasters and users on the wrong footing.
The cause is a contamination of themain ENSO index
by a long-term warming trend from climate change.

We propose a relative index that does not have
this trend. This relative index would indeed have
provided better information on actual ENSO condi-
tions in these El Niño and La Niña events. In addi-
tion, the relative index would have remained neutral
in 2019/20, when the regular Niño3.4 index indicated
El Niño conditions, but the atmospheric circulation
was closer to neutral. Of course as with any ENSO
index there will also still be cases where climate con-
ditions do not fully follow the index: El Niño is not
a simple, one-dimensional phenomenon that is com-
pletely described by a single number.

2. ENSO indices

The oldest ENSO index is the Southern Oscillation
Index (SOI, Walker 1924). It is the normalized sur-
face pressure difference between the tropical Cent-
ral Pacific and West Pacific. The two stations in

these regions with the best records are Tahiti and
Darwin, so the station-based definition uses mainly
these (Allan et al 1991, Können et al 1998). NOAA
CPC also defines an Equatorial SOI based on the pres-
sure difference across the Pacific from the NCEP/N-
CAR R1 reanalysis 1948–now, but the two series are
very similar (r= 0.96 formonthly values 1948–2020).

Figure 1(a) shows the station-based July–June
annual means of the SOI (multiplied by −1 so
that El Niño is positive and La Niña is negative),
together with a 10 year running mean. The July–June
means capture the lifetimes of El Niño and La Niña
events, which typically peak in Boreal winter (Tippett
and L’Heureux 2020). The series has a small, non-
significant trend toward El Niño, mainly caused by
two large and several small El Niño events in 1982–
1998. The ten-year running mean has since reverted
to zero.

However, the SOI is a measure of the atmo-
spheric anomaly, but ENSO is a coupled ocean-
atmosphere vacillation. Ocean surface temperatures
in the equatorial Pacific are used to directly monitor
the strength of ENSO from an oceanic perspective
and aremore directly indicative of the anomalous for-
cing of the atmosphere during ENSO, with the atmo-
sphere not only responding to sea surface temperat-
ure (SST) patterns but also generating weather noise
internally.
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Several SST-based ENSO indices were defined at
the Climate Diagnostics Center following the ship-
track analysis by Rasmusson and Carpenter (1982).
Niño1+2 describes warming close to the South
American coast (‘coastal El Niño’), which is relev-
ant for heavy rain on the Ecuadorian and Peruvian
coast (like in February–March 2017), but only loosely
coupled (r= 0.5 monthly) to the larger-scale warm-
ing along the equator in the eastern-central Pacific
Ocean (‘basin El Niño’) that affects the weather in
the rest of the world. All other indices are defined
on the equatorial wave guide 5◦ S–5◦ N. Niño3
(90–150◦ W) covers the cold tongue region and
Niño4 (160◦ E–150◦ W) the edge of the warm pool.

Later research (e.g. Barnston et al 1997) showed
that a region between Niño3 and Niño4 is best cor-
related to many global teleconnections. This region,
120◦–170◦ W, was named Niño3.4 and is now the
most widely used index to monitor the strength
of El Niño and La Niña (Horsfall 2006). NOAA
provides a widely-used set of Niño indices based on
the ERSST v5 analysis (Huang et al 2017) from 1950–
now. Values from 1854 based on the same dataset,
with larger uncertainties going further back in time,
are available from, e.g. the KNMI Climate Explorer
(see figure 1(b)).

These indices are used extensively because of
the much lower influence of weather noise, which
implies that they have a better signal/noise ratio, and
hence predictability, than the SOI. Forecasts of the
Niño indices, and particularly Niño3.4, are also fre-
quently used as an early indication of global climate
and weather patterns in the upcoming months based
on past teleconnections. Forecast plumes of these
indices are provided from dynamical seasonal fore-
cast models run at, for instance, ECMWF and Aus-
tralian Bureau of Meteorology, and forecasts from
multiple models are provided by, for instance, Coper-
nicus, the North American multi-model ensembles,
and IRI/CPC. The indices are also used to explain and
interpret dynamical forecasts and hence increase trust
in them.

3. Trends in ENSO indices

The problem is that the observed Niño3.4 series has
a clear trend (even disregarding the less-reliable first
few decades), as shown in figure 1(b) (e.g. L’Heureux
et al 2013). To quantify it we prefer not to use a lin-
ear trend, as the warming trend since the industrial
era has accelerated over the last 50 years. We there-
fore define the trend as the regression on the observed
CO2 concentration (Etheridge et al 1996, Ballantyne
et al 2012). The annual global mean temperature has
a correlation of r= 0.94 with this measure over 1880–
2018, given that other forcings such as aerosols are to
a large extent proportional to the CO2 concentration
(Suckling et al 2016), so a regression on the global
mean temperature or another index that has the same

rough shape gives very similar results. Local effects
of global warming are often also described well by
this non-linear trend. The trend in the Niño3.4 index
defined in this way is 0.64 ± 0.18 K/100 ppm (1σ
uncertainty) for July–June averages starting in 1900.
The trend is independent of the season within uncer-
tainties. This entails a statistically significant rise of
0.8 ± 0.3 K since the late 19th century, in contrast to
the SOI without trend.

The most obvious hypothesis is that the SOI
index shows that the properties of ENSO have not
changed substantially over the last century, but that
the Niño3.4 index consists of two components: one
describing the dynamics of ENSO and one that slowly
rises as the globe warms.

To verify this hypothesis, we analyze whether
rainfall teleconnections have changed (figure 1(c)).
For this we reconstruct an ENSO index based on
the teleconnection to precipitation. First, we com-
pute monthly teleconnection patterns by regressing
a global precipitation analysis on the Niño3.4 index
X= regr(Pd,Nd), with Pd the detrended precipita-
tion and Nd the detrended Niño3.4 index. Detrend-
ing is defined here as subtracting the regression on
the CO2 concentration as above. Next, we project
the analyzed precipitation field on these teleconnec-
tion patterns, giving an ENSO index Np based on
whether the observed rainfall patterns coincide with
the teleconnections or not: Np =X× P (the sym-
bol × denotes the integral over the product of the
fields).

Decomposing the precipitation field into ENSO
teleconnections, trends and other variability, P=
XNd +AC+ ε, with C the CO2 concentration that
parametrizes the trend, this gives Np = X×XNd +
A×XC+ ε×X, i.e. the precipitation index is pro-
portional to the original detrended index plus a trend
term that is determined by how much overlap there
is between the precipitation trends A and the ENSO
teleconnection pattern X, plus noise. Note that this
index is most sensitive to high rainfall areas in the
tropics.

We computed this index for a long analysis of
precipitation over land, GPCC 2018 (Schneider et al
2018), extended with the GPCC monitoring analysis
V6 and first guess, 1900–2020. Figure 1(c) shows the
series. Except for the first part it strongly resembles
the SOI with a factor −1: the correlation over 1950–
2020 is r=−0.94. Like the SOI it shows no long-term
trend over the more reliable part of the record since
1950 (and a non-significant negative trend before
that). We verified this result in the CRU TS 4.04 data-
set (Harris et al 2014) 1901–2019, which has zero
trends in the Niño3.4 precipitation index over both
the whole century and the period from 1950 (not
shown). We also considered an OLR based ENSO
index over 1979–2018 (Chiodi and Harrison 2010).
This index shows a non-significant trend toward La
Niña (not shown).
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Figure 2. Left: correlation of the Niño3.4 index with GPCC precipitation 1900–2016 (Schneider et al 2018) in MAM, JJA, SON
and DJF. Middle: difference in correlation with the proposed relative Niño3.4 index. Right: correlation with the global mean
temperature (Hansen et al 2010).

The same conclusion can be drawn from the
spatial structure of the teleconnection patterns. In
figure 2 we show the correlation of precipitation with
the traditional Niño3.4 index for the four meteorolo-
gical seasons (left column) and the difference with the
correlation with a detrended Niño3.4 index (middle
column, see section 4). This difference is very sim-
ilar to the correlation with the global mean temperat-
ure (right column, non-centered field correlations are
0.93–0.94), showing that the correlation maps using
the normal Niño3.4 index do not only describe ENSO
teleconnections but also have an admixture of global
warming trends.

The conclusion is that the traditional Niño3.4
not only describes ENSO but also has a trend due
to global warming, which has very different impacts
from El Niño. The spatial pattern of the observed SST
trend over the past century (figures 1(e) and (f)) also
shows that the warming pattern does not resemble
the ENSOpattern. This agreeswithmodel projections
of ENSO in a warming climate that show no change
in the mean state that resembles El Niño or La Niña
(e.g. Cai et al 2015).

4. A relative Niño3.4 index

Typically, meteorological institutes solve a gradual
trend problem by removing monthly averages over
the past 30 years, more recently the 1981–2010
period (e.g. Arguez et al 2012), although NOAA now
shifts the baseline every five years for the Oceanic
Niño Index (ONI), which is a 3 month averaged
Niño3.4 index. This method has two obvious draw-
backs. Every five years there is a small discontinu-
ity of order 0.1 K. Furthermore, the last 10 years
cannot be computed in real time as the centered
climatology is not yet known, so this correction
is applied later. This method thus leaves a rem-
nant of the trend in the Niño3.4 index for the
current situation and seasonal forecasts—a prob-
lem acknowledged by ENSO forecasters (L’Heureux
et al 2017).

Another way to separate the trend would be to
subtract the regression on an index of global warm-
ing, for instance the global mean temperature or CO2

concentration. However, due to the high variability of
ENSO this trend definition has large uncertainties. It
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would also change all index values retroactively each
year.

We propose to use a a simple but elegant solu-
tion to this problem: the relative Niño3.4 index,
defined as the difference of the original index with
the contemporaneous tropical mean SST anomalies
(20◦ S–20◦ N as proposed by Johnson and Kosaka
(2016)) and shown in figure 1(d). This region has
within uncertainties the same trend as the Niño3.4
index (0.90 ± 0.05 K/100 ppm versus 0.64 ± 0.18
K/100 ppm over 1900–2020), so the trends cancel to
first order in the difference, although the central value
seems to be somewhat overcorrected. The same holds
for the Niño1+2, Niño3 and Niño4 indices, so these
can be similarly defined. If in the future the trends
in the Niño indices diverge from the tropical mean
beyond shifts in ENSO this definition will have to be
revisited.

Aswell as effectively removing the trend, subtract-
ing the tropicalmean SST results in a relative SST (e.g.
Vecchi and Soden 2007, Back and Bretherton 2009,
Johnson and Xie 2010, Khodri et al 2017, Izumo et al
2020) that is of more direct relevance to changes in
tropical convection driven by SST anomalies. These
SST anomalies promote changes in tropical convec-
tion because they cause changes in local static stabil-
ity, e.g. El Niño anomalies act to warm and moisten
the lower troposphere, thus acting to increase precip-
itating convection over the equatorial central Pacific.
However, the resulting tropical upper-tropospheric
temperature is approximately uniform in the hori-
zontal (Sobel et al 2002) and its value is controlled
by the tropical mean SST. A warming (cooling) of the
surface that is limited to a small fraction of the trop-
ics (e.g. as occurs during El Niño or La Niña) acts to
warm and moisten (cool and dry) the atmospheric
boundary layer locally, but does not cause changes
of similar magnitude in the free-tropospheric tem-
perature, since the latter must remain approximately
uniform horizontally. Such local warming (cooling)
thus destabilizes (stabilizes) the overlying atmosphere
(Ramsay and Sobel 2011).

In a warming climate, changes in tropical rain-
fall and even the intensity of tropical cyclones are
more sensitive to changes in relative SST than to back-
ground warming (Johnson and Xie 2010, Ramsay
and Sobel 2011). That is, the pattern of mean SST
warming is important because the largest increases
in rainfall will occur in the regions that warm the
most relative to the tropical mean, referred to as the
warmer-get-wetter paradigm (Xie et al 2010). Uni-
form surface warming in the tropics will thus not act
to appreciably change the local stability and hence
precipitation teleconnections associated with ENSO.
It should be noted that the pattern of surface warm-
ing that has occurred in the Tropics (figure 1(e)) is
different from that expected from increasing green-
house gases based on climate models, which show
maximum warming in the equatorial central Pacific

(Cai et al 2015). The observed warming has not been
uniform so that its effect on ENSO-forced rainfall
changes cannot be simply estimated by the local trend
in SST. Using relative SST to form the Niño indices
will give a much more informative indication of the
expected effects on rainfall (figure 2). Note also that
relative SST can be used to good effect for otherwidely
used indices of tropical variability such as the Dipole
Mode Index in the Indian Ocean.

The relative index also better adjusts for a chan-
ging climatology. As one can see in figure 3(a), the
NOAA CPC ONI has been substantially warmer, up
to about 0.4 ◦C recently (from0.2 ◦C to 0.6 ◦C in indi-
vidual months), than a relative ONIs, which uses 30
year climatologies only through 2015. This is compar-
able with the thresholds used to define El Niño and La
Niña, 0.5 ◦C averaged over three months. The differ-
ence in the last 15 years is the consequence of using
a lagged climatology, which cannot keep up with the
trend.

A technical point is that this index will have a
20% smaller variability than the original Niño3.4
index, as a large part of the interannual variability of
the 20◦ S–20◦ N series is also ENSO-driven. This is
not acceptable for users who rely on fixed categor-
ical thresholds to define events, such as the NOAA
thresholds of ±0.5 ◦C. In addition, statistical mod-
els that use the Niño3.4 index would need refitting.
We therefore propose to renormalize the series to the
same variability as the original Niño3.4 series bymul-
tiplying by 1/(1−A) with A the regression of the 20◦

S–20◦ N SST anomalies on the Niño3.4 index after
taking year-on-year differences to isolate the ENSO
signal. The regression has a strong seasonal cycle, so
it is determined for each month separately (averaging
over the two adjoining months in the fit to increase
the signal/noise ratio).

5. Explained variance and forecast skill

The relative Niño3.4 index explains 9% less
(in MAM) to 1% more (in JJA) of seasonal mean
variance of global land precipitation than the normal
Niño3.4 index. In DJF the decrease in explained vari-
ance is 4% and SON it is 3%. The larger decreases in
boreal autumn, winter and spring coincide with the
seasons in which there are large trends in precipita-
tion in the high latitudes that are correlated with the
trend in the Niño3.4 index (see figure 2). We do not
consider this a desirable property of an ENSO index.
The explained variance in the tropics is on average
the same, 4% less (in MAM) to 2% more (in JJA and
DJF) when using the relative index.

Figure 3(b) shows one measure of forecast skill
in the ECMWF (old) S4 (Molteni et al 2011) and
(current) S5 (Johnson et al 2018) seasonal forecast
systems, the anomaly correlation coefficient at lead
+2 months (i.e. the January index forecast from the
1 November analysis etc). The skill in the relative
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Figure 3. (a) Difference between the relative Ocean Niño Index (ONI) proposed here and the current NOAA/NCEP ONI
definition. (b) Anomaly correlation skill score of Niño3.4 indices at two months lead time (i.e. the third month of each forecast)
from ECMWF seasonal forecast systems. SEAS5 is shown in red (relative Niño3.4) and orange (Niño3.4), S4 in blue (relative
Niño3.4) and purple (Niño3.4). For both models, the choice of index makes only marginal differences to the score. Persistence is
shown in black (relative Niño3.4) and grey (Niño3.4).

Figure 4. As figure 1 but for monthly indices 1996–2020. The SOI and precipitation indices have been smoothed with a 5 month
running mean.

Niño3.4 (red, blue) is slightly lower (∆r ≈ 0.3) than
the standardNiño3.4 index (orange, purple) in boreal
spring. That time of year the variability is low and
therefore the trend contributesmore to the skill of the
Niño3.4 index forecasts. Removing the trend leaves
the proper ENSO teleconnenctions in the interannual
variability and hence lowers the skill. The rest of the
year the skill measure is very similar or slightly higher
(∆r≈ 0.0 to 0.1). Other lead times give similar res-
ults. An official introduction of the relative Niño3.4
index would have to be accompanied withmore thor-
ough verification.

6. Implications of a relative index for
seasonal preparedness

Theuse of relative index,which better describes actual
ENSO conditions, would have immediate implica-
tions for decision-makers. We give a few examples
drawn from the last few years.

The ONI index was above 0.5 in the boreal winter
of 2014/15, although no major operational ENSO
update considered the 2014/15 boreal winter as an El

Niño, mostly because the atmospheric response was
missing (L’Heureux 2015, McPhaden 2015). There
was no clear response in ENSO indices ofOLR, winds,
etc. The RONI actually clarifies this situation because
it classifies 2014/15 as ENSO-neutral. This implies
that trends were playing a role in that winter.

In 2015/16 decision-makers, for instance in our
East African example, may have over-anticipated,
given that the Niño3.4 index indicated an El Niño
of unprecedented strength, and warnings referred to
potential extreme events and impacts comparable to
the intense events of 1997/98 and 1982/83 (neglect-
ing the influences of the Indian Ocean and random
weather). Figure 1(d) shows that by using the relat-
ive Niño3.4 index there is no evidence that recent El
Niño events were much stronger than those in the
late 19th and early 20th century. In particular, the
2015/16 event, although squarely in the class of very
strong events, is not quite as strong in this measure as
the 1997/98 and 1982/83 events. This is also indicated
by other ENSO indices (L’Heureux et al 2017). The
peak monthly absolute Niño3.4 index was higher in
2015/16 (figure 4(b)), but contained a contribution
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from global warming of about 0.3 ◦C relative to
1997/98 and 0.5 ◦C relative to 1982/83.

Using the relative Niño3.4 index also heavily
impacts assessment of the subsequent 2016/17 La
Niña (figure 4). The regular Niño3.4 barely reached
the −0.5 ◦C limit that NOAA uses to define La Niña.
However, the proposed relative index shows it was
a sizeable La Niña, in line with the teleconnections,
e.g. heavy precipitation in Indonesia (already noted
by Ropelewski andHalpert 1987) and depressed rain-
fall during the September–November ‘short rains’ in
parts of the Horn of Africa (e.g. Mutai et al 1998),
which contributed to significant drought conditions.
Decision-makers might have been more alert to these
risks, especially in theHorn of Africa, had the LaNiña
signal beenmore pronounced. It should be noted that
direct seasonal forecast of rain correctly indicated a
large probability of drought, supported by negative
values of the Indian Ocean Dipole index (which also
has a trend). This once again shows that only look-
ing at the Niño3.4 index only captures a part of the
predictable precipitation signal.

A particular example, directly dependent on the
definition of the Niño3.4 index, relates to disaster
risk management by the international humanitarian
system. Just before the 2016/17 La Niña, the Inter-
Agency Standing Committee, the forum for coordin-
ation of humanitarian assistance, was in the process
of developing a set of standard operating proced-
ures (SOPs) to ensure early action to warning signs
of ENSO episodes. These SOPs are triggered at a
55% chance of El Niño or La Niña, which accords
to an ‘El Niño Watch’ status in several forecasting
agencies. This then sets in motion a process of vul-
nerability assessments, mitigation and preparatory
actions, based on teleconnections and seasonal fore-
casts. Because of this threshold for action, the ENSO
index plays a critical role in whether or not preparat-
ory actions are taken.

In the case of the 2016/17 La Niña, the defin-
ition of the index determines the timing of when
the trigger would be reached. The event was defined
by NOAA as starting in the July–September season,
whereas with the detrended index La Niña would
have started in June–August (and would also have
ended later). While we do not have a counterfac-
tual of what the consensus forecast would have been
in real time during this event, this timeline sug-
gests that stronger probabilities of La Niña would
have been available earlier and lasted longer. With
increased attention and lead time, greater and earlier
action could have been taken to prevent some of the
humanitarian impacts of the LaNiña teleconnections:
greater possibility of drought, which indeed mater-
ialized. Adopting the relative Niño3.4 index would
also entail that the forecast plumes at various opera-
tional seasonal prediction centers would show values
that can be compared more directly to the seasonal
forecasts via teleconnection patterns than is currently

the case. This could reduce misunderstandings such
as occurred during the 2016/17 La Niña.

The winter of 2019/20 showed the opposite bias.
Using the 1981–2010 climatology, the NCEP ONI
definition flagged an El Niño during this season as the
ONI was above+0.5 ◦C for five overlapping seasons.
However, the atmospheric state did not show an El
Niño state, with the SOI−0.2 averaged over these sea-
sons (figure 4(a)). Satellite-derived precipitation pat-
terns that also cover the sea also did not resemble El
Niño teleconnections in the tropics with a second pre-
cipitation Niño3.4 index derived from these also only
slightly positive (not shown). Restricted to land the
teleconnections were El Niño-like (figure 4(c)). The
El Niño was so weak that using the relative Niño3.4
index reduced it to neutral during this season. The
OLR index of Chiodi and Harrison (2010) also indic-
ated neutral or La Niña conditions (it does not distin-
guish between these).

It should be noted that ENSO teleconnections
are generally weak compared to internal variabil-
ity. In other specific cases, such as the 2017/18 La
Niña the results go the other direction. Recent evid-
ence on food security interventions has urged caution
in the humanitarian sector not to overemphasize El
Niño events; Choularton and Krishnamurthy (2019)
demonstrated that food security predictions for one
single location (Ethiopia) were least accurate during
the 2015/16 El Niño event. During the ‘weak’ 2018/19
and 2019/20 events, there were limited humanitarian
planning conversations on El Niño.

However, as shown in figure 1 the relative index
does on aggregate reduce the bias in ENSO precip-
itation teleconnections over land and is therefore
more useful than the current definition, especially
in regions with strong teleconnections. Of course if
global warming trends play a role, these should be
included, but as a separate index and not mixed in
with the ENSO index.

7. Conclusions

Niño3.4 is a widely used index for the strength of El
Niño and La Niña, with a better signal/noise ratio
than other indices such as the SOI or precipitation-
based indices. However, because it is a temperature
anomaly, it contains a trend due to global warming.
Comparisons with the other indices that more dir-
ectly monitor the impact of ENSO SST variations on
the atmosphere show that this trend is not part of
ENSO dynamics.

To remove the trend due to global warming we
propose to use the relative Niño3.4 index, construc-
ted by simply subtracting the contemporaneousmean
20◦ S–20◦ N SST anomalies, which have within
uncertainties the same trend, and rescaling. This rel-
ative index also describes the influence of SST on the
atmosphere better on theoretical grounds. The relat-
ive Niño index can easily be computed in real time
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and describes ENSO better than the original index.
It can also be forecast by the current seasonal fore-
cast systems with equal or slightly lower skill than
the normal Niño3.4 index, with the difference in skill
partly due to the absence of common trends. The rel-
ative index also better adjusts for a changing climato-
logy. It is available from the KNMI Climate Explorer
(climexp.knmi.nl) (van Oldenborgh, 2021).

Using it we find that the 2015/16 El Niño was
not stronger than the previous two big ones (1982/83
and 1997/98), and the 2016/17 La Niña was not weak.
The 2019/20 El Niño was another example where the
Niño3.4 index indicated El Niño, but the atmospheric
circulation and the relative Niño3.4 index agree that
the situation was closer to neutral.

The use of the relative index should describe tele-
connections better, makes it easier to construct stat-
istical seasonal forecast models and explain dynam-
ical model forecasts, and provides a better indication
of expected conditions for decision-makers that are
trying to manage weather and climate risks in a chan-
ging climate. It is alsomore suited for ENSO research.

Data availability statement

The data that support the findings of this study
are openly available at the following URL/DOI:
https://climexp.knmi.nl/selectindex.cgi.
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