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a b s t r a c t 

This paper studies semi-global state synchronization of discrete-time homogeneous networks with diffu- 

sive full-state coupling or partial-state coupling subject to actuator saturation and unknown nonuniform 

input delay. We assume that agents are at most critical unstable, that is the agents have all its eigenval- 

ues in the closed unit disc. The communication network is associated with an undirected and weighted 

graph, which is represented by a row stochastic matrix. In this paper, we derive an upper bound for the 

input delay tolerance, which explicitly depends only on the agent dynamics. Moreover, for any unknown 

delay less than the upper bound, we propose a linear static protocol for MAS with full-state coupling and 

a linear dynamic protocol for MAS with partial-state coupling based on a low-gain methodology such 

that state synchronization is achieved among agents for any initial conditions in a priori given compact 

set. 

© 2019 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

The problem of synchronization among agents in a multi-agent

system has received substantial attention, because of its potential

applications in cooperative control of autonomous vehicles, dis-

tributed sensor network, swarming and flocking and others. The

objective of synchronization is to secure an asymptotic agreement

on a common state or output trajectory through decentralized con-

trol protocols (see [1,16,23,42] and references therein). Most work

has focused on state synchronization based on full-state/partial-

state coupling in a homogenous network (i.e. agents have iden-

tical dynamics), where the agent dynamics progress from single-

and double-integrator dynamics to more general dynamics (e.g.,

[11,17,20,21,24,30,34–36,41,46] ). In this case of full-state coupling,

universally, static protocols are considered. While, in the case of

partial-state coupling, the standard approach leads to dynamic,

observer-based protocols. The counterpart of state synchronization

is output synchronization, which is mostly done in heterogeneous

networks (i.e., agents are non-identical). 
∗ Corresponding author. 

E-mail addresses: zhangm@gonzaga.edu (M. Zhang), saberi@eecs.wsu.edu (A. 

Saberi), A .A .Stoorvogel@utwente.nl (A .A . Stoorvogel). 
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In engineering applications, the network model is always

mperfect. In particular, time-delay effects are ubiquitous in any

ommunication scheme. As clarified in [3] , we can identify two

inds of time delay: input delay and communication delay. Input

elay results from processing time to generate an input for each

gent while communication delay refers to the time consumed

uring the transfer of information between agents. Most effort has

een put into input delay problems (see [2,9,12–14,21,32,33] and

44] for example). These references, although including results

n linear and non-linear agents, are mostly restricted to sim-

le agent models such as first/second-order dynamics. Recently,

n [38] and [39] , the synchronization problem under unknown

niform constant input delay is solved for both discrete- and

ontinuous-time high-order linear agents that are critically unsta-

le. This work has been recently extended to unknown nonuniform

nput delay in [49] . In the case of communication delay, some

esults can be found. Tian et al. [32] and [43] consider single-

ntegrator dynamics in the network and it is demonstrated that

he communication delay does not affect the synchronizability

f the network. Munz et al. [18] and [19] give the consensus

onditions for networks with higher-order but SISO dynamics. In

13] , second-order dynamics are investigated, but the commu-

ication delays are assumed known. Recently, [4] and [5] dealt
rved. 

https://doi.org/10.1016/j.ejcon.2019.12.006
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejcon.2019.12.006&domain=pdf
mailto:zhangm@gonzaga.edu
mailto:saberi@eecs.wsu.edu
mailto:A.A.Stoorvogel@utwente.nl
https://doi.org/10.1016/j.ejcon.2019.12.006


M. Zhang, A. Saberi and A.A. Stoorvogel / European Journal of Control 54 (2020) 12–21 13 

w  

c  

c  

v  

d  

s  

[

 

c  

M  

a  

n  

b  

f  

g  

H  

c  

t  

s  

p  

p  

i  

b  

[  

e  

o  

d  

r  

n  

u  

c  

a  

a  

f  

t  

i  

s  

t  

w  

t

 

t  

T  

e  

t  

T  

s  

w  

d  

n  

c  

a  

c  

e  

f  

d  

a  

o  

a  

c  

a  

a  

n  

L  

t  

p

1

 

‖  

v  

b  

d  

a  

u  

K  

i  

r  

c  

n  

a  

i  

s  

m

 

f  

D  

b  

n  

a  

d  

g

t  

 

p  

(  

p  

e  

n  

a  

G  

s  

n  

d  

L

�

2

 

N  

t⎧⎨
⎩
f  

s  

u  

M

σ  

w

s

 

e  
ith nonlinear heterogeneous MAS with unknown non-uniform

onstant communication delay where they solved a delayed syn-

hronization problem. Synchronization for an homogeneous time-

arying network with non-uniform time-varying communication

elay is achieved in [25] (general system) and [7] (single-integrator

ystem). Time-varying communication delay is also considered in

8] for second-order uncertain Euler–Lagrange systems. 

It should be also noted that actuator saturation is pretty

ommon and indeed is ubiquitous in engineering applications. For

AS in the presence of input saturation, usually two problems

re addressed: global synchronization and semi-global synchro-

ization. Global stabilization for MAS with full-state coupling has

een studied by Meng et al. [15] (continuous) and [45] (discrete)

or neutrally stable agents. Chu et al. [6] has considered the

lobal case of partial-state coupling, using an adaptive approach.

owever the observer-based protocol requires extra communi-

ation and the agents are introspective (i.e., agents have access

o part of their states). Semi-global synchronization has been

tudied in [27] and [28] in the case of full-state coupling. For

artial state coupling, there are [26,29] and [40] . All of these

apers actually require extra communication and agents to be

ntrospective. Zhang et al. [47] considers non-introspective agents

ut still requires the extra communication. So far we only find

31] that deals with non-introspective agents and requires no

xtra communication. However, that paper requires the solution

f a nonconvex optimization problem as part of the design of a

ynamic protocol. Moreover, an underlying assumption basically

equires the agents to be passifiable via input feedforward. We

otice that all these papers assume that the network is either

ndirected or is so-called detailed balanced (a slightly weaker

ondition than undirected). One paper dealing with networks that

re not detailed balanced is in [10] , which intrinsically requires the

gents to be single integrator. In [37] semi-global stabilization with

ull-state coupling has been studied for networks which only need

o contain a directed spanning tree. Moreover, the agents are not

ntrospective. Recently, Zhang et al. [48] addressed the semiglobal

tate synchronization for both general continuous/discrete-

ime MASs with full-state coupling or partial-state coupling,

here the network is directed and contains a spanning

ree. 

The objective of this paper is to extend the works in [49] to

he case in the presence of saturation using ideas from [48] .

he idea is to make sure the system input can be squeezed

nough such that the saturation does not get activated. However,

his paper is not a combination of the works in [49] and [48] .

he techniques and arguments regarding how to squeezing the

ystem input are completely different. Therefore, in this paper,

e investigate the semiglobal state synchronization problem for

iscrete-time MAS subject to actuator saturation and unknown

onuniform input delay. Both full-state coupling and partial-state

oupling are considered. The agents in the MAS are general and

t most critically unstable. The network graph is undirected and

onnected. We derive an upper bound for the input delay tol-

rance, which is only dependent on the agent dynamics. Then,

or any unknown input delay satisfying the upper bound, we

esign a linear static protocol in the full-state coupling case and

 linear dynamic protocol in the partial-state coupling case based

n a low-gain methodology, such that state synchronization is

chieved among agents for any initial conditions in a priori given

ompact set. In particular, the saturation can be avoided by tuning

 low-gain parameter in the protocols. Moreover, the protocols

re designed not only for a specific network, but for a set of

etworks. Only the upper bound and lower bound of associated

aplacian matrices are needed for the protocol design. The addi-

ional communication of controller states is also dispensed in this

aper. 
.1. Notations and definitions 

Given a matrix A ∈ C 

m ×n , A 

′ denotes its conjugate transpose,

 A ‖ is the induced 2-norm, and λi ( A ) denotes its i ’th eigen-

alue when m = n . A square matrix A is said to be Schur sta-

le if all its eigenvalues are in the open unit disc. We denote by

iag { a 1 , . . . , a N } or diag { a i } , a diagonal matrix with a i ( i = 1 , . . . , N)

s the diagonal elements, and by col { x 1 , . . . , x N } or col { x i } , a col-

mn vector with x i ( i = 1 , . . . , N) stacked together. A �B depicts the

ronecker product between A and B . I n denotes the n -dimensional

dentity matrix, and 0 n (or 1 n ) denotes zero (or one) column or

ow vector. Sometimes we drop the subscript if the dimension is

lear from the context. Given a transfer matrix G ( j ω), ‖ G ‖ ∞ 

de-

otes the H ∞ 

norm of the system. Suppose two functions f : X → Y

nd g : Y → Z . Then, ( g ◦f ): X → Z is the composite function, mean-

ng (g ◦ f )(x ) = g( f (x )) . Moreover, let L 

n ∞ 

( ̄κ) denote the Banach

pace of finite sequences { y 1 , . . . , y κ̄ } ⊂ C 

n with norm ‖ · ‖ ∞ 

=
ax i {‖ y i ‖} . 

A matrix D = { d i j } N×N is called a row stochastic matrix if d ij ≥ 0

or any i , j and 

∑ n 
j=1 d i j = 1 for i = 1 , . . . , N. A row stochastic matrix

 has at least one eigenvalue at 1 with right eigenvector 1 . D can

e associated with a graph G = (V, E, D ) , where V = { 1 , . . . , N} is a
ode set, E ⊆ V × V is a set of pairs of nodes indicating connections

mong nodes, and D = [ d i j ] ∈ R 

N×N is the weighting matrix, with

 ij > 0 iff ( j, i ) ∈ E and d ii > 0. If d i j = d ji for all i, j ∈ { 1 , . . . , N} , the

raph is called undirected ; otherwise directed . A path from node i 1 
o i k is a sequence of nodes { i 1 , . . . , i k } such that (i j , i j+1 ) ∈ E for

j = 1 , . . . , k − 1 . An undirected graph is connected if there exists a

ath between every pair of nodes. A directed tree is a subgraph

subset of nodes and edges) in which every node has exactly one

arent node except for one node, called the root , which has no par-

nt node. In this case, the root has a directed path to every other

ode in the tree. A directed spanning tree is a subgraph which is

 directed tree containing all the nodes of the original graph. Let

 be the graph associated with D . It is shown in [22] that 1 is a

imple eigenvalue of D if and only if G contains a directed span-

ing tree. Moreover, the other eigenvalues are in the open unit

isc if d ii > 0 for all i . For a weighted graph G, the Laplacian matrix
¯
 = [ � i j ] is defined as L̄ = I − D with 

¯
 i j = 

{
1 − d ii , i = j, 

−d i j , i � = j. 

. Problem formulation 

Consider a discrete-time multiagent system (MAS) composed of

 identical linear time-invariant agents subject to actuator satura-

ion and unknown nonuniform input delay, 
 

 

 

x i (k + 1) = Ax i (k ) + Bσ (u i (k − κi )) , 

y i (k ) = Cx i (k ) , 

x i (ς ) = φi,ς , ς ∈ [ −κ̄ , 0] 

(1) 

or i = 1 , . . . , N, where x i ∈ R 

n , u i ∈ R 

m , y i ∈ R 

p are respectively the

tate, input, and output vectors of agent i , while κi ∈ [0 , κ̄] is an

nknown constant, κ̄ is a known upper bound, and φi ∈ L 

n ∞ 

( ̄κ) .

oreover, 

(u i (k − κi )) = 

⎛ 

⎜ ⎝ 

sat (u i, 1 (k − κi )) 

. . . 

sat (u i,m 

(k − κi )) 

⎞ 

⎟ ⎠ 

with u i = 

⎛ 

⎜ ⎝ 

u i, 1 

. . . 

u i,m 

⎞ 

⎟ ⎠ 

(2)

ith sat (u ) being the standard saturation function, 

at (u ) = sgn (u ) min { 1 , | u |} . 
The communication network provides each agent with a lin-

ar combination of its own outputs relative to that of other
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neighboring agents. In particular, each agent i ∈ { 1 , . . . , N} has ac-

cess to the quantity, 

ζi = 

N ∑ 

j=1 

d i j (y i − y j ) , (3)

where d ij ≥ 0 indicates the communication topology among agents

and D = [ d i j ] is a row stochastic matrix that satisfies d ii > 0. This

communication topology of the network can be described by an

undirected weighted graph G with nodes corresponding to the

agents in the network and the weight of edges given by the co-

efficient d ij . We refer to this network as with partial-state coupling .

Note that if C has full column rank then, without loss of generality,

we can assume that C = I, and the quantity ζ i becomes 

ζi = 

N ∑ 

j=1 

d i j (x i − x j ) . (4)

We refer to this network as with full-state coupling . 

We make the following standard assumption for the agent

dynamics. 

Assumption 1. We assume that 

• ( A , B ) is stabilizable, ( A , C ) is detectable; 

• The agents are at most critically unstable, that is A has all

its eigenvalues in the closed unit disc. 

Definition 1. We define the following network graph sets. 

• Let G 

N denote the set of undirected, weighted, and con-

nected graphs with N nodes, 

• For any given β ∈ (0, 1), let G 

N 
β

denote the set of undi-

rected, weighted and connected graphs with N nodes and

for which the corresponding row-stochastic matrix has the

property that its eigenvalues inside the unit disc, denoted

by λ2 , . . . , λN , satisfy | λi | < β . 

Definition 2. We also define ω max as 

ω max = 

⎧ ⎨ 

⎩ 

0 , A is Schur stable , 

max { ω ∈ [0 , π ] | 
det (e jω I − A ) = 0 } , otherwise 

We formulate below two state synchronization problems, one

for a network with full-state coupling and the other for partial-

state coupling. 

Problem 1 (Full-state coupling) . Consider a MAS described by

(1) and (4) with a given upper bound κ̄ for the input delay. Let

G be a given set of graphs such that G ⊆ G 

N . The semi-global state

synchronization problem with a set of network graphs G is to find,

if possible, for any a priori given bounded set of initial conditions

W ⊂ L 

n ∞ 

( ̄κ) , a parameterized family of linear protocols of the form,

u i = F δζi , (i = 1 , . . . , N) (5)

where there exists a δ∗ such that for all δ < δ∗, state synchro-

nization among agents is achieved for any graph G ∈ G and for

any input delay κi ∈ [0 , κ̄] and any initial conditions φi ∈ W for

i = 1 , . . . , N. 

Problem 2 (Partial-state coupling) . Consider a MAS described by

(1) and (3) with a given upper bound κ̄ for the input delay. Let

G be a given set of graphs such that G ⊆ G 

N . The semi-global state

synchronization problem with a set of network graphs G is to find,

if possible, a positive integer q and for any a priori given bounded

set of initial conditions W ⊂ L 

n ∞ 

( ̄κ) × R 

q , a parameterized family

of linear dynamic protocols of the form, ⎧ ⎨ 

⎩ 

χi (k + 1) = A c,δχi (k ) + B c,δζi (k ) , 

u i (k ) = C c,δχi (k ) + D c,δζi (k ) , 

χi (0) = ψ i , 

(6)
or i = 1 , . . . , N with χi ∈ R 

q , where there exists a δ∗ such that for

ll δ < δ∗, state synchronization among agents is achieved for any

raph G ∈ G , for any input delay κi ∈ [0 , κ̄] and any initial condi-

ions (φi , ψ i ) ∈ W for i = 1 , . . . , N. 

. Protocol design 

In this section, we design a protocol for discrete-time MAS sub-

ect to input saturation and unknown nonuniform input delay. Both

ull-state coupling and partial-state coupling are considered. The

rotocol design is based on the low-gain method. 

.1. Full-state coupling 

For a discrete-time MAS with full-state coupling, we design the

ollowing parameterized family of protocols, 

 i = γ F δζi , (7)

here 

 δ = − 1 

1 − β
(B 

′ P δB + I) −1 B 

′ P δA (8)

ith P δ > 0 being the unique solution of the discrete-time algebraic

iccati equation 

 δ = A 

′ P δA + δI − A 

′ P δB (B 

′ P δB + I) −1 B 

′ P δA, (9)

hile δ is sufficiently small such that 

 

′ P δB < 

1 − β

2 β
I, 

here 0 < β < 1 is the upper bound of the eigenvalues inside the

nit disc for some row stochastic matrix D associated with a graph

n a set of graphs G 

N 
β

. 

Before the main result, we first need the following technical

emmas. 

emma 1. Suppose ( A , B ) is stabilizable and all the eigenvalues of A

re within the closed unit disc. Let F δ be designed in (8) . Then, we

ave the following properties: 

1. The closed-loop system matrix A + (1 − λ) BF δ is Schur stable

for all δ > 0 and for all λ with | λ| < β . 

2. For any β > 0, there exists a δ∗ > 0 such that for all δ ∈ (0, δ∗]

there exist r 1, δ > 0 and 0 < ηδ < 1 with r 1, δ → 0 as δ → 0 such

that 

‖ F δ(A + (1 − λ) BF δ ) 
k ‖ ≤ r 1 ,δη

k 
δ, (10)

for all k ≥ 0 and for all λ ∈ R with | λ| < β . 

3. Let G (z) = (1 − λ) F δ (zI − A − (1 − λ) BF δ ) 
−1 B . Then, for any

μ> 0, there exists a δ∗ > 0 such that for all δ ∈ (0, δ∗] 

‖ I + G (z) ‖ ∞ 

≤ 1 + μ (11)

for all λ ∈ R with | λ| < β . 

roof. Consider 

 (k + 1) = (A + (1 − λ) BF δ ) x (k ) , 

nd let A f = A + (1 − λ) BF δ . 

It is found that 

 

′ P δA − A 

′ P δB (I + B 

′ P δB ) −1 B 

′ P δA 

= A 

′ P δA − (1 − β) 2 F ′ δ (I + B 

′ P δB ) F δ

= A 

′ 
f P δA f + [2(1 − λ)(1 − β) − (1 − β) 2 ] F ′ δ (I + B 

′ P δB ) F δ

− (1 − λ) 2 F ′ δ B 

′ P δBF δ

= A 

′ 
f P δA f + (1 −λ)(1 −β) F ′ δ F δ + [(1 − λ)(1 − β) − (1 − β) 2 ] F ′ δ F δ

+ [2(1 − λ)(1 − β) − (1 − β) 2 − (1 − λ) 2 ] F ′ B 

′ P δBF δ
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η δ
= A 

′ 
f P δA f + (1 − λ)(1 − β) F ′ δ F δ

+ (1 − β)(β − λ) F ′ δ F δ − (β − λ) 2 F ′ δ B 

′ P δBF δ

= A 

′ 
f P δA f + (1 − λ)(1 − β) F ′ δ F δ

+ (β − λ) F ′ δ [(1 − β) − (β − λ) B 

′ P δB ] F δ

≥ A 

′ 
f P δA f + (1 − λ)(1 − β) F ′ δ F δ, 

here the last inequality holds because 

(β − λ) B 

′ P δB ≤ 2 βB 

′ P δB ≤ (1 − β) I. 

herefore, we obtain 

 δ ≥ A 

′ 
f P δA f + δI + (1 − λ)(1 − β) F ′ δ F δ, (12)

hich implies that 

 

′ (k + 1) P δx (k + 1) ≤ x ′ (k ) P δx (k ) − δx ′ (k ) x (k ) 

≤ η2 
δx ′ (k ) P δx (k ) , 

here η2 
δ

= 1 − δ‖ P 1 ‖ −1 . Hence 

 P 1 / 2 
δ

x (k ) ‖ ≤ ηk 
δ‖ P 1 / 2 

δ
x (0) ‖ . (13)

rom (12) , we get 

(1 − β) 2 F ′ δ F δ ≤ P δ. 

ence, 

 F δx (k ) ‖ ≤ (1 − β) −1 ‖ P 1 / 2 
δ

x (k ) ‖ 

≤ (1 − β) −1 ηk 
δ‖ P 1 / 2 

δ
x (0) ‖ , 

nd then, 

 F δ(A + (1 − λ) BF δ ) 
k x (0) ‖ = ‖ F δx (k ) ‖ 

≤ (1 − β) −1 ηk 
δ‖ P 1 / 2 

δ
x (0) ‖ . (14) 

ince (14) is true for all x (0) ∈ R 

n , it follows trivially that 

 F δ(A + (1 − λ) BF δ ) 
k ‖ ≤ (1 − β) −1 ‖ P 1 / 2 

δ
‖ ηk 

δ. (15)

he proof of the inequality (10) is then completed by taking r 1 ,δ =
(1 − β) −1 ‖ P 1 / 2 

δ
‖ . 

The inequality (12) yields 

(z −1 I − A f ) P δ(zI − A f ) + A 

′ 
f P δ(zI − A f ) + (z −1 I − A f ) P δA f 

≥ δI + (1 − λ)(1 − β) F ′ δ F δ. 

remultiplying it with 

1 −λ
1 −β

B ′ (z −1 I − A f ) 
−1 and post multiplying it

ith (zI − A f ) 
−1 B yields 

1 −λ
1 −β

B 

′ P δB + 

1 −λ
1 −β

B 

′ (z −1 I − A f ) 
−1 A 

′ 
f P δB + 

1 −λ
1 −β

B 

′ P δA f (zI − A f ) 
−1 B 

≥ δ 1 −λ
1 −β

B 

′ (z −1 I − A 

′ 
f ) 

−1 (zI − A f ) 
−1 B 

+ (1 − λ) 2 B 

′ (z −1 I − A f ) 
−1 F ′ δ F δ(zI − A f ) 

−1 B. (16) 

e have 

1 −λ
1 −β

B 

′ P δA f = 

1 −λ
1 −β

B 

′ P δA − (1 −λ) 2 

1 −β
B 

′ P δBF δ

= −
[
(I + B 

′ P δB ) + 

1 −λ
1 −β

B 

′ P δB 

]
(1 − λ) F δ

= −V δ(1 − λ) F δ, 

here 

 δ = (I + B 

′ P δB ) + 

1 −λ
1 −β

B 

′ P δB. 

hen, (16) yields 

1 −λ
1 −β

B 

′ P δB − G 

′ (z −1 ) V δ − V δG (z) ≥ G 

′ (z −1 ) G (z) , 

hich is equivalent to 

 V δ + G 

′ (z −1 )][ V δ + G (z)] ≤ V 

2 
δ + 

1 −λ
1 −β

B 

′ P δB. 
ince V δ → I and B ′ P δB → 0 as δ → 0, we find that, for any μ> 0,

here exists δ∗ such that for any δ ∈ (0, δ∗] 

 I + G 

′ (z −1 )][ I + G (z)] ≤ (1 + μ) I. 

his implies 

 I + G (z) ‖ ∞ 

≤ 1 + μ. �

emma 2. Assume D is associated with a strongly connected undi-

ected graph and L̄ = I − D . If L̄ = R e J e R 
′ 
e with R e unitary and J e =

iag { J, 0 } with J is diagonal, then we have 

 1 ̄L T 2 = RJR 

−1 , (17)

ith R = T 1 R e T 2 and R −1 = T ′ 2 R 
′ 
e T 2 , where T 1 ∈ R 

(N−1) ×N and T 2 ∈
 

N ×(N −1) are given by 

 1 = 

(
I −1 N−1 

)
, T 2 = 

(
I 

0 

)
. 

roof. Since L̄ 1 N = 0 , we have 

¯
 T 2 T 1 = L̄ 

(
I −1 N−1 

0 0 

)
= L̄ 

(
I 0 

0 1 

)
− L̄ 

(
0 1 N 

)
= L̄ . 

herefore, L̄ T 2 T 1 has N − 1 nonzero eigenvalues, denoted by, λ̄2 =
 − λ2 , . . . , ̄λN = 1 − λN . Then T 1 ̄L T 2 has the same N − 1 nonzero

igenvalues and hence T 1 ̄L T 2 is invertible. Define R = T 1 R e T 2 . 

We have 

 e = 

⎛ 

⎜ ⎝ 

R 11 
1 √ 

N 

1 N−1 

R 21 
1 √ 

N 

⎞ 

⎟ ⎠ 

iven that L̄ 1 = 0 . Then, it is found that 

T ′ 2 R 

′ 
e = T 1 R e T 2 T 

′ 
2 R 

′ 
e 

= T 1 

(
R 11 

R 21 

)(
R 

′ 
11 R 

′ 
21 

)

= T 1 

⎛ 

⎜ ⎝ 

R 11 
1 √ 

N 

1 N−1 

R 21 
1 √ 

N 

⎞ 

⎟ ⎠ 

( 

R 

′ 
11 R 

′ 
21 

1 √ 

N 

1 

′ 
N−1 

1 √ 

N 

) 

= T 1 R e R 

′ 
e = T 1 . 

he third equality holds because T 1 

(
1 N−1 

1 

)
= 0 . Therefore, 

 

−1 T 1 = T ′ 2 R 

′ 
e , 

hich yields that R −1 = T ′ 
2 

R ′ e T 2 and moreover 

 1 ̄L T 2 R = T 1 ̄L T 2 T 1 R e T 2 = T 1 ̄L R e T 2 = T 1 R e J e T 2 = T 1 R e T 2 J = RJ. 

ence, (17) is satisfied. �

emma 3. Suppose ( A , B ) is stabilizable and all the eigenvalues of A

re within the closed unit disc. Let F δ be designed in (8) . Then, we

ave, 

(J � F δ )(I N−1 � A + (J � BF δ )) 
k 
∥∥ ≤ r 2 ,δ, (18) 

here J is the Jordan form of matrix T 1 ̄L T 2 and L̄ = I − D with D the

ow stochastic matrix with its associated graph in G 

N 
β
, and moreover,

 2, δ → 0 as δ → 0 . 

roof. We have J = diag { ̄λ2 , . . . , ̄λN } . Consider the dynamics of η

(k + 1) = (I N−1 � A + J � BF ) η(k ) , 
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‖

where 

η = 

⎛ 

⎜ ⎝ 

η2 

. . . 

ηN 

⎞ 

⎟ ⎠ 

. 

In that case, 

ηi (k + 1) = (A + ̄λi BF δ ) ηi (k ) 

for i = 2 , . . . , N. Then, following the results of the above Lemma 1 ,

we can achieve 

‖ F δηi (t) ‖ ≤ r 1 ,δ

with r 1, δ → 0 as δ → 0. Then, we have ∥∥(J � F δ )(I N−1 � A + (J � BF δ )) 
k 
∥∥ ≤ r 1 ,δ, 

since J is diagonal. This completes the proof. �

The main result for discrete-time MAS with full-state coupling

is stated as follows. 

Theorem 1. Consider a MAS described by (1) and (4) with an input

delay upper bound κ̄ and input saturation. Let any 0 < β < 1 be given,

and hence a set of network graphs G 

N 
β

be defined. 

If ( A , B ) is stabilizable and the agents are at most weakly unstable,

then the semi-global state synchronization problem stated in Problem

1 with G = G 

N 
β

is solvable if 

κ̄ω max < 

π
2 
. (19)

Moreover, for any a priori given compact set of initial conditions

W ⊂ L 

n ∞ 

( ̄κ) , there exist γ > 0 and δ∗ > 0 such that for this γ and

any δ ∈ (0, δ∗], the protocol (7) achieves state synchronization for any

graph G ∈ G 

N 
β
, for any input delay κi ∈ [0 , κ̄] , and for any initial con-

dition φi,ς ∈ W for i = 1 , . . . , N. 

Proof of Theorem 1. Let D i (i = 1 , . . . , N) be a delay operator for

agent i such that (D i u i )(k ) = u i (k − κi ) . In the frequency domain,
ˆ D i (ω) = e − jωκi . Define x = col { x i } , u = col { u i } and D = diag { D i } and
ˆ D (ω) = diag { ̂  D i (ω) } , the overall dynamics of multiagent system

described by (1) and (4) can be represented by {
x (k + 1) = (I N � A ) x (k ) + (I N � B ) σ (D u (k )) , 

u (k ) = ( ̄L � γ F δ ) x (k ) , 
(20)

If the input u (k ) = ( ̄L � γ F δ ) x (t) can be squeezed small enough,

i.e. the input can avoid triggering saturation, the overall dynamics

(20) becomes a system without saturation {
x (k + 1) = (I N � A ) x (k ) + (I N � B ) D u (k ) , 

u (k ) = ( ̄L � γ F δ ) x (k ) . 
(21)

The synchronization of (21) has been proved in [49 , Theorem 1

with γ = α(1 − β) ], and we can show that synchronization of

(20) by establishing that the system (21) does not saturate pro-

vided δ is small enough. 

Now define x̄ i = x i − x N and x̄ = col { ̄x 1 , . . . , ̄x N−1 } . Since 

u i = γ F δ
∑ 

d i j ((x i − x N ) − (x j − x N )) 

= γ F δ
∑ 

�̄ i j (x j − x N ) = γ F δ
∑ 

�̄ i j ̄x j , 

we have 

u = ( ̄L T 2 � γ F δ ) ̄x (22)

and 

x̄ (k + 1) = (I N−1 � A ) ̄x (k ) + γ (T 1 D ̄L T 2 � BF δ ) ̄x (k ) . (23)

The following step is to show that we can avoid the saturation.

Since Im ̄L ⊥ ker T 1 , we only need to show that (T 1 ̄L T 2 � γ F δ ) ̄x (k ) is

sufficiently small. We have ∥∥(T 1 ̄L T 2 � γ F δ ) ̄x 
∥∥ ≤

∥∥(T 1 ̄L T 2 � γ F δ ) ̄x 
∥∥

2 
, 
nd hence it is sufficient to prove that 

(T 1 ̄L T 2 � γ F δ ) ̄x 
∥∥

2 
≤ r 3 ,δ, (24)

ith r 3, δ → 0 as δ → 0. 

Next, we define the linear time-invariant operator g δ : v δ → w δ

ith the state space representation: 

ξ (k + 1) = (I N−1 � A + (J � BF δ )) ξ (k ) + (I N−1 � B ) v δ(k ) , 

w δ(k ) = (J � F δ ) ξ (k ) . 
(25)

e also define another linear time-invariant operator ϑ by: 

(k ) = ϑ( f )(k ) = R 

−1 T 1 

⎛ 

⎜ ⎝ 

h 1 

. . . 

h N 

⎞ 

⎟ ⎠ 

ith 

 i (k ) = 

{[
(γ D i − I) e ′ 

i 
R e T 2 � I m 

]
f (k ) k ≥ κi [

−e ′ 
i 
R e T 2 � I m 

]
f (k ) k < κi 

here e i is a zero row vector, but with the i th element being 1. We

an see that the Z-transform of these two operators are given by 

 δ( jω) = (J � F δ )(e jω I − (I N−1 � A ) − (J � BF δ )) 
−1 (I N−1 � B ) , 

�( jω) = R 

−1 T 1 (γ ˆ D (ω) − I) R e T 2 � I m 

. 

Next, define ˜ x = (R −1 
� I n ) ̄x . Then, the dynamics of ˜ x can be

ritten as, for k ≥ 0 

˜ 
 (k + 1) = (I N−1 � A + (J � BF δ )) ̃  x (k ) + (I N−1 � B ) ϑ((J � F δ ) ̃  x (k )) 

+ (I N−1 � B ) v δ(k ) , (26)

here 

 δ(k ) = R 

−1 T 1 

⎛ 

⎜ ⎝ 

˜ h 1 

. . . 

˜ h N 

⎞ 

⎟ ⎠ 

ith 

˜ 
 i (k ) = 

{[
γ D i e 

′ 
i 
R e T 2 � I m 

]
(J � F δ ) ̃  x (k ) k < κi , 

0 k ≥ κi . 

ote that v δ vanishes for k ≥ κ̄ and ˜ x (k ) is bounded for k < κ̄ since

he initial conditions are in the bounded set W . Moreover, since

 δ → 0, we have ‖ v δ‖ ∞ 

→ 0 and ‖ v δ‖ 2 → 0 as δ → 0. 

From (26) , we obtain 

(J � F δ ) ̃  x (k ) = (J � F δ )(I N−1 � A + (J � BF δ )) 
k ˜ x (0) 

+ (g δ ◦ ϑ)((J � F δ ) ̃  x (k )) + g δ(v δ )(k ) 

nd hence 

(J � F δ ) ̃  x (k ) = (1 − g δ ◦ ϑ) −1 

×
[
(J � F δ )(I N−1 � A + (J � BF δ )) 

k ˜ x (0) + g δ(v δ )(k ) 
]
.

(27)

ccording to the definition of operator g δ , we have w δ =
 δ (v δ )(k ) . Then, ‖ w δ‖ 2 ≤ ‖ G δ‖ ∞ 

‖ v δ‖ 2 ≤ 2 ‖ v δ‖ 2 by choosing μ = 1

n Lemma 1 . Therefore, for any given initial condition φi ∈ W ( i =
 , . . . , N), ‖ w δ‖ 2 → 0 as δ → 0. 

From (27) , we get 

 

(J � F δ ) ̃  x (k ) ‖ 2 ≤ ‖ (I − �G δ ) 
−1 ‖ ∞ 

×
∥∥(J � F δ )(I N−1 � A + (J � BF δ )) 

k ˜ x (0) 
∥∥

2 

+ ‖ (I − �G δ ) 
−1 ‖ ∞ 

‖ w δ‖ 2 
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herefore, we can obtain (24) provided that we have ‖ (I −
G δ ) 

−1 ‖ ∞ 

is bounded independent of δ, using that (T 1 ̄L T 2 � γ F δ ) ̄x

s small if and only if (J � γ F δ ) ̃ x is small. 

Since κ̄ω max < 

π

2 
, we can choose γ such that 

cos ( ̄κω max ) > 1 . (28)

ote that this γ is independent of low-gain parameter δ and con-

ition (29) implies that γ > 1. Let this γ be fixed during the re-

aining proof. 

Given (28) , there exists a ϖ> 0 such that 

cos ( ̄κ(ω max + � )) > 1 . (29)

or | ω| < ω max + � , we find that 

( jω) + �( jω) ′ = T ′ 2 R 

′ 
e (γ ˆ D (ω) − I) R e T 2 � I m 

+ T ′ 2 R 

′ 
e (γ ˆ D (ω) ′ − I) R e T 2 � I m 

= T ′ 2 R 

′ 
e (γ ˆ D (ω) + γ ˆ D (ω) ′ − 2 I) R e T 2 � I m 

≥ T ′ 2 R 

′ 
e (2 γ cos (ω ̄τ ) − 2) R e T 2 � I m 

≥ 0 , 

ecause γ is chosen to satisfy (29) . Furthermore, we obtain that 

 �( jω) ‖ ∞ 

= 

∥∥T ′ 2 R 

′ 
e (γ ˆ D (ω) − I) R e T 2 � I m 

∥∥
∞ 

= 

∥∥(γ ˆ D (ω) − I) R e T 2 T 
′ 

2 R 

′ 
e � I m 

∥∥
∞ 

≤
∥∥(γ ˆ D (ω) − I) � I m 

∥∥
∞ 

≤ 1 + γ , 

ince ‖ ̂  D (ω) ‖ ≤ 1 . Then, we have that, for | ω| < ω max + � 

( jω) ′ �( jω) ≤ �( jω) ′ �( jω) + �( jω) + �( jω) ′ 

+ 

[
I − (2 + γ ) −2 (I + �( jω) ′ )(I + �( jω)) 

]
≤

[
1 − (2 + γ ) −2 

]
(I + �( jω) ′ )(I + �( jω)) , 

hich leads to 

(I + �( jω) ′ ) −1 �( jω) ′ �( jω)(I + �( jω)) −1 ≤
[
1 − (2 + γ ) −2 

]
I. 

ence, there exists a ρ > 0 that is independent of parameter δ,

uch that 

 �( jω)(I + �( jω)) −1 ‖ ≤ 1 − ρ. 

oreover, we get 

 (I + �( jω)) −1 ‖ = ‖ I − �( jω)(I + �( jω)) −1 ‖ 

≤ 1 − ‖ �( jω)(I + �( jω)) −1 ‖ 

≤ ρ. 

ence, 

(I + �( jω)) ≥ 1 

ρ
. 

n the other hand, from Property 3 in Lemma 1 with μ = 

ρ

2 − 2 ρ
,

e can immediately obtain that 

 I + G δ( jω) ‖ < 1 + 

ρ

2 − 2 ρ
. 

hen, it follows that, for | ω| < ω max + � 

[ I − �( jω) G δ( jω) ] 

= σ [ I + �( jω) − �( jω)(I + G δ( jω)) ] 

= σ (I + �( jω)) σ
[
I − (I + �( jω)) −1 �( jω)(I + G δ( jω)) 

]
≥ 1 

ρ

(
1 − (1 − ρ) 

(
1 + 

ρ

2 − 2 ρ

))
= 

1 

2 

, 
or all κi ∈ [0 , κ̄] and all possible D (note that L̄ = I − D ) associated

ith a network graph in G 

N 
β

. Therefore, we have 

(I − �( jω) G δ( jω)) −1 
∥∥ ≤ 2 , (30) 

or all | ω| < ω max + � . 

For all | ω| ≥ ω max + � , we know that �( j ω ) G δ( j ω ) → 0 as

→ 0 uniformly in ω. Therefore, we can conclude that for small

nough δ, we also have (30) for | ω| ≥ ω max + � . This completes

he proof of Theorem 1 . �

.2. Partial-state coupling 

We still design a low-gain based protocol for MAS with partial-

tate coupling. Choose an observer gain K such that A + KC is Schur

table. Next, we consider a feedback gain F δ in (8) , which results

n the protocol, 

χi (k + 1) = (A + KC) χi (k ) − Kζi (k ) , 

u i (k ) = γ F δχi (k ) . 
(31) 

Again, we need the following technical lemmas before we pro-

eed to the main result for MAS with partial-state coupling. 

emma 4. Consider 

ˆ 
 = 

(
A 0 

−KC A + KC 

)
, ˆ B = 

(
B 

0 

)
, ˆ F δ = 

(
0 F δ

)
. 

hen, for any 0 < β < 1, there exists a δ∗ such that we have the

ollowing. 

1. The closed-loop system matrix ˆ A + (1 − λ) ̂  B ̂  F δ is Schur stable

for all δ ∈ [0, δ∗] and all | λ| < β . 

2. There exists a ˆ r 1 ,δ with ˆ r 1 ,δ → 0 as δ → 0 such that ∥∥ ˆ F δ( ̂  A + (1 − λ) ̂  B ̂

 F δ ) 
k 
∥∥ ≤ ˆ r 1 ,δ (32) 

for all δ ∈ [0, δ∗], for all k ≥ 0, and all λ ∈ R with | λ| < β . 

3. Let ˆ G (z) = (1 − λ) ̂  F δ(zI − ˆ A − (1 − λ) ̂  B ̂  F δ ) 
−1 ˆ B . Then, for any

ˆ μ > 0 , there exists a δ∗ > 0 such that for all δ ∈ (0, δ∗] ∥∥I + 

ˆ G (z) 
∥∥

∞ 

≤ 1 + ˆ μ (33) 

for all δ ∈ [0, δ∗] and all λ ∈ R with | λ| < β . 

roof. Since 

(1 − λ) 
1 

1 − β
> (1 − β) 

1 

1 − β
= 1 

or any | λ| < β , ˆ A + (1 − λ) ̂  B ̂  F δ is Schur stable, according to [49,

emma 5] . Note that a coefficient 1 
1 −β

is added because it does

ot show up in the F δ in [49, Lemma 5] . 

Next, the system with realization ( ̂  A , ˆ B , ˆ C ) with input v and out-

ut z is given by, 
 

 

 

˜ x 1 (k + 1) = A ̃

 x 1 (k ) + (1 − λ) BF δ ˜ x 2 (k ) + B v (k ) , 

˜ x 2 (k + 1) = (A + KC) ̃  x 2 (k ) − KC ̃  x 1 (k ) , 

z(k ) = (1 − λ) 
(
0 F δ

)
˜ x 2 (k ) . 

(34) 

ow, let x 1 = ˜ x 1 and x 2 = ˜ x 2 − ˜ x 1 . Then, we have 

 

 

 

x 1 (k + 1) = (A + (1 − λ) BF δ ) x 1 (k ) + (1 − λ) BF δx 2 (k ) + B v (k ) , 

x 2 (k + 1) = −(1 −λ) BF δx 1 (k ) + (A + KC −(1 −λ) BF δ ) x 2 (k ) −B v (k ) ,

z(k ) = F δx 1 (k ) + F δx 2 (k ) . 

(35) 

hen, the remaining proof follows the arguments from [48] to

how that ‖ ̂  G − G ‖ ∞ 

converges to zero as δ → 0 with G as defined

n Lemma 1 . Hence, (33) can then be obtained from the result of

emma 1 . �
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Fig. 1. The network topology. 
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The main result for discrete-time MAS with partial-state cou-

pling is stated as follows. 

Theorem 2. Consider a MAS described by (1) and (3) with an input

delay upper bound κ̄ and input saturation. Let any 0 < β < 1 be given,

and hence a set of network graphs G 

N 
β

be defined. 

If ( A , B ) is stabilizable, ( A , C ) is detectable and A is at most weakly

unstable, then the semi-global state synchronization problem stated

in Problem 2 with G = G 

N 
β

is solvable if condition (19) is satisfied. In

particular, there exists an integer n and for a priori given compact set

of initial conditions W ⊂ L 

n ∞ 

( ̄κ) × R 

n , there exist γ > 0 and δ∗ > 0,

such that for this γ and any δ ∈ (0, δ∗], the protocol (31) achieves
Fig. 2. Trajectories of the states and input si
tate synchronization for any graph G ∈ G 

N 
β
, for any input delay κi ∈

0 , κ̄] , and for any initial condition (φi , ψ) ∈ W for i = 1 , . . . , N. 

roof of Theorem 2. Define 

˜ χi (k + 1) = (A + KC) ̃  χi (k ) − Ky i (k ) , 

v (k + 1) = (A + KC) v (k ) 

ith v (0) = 

1 
N 

∑ 

j=1 χ j (0) and 

 

 

χ1 (0) 
. . . 

χN (0) 

⎞ 

⎠ = L̄ 

⎛ 

⎝ 

˜ χ1 (0) 
. . . 

˜ χN (0) 

⎞ 

⎠ + 

⎛ 

⎝ 

v (0) 
. . . 

v (0) 

⎞ 

⎠ . 

hen, it is easily verified that 

i = 

N ∑ 

j=1 

�̄ i j ˜ χ j + v . 

ince A + KC is asymptotically stable and F δ → 0 as δ → 0, we have

hat 

 δ(k ) = γ F δv (k ) 
gnals in the case of full-state coupling. 
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Fig. 3. Trajectories of the states and input signals in the case of partial-state coupling. 
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s such that ‖ ς δ‖ 2 → 0, ‖ ς δ‖ ∞ 

→ 0 as δ → 0. The interconnection

f (1) and the protocol (31) yields 
 

 

 

x i (k + 1) = Ax i (k ) + B (D i ̃  u i )(k ) + B (D i ς δ )(k ) , 

˜ χi (k + 1) = (A + KC) ̃  χi (k ) − Ky i (k ) , 

˜ u i (k ) = 

∑ N 
j=1 γ F δ �̄ i j ˜ χ j , 

(36) 

rovided the saturation does not get activated. Note that 

 i = 

˜ u i + ς δ. (37)

herefore the input does not get saturated if we show that ˜ u i is

rbitrarily small for sufficiently small δ. Let 

ˆ 
 i = 

(
ˆ x i,x 

ˆ x i, ̃ χ

)
= 

(
x i 

˜ χi 

)
−

(
x N 

˜ χN 

)
, 

nd 

ˆ 
 = 

(
A 0 

−KC A + KC 

)
, ˆ B = 

(
B 

0 

)
, ˆ F δ = 

(
0 F δ

)
. 

hen, the overall dynamics of ˆ x = col { ̂ x 1 , . . . , ̂  x N−1 } is given by 

ˆ 
 (k + 1) = (I N � ˆ A ) ̂  x (k ) + γ (T 1 D ̄L T 2 � ˆ B ̂

 F δ ) ̂  x (k ) + 

ˆ B ̃  ς δ(k ) , (38)

ith 

˜  (k ) = (T 1 D1 � I) ς (k ) , 
δ δ
ssuming the saturation is not active. Moreover, 

˜ 
 (k ) = ( ̄L T 2 � γ ˆ F δ ) ̂  x (k ) (39)

ince τω max < 

π

2 
, we can choose γ such that 

cos (τω max ) > 1 . (40)

learly γ is independent of low-gain parameter δ. Let this γ be

xed. We can now use similar arguments as we did in the proof of

heorem 1 with the bounds from Lemma 4 and the fact that ˜ ς δ is

uch that ‖ ̃  ς δ‖ 2 → 0 , ‖ ̃  ς δ‖ ∞ 

→ 0 as δ → 0. We obtain that ˆ x → 0

nd ‖ ̃  u ‖ ∞ 

is arbitrarily small for sufficiently small δ. Given (37) , ũ

mall guarantees that the saturation does not get activated for δ
ufficiently small while ˆ x (k ) → 0 guarantees synchronization. �

. Example 

We will illustrate our result on a network of N = 4 identical

iscrete-time agents. The agent dynamics is as follows, 

 

 

 

 

 

 

 

x i (k + 1) = 

⎛ 

⎝ 

0 . 5 1 1 

0 

√ 

3 / 2 −0 . 5 

0 0 . 5 

√ 

3 / 2 

⎞ 

⎠ x i (k ) + 

⎛ 

⎝ 

0 

0 

1 

⎞ 

⎠ σ (u i (k − κi )) ,

y i (k ) = 

(
1 0 0 

)
x i (k ) . 
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Eigenvalues of A are 0.5, 
√ 

3 / 2 ± 0 . 5 j, which implies that

ω max = π/ 6 . According to the condition κ̄ω max < 

π

2 
, κ̄ should

be less than 3. Choosing κ̄ = 2 , we allow input delays

κ1 = 2 , κ2 = 1 , κ3 = 1 , κ4 = 2 . The initial conditions are x (0) =
[6 . 52 ; 7 . 25 ; 1 . 02 ; 7 . 31 ; 5 . 06 ; 0 . 78 ; 2 . 23 ; 4 . 38 ; 7 . 66 ; 7 . 72 ; 1 . 26 ; 7 . 76] 

The network topology is given by Fig. 1 with the row stochastic

matrix 

D = 

⎛ 

⎜ ⎜ ⎝ 

0 . 5 0 . 3 0 0 . 2 

0 . 3 0 . 7 0 0 

0 0 0 . 4 0 . 6 

0 . 2 0 0 . 4 0 . 4 

⎞ 

⎟ ⎟ ⎠ 

. (41)

The D matrix has eigenvalues 0.0141, 0.3316, 0.8543, 1.0. Hence, it

associated graph is in the graph set G 

4 
β

with β = 0 . 9 . We select

γ = 15 and condition (29) 

γ cos 

(
2 ∗ π

6 

)
> 1 . 

Full-state coupling By choosing δ = 10 −6 , the low-gain feedback

F δ

F δ = 

(
−0 . 0 0 0 0 0274 −0 . 01338 −0 . 02323 

)
. 

The low-gain feedback protocol is 

u i = 

(
−0 . 0 0 0 04111 −0 . 20065 −0 . 34 84 8 

)
z i , i = 1 , . . . , 4 .

(42)

Fig. 2 a–c show that state synchronization is achieved for the net-

work with D in (41) . And Fig. 2 d shows that the input saturation is

not activated. 

Partial-state coupling By choosing K = 

(
−2 −1 −1 

)′ 
, we

find that A + KC has eigenvalues of 0.4803 and 0.5759 ± 0.7362 j ,

and choosing δ = 9 × 10 −8 , α = 15 , the protocol for the partial-

state coupling is designed as ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

χi (t + 1) = 

⎛ 

⎝ 

−1 . 5 1 1 

−1 0 . 866 −0 . 5 

−1 0 . 5 0 . 866 

⎞ 

⎠ χi (t) −

⎛ 

⎝ 

−2 

−1 

−1 

⎞ 

⎠ z i (t) , 

u i (k ) = 

(
−0 . 0 0 0 0 037105 −0 . 06035 −0 . 10461 

)
χi (t) . 

(43)

Fig. 3 a–c show that state synchronization is achieved and Fig. 3 d

shows that the input saturation is not activated. 

5. Conclusion 

In this paper we have studied semi-global state synchronization

of homogeneous discrete-time MASs with full-state or partial-state

coupling and subject to actuation saturation and unknown nonuni-

form input delay. We derived an upper bound for the input delay

tolerance. And, for any input delay within the upper bound, wee

proposed a low-gain based controller design such that the actua-

tor saturation is not activated after a transient phase. Because of

the use of low-gain methodology, the agents are assumed to be at

most critically unstable. In this paper, the network graph is undi-

rected and connected and the input delay is constant. In the future,

we will need to extend these results to more complicated MASs,

such as with time-varying input delay, directed network graph,

communication delays and disturbances. 
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