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a b s t r a c t 

This paper studies H ∞ 

and H 2 almost state or output synchronization of homogeneous multi-agent sys- 

tems (MAS) with partial-state coupling via static protocols in the presence of external disturbances. We 

provide solvability conditions for designing static protocols. We characterize three classes of agents for 

which we can design linear static protocols for state or output synchronization of a MAS such that the 

impact of disturbances on the network disagreement dynamics, expressed in terms of the H ∞ 

and H 2 

norms of the corresponding closed-loop transfer function, is reduced to arbitrarily small value. Mean- 

while, the static protocol only needs rough information on the network graph, that is a lower bound for 

the real part and an upper bound for the modulus of the non-zero eigenvalues of the Laplacian matrix 

associated with the network graph. Our study focuses on three classes of agents which are squared-down 

passive, squared-down passifiable via output feedback and squared-down minimum-phase with relative 

degree 1. 
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. Introduction 

The problem of synchronization among agents in a multi-agent

ystem has received substantial attention in recent years, because

f its potential applications in cooperative control of autonomous

ehicles, distributed sensor network, swarming and flocking and

thers. The objective of synchronization is to secure an asymptotic

greement on a common state or output trajectory through decen-

ralized control protocols (see [1,17,23,35] and references therein). 

State synchronization basically requires homogeneous MAS (i.e.

gents have identical dynamics). State synchronization based on

iffusive partial-state coupling has been considered in many pa-

ers (e.g. see [12,14,26–28,32,33] ). The case where the full state is

hared over the network, will be referred to as full-state coupling.

f only part of the state is shared over the network, we refer to it

s partial-state coupling. Historically, the problem of partial-state

oupling was first addressed by using an additional communication

hannel between the protocols of each agent relying on the same
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etwork topology (See for instance [14,26] ). This extra communica-

ion is mathematically very convenient making the solvability con-

ition weaker and the analysis simpler. However, from a practical

oint of view it is not very realistic. For a MAS via partial-state

oupling, basically the synchronization is achieved via a dynamic

rotocol. However, state synchronization via a dynamic protocol

mposes restrictions on the agent dynamics. Agents are assumed

o be at most weakly unstable (all poles in the closed-left half

lane) in e.g. [28,34] and references therein. Alternatively, agents

re assumed to be at most weakly non-minimum-phase (all invari-

nt zeros in closed left half plane) in e.g. [4,9,30,31,39] and refer-

nces therein. The main drawback of dynamic protocols is that the

odes of the protocol will be added to the synchronized trajectory

nd in general these modes are unstable and as such the existence

f these modes on the consensus trajectory leads to unbounded

ynchronized trajectories. Therefore, static protocols are more

esirable. 

There have been research efforts to determine classes of agents

or which synchronization is achievable via static protocols. It has

een shown that designing static protocols for MAS with partial-

tate coupling is doable for the class of passive or passifiable

gents. For example, [36] and [6] considered linear agents which

re either passive or passifiable via state/output feedback while
rved. 
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Fig. 1. A squared-down passive system. 
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[5] dealt with agents which are strictly G -passifiable via output

feedback. In [11,21,22] , input feed forward passivity was considered

in connection with output synchronization. Nonlinear input-affine

passive agents were considered in [3,29,37,41,43] while general

nonlinear passive agents were studied in [10,18,38] . 

Most research works have focused on the idealized case where

the agents are not affected by external disturbances. In the litera-

ture where external disturbances are considered, γ -suboptimal H ∞ 

design is developed for MAS to achieve H ∞ 

norm from an exter-

nal disturbance to the synchronization error among agents less to

a priori given γ . In particular, [14] , [42] considered the H ∞ 

norm

from an external disturbance to the output error among agents.

[25] considered the H ∞ 

norm from an external disturbance to the

state error among agents while [15] and [16] tried to obtain an H ∞ 

norm from the disturbance to the average of the states in a net-

work of single or double integrators. 

In the presence of disturbances, the concept of almost syn-

chronization was also introduced to reduce the impact of external

disturbances on the disagreement dynamics to an arbitrary small

level. The notion of H ∞ 

almost synchronization for homogeneous

MAS was first introduced in [19] for homogeneous MAS, where the

goal is to reduce the H ∞ 

norm from an external disturbance to the

synchronization error , to any arbitrary desired level. This work was

extended later in [20,39,40] . 

So far, the literature studied almost synchronization of MAS

with partial-state coupling utilizing dynamic protocols. In contrast,

in this paper, we study H ∞ 

and H 2 almost output or state synchro-

nization of homogeneous multi-agent systems with partial-state

coupling via static protocol design for passifiable agents affected

by external disturbances. We see that this problem reduces to a ro-

bust stabilization problem. The impact of disturbances on the net-

work disagreement dynamics, expressed in terms of the H ∞ 

and

H 2 norms of the corresponding closed-loop transfer function, is re-

duced to any arbitrarily small value. Our contribution of this paper

is twofold. 

• We provide the solvability conditions of H ∞ 

and H 2 almost out-

put or state synchronization via static protocols. 

• We identify three classes of agents, namely, squared-down

passive, squared-down passifiable via output feedback, and

squared-down minimum-phase with relative degree 1, for

which designing static protocols is possible. We provide static

protocol design for MAS with these three classes of agents. 

• We also show that in the context of almost synchronization

there are distinctions between utilizing H ∞ 

and H 2 norm. 

The organization of this paper is as follows. In Section 2 , we

present preliminaries and in Section 3 , we formulate our problems.

The connection between almost synchronization and almost dis-

turbance decoupling is presented in Section 4 . The protocol design

for H ∞ 

and H 2 almost synchronization via static protocol is pro-

posed in Section 5 . Finally, the numerical example is presented in

Section 6 . 

2. Preliminaries 

In this section we present some notations and definitions. Also,

we will introduce the concept of squared-down passivity and pas-

sifiability. 

2.1. Notations and definitions 

Given a matrix A ∈ R 

m ×n , A 

T denotes the transpose of A , and

‖ A ‖ denotes the induced 2-norm of A . A square matrix A is said

to be Hurwitz stable if all its eigenvalues are in the open left half

complex plane. A �B depicts the Kronecker product between A and

B . I n denotes the n -dimensional identity matrix and 0 n denotes
 × n zero matrix; we will use I or 0 if the dimension is clear from

he context. 

A continuous-time system is called minimum-phase if all in-

ariant zeros are in C 

−. A system is called weakly minimum-phase

f all invariant zeros are in C 

− ∩ C 

0 and all invariant zeros in s ∈ C 

0

re semi-simple. A system is called weakly non-minimum-phase if

ll invariant zeros are in C 

− ∩ C 

0 and there exists an invariant zero

hich is not semi-simple. 

A weighted directed graph G is defined by a triple (V, E, A )

here V = { 1 , . . . , N} is a node set, E is a set of pairs of nodes

ndicating connections among nodes, and A = [ a i j ] ∈ R 

N×N is the

eighting matrix. We have a ij > 0 if (i, j) ∈ E and a i j = 0 otherwise.

(i, j) ∈ E denotes an edge from node j to node i . A path from node

 1 to i k is a sequence of nodes { i 1 , . . . , i k } such that (i j+1 , i j ) ∈ E for

j = 1 , . . . , k − 1 . A directed tree is a subgraph (subset of nodes and

dges) in which every node has exactly one parent node except for

ne node, called the root , which has no parent node. In this case,

he root has a directed path to every other node in the tree. A di-

ected spanning tree is a directed tree containing all the nodes of

he graph. For a weighted graph G, a matrix L = [ � i j ] with 

 i j = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

N ∑ 

k =1 
k � = i 

a ik , i = j, 

−a i j , i � = j, 

s called the Laplacian matrix associated with the graph G. In the

ase where G has non-negative weights, L has all its eigenvalues

n the closed right half plane and at least one eigenvalue at zero

ssociated with right eigenvector 1 (a vector whose elements are

ll equal to 1). A specific class of graphs needed in this paper is

resented below: 

efinition 2.1. For any given α ≥β > 0, let G 

N 
α,β

denote the set

f directed graphs with N nodes that contain a directed spanning

ree and for which the corresponding Laplacian matrix L satisfies

 L ‖ < α while its nonzero eigenvalues have a real part larger than

r equal to β . 

.2. Squared-down passive and passifiable and squared-down 

inimum-phase with relative degree 1 systems 

We introduce the concept of passivity and passifiability based

n the idea of squaring-down in [24] . Consider a system 

: 

{
˙ x = Ax + Bu, 

y = Cx, 
(1)

here x ∈ R 

n , u ∈ R 

m and y ∈ R 

p . We introduce the following defi-

itions: 

efinition 2.2. A system (1) is called squared-down passive with a

re-compensator G 1 ∈ R 

m ×q and a post-compensator G 2 ∈ R 

q ×p if

he interconnection in Fig. 1 with input ˆ u and output ˆ y is passive. 

emark 1. Assuming G 1 and G 2 are such that ( A , BG 1 ) is stabiliz-

ble, ( A , G 2 C ) is detectable while BG 1 and G 2 C have full column-

nd row-rank, respectively, then squared-down passivity is equiva-

ent to the existence of a positive definite matrix P , such that 

PA + A 

T P ≤ 0 , 

P BG 1 = C T G 

T . 
(2)
2 
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Fig. 2. A squared-down passive system via output feedback. 
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emark 2. Note that when G 1 = I, squared-down passivity is re-

uced to G -passivity as used in [7] . For a square system, we can

hoose G 1 = G 2 = I and squared-down passivity becomes conven-

ional passivity. 

efinition 2.3. A system (1) is called squared-down passifiable via

tatic output feedback with a pre-compensator G 1 ∈ R 

m ×q and a

ost-compensator G 2 ∈ R 

q ×p if there exists an output feedback 

ˆ 
 = −H ̂

 y + v (3) 

hich makes the system (1) squared-down passive with respect to

he new input v , as shown in Fig. 2 . 

emark 3. A system (1) is squared-down passifiable via static out-

ut feedback (3) if there exist a matrix H and a positive definite

atrix P such that 

P (A − BG 1 HG 2 C) + (A − BG 1 HG 2 C) T P ≤ 0 , 

P BG 1 = C T G 

T 

2 . 
(4) 

This sufficient condition is also necessary for a system to be

quared-down passifiable via static output feedback if ( A , BG 1 ) is

tabilizable, ( A , G 2 C ) is detectable while BG 1 and G 2 C have full

olumn- and row-rank, respectively. 

Now, we will define a class of agents, which are closely related

o passive systems. 

efinition 2.4. A system (1) is called squared-down minimum-

hase with relative degree 1 with a pre-compensator G 1 ∈ R 

m ×q and

 post-compensator G 2 ∈ R 

q ×p if the square system ( A , BG 1 , G 2 C ) is

inimum-phase with relative degree 1, i.e. det (G 2 CBG 1 ) � = 0 . 

emark 4. It is easy to show that if the system (1) is squared-

own minimum-phase with relative degree 1, one can choose G 1 

uch that G 2 CBG 1 = I. 

emark 5. It is known that squared-down minimum-phase with

elative degree 1 agents are a subset of squared-down passifiable

ia output feedback agents (see [8,13] and references therein). 

We introduce the following lemma which makes the structure

f a system more explicit when the system is squared-down passi-

able via static output feedback. 

emma 1. Consider system (1) and assume it is squared-down pas-

ifiable via static output feedback with compensator G 1 and G 2 and

utput feedback gain H as in Fig. 2 , then for the system ( A , BG 1 ,

 2 C ), with input ˆ u , with u = G 1 ̂  u , and output ˆ y = G 2 y, there exist

on-singular transformation matrices T x , T ˆ u and T ˆ y with 

˜ 
 = 

(
˜ x 1 
˜ x 2 

)
= T x x, ˜ u = T ˆ u ̂  u , ˜ y = T ˆ y ̂  y 

here T ˆ y = (T −1 
ˆ u 

) T , such that the dynamics of ˜ x is represented by 

˙ ˜ 
 1 = A 11 ̃  x 1 + A 12 ̃  x 2 , 

˙ ˜ 
 2 = A 21 ̃  x 1 + A 22 ̃  x 2 + 

˜ u , 

˜ y = 

˜ x 2 , (5) 

here ˜ x 1 ∈ R 

n −q and ˜ x 2 ∈ R 

q . To be more specific, we have: 

 11 = 

(
A 11 s 0 

0 A 110 

)
, A 12 = 

(
A 121 

A 122 

)
, A 21 = 

(
A 211 A 212 

)
(6)
ith: 

 11 s + A 

T 

11 s < 0 , A 110 + A 

T 

110 = 0 , A 212 = −A 

T 

122 

emark 6. If the system is squared-down passive, i.e. H = 0 in

igure 2 , then we can additionally guarantee that 

 22 + A 

T 

22 ≤ 0 (7) 

roof. Obviously the system ( A , BG 1 , G 2 C ) is at most weakly non-

inimum phase with relative degree 1. Note that there exists P > 0

uch that (4) is satisfied. Choose a unitary matrix U such that 

P 1 / 2 BG 1 = B̄ = 

(
0 

B̄ 2 

)
ith B̄ 2 invertible which is possible since BG 1 is injective. 

We first apply a state space transformation x̌ = T x 1 x with T x 1 =
P 1 / 2 and we get: 

: 

{
˙ x̌ = Ā ̌x + B̄ ̂

 u , 

ˆ y = C̄ ̌x , 

here 

( ̄A − B̄ H ̄C ) + ( ̄A − B̄ H ̄C ) T ≤ 0 (8) 

¯
 = C̄ T 

e decompose Ā compatibly with B̄ : 

¯
 = 

(
Ā 11 Ā 12 

Ā 21 Ā 22 

)
ext, (8) implies that 

¯
 11 + Ā 

T 

11 ≤ 0 

hoose a unitary matrix U 1 such that: 

 1 ̄A 11 U 

T 

1 = A 11 = 

(
A 11 s 0 

0 A 110 

)

ith A 11 s + A 

T 
11 s < 0 and A 110 + A 

T 
110 = 0 . Then, it is easily verified

hat 

 x = 

(
U 1 0 

0 I 

)
T x 1 , T u = B̄ 2 

ields (5) and (6) . Remains to verify that A 212 = −A 

T 
122 . If we look

t (8) then we get: (
A 11 A 12 

A 21 A 22 − ˆ H 

)
+ 

(
A 11 A 12 

A 21 A 22 − ˆ H 

)T 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

A 11 s + A 

T 

11 s 0 A 121 + A 

T 

211 

0 0 A 122 + A 

T 

212 

A 

T 

121 + A 211 A 

T 

122 + A 212 A 22 + A 

T 

22 − ˆ H − ˆ H 

T 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

≤0 

(9) 

here ˆ H = B̄ 2 H ̄B T 
2 

from which it is immediately clear that we must

ave A 212 = −A 

T 
122 

. �

. Problem Formulation 

Consider a MAS composed of N identical linear time-invariant

gents of the form, 

˙ x i = Ax i + Bu i + Eω i , 

y i = Cx i , 
(i = 1 , . . . , N) (10)

here x i ∈ R 

n , u i ∈ R 

m , y i ∈ R 

p are respectively the state, in-

ut, and output vectors of agent i , and ω i ∈ R 

r is the external

isturbance. 
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The communication network provides each agent with a linear

combination of its own outputs relative to that of other neighbor-

ing agents. In particular, each agent i ∈ { 1 , . . . , N} has access to the

quantity, 

ζi = 

N ∑ 

j=1 

a i j (y i − y j ) = 

N ∑ 

j=1 

� i j y j . (11)

The communication topology of the network can be described by a

weighted and directed graph G with corresponding Laplacian ma-

trix L . We will primarily focus on partial-state coupling where C

does not have full-column rank. 

If the graph G describing the communication topology of the

network contains a directed spanning tree, then it follows from

[2] that the Laplacian matrix L has a simple eigenvalue at the

origin, with the corresponding right eigenvector 1 and all the

other eigenvalues are in the open right-half complex plane. Let

λ1 , . . . , λN denote the eigenvalues of L such that λ1 = 0 and

Re (λi ) > 0 , i = 2 , . . . , N. 

Let N be any agent and define 

x̄ i = x N − x i , ū i = u N − u i and ȳ i = y N − y i 

and 

x̄ = 

⎛ 

⎝ 

x̄ 1 
. . . 

x̄ N−1 

⎞ 

⎠ , ū = 

⎛ 

⎝ 

ū 1 

. . . 
ū N−1 

⎞ 

⎠ , ȳ = 

⎛ 

⎝ 

ȳ 1 
. . . 

ȳ N−1 

⎞ 

⎠ and ω = 

⎛ 

⎝ 

ω 1 

. . . 
ω N 

⎞ 

⎠ . 

Obviously, state synchronization is achieved if 

lim 

→∞ 

(x i (t) − x N (t)) = 0 , ∀ i ∈ { 1 , . . . , N − 1 } , (12)

and output synchronization is achieved if 

lim 

→∞ 

(y i (t) − y N (t)) = 0 , ∀ i ∈ { 1 , . . . , N − 1 } . (13)

Remark 7. The agent N is not necessarily a root agent. Obviously,

(12) is equivalent to the condition that 

lim 

→∞ 

(x i (t) − x j (t)) = 0 

for all i, j ∈ { 1 , . . . , N} and a similar connection holds for (13) . 

We formulate below H ∞ 

or H 2 almost state/output synchroniza-

tion problems. 

Problem 1. Consider a MAS described by (10) and (11) . Let G be a

given set of graphs such that G ⊆ G 

N . The H ∞ 

almost state synchro-

nization problem via static protocol with a set of network graphs

G is to find, if possible, a linear static protocol parameterized in

terms of a parameter ε, of the form 

u i = F ε ζi , i = 1 , . . . N (14)

such that, for any given real number δ > 0, there exists an ε∗ such

that for any ε ∈ (0, ε∗] and for any graph G ∈ G , (12) is satisfied for

all initial conditions in the absence of disturbances and the closed

loop transfer matrix T ω ̄x from ω to x̄ satisfies 

‖ T ω ̄x ‖ ∞ 

< δ. (15)

Problem 2. Consider a MAS described by (10) and (11) . Let G be a

given set of graphs such that G ⊆ G 

N . The H 2 almost state synchro-

nization problem via static protocol with a set of network graphs

G is to find, if possible, a linear static protocol parameterized in

terms of a parameter ε, of the form 

u i = F ε ζi , i = 1 , . . . N (16)

such that, for any given real number δ > 0, there exists an ε∗ such

that for any ε ∈ (0, ε∗] and for any graph G ∈ G , (12) is satisfied for
ll initial conditions in the absence of disturbances and the closed

oop transfer matrix T ω ̄x from ω to x̄ satisfies 

 T ω ̄x ‖ 2 < δ. (17)

emark 8. It is worth to note that the notion of almost state

ynchronization is stronger than almost output synchronization.

herefore, Problems 1 and 2 imply H ∞ 

and H 2 almost output syn-

hronizations as stated in the following problems. 

Note that in the case of almost output synchronization, it is

ery appealing to ensure that internal states do not explode if we

ry to achieve higher accuracy with regard to output synchroniza-

ion. Hence in the following problems we imposed an upper bound

n the effect of disturbances on the state. 

roblem 3. Consider a MAS described by (10) and (11) . Let G be

 given set of graphs such that G ⊆ G 

N . The H ∞ 

almost output syn-

hronization problem via static protocol with a set of network graphs

 is to find, if possible, a linear static protocol parameterized in

erms of a parameter ε, of the form (16) , such that, for any given

eal number δ > 0, there exists an ε∗ such that for any ε ∈ (0, ε∗]

nd for any graph G ∈ G , (13) is satisfied for all initial conditions

n the absence of disturbances and the closed loop transfer matrix

 ω ̄y (from ω to ȳ ) satisfies 

 T ω ̄y ‖ ∞ 

< δ (18)

e can similarly define the H ∞ 

almost output synchronization prob-

em with bounded state errors via static protocol when 

 T ω ̄x ‖ ∞ 

< M, and ‖ T ω ̄y ‖ ∞ 

< δ (19)

ith M independent of ε. 

roblem 4. Consider a MAS described by (10) and (11) . Let G be

 given set of graphs such that G ⊆ G 

N . The H 2 almost output syn-

hronization problem via static protocol with a set of network graphs

 is to find, if possible, a linear static protocol parameterized in

erms of a parameter ε, of the form (16) , such that, for any given

eal number δ > 0, there exists an ε∗ such that for any ε ∈ (0, ε∗]

nd for any graph G ∈ G , (13) is satisfied for all initial conditions

n the absence of disturbances and the closed loop transfer matrix

 ω ̄y (from ω to ȳ ) satisfies 

 T ω ̄y ‖ 2 < δ (20)

e can similarly define the H 2 almost output synchronization prob-

em with bounded state errors via static protocol when 

 T ω ̄x ‖ 2 < M, and ‖ T ω ̄y ‖ 2 < δ (21)

ith M independent of ε. 

. Connection between H ∞ 

and H 2 almost state/output 

ynchronization and H ∞ 

and H 2 almost disturbance 

ecoupling-solvability conditions 

In this section, we establish a connection between the problem

f H ∞ 

or H 2 almost state/output synchronization among agents in

he network and a robust H ∞ 

or H 2 almost state/output distur-

ance decoupling problem via static output feedback with internal

tability. 

.1. Analysis of H ∞ 

almost synchronization 

Given � ⊂ C , we introduce the following system associated to

gent models as 

˙ x = Ax + λBu + Ed, 

y = Cx, 
(22)
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here λ∈ �, and A , B , C , E matrices are the same as agent models

10) and d is the disturbance. The robust H ∞ 

almost output distur-

ance decoupling problem with bounded input via static output feed-

ack for (22) is to find, if possible, a parameterized controller 

 = F ε y (23) 

nd M > 0 such that, for any given δ > 0, there exists ε∗ > 0 for

hich the interconnection of (23) and the system (22) , has the

roperty that for any λ∈ � and for any 0 < ε < ε∗ we have: 

1. The interconnection of the systems (23) and (22) is inter-

nally stable. 

2. The resulting closed-loop transfer function 

T λdy = C(sI − A − λBF ε C) −1 E (24)

from d to y has an H ∞ 

norm less than δ. 

3. The resulting closed-loop transfer function 

T λuy = C(sI − A − λBF ε C) −1 B (25)

has an H ∞ 

norm less than δ. 

4. The resulting closed-loop transfer function 

T λdu = F ε C(sI − A − λBF ε C) −1 E (26)

from d to u has an H ∞ 

norm less than M . 

5. The resulting closed-loop transfer function 

T λuu = F ε C(sI − A − λBF ε C) −1 B (27)

has an H ∞ 

norm less than M . 

It is important to note that M is independent of the choice for

and independent of λ∈ �. 

The robust H ∞ 

almost state disturbance decoupling problem with

ounded input via static output feedback for (22) is equivalent to the

bove with the only modification being that instead of (24) and

25) , the closed-loop transfer functions 

 

λ
dx = (sI − A − λBF ε C) −1 E (28) 

 

λ
ux = (sI − A − λBF ε C) −1 B (29) 

oth have an H ∞ 

norm less than δ. 

The next lemma establishes a connection between H ∞ 

almost

utput disturbance decoupling problem and H ∞ 

almost output

ynchronization problem. 

emma 2. Let G be a set of graphs such that the associated Lapla-

ian matrices are uniformly bounded and let � consist of all possible

onzero eigenvalues of Laplacian matrices associated with graphs in

 . 

The H ∞ 

almost output synchronization problem with bounded

tate errors via static protocol for the MAS described by (10) and

11) given G is solved by a parameterized protocol u i = F ε ζi if the ro-

ust H ∞ 

almost output disturbance decoupling problem with bounded

nput via static output feedback for the system (22) with λ∈ � is

olved by the parameterized controller u = F ε y . 

roof. The MAS system described by (10) and (11) after imple-

enting the linear static protocol (16) is described by 

˙ x i = Ax i + BF ε ζi + Eω i , 

y i = Cx i 

or i = 1 , . . . , N. Let 

 = 

⎛ 

⎝ 

x 1 
. . . 

x N 

⎞ 

⎠ , ω = 

⎛ 

⎝ 

ω 1 

. . . 
ω N 

⎞ 

⎠ . 

hen, the overall dynamics of the N agents can be written as 

˙ 
 = (I N � A + L � BF ε C) x + (I N � E) ω. (30)
ote that the Laplacian matrix L has eigenvalue 0 with associated

ight eigenvector 1 . Let 

 = T S L T 
−1 , (31)

ith T unitary and S L = [ s i j ] the upper-triangular Schur form asso-

iated to the Laplacian matrix L such that s 11 = 0 . Let 

:= (T −1 
� I n ) x = 

⎛ 

⎝ 

ξ1 

. . . 
ξN 

⎞ 

⎠ , ω̄ = (T −1 
� I r ) ω = 

⎛ 

⎝ 

ω̄ 1 

. . . 
ω̄ N 

⎞ 

⎠ 

here ξi ∈ C 

n and ω̄ i ∈ C 

r . In the new coordinates, the dynamics

f ξ can be written as 

˙ (t) = (I N � A + S L � BF ε C) ξ + (T −1 
� E) ω, (32)

hich is rewritten as 

˙ ξ1 = Aξ1 + 

N ∑ 

j=2 

s 1 j BF ε Cξ j + E ̄ω 1 , 

˙ ξi = (A + λi BF ε C) ξi + 

N ∑ 

j= i +1 

s i j BF ε Cξ j + E ̄ω i , 

˙ ξN = (A + λN BF ε C) ξN + E ̄ω N , 

(33) 

or i ∈ { 2 , . . . , N − 1 } . The first column of T is an eigenvector of L

ssociated to eigenvalue 0 with length 1, i.e. it is equal to 1 / 
√ 

N .

sing this we obtain: 

¯ = 

⎛ 

⎜ ⎜ ⎝ 

x N − x 1 
x N − x 2 

. . 

. 

x N − x N−1 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎝ 

⎛ 

⎜ ⎜ ⎜ ⎝ 

−1 0 · · · 0 1 

0 −1 
. . . 

. . 

. 
. . 
. 

. . 

. 
. . . 

. . . 0 
. . 
. 

0 · · · 0 −1 1 

⎞ 

⎟ ⎟ ⎟ ⎠ 

� I n 

⎞ 

⎟ ⎟ ⎟ ⎠ 

(T � I n ) ξ

= 

((
0 V 

)
� I n 

)
ξ , 

or some suitably chosen matrix V ∈ R 

N ×(N −1) . Therefore we have

¯
 = (V � I) 

⎛ 

⎝ 

η2 

. . . 
ηN 

⎞ 

⎠ , ū = (V � I) 

⎛ 

⎝ 

ν2 

. . . 
νN 

⎞ 

⎠ (34)

here 

i = Cξi , νi = F ε ηi , for i = 2 , . . . , N. 

ote that since T is unitary, also the matrix T −1 is unitary and

he matrix V is uniformly bounded. Therefore the H ∞ 

norm of

he transfer matrix from ω to ȳ can be made arbitrarily small

f and only if the H ∞ 

norm of the transfer matrix from ω̄ to ηi 

an be made arbitrarily small for i = 2 , . . . , N. Similarly, the H ∞ 

orm of the transfer matrix from ω̄ to ū is bounded if and only

f the H ∞ 

norm of the transfer matrix from ω̄ to ν i is bounded for

 = 2 , . . . , N. 

The fact that u = F ε y solves the simultaneous H ∞ 

almost output

isturbance decoupling problem with bounded input of (22) im-

lies that for small ε we have that A + λBF ε C is asymptotically sta-

le for all λ∈ �. In particular, A + λi BF ε C is asymptotically stable

or i = 2 , . . . , N which guarantees that ξ i → 0 for i = 2 , . . . , N for

ero disturbances and all initial conditions. Therefore we have H ∞ 

lmost output synchronization. 

Next, we are going to show that there exists M̄ > 0 such that

or any δ̄ > 0 , we can choose ε sufficiently small such that the H ∞ 

orm of the transfer matrix from ω̄ to ξ i is less than δ̄ and the

 ∞ 

norm of the transfer matrix from ω̄ to ν i is less than M̄ for

 = 2 , . . . , N. This would guarantee that we can find M > 0 such that

 T ω ̄x ‖ ∞ 

< δ, ‖ T ω ̄u ‖ ∞ 

< M (35)

or any δ > 0 provided ε is small enough. 
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Since the robust H ∞ 

almost output disturbance decoupling

problem with bounded input via static output feedback is solved

by (23) , there exists ˜ M such that for any arbitrarily small ˜ δ, we

have for ε small enough that: 

‖ T λdy ‖ ∞ 

< 

˜ δ, ‖ T λuy ‖ ∞ 

< 

˜ δ, 

‖ T λdu ‖ ∞ 

< 

˜ M , ‖ T λuu ‖ ∞ 

< 

˜ M , 

for all λ∈ � where T λ
dy 

, T λuy , T λ
du 

and T λuu , are given by (24), (25),

(26) and (27) , respectively. 

When i = N, it is easy to find that, 

T ω̄ ηN 
= e N � T λN 

dy 
, T ω̄ νN 

= e N � T λN 

du 
, 

where e i is a row vector of dimension N with elements equal to

zero except for the i th component which is equal to 1. Hence 

‖ T ω̄ ηN 
‖ ∞ 

< δ̄, ‖ T ω̄ νN 
‖ ∞ 

< M̄ N 

provided 

˜ δ < δ̄, ˜ M < M̄ N . (36)

Recall that we can make ˜ δ arbitrarily small without affecting the

bound 

˜ M . Assume 

‖ T ω̄ η j 
‖ ∞ 

< δ̄, ‖ T ν j 
‖ ∞ 

< M̄ j 

holds for j = i + 1 , . . . , N. We have: 

T ω̄ ηi 
= e i � T λi 

ωy + 

N ∑ 

j= i +1 

s i j T 
λi 

uy T ω̄ ν j 
(37)

T ω̄ νi 
= e i � T λi 

ωu + 

N ∑ 

j= i +1 

s i j T 
λi 

uu T ω̄ ν j 
. (38)

Since ∥∥∥∥∥e i � T λi 
ωy + 

N ∑ 

j= i +1 

s i j T 
λi 

uy T ω̄ ν j 

∥∥∥∥∥
∞ 

< 

˜ δ + 

N ∑ 

j= i +1 

| s i j | ̃  δM̄ j (39)

and ∥∥∥∥∥e i � T λi 
ωu + 

N ∑ 

j= i +1 

s i j T 
λi 

uu T ω̄ ν j 

∥∥∥∥∥
∞ 

< 

˜ M + 

N ∑ 

j= i +1 

| s i j | ˜ M M̄ j (40)

we find: 

‖ T ω̄ ηi 
‖ ∞ 

< δ̄, ‖ T ω̄ νi 
‖ ∞ 

< M̄ i (41)

provided: 

˜ δ + 

N ∑ 

j= i +1 

| s i j | ̃  δM̄ j < δ̄, 

˜ M + 

N ∑ 

j= i +1 

| s i j | ˜ M M̄ j < M̄ i . 

(42)

Note that s ij depends on the graph in G but since the Laplacian

matrices associated to graphs in G are uniformly bounded we find

that also the s ij are uniformly bounded. In this way we can re-

cursively obtain the bounds in (41) for i = 2 , . . . , N provided we

choose ε sufficiently small such that the corresponding ˜ δ satisfies

(36) and (42) for i = 2 , . . . , N − 1 . 

If we define: 

ξ̄ = 

⎛ 

⎝ 

ξ2 

. . . 
ξN 

⎞ 

⎠ , η̄ = 

⎛ 

⎝ 

η2 

. . . 
ηN 

⎞ 

⎠ , ν̄ = 

⎛ 

⎜ ⎜ ⎝ 

0 

ν2 

. . . 
νN 

⎞ 

⎟ ⎟ ⎠ 

then we have 

˙ ξ̄ (t) = (I N−1 � A ) ̄ξ + (RS L � B ) ̄ν + (R � E) ̄ω , 
η̄ = (I N−1 � C) ̄ξ

here 

 = 

(
0 I N−1 

)
e obtain: 

˙ ¯(t) = [ I N−1 � (A − KC)] ̄ξ + (RS L � B ) ̄ν + (R � E) ̄ω + K ̄η

here K is an arbitrary matrix such that A − KC is asymptotically

table. Clearly, the H ∞ 

norms from ω̄ to ν̄ and η̄ are bounded (with

ounds independent of graph or ε). Hence the H ∞ 

norm from ω̄ to
¯ is uniformly bounded, i.e. the H ∞ 

norm from ω̄ to ξ i is less than
¯
 for i = 2 , . . . , N for some suitably chosen constant M̄ indepen-

ent of ε and the specific graph. 

Hence, we can choose ε sufficiently small such that the H ∞ 

orm from ω̄ to ν i is less than δ̄ and the H ∞ 

norm from ω̄ to

i is less than M̄ for i = 2 , . . . , N. As noted before this guarantees

hat we can achieve (35) for a fixed M and any arbitrarily small

> 0. �

The next lemma establishes a similar connection between the

 ∞ 

almost state disturbance decoupling problem and the H ∞ 

al-

ost state synchronization problem. 

emma 3. Let G be a set of graphs such that the associated Lapla-

ian matrices are uniformly bounded and let � consist of all possible

onzero eigenvalues of Laplacian matrices associated with graphs in

 . 

The H ∞ 

almost state synchronization problem via static protocol

or the MAS described by (10) and (11) given G is solved by a param-

terized protocol u i = F ε ζi if the robust H ∞ 

almost state disturbance

ecoupling problem with bounded input via static output feedback for

he system (22) with λ∈ � is solved by the parameterized controller

 = F ε y . 

roof. The proof is completely similar to the proof of

emma 2 . �

We will also analyze whether we can keep the H ∞ 

norm from

 to ȳ bounded if we cannot achieve an arbitrarily small error. We

an find a similar connection as above to a robust control problem:

emma 4. Let G be a set of graphs such that the associated Lapla-

ian matrices are uniformly bounded and let � consist of all possible

onzero eigenvalues of Laplacian matrices associated with graphs in

 . 

Given a MAS described by (10) and (11) and a set of graphs G .

et � denotes all possible locations for the nonzero eigenvalues of the

aplacian matrix L when the graph varies over the set G . 

For a parameterized protocol u i = F ε ζi , there exists ˜ M such that

hen applied to the MAS the H ∞ 

norm from ω to ȳ is less than ˜ M for

ll ε > 0 and for any graph in G if for the parameterized controller u =
 ε y, there exists M such that for any δ, we have for ε small enough

hat 

1. The interconnection of the systems (23) and (22) is internally

stable. 

2. The resulting closed-loop transfer function 

T λdy = C(sI − A − λBF ε C) −1 E (43)

from d to y has an H ∞ 

norm less than M. 

3. The resulting closed-loop transfer function 

T λuy = C(sI − A − λBF ε C) −1 B (44)

has an H ∞ 

norm less than δ. 

4. The resulting closed-loop transfer function 

T λdu = F ε C(sI − A − λBF ε C) −1 E (45)

from d to u has an H ∞ 

norm less than M 

δ
. 
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5. The resulting closed-loop transfer function 

T λuu = F ε C(sI − A − λBF ε C) −1 B (46)

has an H ∞ 

norm less than M. 

for all λ∈ �. 

roof. The proof relies on the same recursive argument as in the

roof of Lemma 2 . �

.2. Analysis of H 2 Almost Synchronization 

In this subsection, we consider the H 2 norm instead of the H ∞ 

orm. Firstly, we define the robust H 2 almost output disturbance

ecoupling problem via static output feedback for (22) as follows.

here should exist a parameterized controller (23) and M > 0 such

hat, for any given δ > 0, there exists ε∗ > 0 for which the intercon-

ection of (23) and the system (22) has the property that for any

∈ � and for any 0 < ε < ε∗ we have: 

1. The interconnection of the systems (22) and (23) is inter-

nally stable; 

2. The resulting closed-loop transfer function T λ
dy 

from d to y

has an H 2 norm less than 

√ 

δ. 

3. The resulting closed-loop transfer function T λuy has an H ∞ 

norm less than δ. 

4. The resulting closed-loop transfer function T λ
du 

from d to u

has an H 2 norm less than M/ 
√ 

δ. 

5. The resulting closed-loop transfer function T λuu has an H ∞ 

norm less than M . 

It is important to note that M is independent of the choice for

and independent of λ∈ �. 

The robust H 2 almost state disturbance decoupling problem via

tatic output feedback for (22) is equivalent to the above with the

nly modification being that instead of items 2 and 3, T λ
dx 

has an

 2 norm less than 

√ 

δ and T λux has an H ∞ 

norm less than δ where

hese transfer functions are given by (28) and (29) . 

emark 9. In the above problem, note that we need to consider

wo aspects in our controller, H 2 disturbance rejection and robust

tabilization. The latter translates in the H ∞ 

norm constraints. 

Next, we present the H 2 equivalent of Lemmas 2 and 3 . 

emma 5. Let G be a set of graphs such that the associated Lapla-

ian matrices are uniformly bounded and let � consist of all possible

onzero eigenvalues of Laplacian matrices associated with graphs in

 . 

The H 2 almost output synchronization problem via static protocol

or the MAS described by (10) and (11) given G is solved by a pa-

ameterized protocol u i = F ε ζi if the robust H 2 almost output distur-

ance decoupling problem via static output feedback for the system

22) with λ∈ � is solved by the parameterized controller u = F ε y . 

roof. The proof is similar to the proof of Lemma 2 . The proof has

he same structure. There is one step we need to be careful. The

roof follows the same lines of Lemma 2 except that we require

he ω̄ to ηj arbitrarily small while we keep the H ∞ 

norm from ω̄ 

o v j bounded. Recall that for two stable transfer matrices T 1 and

 2 with T 1 strictly proper we have: 

 T 1 T 2 ‖ 2 ≤ ‖ T 1 ‖ 2 ‖ T 2 ‖ ∞ 

, (47)

nd therefore we obtain for (37) that 

 T ω̄ ηi 
‖ 2 ≤ ‖ T λi 

dy 
‖ 2 + 

N ∑ 

j= i +1 

s i j ‖ T λi 
uy ‖ ∞ 

‖ T ω̄ ν j 
‖ 2 
nd 

 T ω̄ νi 
‖ 2 ≤ ‖ T λi 

du 
‖ 2 + 

N ∑ 

j= i +1 

s i j ‖ T λi 
uu ‖ ∞ 

‖ T ω̄ ν j 
‖ 2 

e use these two inequalities instead of (39) and (40) , respec-

ively. Given that we have a parameterized static feedback which

olves the robust H 2 almost output disturbance decoupling prob-

em, we find constants N̄ i and M̄ i such that 

 T ω̄ ηi 
‖ 2 < N̄ i 

√ 

δ, ‖ T ω̄ νi 
‖ 2 < 

M̄ i √ 

δ
�

emma 6. Let G be a set of graphs such that the associated Lapla-

ian matrices are uniformly bounded and let � consist of all possible

onzero eigenvalues of Laplacian matrices associated with graphs in

 . 

The H 2 almost state synchronization problem via static protocol for

he MAS described by (10) and (11) given G is solved by a parameter-

zed protocol u i = F ε ζi if the robust H 2 almost state disturbance de-

oupling problem via static output feedback for the system (22) with

∈ � is solved by the parameterized controller u = F ε y . 

roof. The proof is basically identical to the proof of Lemma 5 . �

. Protocol design for H ∞ 

and H 2 almost synchronization 

In this section, we will consider a static protocol design to

chieve H ∞ 

and H 2 almost synchronization. 

.1. H ∞ 

almost synchronization 

We consider a MAS described by (10) and (11) . We split the

rotocol design for H ∞ 

almost state and output synchronization

nto two cases. The first case considers agents which are squared-

own passifiable via output feedback given G 1 , G 2 and H . Clearly

his class of agents included squared-down passive agents as a spe-

ial case. The second case is squared-down minimum-phase with

elative degree 1 agents which as stated in Remark 5 is a subset of

quared-down passifiable via output feedback agents. 

.1.1. Squared-down passifiable via output feedback agents 

First by providing the following example, we will show that H ∞ 

lmost state synchronization, in general, is not solvable via static

rotocol for the class of passifiable via output feedback agents.

owever, the H ∞ 

almost output synchronization problem is solv-

ble. 

xample 1. Consider the MAS with two agents 

˙ x i = 

(
0 1 

−1 0 

)
x i + 

(
0 

1 

)
u i + 

(
1 

0 

)
ω i 

 i = 

(
1 0 

0 1 

)
x i (48) 

or i = 1 , 2 . The communication graph has the associated Laplacian

atrix 

1 −1 

−1 1 

)
. 

he system is squared-down passifiable with G 1 = 1 and G 2 =
0 1 

)
. If we consider an arbitrary static protocol 

 i = F ζi = 

(
f 1 f 2 

)
ζi 

he transfer matrix from ω 1 to x 1 − x 2 is given by 

 ω 1 ̄x 
= 

(
sI −

(
0 1 

f 1 − 1 f 2 

))−1 (
1 

0 

)
= 

1 

s (s − f 2 ) + 1 − f 1 

(
s − f 2 
f 1 − 1 

)
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where f 1 < 1 and f 2 < 0, and 

T ω 1 ̄x (0) = 

(
f 2 / f 1 − 1 

−1 

)
Clearly H ∞ 

almost state synchronization is not possible. 

As it is shown in the above example, the H ∞ 

almost state

synchronization via static protocol is not possible as stated in

Problem 1 . Now we focus on a weaker notion of H ∞ 

almost syn-

chronization, namely, H ∞ 

almost output synchronization of MAS

with squared-down passifiable via output feedback agents. 

Problem 3 formulated earlier was in terms of an arbitrary set

of graphs G . The results in this section are obtained for specific

classes of graphs where: 

G = G 

N 
α,β

for some α, β > 0 which has been defined in Definition 2.1 . For all

the problems in this paper we consider the same parameterized

protocol 

u i = −1 

ε 
G 1 G 2 ζi , (49)

Our next result regarding H ∞ 

almost output synchronization

problem via static protocol is stated as follows. 

Theorem 1. Consider a MAS described by (10) and (11) . Assume ( A ,

B , C ) is squared-down passifiable with respect to G 1 , G 2 and H , such

that ( A , BG 1 ) is stabilizable, ( A , G 2 C ) is detectable while BG 1 and G 2 C

have full column- and row-rank, respectively. Let any real numbers α,

β > 0 and a positive integer N be given, and hence a set of network

graphs G 

N 
α,β

be defined. 

The H ∞ 

almost output synchronization problem with bounded

state errors via static protocol as defined in Problem 3 with respect

to the compensated output ˆ y = G 2 y where G = G 

N 
α,β

is solvable if 

Im E ⊆ Im BG 1 . (50)

In particular, for any given real number δ > 0, there exists an ε∗, such

that for any ε ∈ (0, ε∗), the protocol (49) achieves state synchroniza-

tion and the H ∞ 

norm from ω to ˆ y i − ˆ y j less than δ and the H ∞ 

norm

from ω to x i − x j less than M for any i, j ∈ 1 , . . . , N and for any graph

G ∈ G 

N 
α,β

. 

The above theorem states that for squared-down passifiable

agents we can achieve H ∞ 

almost output synchronization with re-

spect to the compensated output ˆ y = G 2 y if (50) is satisfied. The

following remark shows that this is no longer valid if we use the

original output. 

Remark 10. Consider the MAS (48) with the same communication

network as stated in Example 1 . The transfer matrix from ω 1 to

y 1 − y 2 is given by 

T ω 1 ̄y = 

(
sI −

(
0 1 

f 1 − 1 f 2 

))−1 (
1 
0 

)
= 

1 

s (s − f 2 ) + 1 − f 1 

(
s − f 2 
f 1 − 1 

)
where f 1 < 1 and f 2 < 0, and 

T ω 1 ̄y (0) = 

(
f 2 / f 1 − 1 

−1 

)
Clearly H ∞ 

almost output synchronization is not possible with re-

spect to the original output y . 

Proof of Theorem 1. Given Lemma 2 , we only need to verify that

u = −ρG 1 G 2 y where ρ = 

1 
ε solves the robust H ∞ 

almost output

disturbance decoupling problem with bounded input via static out-

put feedback for the system (22) with λ∈ �. Given G ∈ G 

N 
α,β

, we

know that λ∈ � implies Re λ ≥ β . 
Using Lemma 1 , the dynamics of (22) with pre/post compen-

ator G 1 , G 2 , i.e. ( A , BG 1 , G 2 C ), can be written as: 

˙ ˜ 
 1 = A 11 ̃  x 1 + A 12 ̃  x 2 + E 1 ω, 

˙ ˜ 
 2 = A 21 ̃  x 1 + A 22 ̃  x 2 + λ ˜ u + E 2 ω, 

˜ y = 

˜ x 2 , (51)

ith respect to our new basis for state, input and output. Using

ur output feedback we get: 

˜ 
 = −ρX ̃

 y , 

here 

 = T ˆ u T 
T 

ˆ u > 0 , 

e obtain 

˙ ˜ 
 1 = A 11 ̃  x 1 + A 12 ̃  x 2 + E 1 ω, 

˙ ˜ 
 2 = A 21 ̃  x 1 + (A 22 − λρX ) ̃  x 2 + E 2 ω, 

ˆ y = 

˜ x 2 , (52)

t is easily verified that there exists ρ∗ such that for ρ > ρ∗, 

(s ) = (sI − A 22 + ρλX ) −1 

atisfies: 

 S‖ ∞ 

≤ α1 

ρ
(53)

or some suitable constant α1 independent of λ and ρ using that

e λ > β and X > 0. Consider 

 (s ) = 

(
sI − A 11 − A 12 (sI − A 22 + λρX ) −1 A 21 

)−1 

iven (9) for some given 

ˆ H it is easily seen that there exists ρ∗

uch that for ρ > ρ∗: 

A 11 A 12 

A 21 A 22 − λρX 

)
+ 

(
A 11 A 12 

A 21 A 22 − λρX 

)∗
≤ 0 

or all λ with Re λ ≥ β . It is not difficult to show that this implies

hat 

 (s ) = 

(
I 0 

)[
sI −

(
A 11 A 12 

A 21 A 22 − λρX 

)]−1 (
I 
0 

)
as no poles in the open right half plane. 

Next, we note that ( G 2 C , A ) detectable implies that ( A 21 , A 11 ) is

etectable and hence there exists η > 0 such that for all v and all

 ∈ C 

0 we have: (
sI − A 11 

A 21 

)
v 
∥∥∥∥ > η‖ v ‖ (54)

irst assume v is such that 

 (sI − A 11 ) v ‖ ≥ 2 α1 

ρ ‖ A 12 ‖‖ A 22 ‖‖ v ‖ (55)

n that case: 

 T −1 (s ) v ‖ ≥ ‖ (sI − A 11 ) v ‖ − ‖ A 21 (sI − A 22 + λρX ) −1 A 12 ) v ‖ 

≥ α1 

ρ ‖ A 12 ‖‖ A 22 ‖‖ v ‖ (56)

or ρ large enough. 

Next assume (55) is not satisfied. Then clearly there exists M > 0

uch that | s | < M . In that case, using the additional structure of

emma 1 , we have that: 

 = 

(
v 1 
v 2 

)
nd we can find μ (independent of λ and s ) such that 

 v 1 ‖ ≤ μ
ρ ‖ v ‖ , ‖ v 2 ‖ ≥ 1 

2 
‖ v ‖ (57)
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iven (55) and (57) we find that (54) yields that we can find M 1 

uch that: 

 A 21 v − A 212 v 2 ‖ ≤ M 1 

ρ ‖ v ‖ , ‖ A 212 v 2 ‖ ≥ 1 
2 
η‖ v ‖ (58)

or ρ sufficiently large. We can also find M 2 such that: 

 v ∗A 12 + v ∗2 A 

T 

212 ‖ ≤ M 2 

ρ ‖ v ‖ (59)

sing (57) for ρ large. 

Since s ∈ C 

0 , we have for some suitable constant M 3 : 

 

∗[ (sI − A 11 ) + (sI − A 11 ) 
∗] v = v ∗1 [ (sI − A 11 s ) + (sI − A 11 s ) 

∗] v 1 ≤ M 1 

ρ2 

ext, we have for some suitable constant M 4 : 

 (sI − A 22 + λρX ) −1 − (λρX ) −1 ‖ ≤ M 4 

ρ2 

or ρ large. These two bounds yield that: 

v ∗
[
T −1 (s ) + T −1 (s ) ∗

]
v 
∣∣ ≥

∣∣∣∣
(

1 

λρ
+ 

1 

λ̄ρ

)
v ∗A 12 X 

−1 A 21 v 
∣∣∣∣ − M 5 

ρ2 ‖ v ‖ 

2

or some suitable constant M 5 . Using our earlier obtained bounds

58) and (59) we get: 

v ∗
[
T −1 (s ) + T −1 (s ) ∗

]
v 
∣∣ ≥ β

2 ρα2 v ∗2 A 

T 

212 X 

−1 A 212 v 2 > 

β
ρα2 

η2 

8 ‖ X‖ ‖ v ‖ 

2 

or ρ large. This yields that 

 T −1 (s ) v ‖ ≥ α2 

ρ ‖ v ‖ (60)

or some constant α2 . We have (56) if (55) is not satisfied and

60) otherwise for s ∈ C 

0 . Combining the two and using that T has

o poles in the open right half plane we find there exists M 6 such

hat: 

 T ‖ ∞ 

< M 6 ρ (61)

or ρ sufficiently large. 

After these preparations, we find that for the system (52) , the

ransfer matrix from ω to ˜ y = x̄ 2 equals: 

 ω ̃ y = SE 2 + SA 21 T A 12 SE 2 + SA 21 T E 1 (62)

hile the transfer matrix from ω to ˜ u equals: 

 ω ̃ u = −ρX T ω ̃ y 

ote that, in this case, (50) implies that E 1 = 0 . Using (62) and the

bove bounds we find: 

 T ω ̃ y ‖ ∞ 

≤ M 7 

ρ ‖ E 2 ‖ , ‖ T ω ̂ u ‖ ∞ 

≤ M 7 ‖ X ‖‖ E 2 ‖ . 

or suitable M 7 . Similarly 

 T ˜ u ̃ y ‖ ∞ 

≤ M 7 

ρ , ‖ T ˜ u ̃ u ‖ ∞ 

≤ M 7 ‖ X ‖ . 

here: 

T ˜ u ̃ y = S + SA 21 T A 12 S, 

 ˜ u ̃ u = −ρX [ S + SA 21 T A 12 S ] . 

his clearly implies that protocol (49) solves the robust H ∞ 

almost

isturbance decoupling problem with bounded input via static out-

ut feedback for the system (22) as required. �

Theorem 1 implies that the effect from ω on x̄ is bounded

henever (50) is satisfied. We note from Remark 10 that the ef-

ect from ω on x̄ can actually be unbounded if (50) is not satisfied.

he following result shows that if (50) is not satisfied, the effect

rom ω to G 2 (y i − y j ) for any i, j ∈ 1 , . . . , N, is always bounded un-

er protocol (49) . 

heorem 2. Consider a MAS described by (10) and (11) . Assume ( A ,

 , C ) is squared-down passifiable with respect to G 1 , G 2 and H , such

hat ( A , BG 1 ) is stabilizable, ( A , G 2 C ) is detectable while BG 1 and G 2 C

ave full column- and row-rank, respectively. Let any real numbers α,
> 0 and a positive integer N be given, and hence a set of network

raphs G 

N 
α,β

be defined. 

There exists M such that the protocol (49) achieves state synchro-

ization in the absence of disturbance and in the presence of dis-

urbance the H ∞ 

norm from ω to G 2 (y i − y j ) less than M for any

, j ∈ 1 , . . . , N, for any ρ > 0 and for any graph G ∈ G 

N 
α,β

. 

roof. Again we set ρ = 

1 
ε . In this case, we again have (52) . We

nd, similarly as in the proof of Theorem 1 , that the transfer ma-

rix from ω to ˆ y = x̄ 2 is given by (62) but in this case E 1 need not

e zero. We get: 

 T ω ̃ y ‖ ∞ 

≤ M 8 ‖ E 1 ‖ + 

M 7 

ρ ‖ E 2 ‖ 

or suitable M 8 with M 7 as defined in the proof of Theorem 1 . Sim-

larly, we get 

‖ T ˜ u ̃ y ‖ ∞ 

≤ M 7 

ρ , 

 T ω ̃ u ‖ ∞ 

≤ M 8 ρ‖ X ‖‖ E 1 ‖ + M 7 ‖ X ‖‖ E 2 ‖ , 

‖ T ˜ u ̃ u ‖ ∞ 

≤ M 7 ‖ X ‖ . 

sing the above and Lemma 4 , we can complete the proof. �

.1.2. Squared-down Minimum-phase with Relative Degree 1 Agents 

In this subsection, we consider solvability and design of H ∞ 

lmost state and output synchronization as stated in Problem 1

nd 3 , for a MAS with squared-down minimum-phase with rela-

ive degree 1 agents. 

The next theorem shows that for minimum-phase agents we

an achieve H ∞ 

almost state synchronization if condition (50) is

atisfied. Moreover, if condition (50) is not satisfied then we still

chieve H ∞ 

almost output synchronization. 

heorem 3. Consider a MAS described by (10) and (11) . Assume ( A ,

 , C ) is squared-down minimum-phase with relative degree 1 with

 1 and G 2 such that ( A , BG 1 ) is controllable and ( A , G 2 C ) is observ-

ble. Assume that without loss of generality G 1 is chosen such that

emark 4 is satisfied. 

Let any real numbers α, β > 0 and a positive integer N be given,

nd hence a set of network graphs G 

N 
α,β

be defined. 

The H ∞ 

almost state synchronization problem via static protocol,

s defined in Problem 1 where G = G 

N 
α,β

, is solvable if (50) is satisfied.

If (50) is not satisfied then the H ∞ 

almost output synchronization

roblem with bounded state errors via static protocol, as defined in

roblem 3 with respect to the compensated output ˆ y = G 2 y where G =
 

N 
α,β

, is solvable. 

In particular, for any given real number δ > 0, there exists an ε∗,

uch that for any ε ∈ (0, ε∗), the protocol (49) achieves output syn-

hronization and an H ∞ 

norm from ω to ˆ y i − ˆ y j less than δ for any

, j ∈ 1 , . . . , N and for any graph G ∈ G 

N 
α,β

. 

If (50) is satisfied then the protocol (49) achieves state synchro-

ization and an H ∞ 

norm from ω to x i − x j less than δ for any

, j ∈ 1 , . . . , N and for any graph G ∈ G 

N 
α,β

. 

roof. We use similar arguments as in the proof of Theorem 1 . We

btain the system (52) with X = I. However, in this case we have

hat A 11 is Hurwitz stable. This implies there exists M 9 such that 

 (s ) = (sI − A 11 ) 
−1 

atisfies 

 V ‖ ∞ 

< M 9 . (63)

ut then: 

 (s ) = V (s ) [ I − A 21 S(s ) A 12 V (s ) ] 
−1 

hich yields 

 T ‖ ∞ 

≤ 2 M 9 
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for ρ sufficiently large, using the earlier obtain bounds (53) and

(63) . Note the improvement over (61) due to the fact that A 11 is

Hurwitz stable. We then use (62) , and our improved bound for T

in combination with the previously obtained bound for S to get: 

‖ T ω ̃ y ‖ ∞ 

≤ M 10 

ρ ‖ E 1 ‖ + 

M 11 

ρ ‖ E 2 ‖ (64)

On the other hand, we have: 

T ω ̃ u = −ρT ω ̃ y 

which yields that: 

‖ T ω ̃ u ‖ ∞ 

≤ M 10 ‖ E 1 ‖ + M 11 ‖ E 2 ‖ 

for ρ sufficiently large, independent of λ. 

We have 

T ω ̃ x 1 = T A 21 SE 2 + T E 1 

Hence, if (50) is satisfied, then 

‖ T ω ̃ x 1 ‖ ≤ M 12 

ρ

for some constant M 12 and sufficiently large ρ . The latter, in com-

bination with (64) , yields 

‖ T ω ̃ x ‖ ≤ M 13 

ρ

for some constant M 13 and sufficiently large ρ . 

Using these bounds in connection with either Lemma 2 or

Lemma 3 , yields the required results. �

5.2. H 2 almost synchronization 

In this section, we consider the solvability and protocol de-

sign to achieve H 2 almost state and output synchronization. Pri-

marily,we consider the class of squared-down passifiable via out-

put feedback agents. We also consider the class of squared-down

minimum-phase with relative degree 1 agents which are a subset

of squared-down passifiable via output feedback agents. Later, we

will show that a weaker solvability condition and stronger results

can be obtained when the agents are minimum-phase with relative

degree 1. 

To apply either Lemma 5 or Lemma 6 , we know that the graph

must be uniformly bounded. Thus, the graph set G 

N 
α,β

with α,

β > 0 is used in the following protocol designs. 

To obtain our results regarding H 2 almost synchronization, we

need the following classical result: 

Lemma 7. Consider an asymptotically stable system: 

˙ p = A 1 p + B 1 w 

y = C 1 p 

The H 2 norm from w to y is less than ε if there exists a matrix Q such

that: 

A 1 Q + QA 

T 

1 + B 1 B 

T 

1 ≤ 0 , C 1 QC T 

1 < ε 2 I 

or, using a dual version, the H 2 norm from w to y is less than ε if

there exists a matrix P such that: 

PA 1 + A 

T 

1 P + C T 

1 C 1 ≤ 0 , B 

T 

1 P B 1 < ε 2 I 

5.2.1. Squared-down passifiable via output feedback agents 

In this subsection, we consider solvability and protocol de-

sign of H 2 almost state and output synchronization as stated in

Problem 2 and 4 , for a MAS with squared-down passifiable via out-

put feedback agents. 

First we provide our main result for H 2 almost state synchro-

nization via static protocol as the following theorem. 

Theorem 4. Consider a MAS described by (10) and (11) . Assume ( A ,

B , C ) is squared-down passifiable with respect to G , G and H , such
1 2 
hat ( A , BG 1 ) is stabilizable, ( A , G 2 C ) is detectable while BG 1 and G 2 C

ave full column- and row-rank, respectively. Let any real numbers α,

> 0 and a positive integer N be given, and hence a set of network

raphs G 

N 
α,β

be defined. 

The H 2 almost state synchronization problem via static protocol

tated in Problem 2 with G = G 

N 
α,β

is solvable when (50) is satis-

ed. In particular, for any given real number δ > 0, there exists an
∗, such that for any ε ∈ (0, ε∗), the protocol (49) achieves state syn-

hronization and an H 2 norm from ω to x i − x j less than δ for any

, j ∈ 1 , . . . , N and for any graph G ∈ G 

N 
α,β

. 

roof. We know that we only need to verify that the protocol

49) solves the robust H 2 almost state disturbance decoupling

roblem with bounded input for the system (22) with λ∈ �. Given

 ∈ G 

N 
α,β

, we know that λ∈ � implies Re λ ≥ β . 

The agents are squared-down passifiable given G 1 , G 2 and H .

sing Lemma 1 , the dynamics of (22) with compensator G 1 , G 2 

nd output feedback gain H , i.e. ( A , BG 1 , G 2 C ) can be written as

51) with respect to our new basis for state, input and output. Us-

ng our output feedback we get: 

˜ 
 = −ρX ̃

 y , 

here 

 = T u T 
T 

u > 0 , 

nd we obtain (52) . 

In the proof of Theorem 1 , we already established that the H ∞ 

orm of T λ
ˆ u ̂ y 

is less than Mρ−1 for some M and the H ∞ 

norm of T λ
ˆ u ̂ u 

s bounded. We still need to investigate the H 2 norm from ω to x

nd the H 2 norm from ω to ˆ u . It is clear that we can equivalently

tudy the H 2 norm from ω to ˜ x and ˜ u , respectively. After all, the

 2 norm from ω to x is arbitrarily small/bounded if and only if the

 2 norm from ω to ˜ x is arbitrarily small/bounded. Similarly with

sing ˆ u or ˜ u . 

Using the more specific structure in (6) we get: 

P 

( 

A 11 s 0 A 121 

0 A 110 A 122 

A 211 −A 

T 
122 A 22 − λρX 

) 

+ 

( 

A 11 s 0 A 121 

0 A 110 A 122 

A 211 −A 

T 
122 A 22 − λρX 

) ∗

P 

+ 

⎛ 

⎜ ⎝ 

0 0 0 
0 0 0 

0 0 E 2 E 
T 
2 

⎞ 

⎟ ⎠ 

≤ α3 
ρ

⎛ 

⎜ ⎜ ⎝ 

A 11 s + A 

T 
11 s 

0 A 121 + A 

T 
211 

0 0 0 

A 

T 
121 + A 211 0 A 22 + A 

T 
22 − βρX 

⎞ 

⎟ ⎟ ⎠ 

≤0 

or ρ large enough where P = 

α3 
ρ I with α3 such that 

 2 E 
T 

2 ≤ α3 βX. 

ote that we explicitly rely here on the fact that A 11 s + A 

T 
11 s < 0 .

ut then, using Lemma 7 , we obtain that the H 2 norm from ω to

˜  is less than 

√ 

α3 
ρ while the H 2 norm from ω to ˆ u is less than

 

ρα3 . The proof is completed by using Lemma 6 . �

In the case (50) is not satisfied, in general we can not achieve

 2 almost state synchronization via static protocol as illustrated by

he following example. 

xample 2. Consider the MAS with two agents: 

˙ x i = 

(
0 1 

−1 0 

)
x i + 

(
0 

1 

)
u i + 

(
e 1 0 

0 e 2 

)
ω i 

 i = 

(
1 0 

0 1 

)
x i (65)

or i = 1 , 2 . The communication graph has the associated Laplacian

atrix 

1 −1 

−1 1 

)
. 
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he system is squared-down passifiable with G 1 = 1 and G 2 =
0 1 

)
. Hence almost synchronization with respect to the com-

ensated output ˆ y i = G 2 y i is possible. However, almost state syn-

hronization with respect to the original state is not possible un-

ess (50) is satisfied. Consider an arbitrary static protocol 

 i = F ζi = 

(
f 1 f 2 

)
ζi 

ransfer matrix from ω 1 to x 1 − x 2 is given by 

 ω 1 ̄x (s ) = 

(
sI −

(
0 1 

f 1 − 1 f 2 

))−1 (
e 1 0 

0 e 2 

)
here f 1 < 1 and f 2 < 0. 

We have 

0 1 

f 1 − 1 f 2 

)T 

P + P 

(
0 f 1 − 1 

1 f 2 

)
+ I = 0 

hich yields 

 = 

( f 2 
2( f 1 −1) 

+ 

f 1 −1 
2 f 2 

− 1 
2 f 2 

− 1 
2( f 1 −1) 

− 1 
2( f 1 −1) 

1 
2 f 2 ( f 1 −1) 

− 1 
2 f 2 

)

ence 

 T ω 1 ̄x ‖ 2 = e 2 1 

(
f 2 

2( f 1 −1) 
+ 

f 1 −1 
2 f 2 

− 1 
2 f 2 

)
+ e 2 2 

(
1 

2 f 2 ( f 1 −1) 
− 1 

2 f 2 

)
. 

or f 2 < 0 and f 1 < 1, we have 

f 2 
2( f 1 − 1) 

+ 

f 1 − 1 

2 f 2 
− 1 

2 f 2 
> 1 . 

ence, H 2 almost state synchronization is not possible for e 1 � = 0.

or e 1 = 0 , we have 

 T ω 1 ̄x ‖ 2 → 0 

s f 2 → −∞ with f 1 = 0 . 

Now, we consider H 2 almost output synchronization in the case

50) is not satisfied. 

heorem 5. Consider a MAS described by (10) and (11) . Assume ( A ,

 , C ) is squared-down passifiable with respect to G 1 , G 2 and H , such

hat ( A , BG 1 ) is stabilizable, ( A , G 2 C ) is detectable while BG 1 and G 2 C

ave full column- and row-rank, respectively. Let any real numbers α,

> 0 and a positive integer N be given, and hence a set of network

raphs G 

N 
α,β

be defined. 

The H 2 almost output synchronization problem stated in

roblem 4 with G = G 

N 
α,β

is solvable. In particular, for any given real

umber δ > 0, there exists an ε∗, such that for any ε ∈ (0, ε∗), the

rotocol (49) achieves state synchronization and the H 2 norm from ω 

o G 2 (y i − y j ) is less than δ for any i, j ∈ 1 , . . . , N and for any graph

 ∈ G 

N 
α,β

. 

The above theorem states that for squared-down passifiable

gents we can achieve H 2 almost output synchronization with re-

pect to the compensated output ˆ y = G 2 y . The following remark

hows that this is no longer valid if we use the original output. 

emark 11. Consider the MAS (48) with the same communication

etwork as stated in Example 1 . 

We have 

0 1 

f 1 − 1 f 2 

)T 

P + P 

(
0 f 1 − 1 

1 f 2 

)
+ I = 0 

hich yields 

 = 

(
f 2 

2( f 1 −1) 
+ 

f 1 −1 
2 f 2 

− 1 
2 f 2 

− 1 
2( f 1 −1) 

− 1 
2( f −1) 

1 
2 f ( f −1) 

− 1 
2 f 

)

1 2 1 2 
ence 

 T ω 1 ̄y ‖ 2 = 

f 2 
2( f 1 − 1) 

+ 

f 1 − 1 

2 f 2 
− 1 

2 f 2 

ince f 1 < 1 and f 2 < 0, it is easily verified that 

 T ω 1 ̄y ‖ 2 ≥ 1 . 

ence H 2 almost synchronization is not possible. 

roof of Theorem 5. We use similar arguments as in the proof of

heorem 4 . 

This time, we obtain, using our output feedback, 

˙ ˜ 
 1 = A 11 ̃  x 1 + A 12 ̃  x 2 + E 1 ω, 

˙ ˜ 
 2 = A 21 ̃  x 1 + (A 22 − λρ) ̃  x 2 + E 2 ω, 

˜ y = 

˜ x 2 , (66) 

n the proof of Theorem 1 , we already established that the H ∞ 

orm of T λ
ˆ u ̂ y 

is less than Mρ−1 for some M and the H ∞ 

norm of

 

λ
ˆ u ̂ u 

is bounded for ρ sufficiently large. We still need to study the

 2 norm from ω to ˆ y and the H 2 norm from ω to ˆ u . We have ⎛ 

⎜ ⎝ 

A 11 s 0 A 121 

[3 pt]0 A 110 A 122 

A 211 −A T 122 A 22 − λρX 

⎞ 

⎟ ⎠ 

Q + Q 

⎛ 

⎜ ⎝ 

A 11 s 0 A 121 

0 A 110 A 122 

A 211 −A T 122 A 22 − λρX 

⎞ 

⎟ ⎠ 

∗

+ 

⎛ 

⎜ ⎜ ⎜ ⎝ 

0 0 0 

0 0 0 

0 0 I 

⎞ 

⎟ ⎟ ⎟ ⎠ 

≤ α4 

ρ

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

A 11 s + A T 11 s 0 A 121 + A T 211 

0 0 0 

A T 121 + A 211 0 A 22 + A T 22 − βρX 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

≤0 

(67) 

or ρ large enough with Q = 

α4 
ρ I while α4 is such that 

 ≤ α4 βX 

ut then, using Lemma 7 , we obtain that the H 2 norm from ω to ỹ

s less than 

 

α4 

ρ

∥∥∥E 1 E 
T 

1 + E 2 E 
T 

2 

∥∥∥1 / 2 

. 

hile the H 2 norm from ω to ˆ u is less than 

 

α4 ρ‖ X ‖‖ E 1 E 
T 

1 + E 2 E 
T 

2 ‖ 

1 / 2 . 

he proof is completed by using Lemma 5 . �

.2.2. Squared-down minimum-phase with relative degree 1 agents 

Note that for squared-down minimum-phase with relative de-

ree 1 agents we still cannot achieve H 2 almost state synchroniza-

ion in the case that (50) is not satisfied. The only additional prop-

rty we can obtain for this class of agents is that the H 2 norm from

he disturbance ω to x i − x j is uniformly bounded, i.e. 

heorem 6. Consider a MAS described by (10) and (11) . Assume ( A ,

 , C ) is squared-down passifiable with respect to G 1 , G 2 and H , such

hat ( A , BG 1 ) is stabilizable, ( A , G 2 C ) is detectable while BG 1 and G 2 C

ave full column- and row-rank, respectively. Let any real numbers α,

> 0 and a positive integer N be given, and hence a set of network

raphs G 

N 
α,β

be defined. 

The H 2 almost output synchronization problem with bounded state

rrors via static protocol stated in Problem 4 with G = G 

N 
α,β

is solv-

ble. In particular, there exists M > 0 such that for any given real

umber δ > 0, we have an ε∗ > 0, with the property that for any

∈ (0, ε∗), the protocol (49) achieves state synchronization and an

 2 norm from ω to y i − y j less than δ while the H 2 norm from ω to

 i − x j less than M for any i, j ∈ 1 , . . . , N and for any graph G ∈ G 

N 
α,β

.

roof. Similar to the proof of Theorem 5 . But since 

 11 + A 

T 

11 < 0 
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Fig. 3. The directed communication topology. 
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there exists μ such that 

A 11 + A 

T 

11 + μI ≤ 0 

We can then obtain instead of (67) (
A 11 A 12 

A 21 A 22 − λρX 

)
Q + Q 

(
A 11 A 12 

A 21 A 22 − λρX 

)T 

+ 

μ

ρ

(
I 0 
0 I 

)
≤ 0 

for ρ sufficiently large provided Q = 

1 
ρ I. But then, using Lemma 7 ,

we obtain that the H 2 norm from ω to ˜ x is less than 

1 √ 

μ

∥∥∥E 1 E 
T 

1 + E 2 E 
T 

2 

∥∥∥1 / 2 

. 

which is exactly the extra property that we needed to

establish. �

6. Numerical example 

The effectiveness and performance of the H ∞ 

almost output

synchronization design is demonstrated through the following nu-

merical example. We illustrate our results for a homogeneous MAS

of N = 6 agents. We consider H ∞ 

almost output synchronization

problem via static protocol for squared-down passive agents. 

The agent model is written as 

A = 

( 

0 1 0 

−1 0 0 

0 0 −1 

) 

, B = 

( 

0 0 1 

1 0 0 

2 1 1 

) 

, C = 

(
0 0 1 

1 1 −1 

)
. 

According to condition (2) , we verify that this agent model is

squared-down passive by choosing P = I, and G 1 , G 2 and E given

by 

G 1 = 

( 

1 

−2 

1 

) 

, G 2 = 

(
3 1 

)
, and E = 

( 

1 

1 

1 

) 

. 
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Fig. 4. H ∞ almost output sync
ith disturbances 

ω 1 = 0 , ω 2 = cos (t) , ω 3 = 0 . 5 , 

ω 4 = sin (2 t) , ω 5 = sin (t) , ω 6 = cos (2 t) . 

he communication topology is shown in Fig. 3 with associated

aplacian matrix 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 0 −1 0 0 0 

−1 1 0 0 0 0 

0 −1 2 0 0 −1 

−1 0 0 1 0 0 

0 0 0 −1 1 0 

0 0 0 0 −1 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

ow by choosing ρ = 4 and ρ = 20 , we obtain the results as

ig. 4 and 5 , respectively. The simulations confirm the results of

he paper that by increasing the value of ρ we achieve higher de-

ree of accuracy. 
5 20 25 30

e(s)

ut Synchronization

5 20 25 30

e(s)

5 20 25 30
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. Conclusion 

In this paper, we studied H ∞ 

and H 2 almost state or output

ynchronization problems for homogeneous MAS with partial-state

oupling via static protocols in the presence of external distur-

ances. We provided solvability conditions for designing static pro-

ocols for three classes of agents, namely squared-down passive,

quared-down passifiable via output feedback, and squared-down

inimum-phase with relative degree 1. Finally, we concluded our

aper by a numerical example to show that we can decrease the

mpact of disturbances on the network disagreement dynamics to

n arbitrary small value. As an extension of this work, in the fu-

ure, we will work on almost synchronization of MAS with nonlin-

ar passive agents. 
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