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Abstract— Recently, the synthetic aperture radar tomography
(TomoSAR) technique has attracted significant attention owing
to its 3-D reconstruction capability of complex urban envi-
ronments. The availability of a high number of images is
usually a requirement for nonparametric spectral estimation
methods. This letter evaluates the potential of four nonparametric
spectral estimation algorithms, that is: 1) linear prediction (LP);
2) minimum norm (MN); 3) singular value decomposition (SVD);
and 4) Capon for improved tomographic reconstruction of the
third dimension of built-up areas with a small number of
observations. The performance analysis is carried out for both
simulated and real SAR datasets. The returns from the employed
techniques indicate the efficient and low-computational estimator
of LP by minimizing the average output signal power at the
array of antenna elements and make it possible to separate
multiple scatters at a distance below the Rayleigh resolution
and clean sidelobes’ phenomena in the elevation profiles. The
experimental results of a dataset acquired by the TerraSAR-X
sensor verify the effectiveness of the LP spectral estimator
algorithm in the reconstruction of urban buildings. The estimated
height of scatterers with the LP method is considerably similar
to the ground-observed data.

Index Terms— Building reconstruction, linear prediction (LP)
method, nonparametric spectral estimation, synthetic aperture
radar tomography (TomoSAR).

I. INTRODUCTION

IN RECENT years, due to different scatterers interfering
from buildings, houses, roads, bridges, trees, and vege-

tation cover, the tomographic analysis of synthetic aperture
radar (SAR) data in urban areas has become a valuable field
of research. In the presence of steep topography, as ver-
tical structures (i.e., buildings), severe signal contributions
from multiple scatterers may superpose within in the same
range-azimuth resolution cell [1]. To overcome this limitation,
SAR tomography (TomoSAR) is a contemporary technique
that has been attracting significant attention in the case of
urban scenarios [2].
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3-D SAR focusing as an inverse problem can be solved
using a variety of spectral estimation algorithms. Standard
spectral estimators are categorized into three groups: sparsity-
based compressive sensing (CS) approaches [3], parametric,
and nonparametric methods [4]. CS-based TomoSAR tech-
niques generally suffer from high computational consumption
due to their iterative scheme and unavailability of adaptive
algorithms for convex optimization [5]. Parametric algorithms
assume a predefined statistical model that enables the estima-
tion of the unknown model parameters. In these techniques,
a priori knowledge is required about the number of interfering
scatterers inside an azimuth-range pixel. Generally, parametric
methods may represent significant estimates if the data happen
to be close to the assumed model [6].

On the contrary, with nonparametric methods, there is no
distributional assumption made regarding the nonparametric
estimators; therefore, the number of parameters is estimated
directly from the observed data [6]. Compared to the first
two groups of methods, nonparametric estimators are fast and
robust focusing techniques. These advantages make nonpara-
metric spectral estimators more applicable to data processing.
However, nonparametric techniques, such as beamforming and
Capon, are typically limited by the relatively low potential
in height resolution. Generally, the unavailability of a large
number of image data with desirable baseline distribution
impairs the resolution and quality of such reconstruction
techniques.

In this letter, we investigate the problem of the require-
ment of the availability of a high number of images in
nonparametric-based TomoSAR spectral estimation methods.
The primary aim of this study is, thus, to improve the quality
and accuracy of building height retrieval using a small number
of TerraSAR-X stripmap data. We consider two new direction
of arrival (DOA) estimation methods, namely, linear predic-
tion (LP) and minimum norm (MN) for urban tomographic
applications. The proposed nonparametric spectral estimation
methods are evaluated with respect to their performance in the
separation of the different scatterers at distances shorter than
the Rayleigh resolution in urban areas. Interestingly, we prove
that the LP method with constraints to minimize the average
output signal power at the array of antenna elements offers the
possibility to discriminate layover scatterers located below the
Rayleigh elevation resolution and suppress the sidelobe effect.

This letter is organized as follows. Section II describes
the theory of the two proposed DOA estimation algorithms.
In Section III, the results on simulated data and stripmap
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TerraSAR-X data are presented to highlight the potentials
and limitations of the four nonparametric spectral analysis
methods. Finally, the conclusion is provided in Section IV.

II. METHODOLOGY

A. Basic TomoSAR Theory

TomoSAR, as the extension of the 2-D SAR imaging princi-
ple, provides full 3-D imaging by forming a synthetic aperture
along the orthogonal direction to the azimuth and the slant
range directions. Due to the side-looking viewing geometry of
SAR sensors, received echoes of the different scatterers with
the same range of distance to the sensor may interfere within
one resolution cell. In a stack of N coregistered complex-
valued SAR images, for a given pixel (x, r) in the nth image,
the integral of the backscattering function along elevation
direction is represented by the following formula [7]:

gn(x, r) =
∫

γ (x, r, s) exp[− j2πξns]ds + εn(x, r)

g = A.γ + ε (1)

where ξn = 2b⊥n/λr is the spatial frequency along the
elevation, λ is the wavelength parameter, r is the distance
between the SAR sensor to the target, b⊥n is the perpendicular
components of the spatial baseline for the nth sensor with
respect to the master sensor, and the vector of γ represents
the complex vertical reflectivity of scatterers. Equation (1)
illustrates the fundamental relationship between the multi-
baseline signals and the complex-valued of the backscattered
reflectivity profiles. Moreover, ε can be given as a Gaussian
white noise vector.

By sampling γ (s) in the elevation direction with L steps,
the steering matrix A = [a1, a2, . . . , aL ] with N×L dimension
consists of L steering vectors. The N-dimensional steering
vector al as a function of scatterer height can be given by

al = [
e( j2πξ1sl ), e( j2πξ2sl ), . . . , e( j2πξN sl)

]T
(l = 1, 2, . . . , L).

(2)

In (2), sl(l = 1, . . . , L) is a discrete position along the
elevation direction. The tomographic processing can be per-
formed by different spectral estimation strategies to derive
the reflectivity profile vector of, γ , each range-azimuth pixel.
In Section II-B, we introduce two nonparametric approaches
for this purpose.

B. DOA-Based Estimation Methods in SAR Tomography

Data of the same target collected from multiple baseline
SAR images can be considered as signals received by the
individual array antenna [8]. Therefore, after the preprocessing
of TomoSAR data (i.e., interferometric phase flattening and
atmospheric phase compensation with PS-InSAR technique),
different types of DOA estimation techniques can be applied
for 3-D image focusing [3], [9]. This study compares and
assesses two new nonparametric DOA algorithms for tomo-
graphic reconstruction of the built-up area to derive the accu-
rate height of the buildings.

1) Linear Prediction-Based DOA Estimation: The LP esti-
mation method, as a potentially valuable tool, is widely
applied in the field of time series problems, speech processing,
spectrum analysis, and array processing [10]. The basic con-
cept of the proposed spectral algorithm is the minimization
of the mean output signal power over the antenna array
elements [11], [12]. Under this constraint, the SAR image
target height can be reliably estimated in the noise presence.

Based on the idea of the LP estimator, using predictive
coefficients, γ (sl), the value of gn is modeled by a weighted
linear combination of exp[− j2πξns]. Equation (1) in the
LP estimator framework can be approximated as a discrete
equation as follows:

gn =
L∑

l=1

γ (sl) exp[− j2πξnsl] + εn

n = 1, 2, . . . ,N l = 1, 2, . . . ,L (3)

where γ (sl) is the reflectivity power of elevation position s1.
The LP method, for each row of the steering matrix, finds the
column vector of weights

γ (s) = [
γ (s1), γ (s2), . . . , γ (sL)

]
(4)

which minimizes the quantity of the following criterion:

E
{|γ (s)H g|2} = E

{|γ (s)H ggHγ (s)|2} = γ (s)H Cgγ (s). (5)

The constrained optimization problem minimizes the crite-
rion subject to the constraint that the weight vector on the
selected elevation position is unity. This constraint can be
written using as [12]

γ (s)H u = 1. (6)

The column vector u is the i th column of an identity
matrix IN×N . In LP spectral estimator, as a multilooking
method, the estimation of the covariance matrix is achieved
through the averaging of adjacent pixel values in both azimuth
and range directions

Cg = E
{

ggH
} ≈ Cg = 1

M

M∑
m=1

ggH (7)

where E[.] and (.)H denote the Expectation and Hermitian
operators, respectively. The parameter of M is the total num-
ber of neighboring pixels that need to be averaged. In this
letter, to estimate the sample covariance matrix, we consider
a 5 × 5 pixel window.

Using the method of Lagrange multipliers, the resulting
optimal LP weight vector of the LP estimator can be solved
as [11], [12]

γ opt(s) = C−1
g u

uH Cg−1u
. (8)

Corresponding to the autoregressive (AR) model for a
signal, the estimated power spectrum of the LP method is
computed by dividing the mean square prediction error and
the magnitude squared spectrum of the prediction weights.
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Thus, the power spectrum can be represented in the form
of [11], [12]

PLP(s) = uH C−1
g u

|uH C−1
g A|2 . (9)

The performance of the LP technique depends on the choice
of column u. To overcome this dependence, we adapted a
criterion based on the maximum contrast of the reflectivity
profile. In particular, the vector u is selected such that the
reconstructed reflectivity profile has maximum contrast among
the profiles that can be extracted from all possibilities of u.

2) Minimum Norm-Based DOA Estimation: The MN is
known as one of the typical high-resolution subspace-based
DOA estimation techniques [13]. With this approach, after the
estimation of the data covariance matrix Cg, the widely used
singular value decomposition (SVD) technique is performed to
obtain the product of three decomposed matrices U, S, and V
such that Cg = USVT. Then, the noise subspace eigenvectors
are constructed by selecting the specific columns from U ,
i.e., UNoise = U(:, q + 1 : N). The parameter of q corresponds
to the q largest eigenvalues.

In this method, the optimal solution for the weight vector
d = [d1, d2, . . . , dN ]T as a linear combination of noise
eigenvectors is obtained by solving the optimization problem
in the following way:

min dH d, UH
Signald = 0, dH e1 = 1 (10)

where e1 is an N × 1 vector with all elements equal to zeros,
except for the first one (first column of the N × N identity
matrix). The signal subspace matrix USignal = [u1, u2, . . . , uq ]
with N × q dimension is constituted by eigenvectors of the
covariance matrix corresponding to the largest q eigenvalues.

The spectrum function of this method is obtained based
on the MN vector lying in the noise subspace, in which the
first column of the identity matrix satisfies this condition. The
optimization solution of (10) yields the MN spectrum estima-
tor. This spectral estimator is performed from the following
expression:

PMN(s) = 1

|ATUNoiseUH
Noisee1|2 . (11)

III. EXPERIMENTS AND RESULTS

In this section, the performance of employed spectral esti-
mators is evaluated on simulated data and real TerraSAR-X
images over Tehran, Iran. For the simulation of the tomo-
graphic SAR data based on the TerraSAR-X system para-
meters, we consider the problem of reconstruction of two
scatterers within one resolution cell. The TerraSAR-X sensor
parameters are shown in Table I, and the total baseline span is
about 414 m and, thus, corresponds to the Rayleigh resolution
of about 21 m in the vertical direction.

A. Numerical Experiments

To explore the super-resolution capability of the estimators,
in this simulated stack of SAR data, the layover scatterers
are located at height differences lower than the Rayleigh

TABLE I

TERRASAR-X PARAMETERS

Fig. 1. Results of the reflectivity profile on the simulated dataset. (a) With
19 looks. (b) With 31 looks. (c) With 65 looks.

resolution limit. Fig. 1 demonstrates the results of the reflec-
tivity profile using four DOA estimation techniques on the
simulated dataset. Moreover, to evaluate the capability of
detecting double scatterers with the increased number of
images, we have exploited three different values of the number
of image acquisitions, N = 19, N = 31, and N = 67, although
the total baseline is the same in all scenarios. This means that
the simulated multibaseline datasets have identical Raleigh res-
olution in three cases. The results obtained in MN, SVD, and
Capon estimators with simulated data reveal that, by increasing
the number of acquisitions, the two scatterers whose elevation
distance is smaller than Rayleigh resolution can be separately
detected. The findings confirm that the nonparametric-based
spectral estimation methods, such as MN, SVD, and Capon,
require a high number of observations for reliable estimation
and are strongly affected by the number of image acquisitions,
while the analysis indicates that the proposed LP DOA estima-
tion technique can correctly detect the location of two closely
spaced scatterers as distinct scatterers with a reduced number
of looks. This technique shows robustness to the number of
images when the total baseline is kept constant.

B. Real Data Experiments

In this study, a stack of 19 stripmap images acquired
by the spaceborne TerraSAR-X from descending orbits over
the city of Tehran, Iran, was used. The data were obtained
between 2012 and 2013, and the polarization mode of the
images is HH. The study area belongs to a mosque located in
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Fig. 2. Case study over a mosque. (a) Mean amplitude SAR image.
(b) Location of a mosque on Google Earth.

Mirdamad Boulevard with a latitude of 35◦ 45’ 34.19” N and a
longitude of 51◦ 26’ 15.54” E. The mosque and corresponding
TerraSAR-X mean amplitude image are illustrated in Fig. 2.
This test building, with an image size of 55 × 23 pixels, has
a height close to 8.5 m, corresponding to an elevation range
of 20 m. The mosque is a complicated study area with an
elevation lower than the Rayleigh resolution.

In the implementation procedure of the proposed SAR
tomographic methods for TerraSAR-X stripmap images, after
the proper preprocessing of the stack datasets, two new
tomographic imaging methods in the urban area now apply
to evaluate the capability of detecting and separating multiple
scatterers along the elevation direction.

The results of building height retrieval with the two DOA
estimation methods are compared to the SVD and Capon
spectral estimators. The validation of tomographic results is
based on the ground truth of the height of the buildings.

1) Results of Three TomoSAR Algorithms: As can be seen,
due to the effects of SAR imaging geometry in the target
interaction, the location of the top of the mosque building
is at the near range, while its bottom appears at the far range
in the SAR image. In this study, the height differences below
the Rayleigh resolution are estimated along the red azimuth
line that occurs over the facade of the building of interest.

In this study, the quality of the proposed method can be
expressed by the TomoSAR reconstruction with the reduction
and suppression of sidelobes, super-resolution capability, and
evaluation of the estimated tomographic heights with the
ground-truth measurements. Fig. 3 shows the tomographic
reconstruction of the considered line [see Fig. 2(a)] with the
LP, MN, and Capon methods in the height-range plane.

At the intersection of the facade of the building with
the ground surface, more than one scatterer mainly exists
in the same image pixel. The experimental results indicate
that the LP-based spectral estimation method considerably
improves the TomoSAR imaging for the separation of layover
contribution beyond the Rayleigh resolution limit. It can be
seen at the beginning of Fig. 3(a) that the strong scatterer
corresponds to the top of the building and the weaker scatterer
caused by the reflection from the ground target. Fig. 3(e)
illustrates the obtained reflectivity profile corresponding to the
azimuth-range pixel at the beginning of the LP tomogram.
As shown by the results of the LP spectral estimation method,
with row pixels in the SAR image increasing, the difference

Fig. 3. Implementation of DOA estimation methods over a mosque area.
(a) LP. (b) MN. (c) SVD. (d) Capon. (e) Reflectivity profile for the azimuth-
range pixel at the beginning of the LP tomogram.

in elevation direction between the top and bottom portions of
the building is 20 m. This estimation is considerably similar
to the ground-truth data.

While the other employed TomoSAR methods, MN, SVD,
and Capon, suffer from severe sidelobe issues, distinguishing
between signal and noise components by SVD decomposition
is a difficult task, especially when generating a tomogram
that must handle different pixels, which may contain various
numbers of scatterers, noise, and signal contributions. These
three methods have not been able to resolve the layover and
separate the overlaid scatterers located lower than the Rayleigh
resolution. It is obvious that a height jump phenomenon can
be seen in the tomograms obtained from the MN, SVD, and
Capon estimator methods [see Figs. 3(b)–(d)]. The results
affirm the fact that these techniques are highly affected by
improper baseline distribution, while LP shows more robust
reconstruction. Also, it is observed that there are significant
differences between the estimated values along elevation direc-
tion and the real elevation range of 20 m. The estimated
building values into the elevation direction extracted by using
MN, SVD, and Capon TomoSAR techniques are 28, 15,
and 18 m, respectively. As can be seen from Fig. 3(a), the esti-
mated elevation range from the LP-based method is 20 m,
which is consistent with the field-based measurement.

2) Choose the Best Column for LP Estimator: As it was
mentioned before, choosing the column vector of the identity
matrix has a significant effect on the results of the LP DOA
method. In the present study, we propose a new method to
choose the best column of the N × N identity matrix, by using
the contrast criterion. Each pixel consists of N L-dimensional
vertical reflectivity power vectors that resulted when different
columns of the identity matrix are employed. For every pixel of
the SAR image, this technique searches for vertical reflectivity
power based on the maximization of the cost function. The
following contrast cost function can be defined as

C{γ (s)} =

√
1
L

∑L
m=1

(
γ (sm) − 1

L

∑L
l=1 γ (sl)

)2

1
L

∑L
m=1 γ (sm)

. (12)
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Fig. 4. Implementation of LP estimator. (a) Choosing the best column from
the identity matrix. (b) Randomly select columns from the identity matrix.

Fig. 5. Implementation of DOA estimation methods over a mosque area
using ten SAR images. (a) LP. (b) MN. (c) SVD. (d) Capon.

The results of the proposed LP estimator using the best
column and a random selection of the columns from the
identity matrix are shown in Fig. 4(a) and (b), respectively. The
outcomes indicate that the proposed optimal column selection
approach enables the LP estimator to accurately reconstruct
the height profile.

3) Robustness of the DOA Estimation to the Number of
Images: In addition, we investigated and assessed the effec-
tiveness of the employed nonparametric spectral estimators
with respect to the reduced number of baselines in the focusing
process. To this aim, half of the datasets (i.e., ten alternative
acquisitions) are employed such that the overall baseline of ten
images is the same as the one with all 19 images. In Fig. 5,
the tomographic reconstruction results are illustrated for four
different spectral estimators, LP, MN, SVD, and Capon. From
the experiments, we can observe that the LP-based estimator
algorithm retains TomoSAR reconstruction while reducing the
required number of 2-D SAR images, indicating the robustness
of this technique to the number of images. Instead, the SVD
and conventional Capon methods are highly impaired by the
reduced number of images, while the MN approach showed
more robustness with respect to these techniques. Using a
small number of SAR images, the height estimation results
by LP, MN, SVD, and Capon methods are 23, 27, 40,
and 24 m, respectively.

IV. CONCLUSION

In this study, we evaluated two novel TomoSAR methods
for improving the estimation accuracy of the height of the
buildings in the urban environment. A stack of 19 TerraSAR-X
stripmap images from descending orbits over the city of
Tehran was processed. A building has been chosen as a
case study, a low-rise mosque, to analyze the performance
of the several nonparametric estimator methods. In this letter,
among the employed DOA techniques, the LP nonparametric
spectral estimation method enables layover contributions to
be separated within each singular cell. Furthermore, the LP
TomoSAR technique significantly improves the ability to sup-
press the sidelobes and reconstruct the reflectivity profile of the
scatterers situated at a distance below the Rayleigh resolution.
Estimates of heights using the LP TomoSAR method are
consistent with the ground-truth values. Compared with other
DOA estimation methods, such as MN, SVD, and Capon,
the results show that the proposed LP estimator has a strong
capability to reduce the impact of noise in the tomogram. The
results also indicate the robustness of the LP estimator to the
number of images.
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