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ABSTRACT

Patient no-shows and cancellations are a significant problem to healthcare clinics, as they compro-
mise a clinic’s efficiency. Therefore, it is important to account for both no-shows and cancellations
into the design of appointment systems. To provide additional empirical evidence on no-show and
cancellation behaviour, we assess outpatient clinic data from two healthcare providers in the USA
and EU: no-show and cancellation rates increase with the scheduling interval, which is the num-
ber of days from the appointment creation to the date the appointment is scheduled for. We show
the temporal cancellation behaviour for multiple scheduling intervals is bimodally distributed. To
improve the efficiency of clinics at a tactical level of control, we determine the optimal booking
horizon such that the impact of no-shows and cancellations through high scheduling intervals is
minimised, against a cost of rejecting patients. Where the majority of the literature only includes
a fixed no-show rate, we include both a cancellation rate and a time-dependent no-show rate. We
propose an analytical queuing model with balking and reneging, to determine the optimal booking
horizon. Simulation experiments show that the assumptions of this model are viable. Computational
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results demonstrate general applicability of our model by case studies of two hospitals.

1. Introduction

Healthcare services are continuously challenged to
deliver efficient and effective patient care. Inefficiencies
are among others caused by no-shows and cancellations.
No-shows and cancellations not only result in adverse
efficiency outcomes for clinics, but also in reduced qual-
ity of care for their patients (Davies et al. 2016). In order
to mitigate the effects of no-shows and cancellations,
these effects need to be incorporated in decisions on
the design of appointment systems. This research there-
fore presents a data-driven queuing approach to account
for no-show and cancellation behaviour in the design of
optimal booking horizons for these clinics. The book-
ing horizon determines how much time in advance an
appointment can be planned, and is an input parame-
ter to an appointment system. The challenge is that when
the booking horizon is determined, there is no informa-
tion on actual patient arrivals, as typically only histori-
cal data on the patient population is known. Therefore,
the booking horizon optimisation problem is consid-
ered at the tactical level of control (Hans, Van Houden-
hoven, and Hulshof 2012). Section 2 introduces what is

known in the literature on no-shows and cancellations,
which shows a need to include cancellations into non-
attendance analyses and clinic design. In Section 3, we
provide additional empirical evidence for incorporating
no-show and cancellation behaviour in outpatient clinic
design, by analysing the time-dependent behaviour of
no-shows and cancellations based on real life data of
two major healthcare institutions from the US and the
Netherlands. Section 4 presents the queueing model that
incorporates these no-shows and cancellations for deter-
mining the optimal booking horizon. Sections 5 and 6
present the numerical experiments and validation of the
analytical model and results respectively. Section 7 gives
the conclusions and discussion.

Our contribution is threefold: (1) We show the need
and make the first step in incorporating time-dependent
cancellations in outpatient clinic design. (2) Using data
from two health systems in the US and the Nether-
lands we define the time-dependency of no-shows and
cancellations, together with the timing of cancella-
tions, and compare no-show and cancellation behaviour.
(3) We develop and solve a data-driven queueing model
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to determine the optimal booking horizon in which we
are the first to take time-dependent no-shows and can-
cellations into account.

Throughout this manuscript we use the following def-
initions:

e Cancellation interval: The number of business days
from the creation of an appointment to the date the
appointment is cancelled.

e Scheduling interval: The number of business days from
the creation of an appointment to the date the appoint-
ment is scheduled for.

e Booking horizon: The number of business days from
the current date to the date of the latest available
appointment slot.

2. Literature
2.1. Characteristics of no-shows and cancellations

Ever since the increasing focus on efficient health-
care operations, clinics started to evaluate their no-
show and cancellation rates. No-shows and cancella-
tions result amongst others in reduced productivity
and efficiency for hospitals (Davies et al. 2016), finan-
cial impact through reduced revenue and idle resources
(Moore, Wilson-Witherspoon, and Probst 2001; Nor-
ris et al. 2014; Bean and Talaga 1992), reduced learn-
ing opportunities for residents (Guse et al. 2003), and
the waste of valuable resources, which could have been
used to serve other patients. Furthermore, no-shows
and cancellations increase the waiting lists, by reduc-
ing the number of appointments available. Therefore, it
reduces patient access to care (Davies et al. 2016; Nor-
ris et al. 2014), which might affect the continuity of care
for patients (Bean and Talaga 1992). Furthermore, the
reduced patient access might cause a vicious cycle, with
longer waiting lists increasing the non-attendance rates,
which increases the waiting times again (Hawker 2007).

Although appointment attendance behaviour has been
studied for over half a century, the high volume of
recent medical research on this topic shows the prob-
lem is still present in healthcare systems. However, most
of this literature only distinguishes between no-shows
and shows, and excludes cancellations as a specific cat-
egory from the analysis (Norris et al. 2014): Cancel-
lations are either included as no-shows, included as
shows, or excluded from the analysis all together. Only
a few studies have analysed no-shows and cancellations
as two separate conditions (Partin et al. 2016; Norris
et al. 2014; Shah et al. 2016; Harris 2016), despite the
different behaviour of patient cancellations compared
to patient no-shows (Harris 2016). It is important to

analyse patient cancellation behaviour as well, as can-
celled appointments give opportunities to reallocate
capacity (Norris et al. 2014; Harris 2016; Monahan and
Fabbri 2018), and therefore to increase the clinic’s utili-
sation and the number of patients that gets access to the
clinic.

For clinics it might be challenging to fill appointment
slots after last-minute cancellations, resulting in an idle
resource, which has a similar effect as a no-show. Simi-
lar reasoning holds for patients that want to reschedule
their appointment at late notice. To be able to assess
this opportunity loss of cancelled patients, it is impor-
tant to not only take the amount, but also the timing
of cancellations into account. By quantifying this cancel-
lation behaviour of patients, the effects of interventions
can be measured, which is an open gap in the literature
according to Monahan and Fabbri (2018). As an exam-
ple, Chariatte et al. (2008) stated that in their healthcare
institution there might be a peak in last-minute cancel-
lations, by patients that want to avoid a payment for a
missed appointment. We define the cancellation interval
as the number of business days from the creation of an
appointment to the date the appointment is cancelled. To
the best of the authors’ knowledge, data on the cancella-
tion interval over multiple days is not reported before in
the literature.

2.2. Scheduling characteristics as predictors of
no-shows and cancellations

The relationship between the scheduling interval and
the no-show and cancellation rates is well-studied. We
define the scheduling interval, also referred to in the
literature as lead time, planning horizon, appointment
age, or appointment interval, as the number of business
days from the creation of the appointment to the date
the appointment is scheduled for. Focusing on predictive
studies, Bean and Talaga (1992) and Norris et al. (2014)
found that the scheduling interval is the most signifi-
cant predictor of patient non-attendance, both for no-
show and cancellation rates. Whittle et al. (2008) found a
modest effect of the scheduling interval on no-shows, as
for large scheduling interval the no-show rate stabilised.
Furthermore, they found a highly significant effect of
the scheduling interval on cancellations. Mohammadi
etal. (2018) and Partin et al. (2016) found the scheduling
interval to be a predictor of both no-shows and cancel-
lations as well. Recently, machine learning techniques
are employed to forecast no-show and cancellation
behaviour. Denney, Coyne, and Rafiqi (2019) showed the
scheduling interval was the top feature for predicting no-
show and cancellations. Besides many studies that found
a significant relation with the scheduling interval and



cancellations and/or no-shows (Davies et al. 2016), some
studies did not find such a relation between the schedul-
ing interval and no-show rate (Wang and Gupta 2011;
Centorrino et al. 2001). Concluding, patients that have
a longer scheduling interval tend to have a higher prob-
ability of no-show and cancellation. However, when the
scheduling interval becomes very long, these effects may
fade out (Bean and Talaga 1992; Whittle et al. 2008).

2.3. Strategies to minimising the effect of no-shows
and cancellations

To mitigate the effects of no-shows and cancellations,
clinics can try to influence patient behaviour or modify
their scheduling strategy, for example through education,
reminders, and financial rewards or penalties (Daggy
et al. 2010).

Besides strategies to impact patient behaviour, schedu-
ling strategies can be adopted. Scheduling strategies that
aim to minimise the adverse effects of no-shows and can-
cellations include overbooking, open access scheduling,
panel sizing, and reducing the booking horizon.

When overbooking is allowed, additional patients are
booked to timeslots with a high probability of becoming
idle, or booked in overtime, based on the probability that
patients cancel or miss their appointment (Zacharias and
Pinedo 2014). This way, the probability of resource idle
time is minimised, and patients can get earlier access.
However, overbooking may increase waiting times for
patients that show up for their appointment, which could
result in reduced patient satisfaction and lower atten-
dance rates on the long term (Daggy et al. 2010).

Open access scheduling (also known as walk-in
scheduling) schedules patients that require an appoint-
ment the same day, or allows patients to be seen at a walk-
in basis (Robinson and Chen 2010). Since the scheduling
interval is (close to) zero in this situation, the impact of
cancellations and no-shows is small. However, high fluc-
tuations in daily demand may result in idle and overtime.
The hybrid policy, in which patients can both schedule
an appointment or walk-in, allows using the idle time
caused by no-shows to serve walk-in patients. However,
Moore, Wilson-Witherspoon, and Probst (2001) showed
that using a walk-in visit to cover idle time, does not
lead to complete financial recovery, even if it leads to full
utilisation.

Panel sizing limits the number of patients allowed in
the patient panel, which includes all patients that can
potentially use the service of the provider. This way,
the waiting list can never explode, as the number of
patients that can get admitted is controlled (Green and
Savin 2008). Through the waiting list length, the num-
ber of no-shows and cancellations is controlled as well,
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as patients that are waiting longer have a higher no-
show and cancellation probability. However, most outpa-
tient clinics cannot limit their patient population, which
makes this strategy especially valuable for the primary
care setting.

By limiting the booking horizon, one can control the
waiting list as well, and thus the number of no-shows
and cancellations. However, rejecting all patients that
require an appointment outside the booking horizon,
might result in patient loss and under-utilisation of the
system (Whittle et al. 2008). The booking horizon opti-
misation problem is a tactical level planning problem,
which allows for taking on a higher-level methodology,
such as queuing theory. Therefore, Liu (2016) developed
an M/M/1/K queuing model, which penalises the patient
loss, and considered a small revenue for empty slots, both
due to under-utilisation and no-shows. This work is the
closest to our proposed approach to optimise the book-
ing horizon, but it only considers patient no-shows, and
excludes patient cancellations.

Concluding, medical literature starts to recognise the
need to include cancellations into non-attendance analy-
ses, as cancelled appointments give opportunities to real-
locate capacity (Norris et al. 2014). However, scheduling
strategies and clinic designs do not take cancellations into
account. As no-shows and cancellations depend on the
scheduling interval, scheduling interval-dependent no-
shows and cancellations should be taken into account in
the design of outpatient clinics, whereas most literature
assumes fixed cancellation and no-show rates (Ahmadi-
Javid, Jalali, and Klassen 2016). In the remainder of
this paper, we will first analyse the no-show and can-
cellation behaviour in varying outpatient clinics in two
health systems, in order to define the scheduling interval-
dependency of no-shows and cancellations, as well as
the timing of cancellations. Furthermore, we advance the
work of Liu (2016), by expanding their M/M/1/K queuing
model with reneging in the queue, to incorporate both
no-show and cancellation behaviour in outpatient clinic
design.

3. Real life data analysis of no-shows and
cancellations in US and the Netherlands

To design an appointment system that incorporates no-
show and cancellation behaviour in Section 4, we need
to get insight into this behaviour. Based on the litera-
ture analysis of Section 1, we hypothesise the no-shows
and cancellation rates to depend on the scheduling inter-
val. To show the practical need to include this time-
dependent behaviour in the design of appointment sys-
tems in healthcare, this section presents applications
from large medical centres in the US and the Netherlands.
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The data collection is described in Section 3.1. Section 3.2
presents the no-show and cancellation outcomes. We
summarise our results in Section 3.3.

3.1. Data sources

We included retrospective appointment scheduling data
from two hospitals, namely Mayo Clinic in Rochester,
MN, USA, and University Medical Center Utrecht in
the Netherlands. These institutions will be referred to as
Institution 1 and 2 in the remainder of the paper. Data
of about 32,000 appointments was extracted from the
hospital information system of Institution 1, and data
of about 52,000 appointments was extracted from the
hospital information system of Institution 2.

The data set of Institution 1 consists of almost 3
years of data (2014/01/01-2016/10/31), and includes all
appointments that were scheduled during this time inter-
val for one specialty. The data set of Institution 2 con-
sists of 2 years of data (2015/01/01 - 2016/12/31), and
includes all appointments that were scheduled in two
outpatient clinics of two specialties. The outpatient clin-
ics serve, among others, neurology, sexually transmit-
ted diseases, and otorhinolaryngology patients, using an
appointment system with fixed slot sizes. No walk-in
patients are served in these outpatient clinics. Appoint-
ments are clustered in three categories, Seen, Cancelled,
and No-show. Each appointment where a patient showed
up is classified as Seen. When an appointment is can-
celled or rescheduled more than 24 hours in advance, it
is classified as Cancelled. Patients who are not present
for their appointment without any notice, who are hos-
pitalised, who are denied for service, and appointments
that are cancelled or rescheduled within 24 hours of the
actual appointment, are registered as a No-show. As both
hospitals also have education and research tasks, we only
included care related face-to-face appointments with a
nurse practitioner or clinician.

3.2. No-show and cancellation rates

To analyse the institutions’ no-show and cancellation
rates, we perform several statistical tests, with the no-
show and cancellation rates as dependent variables, and
the scheduling and cancellation interval as independent
variables. We calculate Spearman’s p correlation coeffi-
cients to assess whether there is a monotonic relation-
ship between appointment disposition and the schedul-
ing interval. We perform a subgroup analysis for patient
and clinic initiated cancellations, to evaluate whether the
cancellation-motivation impacts our hospital data. To
analyse the timing of cancellations, Spearman’s p correla-
tion coeflicients are calculated to assess whether thereis a
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Figure 1. No-show and cancellation distributions per scheduling
interval in days for the outpatient clinic of Institution 1.

monotonic decreasing relationship between appointment
disposition and the scheduling interval. Furthermore, we
perform a subgroup analysis for patients with various
scheduling intervals to determine the timing of cancel-
lations. We use IBM SPSS Statistics 22 for Windows for
all statistical analyses.

3.2.1. Real life data based no-show and cancellation
rates

For Institution 1, the no-show rate slightly increases from
10.3% for appointments that are scheduled the next day
to 16.3% for appointments that are scheduled 50 days
in advance (see Figure 1). A weak positive monotonic
correlation is found between the daily lead time and the
no-show rate (Spearman’s p = 0.344, n = 61 working
days, p = 0.007).

The cancellation rate increases from 12.3% for
appointments that are scheduled the next day to 42.0%
for appointments that are scheduled 50 days in advance
(see Figure 1). A strong positive monotonic correlation
is found between the daily lead time and the cancella-
tion rate (Spearman’s p = 0.741, n = 61 working days,
p<0.001).

For the first outpatient clinic of Institution 2, the
no-show rate slightly increases from 9.1% for next
day appointments to 11.0% for appointments that were
scheduled 50 days in advance (see Figure 2). A weak pos-
itive monotonic correlation is found between the daily
lead time and the no-show rate (Spearman’s p = 0.230,
n = 61 working days, p = 0.075).

The cancellation rate increases from 8.9% for next
day appointments to 37.7% for appointments that were
scheduled 50 days in advance (see Figure 2). A very
strong positive monotonic correlation is found between
the daily lead time and the cancellation rate (Spearman’s
p = 0.877, n = 61 working days, p = 0.001).
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Figure 2. No-show and cancellation distributions per scheduling
interval in days for the first outpatient clinic of Institution 2.
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Figure 3. No-show and cancellation distributions per scheduling
interval in days for the second outpatient clinic of Institution 2.

For the second outpatient clinic of Institution 2,
the no-show rate slightly increases from 7.4% for next
day appointments to 15.4% for appointments that were
scheduled 50 days in advance (see Figure 3). A weak pos-
itive monotonic correlation is found between the daily
lead time and the no-show rate (Spearman’s p = 0.301,
n = 61 working days, p = 0.018).

The cancellation rate increases from 3.9% for next
day appointments to 21.4% for appointments that were
scheduled 50 days in advance (see Figure 3). A mod-
erate positive monotonic correlation is found between
the daily lead time and the cancellation rate (Spearman’s
p = 0.407, n = 61 working days, p = 0.001).

3.2.2. Approximation of exponential distribution

In line with the literature (Green and Savin 2008;
Liu 2016), Figures 1-3 show that the no-show and can-
cellation rates approximate an exponential distribution.
Green and Savin (2008) propose the following no-show
rate function:

Vj = Vmax — (Vmax — Vo) eXPL_j/MJ/C>
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Table 1. Parameter settings for no-show and cancellation rates
per scheduling interval in days

Vi ax vg C Significance
No-show rate Institution 1 0.137 0.083 13 p < 0.001
No-show rate Institution 2a 0.181 0.096 97 p < 0.001
No-show rate Institution 2b 0.189 0.000 3 p < 0.001
Cancellation rate Institution 1 0.457 0.000 5 p < 0.001
Cancellation rate Institution 2a 0.311 0.000 7 p < 0.001
Cancellation rate Institution 2b 0.137 0.000 3 p < 0.001

9 For cancellation rates this reflects x.

where V.« reflects the maximum observed no-show rate,
Vo the minimum observed no-show rate, and C is a scal-
ing parameter. As u is the service rate and j the number
of timeslots, j/u is the number of days in the scheduling
interval. Similar reasoning holds for the cancellation rate:
Xj = Xmax — (Xmax — X0) eXPL_j/M/C .
We find the best-fit parameter values by minimising the
sum of the mean squared errors between the observed
and the modelled no-show and cancellation rates, to
maximise the goodness of fit. This way we find a no-show
rate and cancellation rate for each institution, which are
displayed in Table 1, together with the statistical signif-
icance of the fitted distributions to the data (based on a
X -squared test).

3.2.3. Cancellation timing

The cancellation timing provides insight in the reuse
potential of cancelled appointments slots (Monahan and
Fabbri 2018). As no timing behaviour over multiple days
is reported in the literature, we hypothesise that patients
cancel their appointments both early and late in their
scheduling interval, as they realise right after schedul-
ing the appointment that a date is not convenient, or
realise when the appointment is coming closer that for
example other commitments are more important than
this appointment. As we expect this behaviour to be more
distinct for patients with larger scheduling intervals, Fig-
ures 4 and 5 show the cancellation timing behaviour for
Institution 1 for various subgroups based on increased
scheduling intervals (similar results for Institution 2 not
shown). In Figure 5, we normalised the scheduling inter-
vals on the interval [0, 1], with 0 being the date on
which the appointment is created, and 1 the appoint-
ment date. As shown, the cancellation timing indeed
follows a bimodal distribution, with a peak right after
the create date of the appointment, and right before
the appointment date. This indicates that independent
of the scheduling interval, people tend to cancel their
appointment either right after an appointment is made
(about half of the cancelled appointments iscancelled
within 5 working days), or right before the appointment
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Figure 5. The probability of the timing of a cancellation for a given scheduling interval.

will otherwise take place (about two-third of the can-
celled appointments is cancelled less than 5 working days
before the actual appointment date). Thus, a patient that
did not cancel in the first one-third of the scheduling
interval, has a probability of cancellation of 8% in the
middle part. An appointment that survived until the

final third of the scheduling interval, has a cancella-
tion probability of 14%, and a no-show probability on
the day of the appointment of 12%. Note that the fre-
quency plots for appointments scheduled within 5 days
are not shown, as the bimodal behaviour is especially
visible for cancellations with larger scheduling intervals.



For small scheduling intervals both peaks merge into
one peak.

3.2.4. Initiation of cancellations

A cancellation occurs by patient or clinic initiation. As
clinic initiated cancellations reflect system behaviour,
these cancellations may behave differently. Therefore,
Whittle et al. (2008) and Bleehr et al. (2016) performed
two analyses for both patient initiated and clinic initi-
ated cancellations. Both studies found significant rela-
tions and observed similar cancellation rate behaviour
for patient and clinic initiated cancellation rates. Fur-
thermore, Foreman and Hanna (2000) analysed the
impact of the scheduling interval on attendance rates,
and found that this impact is independent of the rea-
sons for non-attendance. In line with this literature,
we find that Institution 1 initiated 11% of the total
cancellations, which shows the majority of cancella-
tions is patient initiated. Institution 2 initiated 42% and
13% of its cancellations respectively. Reasons for the
clinic to cancel the appointment are related to schedul-
ing errors and unexpected changes in provider cal-
endars due to for example illness. Summarising, both
patient and clinic initiated cancellations show similar
significant monotonic increasing behaviour and timing
pattern.

3.3. Summary of the results

This section analysed the no-show and cancellation
behaviour of two healthcare systems. We analysed both
US and EU based outpatient clinics, and conclude that
no-show and cancellation behaviour is similar for the
various health systems, as monotonic increasing rates
are observed, as well as bimodal cancellation timing
behaviour.

This is the first study to analyse the timing of cancella-
tions. We observe bimodal behaviour, with two cancel-
lation peaks, right after the moment that the appoint-
ment is scheduled, and right before the actual appoint-
ment time. This is an important observation, as slots
of appointments cancelled in the first peak can be reas-
signed with a high probability to new patients. However,
slots of appointments cancelled in the second peak are
less likely to be reassigned. This effect has to be taken into
account in the design of appointment systems.

A comparison of the obtained no-show and cancella-
tion rates shows that the no-show rate converges faster
than the cancellation rate. This is in line with the lit-
erature (Whittle et al. 2008). Therefore, we expect that
reducing the booking horizon has a larger influence on
the cancellation behaviour of patients than on the no-
show behaviour of patients.
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Concluding, we observe scheduling interval depen-
dent no-show and cancellation rates from US and EU
practice. As this impacts the possible performance of
an appointment system in clinics, these systems need to
be designed and optimised taking the time-dependent
behaviour into account.

4. Model

We focus on finding the optimal booking horizon, as
this approach allows for implementation in outpatient
clinical practice, and includes the time-dependency of
no-shows and cancellations. The booking horizon prob-
lem is a tactical level planning problem on the organisa-
tion of healthcare delivery processes at an intermediate
planning horizon (Hans, Van Houdenhoven, and Hul-
shof 2012). Therefore, we take on queuing theory, which
is regarded as a higher-level methodology. The opera-
tional level planning, which focuses on day-to day pro-
cesses such as appointment scheduling and will not likely
reach a steady-state at any point during the day, is out-
side the scope of this research. For this same reason, our
tactical analysis does not take into consideration opera-
tional behaviour, for example, variability in appointment
duration, and wait-time patterns during the day.

The booking horizon can be expressed in the number
of slots in the future in which appointments can be sched-
uled. The booking horizon is preferably set in such a way
that the number of patients rejected because of unavail-
ability of appointment slots, is minimised, while at the
same time the number of patients served is maximised.
To maximise the number of patients served, the effects of
cancellation and no-show rates on idle slots and system
capacity are minimised. As we are interested in num-
bers of patients served, patients rejected and idle slots,
we can model this problem as a finite queue queuing sys-
tem with reneging, which incorporates the monotonic
behaviour of the cancellation and no-show rates analysed
in Section 3. All future appointments in an appoint-
ment system can be together considered as the queue,
which makes the booking horizon equal to the maximum
queue capacity. By limiting the maximum queue capacity,
we can evaluate the effects of a limited booking hori-
zon on idle time, and the proportions of patients served
and rejected. We validated the queuing model using the
simulation-based approach described in Section 6. Our
work differs from the previous queuing models analysed
in Green and Savin (2008) and Liu (2016) as they do not
consider cancellations, for they are excluded (Liu 2016)
or included as no-shows (Green and Savin 2008). More
specifically, we consider a single-server queuing system
with no-shows, reneging in the queue, and balking to
evaluate the optimal booking horizon. Patients are served
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on a First Come First Serve (FCFS) basis, and due to the
finite capacity of the appointment system, patients that
arrive with K—1 patients in the system queue will leave.
Cancellations are patients who leave the queue before
their appointment. Furthermore, the system encounters
no-shows. When a patient does not show-up for an
appointment, the server will be empty for the entire ser-
vice time of this patient. No overtime, and no preemption
of service is allowed, and similar to Liu (2016) and Green
and Savin (2008) we assume exponential service times.

In this study, we assume that patients are offered one
appointment slot on a FCFS basis, and service times of
appointments are exponentially distributed with mean
time p. Under these assumptions, the system can be
modelled as a M/M/1/K queuing system with capacity
K and p appointment slots provided in a unit of time
(Liu 2016).

Our goal is to find the booking horizon, which is equal
to |K/p], that maximises the appointment system rev-
enue. This revenue is a combination of an added reward
of serving patients and a penalty for rejecting patients.

We assume patients arrive from an infinite source
according to a Poisson distribution with rate A. Patients
are served by a single server with exponential service rate
. Patients do not enter the queue if they encounter a full
queue at their arrival. Each patient is rejected at an oppor-
tunity cost 6. A patient always enters the queue if it is not
full.

Each patient in the queue can cancel his/her appoint-
ment generating a cost ¢, since this patient is lost. A
patient waits a random amount of time before cancelling,
which is assumed to have a negative-exponential distri-
bution with constant rate . The rate « represents the
average number of cancellations of the system per unit
of time (section 6 addresses the dependency of « on
K). Consequently, the long-run probability that any one
of the j patients scheduled in the system may cancel
his/her appointmentis equal to ¢j; = jor,j = 0,...,K —
1 (Ancker and Gafarian 1962). Although the cancella-
tion timing could be bimodal as shown in Section 3.2, the
model focuses on cancellations that could occur close to
the allocated slot. The simulation model in Section 6 fur-
ther evaluates the impact of bimodal-cancellation timing.

Each patient that enters the queue and does not can-
cel before service, has a probability of not showing up for
his/her appointment. The probability that a new arrival
will be a no-show when upon arrival there are j patients
scheduled in the queue is equal to vj;;. Based on the
no-show rate behaviour analysed in Section 3, we can
assume that the no-show probability of the system can
be described by a monotonic sequence vj—j < vj,j =
1,...,K — 1. A patient that is served provides a nominal
unit of revenue.

Let pj(K) be the steady-state probability that upon
arrival there are j patients scheduled in the system, and
po(K) be the steady-state probability that the system is
idle. Let p = g, 8 = L, then the steady-state equations
for the M/M/1/K queuing system are (Ancker and Gafar-
ian 1962),forj€0,...,K — 1:

K
0
;mmhgﬁmm ;mm=L

Let I'(-) be the gamma function defined as I'(z) = 0+°°

t?~le~tdt, then the closed-form expressions of the
steady-state probabilities are:

() = o O
1

1+F(5)Z]K:1%'

i=1,...K (1)

po(K) = (2)

Let Pg(K) be the proportion of patients served, Py (K) the
proportion of no-show patients, Pc(K) the proportion
of cancellations, and Pg(K) the proportion of blocked
patients. We have the following expressions:

&m=§0ﬁwm—mm,

Pe(K) = 1= pi(K) = (1= po(K)),
K—-1

PN(K) = ) pi(K) By, Pp(K) = pi(K),
j=0

where 8 = 5%] is the probability that a new arrival that
joins the queue does not cancel its appointment (Ancker
and Gafarian 1962). Let g > 0,and 6¢ > 0, the long-run

expected revenue of the system is defined as:
R(K) = APs(K) — APp(K)0p — APc(K)bc.  (3)

The booking horizon problem can be formulated as
follows:

sup R(K). (4)

KeZ*

This problem can be easily solved by limiting the optimi-
sation domain with a constant K € Z*, which depends
on the queue parameters and the cost coefficients weights
as shown in the Appendix.

5. Experiment settings and results

This section describes the numerical experiments. First,
the base case and experiment settings are described in
Section 5.1. Second, Section 5.2 presents the experimen-
tal results.



5.1. Base case and experiment settings

We consider an outpatient clinic which operates five
days a week. Every day, six appointment slots are avail-
able. Weekends are excluded from the analysis. As six
appointment slots are available per day, we set the deter-
ministic service rate 4 = 6, and arrival rate A = 6, with
patients arriving according to a Poisson distribution. The
no-show and cancellation rates are exponentially dis-
tributed, and derived from the data-analysis of Section 3.
We consider the no-show rate of Gallucci, Swartz, and
Hackerman (2005) (GO05) as a no-show rate, as G05 has
been used in the literature most frequently (Liu 2016;
Green and Savin 2008). Furthermore, patients cancel
their appointments with rate « = 0.06, as derived from
Institution 1 (see Figure 1).

As all cost coefficient weights are normalised towards
the revenue from serving one patient in one timeslot, we
need to assess the cost of cancellation (6¢) and the cost
of rejection (6g). We expect the cost of cancellation to be
higher than the cost of rejection. As we expect rejected
patients to be booked in another clinic, or be overbooked
in non-clinic hours, which is the current practice in both
hospitals included in this research, we do not consider
a cost of lost patients for rejected patients, but we do
include an inconvenience cost. Cancelled patients how-
ever might end up being lost by the clinic, as not every
patient will reschedule their appointment. Furthermore,
cancellations have a higher impact on the system (i.e.
through an extra administrative burden, blocking slots
for patients that would have showed up). As there is
a tradeoff between rejection and cancellation, decision
makers should together decide upon the cancellation and
rejection cost coefficient weights, based on the aforemen-
tioned considerations. Therefore, we experiment with
various cost coeflicient weights as shown in Table 3. In
the base case we use the settings 6 = 1.2 and 6¢ = 1.4.

To evaluate the efficiency of the method and to assess
the behaviour of various system settings, we run the fol-
lowing experiments, as shown in Table 3. First, we analyse
the impact of the no-show and cancellation rate on the
optimal booking horizon. Eight different no-show rates
are considered, five derived from the literature and three
derived from hospital data (refer to Section 3). Although
many studies report on the time dependency of no-
show rates, most literature does not include a functional
form of the time dependent no-show rate which is based
on real-life data (Green and Savin 2008). Furthermore,
most literature does not force their rates to long term
asymptotic behaviour, despite the fact that both no-show
and cancellation probabilities are not allowed to exceed
one. Therefore, we limit our literature rate inclusion to
rates that are monotonically increasing and converging
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Table 2. Parameter settings for literature based no-show rates
per scheduling interval in days

Study Name Vmax Vo C
Benjamin-Bauman et al. 1984 BB84 0.48 0.16 7
Festinger et al. 2002 F02 0.67 0.05 2
Gallucci et al. 2005 GO5 0.43 0.11 2
Green and Savin 2008 GS08 0.31 0.01 50
Whittle et al. 2008 W08 0.21 0.11 6
Table 3. Input parameter variations for the experiments

Exp no. n A No-show rate Canc. rate (08,6c)
Base case 6 6 GO5 0.06 (1.2,1.4)
1 6 6 BB84 0.06 (1.2,1.4)
2 6 6 F02 0.06 (1.2,1.4)
3 6 6 GS08 0.06 (1.2,1.4)
4 6 6 W08 0.06 (1.2,1.4)
5 6 6 Inst. 1 0.06 (1.2,1.4)
6 6 6 Inst. 2a 0.06 (1.2,1.4)
7 6 6 Inst. 2b 0.06 (1.2,1.4)
8 6 6 GO05 0.10 (1.2,1.4)
9 6 6 GO05 0.075 (1.2,1.4)
10 6 6 G05 0.05 (1.2,1.4)
" 6 6 G05 0.025 (1.2,1.4)
12 6 5 G05 0.06 (1.2,1.4)
13 6 7 GO5 0.06 (1.2,1.4)
14 6 8 G05 0.06 (1.2,1.4)
15 6 10 G05 0.06 (1.2,1.4)
16 6 6 G05 0.06 (1.1,1.5)
17 6 6 GO5 0.06 (0.8,0.9)
18 6 6 G05 0.06 (0.8,1.2)
19 6 6 G05 0.06 (1,1
20 6 6 Inst. 2a 0.093 (1.2,1.4)
21 6 6 Inst. 2b 0.031 (1.2,1.4)

towards a maximum value, which does not exceed one.
We were able to identify five studies that provided such
measurements over multiple scheduling intervals, from
which we can derive a functional form, for which the
parameters are presented in Table 2.

For the cancellation rate we explore the system’s
behaviour with three rates, varying around the rates
derived from the data. As functional forms of the can-
cellation rate are rarely reported upon in the literature,
we identified only one manuscript provides cancella-
tion measures for multiple scheduling intervals (Whittle
et al. 2008). They found a similar monotonic relation-
ship for patient initiated as well as clinic initiated can-
cellations. The exponential function parameters for the
cancellation rate of Whittle et al. (2008) are ymax = 0.24,
Xxo = 0.09, and C = 10, which can be approximated with
a = 0.05, and is included in the experiments as well.
Since some studies include cancellations in the no-show
rates, we should be careful with the comparison of the
various rates derived from these studies with our data-
driven rates. However, they are valuable for analysis, since
cancelled appointments may end up as empty appoint-
ment slots, and therefore reflecting no-show behaviour.

No study reported cancellation timing measures.
Therefore, we base the timing behaviour on the
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observations in the data analysis. In the analytical model
we use an exponential distribution to determine the can-
cellation timing, whereas in the simulation, the cancel-
lation rates from Institutions 1 and 2 have an empiri-
cally distributed scheduling interval dependent timing
distribution based on the observations in Section 3.

Besides analysing the impact of the no-show and can-
cellation rate, we also analyse the impact of the arrival rate
on the clinic behaviour. In line with Liu (2016), we expect
higher arrival rates to result in lower booking horizons,
and vice versa. Third, we consider multiple combinations
of the cost coefficient weights 6¢ and 6, to analyse the
effect for various system settings. Fourth, we perform
three case study experiments, with data from Institutions
1 and 2, to analyse the performance of our model on
real life data, and to assess if the model is generalisable
in practice. The two case studies of Institution 2 use the
corresponding no-show rates from Table 1, and a cancel-
lation rate of &« = 0.093 and o = 0.031, as derived from
Figures 2 and 3 respectively.

Considering the aforementioned parameters, we obtain
a base case and 21 experiment instances. Table 3 gives an
overview of the instances.

5.2. Experiment results

Table 4 provides an overview of the results of the queuing
model experiments. Experiments 1-11 show the impact
of the no-show and cancellation rates. For various no-
show rates, an infinite booking horizon is optimal. These
no-show rates have amongst the lowest asymptotes con-
sidered in the experiments, which supports the hypoth-
esis that the lower the impact of no-shows, the longer
the booking horizon can be. The impact of the cancel-
lation rate to the optimal booking horizon is less clear.
A small increase in booking horizon can be observed
for lower cancellation rates, but no statistically signifi-
cant difference is observed between the performance of
the subsequent experiments. In additional experiments
(not reported), we observe that low-traffic systems are
more sensitive to no-show and cancellation behaviour of
patients.

Experiments 12-15 evaluate the impact of the arrival
rate. Table 4 shows a decrease in optimal booking horizon
for higher values of A. Thus, for high demand systems, it
is beneficial to reduce the booking horizon, and possi-
bly organising the clinic on a walk-in basis. This ensures
that as many patients as possible can be served, as the
patients that make an appointment, will most likely not
end up as a no-show or cancellation. This corresponds to
the finding of Liu (2016).

Experiments 16-19 evaluate the impact of various
weights for the cost coefficients. We observe that when

Table 4. Experiment results.

Exp no. K* Days Obj. value
Base case 21 3 3.430
1 00 00 3.701
2 13 2 2.995
3 00 00 4.851
4 00 00 4218
5 00 00 4.464
6 00 00 4.420
7 00 00 4.540
8 20 3 3.288
9 21 3 3.374
10 22 3 3.468
1 23 3 3.568
12 00 o0 3.507
13 13 2 2.692
14 7 1 1.693
15 7 1 —0.408
16 19 3 3.401
17 19 3 3.651
18 13 2 3.549
19 25 4 3.599
20 [e9) 00 4.666
21 41 6 4725

provider idle time is more important to the decision mak-
ers than rejections, the booking horizon is shorter than
when idle time and rejections are equally valued. There-
fore, the optimal booking horizon is dependent on the
weights that decision makers assign to the cost coeffi-
cients, such as rejecting patients or provider idle time.

The case study experiments show that both for Insti-
tution 1 (exp. 5) and Institution 2a (exp. 20) an infinite
booking horizon is optimal. For Institution 2b (exp. 21)
a finite booking horizon of 41 slots (6 days) is optimal.
Based on the data of Institution 2b, limiting the booking
horizon to the proposed 6 days of the model, results in
a cancellation and no-show fraction of 10.8% and 13.8%
respectively, which is a reduction of 7.5% and 2.5% com-
pared to limit on the booking horizon. This shows a clear
advantage in reducing last-minute empty slots in practice
by implementing a limited booking horizon.

In all experiments, the optimal booking horizon is
found through a tradeoff between no-shows and can-
cellations, and patient rejections. For the base case, this
is visualised in Figure 6. As expected, this figure shows
that the no-show and cancellation probabilities increase
with longer booking horizons, as patients are allowed
to have longer waiting times. The rejection probability
decreases with longer booking horizons, as more patients
are admitted in the system.

6. Queueing model validation

The stylised queueing system is able to determine the
optimal booking horizon for a clinic under restrictive
assumptions. To assess the ability of the queuing system
to capture reality, we need to evaluate the effects of these
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Figure 6. Average no-show, cancellation and rejection probabil-
ities per booking horizon.

assumptions on the effectiveness of the optimal booking
horizon. A first assumption in the queueing model was
that the first patient in the queue is served. This implies
that when a cancellation occurs, all patients in line after
this cancelled appointment will be served one timeslot
earlier. However, in practice empty spots due to cancel-
lations are only filled when a new patient arrives that is
willing to take that spot. Therefore, some slots might end
up empty, if no patient arrives in the interval between
the cancellation and the service of this specific appoint-
ment slot. A second assumption in the queuing model
was that the cancellation rate is exponentially distributed
with asymptote 1. However, the data analysis of Section 3
showed that the systems under consideration have lower
asymptotes, and are bimodally distributed. Therefore, we
need to analyse the impact of these assumptions on the
system performance.

To validate our queuing model, we first compare our
numerical results with empirical evidence, based on his-
torical data. Because historical data on idleness and rejec-
tion performance is not available, we develop a data-
calibrated simulation model to further assess the impact
of the aforementioned assumptions in the queueing sys-
tem and to evaluate the effectiveness of the optimal book-
ing horizon results from the queuing model. The simu-
lation model captures the bimodally distributed cancel-
lation behaviour of the real system using the empirical
distributions of Section 3.

6.1. Empirical validation based on historical data

To validate the results of the queueing model, we com-
pare our modelled results with the no-show rates as
derived from the data. As the queueing model does not
allow for scheduling appointments further a maximum
scheduling interval, we filter the data to only include
appointments with scheduling intervals that are within
this maximum scheduling interval. The queueing model
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results in no-show rates of 11.1, 9.3, and 8.4 percent
respectively, which are similar to the real-life data no-
show rates of 10.9, 9.3, and 8.7 percent.

6.2. Simulation-based validation

6.2.1. Simulation setup

The simulation model consists of a single server with
a limited buffer of size K—1. The buffer represents the
available appointment slots in the booking horizon, as
derived from the queueing model of Section 4, where
position 1 equals the first served slot, and position K—1
the last served slot. Together with the server, this makes
the total number of positions in the system equal to K.

Patients arrive to the buffer according to a Poisson dis-
tribution with rate A. Arriving patients are assigned the
first available empty position in the buffer. If the buffer is
full, patients are rejected.

When the deterministic server becomes empty, it pro-
cesses the patient at position one in the buffer. If no
patient is available at this position (independent of other
possible patients in the queue), the server will remain
empty for one timeslot. If a patient is available, and At
equals the waiting time of this patient in the queue, with
probability va; the patient is a no-show, and the server
stays empty. With probability 1 — v, the patient is seen,
and is served. We assume deterministic service times
with rate i, equal to the daily capacity of the system, as
we consider a tactical level appointment system design.

Patients may cancel their appointment when they are
in the buffer. The cancellation probability depends on
the patient’s scheduling interval. The cancelled patient
departs from the buffer, leaving an empty position in the
buffer.

In the simulation model we measure several perfor-
mance indicators. We record the proportion of rejected,
cancelled, no-show, and seen patients, as well as the pro-
portion of time the server is idle. This enables a compar-
ison with the queuing system. Furthermore, we register
the number of empty slots due to cancellations and an
empty system.

We validated the simulation model by comparing the
results of this model against the performance in prac-
tice. The no-show probabilities from the simulation are
10.9% (95%-CI: 10.7 ~11.1), 9.3% (95%-CI: 9.2 -9.5), and
8.2%-(95%-CI: 7.9 -8.4), and cancellation probabilities
5.0% (95%-CI: 4.6 -5.4), 3.9% (95%-CI: 3.4 -4.4) and
3.7% (95%-CI: 3.4 -4.0) respectively, which are similar
to the actual no-show rates of 10.9%, 9.3%, and 8.7%
and cancellation rates of 4.9%, 4.0%, and 3.9% as derived
from historical scheduling data with the same scheduling
intervals. Therefore, the simulation model is considered
valid.
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The simulation model is developed in Tecnomatix
Plant Simulation 11, and simulates 5 years, with a warm-
up period of 75 days and 8 replications.

6.2.2. Simulation results

To evaluate whether the effects of neglecting the timing
of cancellations has an impact on the analytical results,
we simulated the system for each of the experiments with
the corresponding K* from Table 4. In the simulation the
average percentage of idle time over all experiments was
24.9% (19.3% due to no-shows, and 5.5% due to an empty
system). In the analytical results, the average idle time
over all experiments was 25.7% (18.4% due to no-shows,
and 7.3% due to an empty system).

The simulation shows that the number of empty slots
in the queueing model is slightly overestimated (not sig-
nificant, p = 0.18), as the system is 0.8% of the total
time less idle on average. However, the idle time due
to no-shows is significantly underestimated in the ana-
Iytical experiments. Only simulation experiments 13-15
showed higher overall idle system probabilities compared
to the analytical results. In these experiments, the sys-
tem was overloaded with patients, which makes an empty
system due to cancellations highly unlikely in the ana-
lytical model given the FCFS assumption. Therefore, the
increase is primarily due to the impact of late cancella-
tions. Note that the probability of an idle slot due to a
late cancellation gets smaller when more patients arrive
per time unit. The highest idle times in both the simula-
tion and analytical model are seen in exp. 12, as there are
often no patients in the system, since the average num-
ber of arrivals is lower than the capacity. The lowest idle
times are seen in exp. 3, due to its low no-show rate.

Concluding, the outcomes of the stylised queueing
system are valid, and therefore we consider them effective
for strategic and tactical level decision making.

7. Discussion

No-show and cancellation behaviour of patients influ-
ence the performance of hospital’s outpatient clinics, as
less than 50% of all scheduled appointments may result in
an actual patient being seen by the specialist. We investi-
gated the scheduling interval in relation to no-show and
cancellation rates, and found that an increasing schedul-
ing interval results in higher no-show and cancellation
probabilities. Therefore, clinics can benefit from limiting
the possible scheduling intervals using a booking hori-
zon, to minimise the effect of no-shows and cancellations.
The optimal booking horizon is found through a tradeoff
between the price of cancellations and no-shows and the
price of rejection.

We developed an analytical queuing model to deter-
mine the optimal booking horizon, and provided a

simulation study to evaluate the effectiveness of this
model. Our results show that for systems with a high
arrival rate, it is beneficial to limit the booking horizon.
The impact of the no-show and cancellation rate showed
to have a large impact on the optimal booking horizon
in low-traffic systems. A limited booking horizon is also
preferred for systems that highly value the utilisation of
the providers. Note that for systems with an infinite book-
ing horizon, it is still beneficial to schedule patients as
early as possible, as this maximises the probability that
the patient will show for the appointment.

In line with the current literature, we show that the no-
show and cancellation rates are time-dependent. A longer
scheduling interval results in higher no-show and can-
cellation probabilities. However, not only the occurrence
of cancellations is related to the scheduling interval, but
also the timing of cancellations. We are the first study to
show that cancellation timing over multiple days follows
a bimodal distribution, where peaks in cancellations are
observed right after the creation of the appointment, and
just before the actual appointment date. This corresponds
with the literature that analysed reasons for cancellations,
where scheduling conflicts, forgetting the appointment,
and logistical challenges are frequently observed as main
reasons for patient cancellations.

Our data-analysis and model provide insight into the
impact of no-shows and cancellations. Where clinics tend
to put more emphasis on reducing the number of no-
shows compared to cancellations, this research showed
that when focusing on the scheduling interval, the num-
ber of cancellations should get more attention, as the
scheduling interval dependent no-show rate converges
faster than the cancellation rate. Therefore, more effi-
ciency gains can be derived in reducing the number of
cancellations.

We showed the general applicability of our model by
case studies of outpatient clinics of two hospitals in dif-
ferent health systems. We showed that efficiency gains
can be achieved for certain combinations of no-show
and cancellation rates derived from real-world scenar-
ios, when a limited booking horizon is used. For low
demand/low cancellation clinics it is optimal to have a
long booking horizon in order to prevent unnecessary
rejections, whereas for high demand/high cancellation
clinics the optimal booking horizon is as short as pos-
sible.

Further research is required in the way how no-show
education, reminders, and penalties impact the can-
cellation timing distribution, and the optimal booking
horizon. We hypothesise that these interventions will
cause more patients to cancel their appointment right
before the actual appointment, which reduces the possi-
bilities of reallocating their slots to new arrivals. In line



with this, immediate cancellations and late cancellations
should be studied, ideally to be able to include these
two cancellation types as individual rates to increase the
validity of the model. Furthermore, literature has shown
that new patients are more sensitive for long scheduling
intervals than established patients (Davies et al. 2016). As
very large datasets are required to define reliable time-
dependent no-show and cancellation behaviour for sub-
groups, such as new and established patients, further
research in large healthcare institutes with reliable data
collection systems, is required to enable subgroup analy-
ses. With the results of these analyses, the organisation of
patient-specific appointment sequencing can be further
investigated.

The benefit of using the queueing model over using the
simulation model for a single parameter optimisation of
the booking horizon is that it is an analytical method that
requires few input data compared to setting up a com-
puter simulation study. This makes the generic queuing
model a valuable tool for strategic and tactical decision
making. There are some restrictive assumptions that had
to be made, such as that cancellations never lead to idle
appointment slots, and for example exponential service
times. The simulation model showed that despite these
assumptions, the outcomes of the queueing model are
effective for strategic and tactical level decision making.
However, this model should not be used as an operational
decision making tool, to for example analyse the individ-
ual patient’s access times (although aggregate access time
analyses can be easily performed). Operational level deci-
sions, such as appointment scheduling and sequencing,
require methods that are able to include more operational
level details of the appointment scheduling process.

Although the simulation model already showed that
the assumptions made in the queueing model are valid,
future research can further extend the queueing model.
For example, the service time in appointment systems
starts on predefined timeslots, impacting the utilisa-
tion in case of empty appointment slots. This discrete-
time nature of the appointment slots could be included
in the queueing model to better capture the rela-
tionship between the booking horizon and schedul-
ing interval (Creemers and Lambrecht 2010; Meis-
ling 1958; Hernandez-Diaz and Moreno 2009; Lozano
and Moreno 2008).

Because we developed a generic queueing model,
parameters such as the definition of cancellations and no-
shows can easily be adapted to analyse other timescales.
Typically, clinics that operate under shorter timescales,
have more options to reuse cancelled slots on a short
notice, compared to clinics with larger booking horizons.
For example general practitioners would typically be able
to reuse a cancelled appointment slot within the same day,
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whereas in most hospital outpatient clinics it is not possi-
ble to fill such cancelled slots the same day anymore. Our
models can easily be adapted for these analyses, with data
of clinics that use shorter time frames (see e.g. (Monahan
and Fabbri 2018)). Note that scaling the model in time
is important not only towards a smaller time frames, but
also towards larger time frames depending on the type
of clinic and its flexibility in filling slots as a response to
cancellation behaviour.

Based on the presented approach and considerations,
one of Institution 2’s outpatient clinics has decided to
limit their booking horizon to 8 weeks, as they were expe-
riencing high cancellations and no-show behaviour in
a highly utilised environment. Further research should
analyse whether the predicted reductions in no-shows
and cancellations are realised in practice, and what other
considerations are of importance in booking horizon
decision making. Further research in the implementa-
tion of short booking horizons is also required, as due to
the asymptotic behaviour of no-shows and cancellations
limited booking horizons (<3 months) are preferred,
also for those patients that require appointments 6 or 12
months ahead of time. For example, patients may not be
scheduled to follow up appointments that are further in
the future than the optimal booking horizon. An alterna-
tive for patients that need (follow-up) appointments way
ahead of time, is to maintain a call list. In such a system,
a patient who was not given an appointment within the
booking horizon, is added to thislist and called to arrange
an appointment once the booking horizon is extended.
Another alternative is to implement a carefully designed
admission control policy to reject patients. Our hospitals
provide patients, who would otherwise be rejected due
to fully booked calendars, an appointment slot in over-
time within the booking horizon. Another policy could
be to refer the patient to a partnering clinic. Each of these
interventions can ensure that as many patients as possible
are served, as patients scheduled within a shorter booking
horizon are less likely to no-show or cancel.

No-show and cancellation behaviour not only influ-
ences the scheduling interval and booking horizon.
Further research in incorporating these rates and the
bimodal cancellation timing distribution in the design of
(other elements of) appointment systems is required.
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Appendix 1. Structural properties of the
revenue function

This appendix provides the structural properties and its ana-
lytical results from the scheduling booking horizon problem as
presented in Section 4.

A.1 Structural properties

Expanding the terms in (3), the revenue function can be
expressed as R(K) = AT(K) — A0¢ with:

I(K) = g(l — po(K))(1 4 6c) + px(K)(6c — 0p) — Pn(K).

Given the monotone and asymptotic behaviour of the no-show
rates and the long-run probabilities, it can be observed from the
equation above that the existence of a finite K € Z" solution
of (4) depends on the decrease rate of (1)-(2). Furthermore, we
can solve the problem (4) by truncating the solution domain
because T(K) has a horizontal asymptote.

In order to gain some insights of the structure of (3), we
will consider the particular case v; = v, j € Z". In this case, the
function T(K) has a simple form:

T(K) = §<1 +0c — v)(1 = po(K)) + px(K) (B — Op).

Notice that if 65 > 6, > 0 then T(K) is increasing in Z* since
it is expressed as the sum of increasing functions. Therefore,
the booking horizon of the system can be as large as possible
if the probabilities of no-shows behave relatively constant with
respect to the capacity of the queue, and there is a preference
to set up a higher penalty for blocking patients regardless of
the values of p and 8. If 0 < g < Oc and let w = p(1 + O¢c —
v)/8(6c — 6p), then T(K) can be expressed as follows:

T(K) = (6c — 0)(w + pr(K) — wpo(K)).

Let Py be the limit of pg(K) when K — oo, then from the
equation above it follows that the queue capacity could be
infinite if:

sup (px(K) — wpo(K)) = —wP,,

KeZ*
therefore, the idle penalisation weight w determines the exis-
tence of a finite queue capacity. The following algorithm could
be used to obtain an upper bound of w for which an optimal
finite queue capacity can be found:

A0 Settolerancee > 0;] = 1; K = 1.
Al Domain Truncation: while po(J) — po(J + 1) > € then
J=J+1
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Figure A1. Revenue function with 6¢c = 1.15,6p = 1.0,K* =5

A2 Idle weights: w; = pr(i)/(po(k) — po(J)), i <J — 1.
A3 Upper bound: whileargmax;_; (px (j) — wkpo(j)) # J then
K=K+1.

Let wk be the upper bound found by the algorithm with
tolerance €. A finite capacity could be found if w < wg which
defines the following condition:

1) 1)
1—v < <7WK — l)@c — —wg03g. (A1)
P P

For example, applying the algorithm with € =1e—8 we
obtained ] = 24, K = 20, wg = 104.08 for a system with
parameters i = 3, A =6, « = 0.6, v = 0.43. Using (Al), we
could select 6. = 1.15,6g = 1.0 to obtain a queue capacity
K* =5 (Figure Al). An optimal queue capacity K* =6 is
obtained with 6, = 4.0,0 = 3.0; (A1) is not satisfied if 65 =
0,0c = 0.01, thus K* = oo.

The algorithm could be adapted by incorporating the
asymptote of Py(K) in the condition of Step Al when no-
show probabilities are not constant. More details are provided
in Appendix A.2.

A.2 Analytical results

This subsection provides the analytical results of the struc-
tural properties. In this section the notation gx(-) is used
to represent, as a function of queue length, the steady-state
probability of rejection, i.e. the length of the queue is at full
capacity. Let us notice that the functions po(K) and qx(K)
are defined in ZT, whereas the function pj(K) is defined in
Z].* ={K e Z*|K > j}.

The monotonic properties of the steady-state probabilities
with respect to length of the queue K (which represents the
booking horizon) are summarised below.

Lemma A.l: Given K|,K; € Z1 such that K; < K, then
qr (K1) = qx(Kz), and pj(Ky) = pi(K>) forj € Z+.

Proof: Let K1, K, € Z such that K < K;, then:

since the summation involves non-negative numbers. It follows
from the steady-state probabilities that po (K1) > po(K2).

The recursive steady-state equations show that, for j € Z™,
the function p;(K) is non-increasing in its respective domain.
Finally, we will show that the probability of rejection is non-
increasing. Let K € Z™, then using the closed-form equations
we have:

oK

k(K) —gqr(K+1) = ————
1 1 6 + 1)

0
5K

x (po(K) - po(K + 1))

K

qk(K) —gqg(K+1) = —po(K)po(K + 1)

P~
@S+ 4)
K-1 i

o

|1+ X =
o0 Mo +1)

1 1
- - > 0
R

Let y(x,a) be the normalised lower incomplete gamma
function defined as:

1 Y o tae1
(x,a) = —/ e 't dt.
’ @ Jo

Using the function y (-, -) we can reformulate the closed-form
equations as (Ancker and Gafarian 1962):

po(K) =1+ e p T () (y (p,8) — (0,6 + K))] .

It follows from the expression above and Lemma A.1 that:

Jim potk) = Po=[14¢p T @) (p,0)] . (A2)

KEToo x(K) =0, (43)
. e P'T(8) . +
KETOOp](K) =T ) Py, jeZ™. (A4)

The limits shown in (A2)-(A4) result from that the gamma
function grows faster than any power function.

Lemma A.2: The rejection probability {qx(K)}kez+ and
{Pi(K)}kegt>forj € Z+ U {0}, are convex sequences.
j

Proof: A sequence is convex if its first difference is non-
decreasing. Let j = 0, define the first-difference sequence
{milkez+ as:

oK 4 1)~ po) = — LT ok + 1)
mg = po po = F(8+K+1)p0 Po .
We need to show that my < my1, i.e, my — myy; < 0:

K+1
_ AT
Mg — Miy] = F(8+K+1)‘DO(K+1)
P
X <mPO(K +2) —PO(K)> . (A5)



By Lemma A.1 we know that g (-) is non-increasing therefore:

0

5 KPO(K+ 1) — po(K) < 0. (A6)
Using (A6) in (A5) we have:
K+1
p- I ()
mg — Miyy < mPO(K + 1) (po(K + 1) — po(K))
<0

hence {po(K)}kez+ is a convex sequence. The convexity of
{pj(K)}gey+ follows from the steady-state equations.
)

Finally, let n be the first difference of the rejection proba-
bility sequence:

Nk = qr (K + 1) — g (K)

Kre
then:
Nk — Nk+1
Kprs 2
= g [ = k)
02

(A8)

— K+2

TSRS TR )}
using the the closed-form of py(-) in equation (A8) we get, after
algebraic manipulations, that i — nx4+1 < 0, which shows the
convexity of {qx (K)}xez+- ]

Expanding the term in our objective function, the revenue
function R(K) can be expressed as R(K) = AT(K) — A0 with:

T(K) = %(1 — po(K))(1 + 6¢) + Py(K) (%GN ~1)

+ qx (K)(6c — 6p),

where 6y represents a soft reward of the system when no-
shows are observed. As mentioned before, the no-show prob-
abilities of the system are described by a sequence {vj}jcz+
such that v; < vy for all jeZ% and limj, yo0 vj = V¥,
v* € [0,1]. Then, Py(K) is bounded for all K € Z* and
limg_ 400 PN(K) < %(1 — Py)v*, because from the closed-
form equations we have:

(A9)

K-1 K
P(K) = Y 508 = 5 Y Ky
j=0 j=1 (A10)

= S = po®)vk1, K € Z*.

In order to gain some insights of the structure of the problem,
we will consider the particular case v; = v,j € Z*. In this case,
the function T'(K) has a simple form:

T(K) = To(K) = =1 = po(k) (1+6c + (Son = 1) v)

+ gk (K)(6c — 0p). (A11)

Lemma A.3: If Op > 6c > 0 then T, (K) is increasing in the
domain Z,*.
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Proof: LetKy,K, € Z7 such that K; < K3, then:

Ty (K)) — Ty (Kp) = % (1+6c+ (%eN ~1)v)

X (po(Kz) — po(K1))

+ (6c — 0p)(gx (K1) — gk (K2)),
T, (K1) — Ty (Kz) < (8¢ — 08) (qx (K1) — qx(K2)),
T, (K1) — Tv(Kz) =0,

where the term (1 + 6¢ + (%GN —1)v) > 0since0 < 6Oy < 1.
The first inequality follows from the decreasing property of
po(K). The last inequality is obtained from Lemma A.1 and the
condition 6z > c. |

An implication of Lemma A.3 is that the function T, (K)
does not have a maximum in Z7 since

sup Ty(K) = lim T,(K)
Ke7+ k——+o00

_ K Ky
=2a Po)(1+9c+()\9N 1)1)).

Therefore, the booking horizon of the system can be as large as
possible if the probabilities of no-shows behave relatively con-
stant with respect to the capacity of the queue, and there is a
preference to set up a higher penalty for blocking patients.

Another insight of Lemma A.3 is that if the function T, (K)
has a maximum in Z*, then:

max T, (K) > T},
KezZ*

where T} = £(1 — Po)(1 + 6¢c + (565 — D)v).

Consequently, if 0 < 6 < 6¢ we can truncate the domain
of T, (K) by selecting a small tolerance number 7 > 0 to find
the smallest K € Z% such that po(K) — Py < e and gg(K) < €
for all K > K, where € = t/2((1 + 6¢c + (%GN —1v) +6c —
0p). Then, the following optimisation problem always has a
solution, and it can be solved by enumeration:

max_ T, (K). (A12)

——T,(K)
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Queue length

Figure A2. Revenue function with 6c = 1.15, 05 = 1.0, 6y = 0,
K*=5
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Figure A3. Revenue function with 6c =4, 65 =36y =0,
K* =

Let us notice that, if K is a solution of (A12) then T, (K) does
not have a maximum in Z1, because:

ITy(K) — Ty (K)| < |Ty(K) = Ty + | Tw(K) — Tj| < 7,
forall K > K.

In addition, by Lemma A.2, problem (A12) is a difference of
convex (DC) optimisation problem. Therefore, the existence of
a solution of (A12) such that K < K, depends on the decrease
rate of the functions po(-), gk (-) and the magnitude of the
penalisation and reward parameters as show in section III-B.
For example, the Figures A2, A3, and A4 show revenue func-
tions for a system with u =3, A =6, « = 0,6, v = 043, K*
indicates the value of the optimal queue capacity.

Finally, for a general form of Py(K) we still can solve the
problem by enumeration as in (A12), because Py (K) has a hor-
izontal asymptote. In addition, by (A10) the function T(K) is

——T,(K)

0.7
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Queue capacity

Figure A4. Revenue function with 6c = 0.01, 63 = 0.0, 6y = 0,
K* = o0

dominated by a function that behaves like T, (K), therefore
the following algorithm could be used to derive a condition
between the queue and cost parameters:

A0 Settolerancee > 0;] = ; K = 1.

Al Queue Capacity Truncation: Set J = 1 and while Po 0 —
poJ+1)>ethen] =]+ 1. o

A2 No-show Truncation: Set J = 1 and while v/ — V/T! > ¢
then] =] + 1.

A3 Set] = min{J,]}

A4 Idle weights: w; = pr(i)/(po(k) — po(J)),i <] — 1.

A5 Idle-weigh upper bound: while argmax;_; (px (j) — wkpo
() # J thenK = K + 1.

A6 Approximate queue system bound:

5 8 <
—\1+0c+|—-0v—1)v" ) <wg(Oc — 0B)
P P
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