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Biodiversity encompasses the complex variety of life at all 
scales, ranging from genes to species to ecosystems. It encap-
sulates the structure, function, distribution, traits and com-

position of all living things. Crisis-level losses of biodiversity are 
stimulating action from local to global scales, as evidenced by 
establishment of the United Nations Sustainable Development 
Goals (SDGs) and Aichi targets and the current post-2020  
negotiation of the Convention on Biological Diversity (CBD), as 

well as the first round of risk assessments by the Intergovernmental 
Science-Policy Platform on Biodiversity and Ecosystem 
Services (IPBES)1. In response to these losses of biodiversity, the  
Group on Earth Observations Biodiversity Observation Network 
(GEO BON)2,3 proposes a common framework of essential biodi-
versity variables (EBVs)4 for monitoring biodiversity. These EBVs 
form a core set of complementary biological measurements for  
capturing considerable biodiversity change and are produced by 
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Monitoring global biodiversity from space through remotely sensing geospatial patterns has high potential to add to our knowl-
edge acquired by field observation. Although a framework of essential biodiversity variables (EBVs) is emerging for monitoring 
biodiversity, its poor alignment with remote sensing products hinders interpolation between field observations. This study 
compiles a comprehensive, prioritized list of remote sensing biodiversity products that can further improve the monitoring of 
geospatial biodiversity patterns, enhancing the EBV framework and its applicability. The ecosystem structure and ecosystem 
function EBV classes, which capture the biological effects of disturbance as well as habitat structure, are shown by an expert 
review process to be the most relevant, feasible, accurate and mature for direct monitoring of biodiversity from satellites. 
Biodiversity products that require satellite remote sensing of a finer resolution that is still under development are given lower 
priority (for example, for the EBV class species traits). Some EBVs are not directly measurable by remote sensing from space, 
specifically the EBV class genetic composition. Linking remote sensing products to EBVs will accelerate product generation, 
improving reporting on the state of biodiversity from local to global scales.
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integrating primary observations from in situ monitoring with 
remote sensing.

Biodiversity change occurs at a range of spatial and tempo-
ral scales5. Many biodiversity-relevant measures may be retrieved 
from remote sensing (airborne and satellite), including measures of 
change in ecosystem structure and function, community composi-
tion, species traits and species populations (Fig. 1). As such, current 
and emerging next-generation satellite remote sensing is an ideal 
tool for the continuous detection of changes in biodiversity from 
local to global levels, thereby filling data gaps in the spatial and tem-
poral coverage of in situ observations. To date, however, there has 
been little exploration on how to bridge the work of ecologists (who 
address the efficacy of using EBVs for biodiversity monitoring) 
and remote sensing specialists (who address technologies deriving 
remote sensing products related to EBVs). Particularly lacking is a 
focus on the technical requirements needed to ensure that EBVs are 
operationally realistic from a remote sensing perspective. We there-
fore define remote sensing biodiversity products as outputs derived 
from the processing of remotely sensed images that closely inform 
EBVs.

Development of the specifications for sensors is normally under-
taken by staff at space agencies, who consult widely to decide on 
priorities for the upcoming decades. Space agencies then require 
engineers to design satellite sensors under strict requirements  
that affect factors such as temporal and spatial resolution, 
signal-to-noise ratios and other design considerations. As a result, it 
may be entirely unrealistic to monitor EBVs that are highly relied on 
by the ecological community from space. This Perspective considers 

the EBV concept and remote sensing-enabled biodiversity products 
to provide context to space agencies and remote sensing developers. 
Likewise, we clarify for ecologists which EBVs are feasible to mea-
sure with remote sensing and at what scales.

Monitoring EBVs over large areas from space-based platforms 
will require discussion between ecologists, space agency engineers 
and remote sensing experts to ensure that remote sensing satellites 
are being developed to meet the global need for biodiversity data4,6,7. 
Remote sensing engineers emphasize the need for processing chains 
that have open, accurate, repeatable and reproducible workflows 
for the sake of consistent and long-term monitoring of biodiversity. 
Scientists and engineers agree that there is a need to build a globally 
coordinated, scientifically rigorous programme following the find-
able, accessible, interoperable and reusable data principles8, in order 
to track how global biodiversity is changing. A global monitoring 
system can only be achieved by combining satellite remote sensing 
with in situ observations in a cost-effective, consistent, accurate and 
coordinated manner.

In this Perspective, we focus on biodiversity measures from sat-
ellite Earth observation data, which may be developed in the next 
decade using current and planned assets of the space agencies. We 
do not consider other remote sensing technologies (such as air-
borne, unmanned aerial vehicle and terrestrial sensors), since we 
seek to evaluate datasets that offer synoptic (regional to near-global) 
coverage with pre-defined temporal lags. Rather, we prioritize 
EBV-related remote sensing biodiversity products that are biologi-
cal, sensitive to short- to medium-term change, spatially scalable,  
as conceptually generalizable as possible across the terrestrial,  
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Fig. 1 | Ranking and scoring approach for example remote sensing products. Tropical tree species distribution image adapted from ref. 18 under a Creative 
Commons license CC BY 4.0; vegetation canopy height image adapted with permission from ref. 25, Elsevier; functional composition of temperate forest 
image adapted from ref. 46 under a Creative Commons license CC BY 4.0; land cover image adapted from ref. 34 under a Creative Commons license CC BY 
4.0; fraction of absorbed photosynthetically active radiation image adapted from ref. 27, Copernicus Global Land Service (contains modified Copernicus 
Service information [2020]).
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freshwater and marine realms4 and feasible given the expected 
development of remote sensing satellites (Fig. 1). When translat-
ing an EBV to biodiversity product(s) measured from a satellite, the 
remote sensing biodiversity product will constrain the EBV into a 
fixed grid (such as a 16-d revisit time or a 30-pixel resolution)9,10, 
necessitating the integration of various sources of satellite imagery. 
We hope to stimulate discussions between space agencies, the sci-
ence community, government and the private sector on integrating 
biodiversity measurements enabled by Earth observation, to help 
develop effective, high-level indicators to monitor change in bio-
diversity for policymakers and decision-makers11,12 from local to 
global levels.

Our aim is to propose a priority list of currently available 
remote sensing biodiversity products that are both highly useful 
for end users (for example, CBD post-2020 targets, SDGs, IPBES, 
governments and other stakeholders, including companies and 
non-governmental organizations) and highly meaningful to data 
providers (for example, space agencies and those researching and 
generating remote sensing biodiversity products) to ensure continu-
ous biodiversity measurements at relevant spectral, spatial and tem-
poral scales. We emphasize that this is not a definitive priority list, 
but rather a call for action to provide a detailed assessment of the 
broad categories of biodiversity variables that can be monitored by 
remote sensing from space and can provide a framework for further 
developing satellite and ground assets.

A critical review of EBVs retrieved by remote sensing
Prioritizing remote sensing biodiversity products requires a critical 
overview of the link between EBVs and remote sensing products. 
We identified nearly 120 biodiversity products that provide criti-
cal information about biodiversity change and can be derived from 
satellite remote sensing. We then assessed and grouped these bio-
diversity products based on their similar abilities and approaches 

to supporting biodiversity monitoring through remote sensing. 
Many of these potential remote sensing biodiversity products had 
elements in common with the original EBVs4 and EBV candidates 
from the GEO BON network3, allowing the biodiversity products to 
be further grouped by EBV class and candidate EBVs.

In an iterative process, an original list of over 120 biodiversity- 
related variables and attributes was merged, culled and sorted into a 
list of remote sensing biodiversity products using a modified Delphi 
approach13. This merged list formed the basis for prioritizing the 
remote sensing biodiversity products (Table 1) using an adapted 
procedure (Figs. 2 and 3) first developed for prioritizing essential 
climate variables14,15.

Following this methodology, a critical issue emerged: some 
biodiversity-related variables used in remote sensing do in fact  
differ from the EBVs listed by the GEO BON network (ref. 3  
and N. Fernandez, in review). Supplementary Table 1 details  
the terminology that is typically used for remote sensing biodiver-
sity products and the associated EBV (for EBV names that differ  
from the typical remote sensing variable names, the column 
‘Typical remote sensing-enabled biodiversity variables’ shows the 
equivalent remote sensing term to describe biodiversity). Remote 
sensing-enabled biodiversity variables may diverge from EBVs 
because: (1) they may be constrained by sensor characteristics; 
and (2) the naming conventions and contents of some remote 
sensing-enabled biodiversity variables differ from those of similar 
EBVs. To reduce confusion around the use of EBVs and add order 
to commonly used terms in remote sensing, we translated between 
the variable names used in the GEO BON EBV list and typical 
remote sensing biodiversity products used in Earth observation 
(Supplementary Table 1).

The remote sensing biodiversity products were grouped, to 
harmonize the terminology used by the ecological and remote 
sensing communities. For example, a biodiversity variable widely 

Table 1 | Remote sensing biodiversity product prioritization criteria and ranking factors

Prioritization 
criteria

Description Ranking = 1 (good) Ranking = 3 (poor)

Relevance It is known who wants the remote sensing biodiversity 
product, what they will do with it and how it will be 
used. The remote sensing biodiversity product is 
relevant: (1) for management questions; (2) to inform 
the CBD targets; (3) to inform the SDG(s); and (4) to 
provide data for the IPBES risk assessment processes.

Use and user fully identified. Remote sensing biodiversity product less 
directly linked to science and societal 
questions.

Feasibility The science community knows how to measure the 
remote sensing biodiversity product at such scales 
that measurements can realistically be made and/or 
observations already exist. This criterion considers the 
availability of remote sensing data, the ease of access 
to such data, the completeness of remote sensing in 
space and time and the ease and affordability of data 
integration and analysis.

Indicates maturity of the science, 
technology and experience needed 
to make the remote sensing 
biodiversity product.

Indicates that considerable research 
and development effort remains or that 
remote sensing biodiversity products 
on the scale needed are technically, 
logistically or financially difficult to 
make.

Remote 
sensing 
status: 
accuracy

A measure of the current activity for the accurate 
observation of a given remote sensing biodiversity 
product. This criterion considers the effectiveness 
of remote sensing data and techniques to achieve 
an accurate and precise value of the remote 
sensing-enabled biodiversity product.

A fully operational network or 
service is in place, generating 
remote sensing biodiversity 
products that are accurate for the 
purpose.

Indicates that no or very limited action 
has been taken to generate accurate 
remote sensing biodiversity products.

Remote 
sensing status: 
maturity

Institutions/organizations with hopes to generate 
remote sensing biodiversity products can be identified 
and/or proposed to a funding body.

Operationally implemented with 
satellite remote sensing. It is known 
who needs to act and what action 
needs to be taken so that the 
remote sensing biodiversity product 
can now be produced.

Indicates a complete lack of relevant 
infrastructure or relevant implementation 
organizations that would allow a remote 
sensing biodiversity product to be 
conceivably produced from satellites 
within the next decade.

NATURE ECOLOGy & EVOLUTION | www.nature.com/natecolevol

http://www.nature.com/natecolevol


PersPective NATurE EcoLogy & EVoLuTioN

used in remote sensing is spatial configuration16,17, describing the 
pattern and texture of patches at different ecological scales. This 
corresponds to the candidate EBV ecosystem distribution. As can 
be seen in Supplementary Table 1, multiple remote sensing biodi-
versity products such as forest species and age class18,19 and popu-
lation density20 can estimate the original EBV species abundance. 
Furthermore, we noted that some EBVs listed by GEO BON, such 
as live cover fraction and ecosystem vertical profile, are often used 
analogously in remote sensing, typically being named habitat struc-
ture, and may be derivable from the same remote sensing biodiver-
sity products (Supplementary Table 1).

Remote sensing biodiversity products such as the fraction of 
absorbed photosynthetically active radiation, leaf area index, net 
and gross primary production, foliar chemistry content, green-up 
(start of season) or vegetation height (see Supplementary Table 1) 
are example products derived directly from satellite remote sensing 
using physical models21–27 to form continuous surfaces. Categorical, 
thematic or discrete remote sensing biodiversity products such as 
land cover and species abundance have definite feature boundar-
ies for each category (or class), generated by models that combine 
remote sensing with ancillary (often abiotic) data, with a label 
describing the category (or class) often being (uniquely) defined by 
local ecological knowledge28–31. Consequently, continuous products 
are—from a software engineering perspective—more feasible for 
automatic global mapping and monitoring using remote sensing, 
as there is no need for thresholds and class labels to be assigned 
and modified by users32,33. Once a physical algorithm can describe 
a continuous surface, the remote sensing biodiversity product 
may be consistently generated for every satellite image over an 
extended time period using image processing pipelines such as the 
Copernicus Global Land Service34. In contrast, categorical products 
depend on specific training of in situ field data for each discrete cat-
egory, which can be costly to calibrate, demands ecological knowl-
edge and even requires agreement on how a discrete class should 
be labelled (for example, as a forest or woodland)35–37. It should be 
noted that hybrid categorical–continuous remote sensing products 
are being increasingly used. Hence, for example, the accuracy of 
continuous physical products such as net primary productivity and 
leaf area index (LAI) can be further improved by using land cover (a 
categorical product) as an input38.

Finally, when harmonizing the terminology used by ecologi-
cal and remote sensing communities, it is important to empha-
size that utilizing broadband optical wavelengths (for example, for 
PlanetScope, approximately 60–90 nm) at very high spatial resolu-
tion (that is, 1–5 m) will not, by itself, retrieve biodiversity products 
more accurately. This is because different parts of the electromag-
netic spectrum may be useful for retrieving specific biodiversity 
products (for example, plant biochemicals from the red edge and 
thermal infrared domain), while active sensors such as light detec-
tion and ranging (LiDAR) are immensely powerful for retrieving 
three-dimensional (3D) habitat structure, such as the EBV ecosys-
tem vertical profile. Technical limitations often demand a trade-off 
between the spatial, spectral, radiometric and temporal resolution 
of imagery39, as it is not possible for a single sensor to concurrently 
have a high spatial resolution, large numbers of narrow spectral 
bands covering the full spectrum range, and a high signal-to-noise 
ratio in a single sensor. This is termed the typical-length scale40.  
For instance, an individual tree, required for mapping the EBV  
classes species populations18 and species traits, cannot be identi-
fied at the typical-length-scale spatial resolution of a Sentinel-2 
or Landsat-7 and 8 image pixel, but may be feasible using a 
very-high-resolution image (for example, PlanetScope)41, which 
could then be combined, or fused, with satellite hyperspectral imag-
ery such as the (operational) Italian PRISMA and German DESIS 
and (planned) National Aeronautics and Space Administration 
(NASA) and European Space Agency satellites (SBG and CHIME). 
Fusing of data from these different (and emerging) sensor tech-
nologies allows remote sensing biodiversity products to be trans-
formed into EBVs, and ultimately higher-level indicators, although 
an important caveat is that efficacious image fusion requires skilled 
image processing approaches42.

Refining remote sensing biodiversity variables
Because the original EBV classes4 are fully recognizable in sev-
eral different remote sensing products at the highest level of EBV 
grouping, the original EBV classes became a key departure point. 
However, we identified the following key issues of incompatibility 
between EBVs and remote sensing that will need to be addressed 
to make the best use of remote sensing techniques in measuring 
biodiversity.
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Fig. 2 | Flow chart for the scoring and ranking of remote sensing biodiversity products. Note that SDGs are the UN Sustainable Development Goals, Aichi 
targets refer to the Convention on Biological Diversity Aichi targets, and GEOSS is the Global Earth Observation System of Systems.
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Some remote sensing biodiversity products do not scale to the 
original scoping of EBVs. This challenge is exaggerated by the 
original EBV formulations4 that do not explicitly consider the 
inherent spatial, spectral, radiometric and temporal scales that are 
possible using remote sensing from space. Pixels do not represent an 
individual (object), such as a tree, and an individual (object) does 
not represent a pixel. An EBV3 may be generated by fusing mul-
tiple remote sensing sources and in situ data. For instance, using 
the EBV class species traits, measuring the trait of a single organ-
ism of known species such as the height of a single oak tree43 would 
require merging of very-high-resolution satellite imagery such as 
Planet Labs PlanetScope or DigitalGlobe WorldView imagery (to 
identify the tree), hyperspectral imagery such as DESIS or PRISMA 
(to recognize the species of the tree though unmixing) and LiDAR 
or stereoscopic pairs of very-high-resolution imagery (to measure 
the height of the tree).

Moving from the mapping of a species trait of an individual to 
mapping an EBV class at a landscape level (that is, ecosystem func-
tion and ecosystem structure) requires synoptic remote sensing 
imagery that covers an extent larger than an individual (object) at a 
grain size (resolution) appropriate to the EBV of interest. If a forest 
is a monospecific plantation44 or dominated by a single species45, the 
biological concept of species trait (such as the height of an individual 
tree of known species) merges with the remote sensing concept of the 
height of a forest stand or habitat type (that is, the height of a group 
of trees of the same species)43. However, when an ecosystem contains 
multiple trees of different species, the information content of the 
data has to be interpreted in terms of a different biological concept 
(namely, community composition46 rather than species trait).

Depending on the pixel resolution of the imagery, some bio-
diversity products such as LAI, vegetation height, net and gross 
primary productivity and green-up become relevant to multiple 
EBV classes (that is, ecosystem structure, ecosystem function, com-
munity composition and species traits). LAI occurs in three EBV 
classes (namely, species traits47, ecosystem structure48 and ecosys-
tem function49). Net and gross primary productivity occur in two 
EBV classes (specifically, species traits50,51 and ecosystem func-
tion52). A further example of a remote sensing biodiversity product  

not scoping to a single EBV class is phenology—the start, end 
and maximum of a season53—which typically incorporates vari-
ous stages of greening across a range of scales from local to global  
(Table 2), with the pixel spatial resolution typically ranging between 
2 m and 1 km. Phenology was originally conceived as an EBV 
candidate relating to the EBV class species traits and was directly 
attributed to an individual of a species3,4,43. However, land surface 
phenology is a concept relevant to the EBV class ecosystem func-
tion24,54 (see Table 2). In addition, the remote sensing biodiversity 
products specific leaf area and foliar content of nitrogen, phospho-
rus and potassium occur in species traits51,55 and ecosystem func-
tion56,57, respectively. Based on these multiple EBVs that can benefit 
from remote sensing biodiversity products, it is important to con-
sider harmonization of the in situ measurements needed globally to 
calibrate and validate across these products.

EBVs are essentially biological. EBVs are essentially biological, 
although abiotic disturbances of ecosystems are intimately linked 
to the diversity of life. Ecosystem disturbance remains a candidate 
EBV3, even if this has been challenged58 on the grounds that inunda-
tion, fire and other disturbances do not constitute EBVs as they are 
not biological. However, ecosystem disturbance is a commonly used 
term in remote sensing59 for measuring the impact of a non-periodic 
disturbance on an ecosystem (Supplementary Table 1). For example, 
a forest fire can only occur in the presence of biomass, so it is linked 
intimately to the biology of life and can be readily discriminated 
by remote sensing60–62. Consequently, in Supplementary Table 1, 
we recognize the biological impact of irregular disturbances (for 
example, biological effects of fire disturbance) as remote sensing 
biodiversity products. We exclude as remote sensing biodiver-
sity products those ancillary abiotic variables such as elevation or  
tidal inundation, which have a periodic biological cause and 
effect. Also excluded are human (land use) activities that impact 
biodiversity, since retrieving land use from space-borne remote  
sensing remains challenging as it requires local knowledge63, 
although some human activities, such as identifying airports or 
discriminating residential from industrial areas, are increasingly 
inferred by machine learning64. Remote sensing may monitor a 
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Fig. 3 | Example prioritization of three remote sensing biodiversity products. See Table 1 for definition of the ranking factors (that is, 1 = good, 3 = poor) 
and Supplementary Table 2 for merged remote sensing biodiversity products list and details of the expert ranking. Biological effects of fire disturbance 
image reproduced from ref. 62 under a Creative Commons license CC BY 3.0; land cover image adapted from ref. 34 under a Creative Commons license CC 
BY 4.0; fraction of absorbed photosynthetically active radiation (FAPAR) image adapted from ref. 26, Copernicus Global Land Service (contains modified 
Copernicus Service information [2020]).
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change in state, such as decreased forest green biomass, but the 
cause of the reduced green biomass—whether it is selective log-
ging or storm damage—cannot be detected globally by remote  

sensing36 and consequently is not included in Supplementary  
Table 1. With the wider use of artificial intelligence (for example, 
expert and knowledge-based systems)31,65 and deep learning (for 

Table 2 | The 30 remote sensing biodiversity products with the highest rankings

Number Remote sensing biodiversity product Remote sensing-enabled 
biodiversity variable

EBV class Rank within 
EBV class

Rank across all 
EBV classes

1 Biological effects of fire disturbance 
(direction, duration, abruptness, 
magnitude, extent and frequency)

Ecosystem disturbance Ecosystem function 1 1

Habitat structure Ecosystem structure 1 1

2 Biological effects of irregular 
inundation

Ecosystem disturbance Ecosystem function 1 1

Habitat structure Ecosystem structure 1 1

3 LAI Ecosystem physiology Ecosystem function 3 5

Habitat structure Ecosystem structure 3 5

Species physiology Species traits 1 21

4 Land cover (vegetation type) Habitat structure Ecosystem structure 3 5

5 Ice cover habitat Habitat structure Ecosystem structure 5 8

6 Above-ground biomass Habitat structure Ecosystem structure 6 9

7 Foliar N/P/K content Ecosystem physiology Ecosystem function 4 9

Species physiology Species traits 2 28

8 Net primary productivity Ecosystem physiology Ecosystem function 5 11

Species physiology Species traits 2 28

9 Gross primary productivity Ecosystem physiology Ecosystem function 5 11

Species physiology Species traits 2 28

10 Fraction of absorbed 
photosynthetically active radiation

Ecosystem physiology Ecosystem function 5 11

11 Ecosystem fragmentation Spatial configuration Ecosystem structure 7 11

12 Ecosystem structural variance Spatial configuration Ecosystem structure 7 11

13 Urban habitat Habitat structure Ecosystem structure 7 11

14 Vegetation height Habitat structure Ecosystem structure 7 11

15 Plant area index profile (canopy cover) Habitat structure Ecosystem structure 7 11

16 Habitat structure Habitat structure Ecosystem structure 7 11

17 Fraction of vegetation cover Habitat structure Ecosystem structure 7 11

18 Specific leaf area Ecosystem physiology Ecosystem function 8 22

Species morphology Species traits 2 28

19 Chlorophyll content and flux Ecosystem physiology Ecosystem function 8 22

Species physiology Species traits 2 28

20 Land surface peak (maximum of 
season)

Ecosystem phenology Ecosystem function 8 22

Land surface green-up (start of 
season)

Ecosystem phenology Ecosystem function 8 22

Land surface senescence (end of 
season)

Ecosystem phenology Ecosystem function 8 22

21 Carbon cycle (above-ground biomass) Ecosystem physiology Ecosystem function 8 22

22 Peak season (maximum of season) Species phenology Species traits 2 28

23 Green-up (start of season) Species phenology Species traits 2 28

24 Senescence (end of season) Species phenology Species traits 2 28

25 Leaf dry matter content Species morphology Species traits 2 28

26 Ecosystem soil moisture Ecosystem physiology Ecosystem function 14 28

27 Functional diversity Community diversity Community composition 1 38

28 Species abundance Population abundance Species population 1 46

29 Relative species abundance Population abundance Species population 1 46

30 Population density Population structure by age/size 
class

Species population 1 46
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example, artificial neural networks, decision trees and random for-
ests)66–68, land cover mapping is becoming easier and more accurate 
(for example, in discriminating forest types).

Some original EBVs can be merged into a single remote 
sensing-enabled biodiversity variable. The original EBV can-
didates live cover fraction and ecosystem vertical profile are both 
remotely sensed measures of vegetation cover, as well as 3D struc-
ture69. However, in remote sensing, habitat structure is a widely 
used term70,71 that can include land cover, vegetation height, LAI, 
deadwood, ocean fronts and so on. In Supplementary Table 1, we 
concatenate these remote sensing products (the EBV candidates 
live cover fraction and ecosystem vertical profile) into the single 
remote sensing-enabled biodiversity variable habitat structure. This 
3D variable is differentiated from the often-termed spatial con-
figuration72,73, which refers to the 2D spatial pattern of land cover 
fragmentation and its variation. Some original EBV candidates 
can also be directly informed by a single remote sensing-enabled 
biodiversity variable. Examples include ecosystem phenology, pri-
mary productivity, ecosystem disturbance and species distribution 
(Supplementary Table 1).

Retrieving products from remote sensing that are useful in the 
construction of EBVs demands that the remote sensing commu-
nity parsimoniously merges and simplifies its terminology. For a 
candidate EBV such as phenology, it is possible to calculate a series 
of related remote sensing products (for example, start-of-season, 
peak season and end-of-season products54,74). The solution to avoid-
ing lengthy lists of candidate EBVs (Supplementary Table 1) is to 
merge similar remote sensing biodiversity products into a single 
EBV, especially when the products have comparable feasibility for 
implementation by remote sensing.

We adopt the newly proposed EBVs for species traits (refs. 3,75 
and N. Fernandez, in review). Many biodiversity products gener-
ated by aircraft- or unmanned aerial vehicle-borne sensors (for 
example, vascular plant traits76–81) are not yet mature for routine 
global production. However, such datasets are still valuable, provid-
ing support for in situ measurements when validating the ecologi-
cal accuracy of satellite-based data. Although there are currently no 
global biodiversity products available that allow direct measurement 
and monitoring of species-level trait changes across time (that is, 
for an individual organism)75, we are optimistic that improvements 
in space-borne high-resolution hyperspectral satellites10,82,83, along 
with the next-generation space-borne LiDAR84, will bring us closer 
to generating a full suite of EBV classes at a global level, including 
species traits from space85,86.

Some EBVs are not directly measurable by remote sensing from 
space. Although some widely cited forum and perspective papers 
have speculated that genetics and movement may be retrieved from 
remote sensing87,88, the EBV class genetic composition3,4 cannot 
yet be remotely sensed from space and is not considered further 
(Supplementary Table 1). Tantalizingly, recent research hints that 
remote sensing will make the EBV taxonomic/phylogenetic diver-
sity (that is, a candidate EBV in the class community composition) 
retrievable for broad plant groups (orders and families) and foliar 
biochemical traits identified from reflectance spectra89,90. Time series 
of space-borne imagery also cannot retrieve movement, such as dis-
tance of dispersal or migration. It is only feasible to track movement 
using attachable global positioning system devices, which record an 
organism’s position over time91. Although continuous video imag-
ing has been demonstrated as a method to track vehicles from space, 
to our knowledge, this has not been applied to spatial ecology (large 
individual marine and terrestrial mammals have been detected 
under specific environmental conditions but not tracked by satel-
lite remote sensing20,92,93). However, linking animal movement with 

remotely sensed environmental data provides ecologically relevant 
information on species–environment interactions94.

Prioritizing biodiversity products retrievable from satellite 
remote sensing
The remote sensing biodiversity products (Supplementary Table 1)  
formed the basis for the prioritization of biodiversity products 
from satellite remote sensing. Ranking these remote sensing 
products has practical consequences for prioritizing the measure-
ment of biodiversity from satellites. For example, products in the 
EBV class species traits3 scored the lowest possible score of 3 for 
maturity (see Supplementary Table 2; the ranking is explained in  
Table 1), indicating that it should not be a priority because the 
retrieval of species traits from satellite remote sensing is still imma-
ture and unfeasible at this time. Nonetheless, we retain species traits 
in the 30 highest-ranking remote sensing biodiversity products (see 
Table 2, which summarizes the 30 remote sensing biodiversity prod-
ucts with the highest rankings from Supplementary Table 2), as this 
EBV class will probably be retrievable from space within the coming 
decade thanks to the fusion of imagery from planned space assets 
(that is, from satellites providing higher spatial, spectral, temporal 
and radiometric resolutions). For all remote sensing biodiversity 
products (Supplementary Table 3), we cite a relevant reference and 
indicate which SDG and CBD Aichi target each product informs. 
We also estimate the remote sensing data specifications neces-
sary to capture the relevant biodiversity product (Supplementary  
Table 4). Note that Supplementary Table 4 is a preliminary estimate 
that will be subject to further refinement and revision as part of the 
science traceability approach95 adopted by NASA and the European  
Space Agency96,97.

Reporting using remote sensing-enabled biodiversity 
variables
We have compiled a comprehensive, prioritized list of which remote 
sensing biodiversity products can contribute information to the 
list of EBVs3, based on their relevance, feasibility, accuracy and 
maturity. By translating between the candidate EBVs3 and remote 
sensing-enabled biodiversity variables (Supplementary Table 1), as 
well as providing a corresponding list of remote sensing biodiversity 
products recognized in both remote sensing and the biological sci-
ences, we propose a novel approach to coordinate and communicate 
between networks of observers, especially between space agencies 
(as the data providers) and well-established communities providing 
the in situ data (for example, eLTER, LifeWatch, GEO, GEO BON, 
ForestGEO, GBIF, NEON, ILTER and Fluxnet). The importance of 
harmonized, easily accessible, analysis-ready remote sensing biodi-
versity products is recognized not only by those who generate biodi-
versity products, but also by policymakers and scientists, as detailed 
in Supplementary Table 3.

This analysis focuses on biodiversity products that can be 
retrieved from space using current or planned space assets. The 
operational high-resolution remote sensing biodiversity products 
providing ecosystem-level information98 were highly ranked, as 
detailed in Table 2 and Supplementary Table 4. Specifically, remote 
sensing products describing abiotic drivers of biological distur-
bance, including biological effects of irregular inundation37 and 
biological effects of fire disturbance60,99 (Table 2 and Supplementary 
Table 2) were ranked the most highly in terms of relevance, feasi-
bility, accuracy and maturity. Interestingly, these most mature and 
accurate biodiversity products are climate-related abiotic drivers of 
biodiversity. Another mature product strongly related to climate is 
land cover (for example, vegetation type, urban habitat and ice cover 
habitat). Such products have benefitted from large investments over 
the past 15 years in generating operational climate variables at a 
global scale from Earth observation100. In contrast, some remote 
sensing biodiversity products, though highly relevant and feasible, 
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require further investment in satellite remote sensing for implemen-
tation at a global level. For example, as higher-spatial-resolution 
image spectroscopy and LiDAR satellites become available in the 
next decade, remote sensing products such as vegetation height and 
habitat structure, as well as remote sensing products for the EBV 
classes species traits, community composition and species popula-
tions, will probably be retrievable.

Other biodiversity products describing the EBV live cover frac-
tion (for example, the land cover and LAI products; Table 2) were 
also highly ranked but scored lower than ecosystem disturbance 
due to their lower accuracy when implemented with satellite remote 
sensing. However, we note that specific land cover types, such as 
forest cover101, are mature products, although their feasibility over 
the entire globe depends on operator interventions to tune output 
from the semi-automatic image classification algorithms used to 
process the satellite imagery.

The importance of harmonized, easily accessible, analysis-ready 
remote sensing biodiversity products is also recognized on 
national levels102. A number of remote sensing biodiversity prod-
ucts occurring in multiple EBV classes (as highlighted in Table 2 
and Supplementary Tables 2 and 4) could be further prioritized 
by space agencies and other organizations for operational produc-
tion at multiple resolutions and at a global scale, to support the 
CBD Aichi targets, SDGs and IPBES assessments (Supplementary  
Table 3). Yet, for remote sensing-enabled biodiversity variables to 
contribute to monitoring progress towards meeting policy goals, 
including the CBD biodiversity targets, SDGs, IPBES assessments 
and National Biodiversity Strategies and Action Plans, remote sens-
ing biodiversity products need to be available at policy-relevant 
time frames. Supplementary Table 3 summarized the potential of 
the remote sensing biodiversity products to support the CBD bio-
diversity targets and SDGs7,11,12. In general, policy-level time frames 
require changes in biodiversity to be detectable over decades, rather 
than periodic measurements (annually or seasonally)103 that may be 
more suited to operational and research-orientated management 
and reporting.

More frequent detection of hotspots of change in biodiversity 
may be necessary, depending on the scale and extent of biodiversity 
change and the purpose for which the information is used78,104–111. 
The correct biological interpretation and attribution (training of 
models) for reporting the state and change in biodiversity relies 
on careful ground measurements using direct observation, but 
also ground cameras, sound recorders, mobile phones, electronic 
tags and fragments of genetic material sampled directly from the 
environment (eDNA)112. The importance of highly skilled special-
ists in biology cannot be overemphasized for the correct interpre-
tation (validation) of remotely sensed products, especially when 
these products are extrapolated in space and used for forecasting 
the future113.

As space agencies increase the number of Earth-observing space 
assets, and the number of Earth-observing satellites grows expo-
nentially, interest is shifting to how engineers can design and build 
satellites that specifically address the needs of the biodiversity user 
community114. Despite policy settings, environmental regulation, 
laws and voluntary regulatory standards, biodiversity monitor-
ing using in situ as well as remote sensing data remains under-
funded115,116. Continuity of free and open data117, affordability and 
access to ground research linked to remote sensing remain the key-
stones for globally monitoring biodiversity117–119. Further improve-
ment of satellites for monitoring global biodiversity requires 
complex engineering trade-offs and dependencies between satellite 
observation parameters (for example, between spectral resolution 
and radiometric performance). The requirements demand close 
communication and an intimate understanding of both ecology 
and the potential and limitations of emerging satellite technologies 
by biologists and engineers. Remote sensing experts can and need 

to bridge between ecologists and space engineers by defining and 
translating terms, but also providing feasibility analyses (known as 
science and applications traceability matrices95–97) of specific satel-
lite observation parameters and validating the resulting accuracy 
of remote sensing biodiversity products using in situ observations. 
This is a precondition to being able to consider technical trade-offs 
and ecological demands.

Outlook
Because many elements of biodiversity remain unseen or unknown 
when measuring global biodiversity change69, here, we prioritize 
feasible and relevant biodiversity products that could be generated 
from satellite remote sensing with high accuracy, thereby filling 
data gaps in the spatial and temporal coverage of in situ biodiversity 
observations120.

Recent developments for combining fragments of biologi-
cal material (eDNA) with remote sensing show phylogenetic 
lineages, while genetic diversity can complement direct species 
observation when targeting conservation priorities89,121–123. All 
biodiversity-relevant remote sensing products will further evolve 
as remote sensing technology, as well as biological knowledge, 
develops. Future instruments planned for approximating a suffi-
ciently high retrieval accuracy at the size of an individual species 
(for example, large trees) will allow a more complete description of 
all relevant EBVs124. Biodiversity metrics from space will become a 
reality once biological and engineering requirements are linked to 
end users of biodiversity-relevant remote sensing products.
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