
Chapter 3
Indoor 3D: Overview on Scanning
and Reconstruction Methods

Ville V. Lehtola, Shayan Nikoohemat, and Andreas Nüchter

3.1 Introduction

Accurate three-dimensional (3D) data is called for creating accurate reconstructions
of indoor spaces, i.e., application-suitable digital twins of these spaces. For instance,
the global indoor 3D laser scanner market accounted for 3.79 billion in 2017
(Businesswire 2019). The purpose of reconstruction is roughly dividable into two
types: schematic models for engineering purposes or visual models that are intended
for a broader audience than just engineers. On the one hand, schematic applications
include performing change detection between building information models (BIM)
and as-built data, and the related planning and monitoring of construction processes
and building conditions. On the other hand, visually-appealing virtual models are
useful for facility management, supporting high-level decision making, real-estate
brokering and marketing, displaying cultural and historical heritage, and other
applications. The schematic and virtual properties of digital 3D models can also
be combined. Indoor models of public buildings, e.g., airports and shopping malls,
can be used to assist indoor navigation and location-based services. Concerning the
public sector, construction permit processes may be sped up by applying automated
model checkers into these digital models – before and after the construction.
Furthermore, decision making on city planning can be facilitated when plans are
made for indoor or underground public places. Such places are common, for
example, near metro stations and in northern countries where winters are cold.
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Fig. 3.1 Point cloud of Startup Sauna entrance at Aalto University. (Reproduced from Lehtola
et al. 2017)

Perhaps surprising to a common man, the scanning and modeling of building
interiors and exteriors are two different things. The reader may reflect on this
while they proceed. The activities for reconstructing building exteriors were already
well-known when the interest towards the indoor spaces was taking its first
steps (Musialski et al. 2013).

The creation of indoor 3D models from scanned data was mainly a curiosity
before 2010s, and was done without modern mobile mapping methods. The
reconstruction of indoor models relied on 3D point clouds obtained from terrestrial
laser scanning (TLS), see Fig. 3.1, or on classical photogrammetry, specifically,
bundle adjustment. On one hand, TLS scanning required professional level high-
cost equipment and post-processing software for the lidar data, which made the
process impossible to automate. On the other hand, digital RGB images taken
with calibrated cameras were employed to find similar features from images
and then triangulate the 3D geometry from these images. After sparse matching,
dense matching and reconstruction techniques were employed, e.g. those based on
voxelization (Furukawa et al. 2009). Considering automated processing, this bundle
adjustment-based technique required professional knowledge of camera calibration
from the user and had problems with lighting, textures, and the complex geometry
of the indoor environments (Lehtola et al. 2014). These initial techniques however
brought an initial sense of success and with the development in miniaturization of
sensors (lidars, MEMS INS), they sparked a boom of interest in indoor scanning
and reconstruction.

The indoor scanning problem has been a hot topic throughout the 2010s, seeing
many different scanning systems being designed (Lehtola et al. 2017). The problem
itself was approached from several directions. First, the positioning procedure of
the mobile mapping system that traditionally relied on global navigation satellite
systems (GNSS) was ‘re-designed’ to operate in interior spaces. This meant
disabling the GNSS receiver and using only the inertial sensor to navigate. This
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so-called (pedestrian) dead reckoning1 technique however results into a rapidly
increasing uncertainty about the position of the sensor system, because the inertial
sensor drift rate is an unknown function with respect to time. In other words, even
if the inertial sensor drift is calibrated at an instant of time, that drift changes at a
certain rate. Now, this change rate could also be measured and calibrated away, but
because the change rate is unknown, the calibration does not last. With a navigation
grade inertial measurement unit (IMU), i.e. equipment with a very small drift change
rate, Trimble was able to design a pushcart system in 2012. This unit however
remains to be a test system due to the high costs of such an IMU (>20,000 euros).
Hence, the key in indoor scanning is the robustness of the positioning method. The
position of the scanning system, when developed as a function of time, becomes the
traversed path of motion, i.e. the trajectory.

After the bundle adjustment, the TLS, and the dead reckoning methods led into
shortcomings, the research focus was intensified in mobile systems and trajectory-
based methods. There, the basic idea is to track the position and heading (i.e. pose)
of the sensor system as a function of time in 3D relative coordinates. The pose
updates are done using the overlaps in optical data, that is for example keeping
record on déjà-vu’s, or technically, features that have been seen before. In robotics,
this is known as the simultaneous localization and mapping (SLAM).

This book chapter is written as follows. We shall begin by considering the
properties of indoor environments and what problems they pose for scanning
and reconstruction (Sect. 3.2). Then we discuss how can these spaces can be
understood by computers, i.e., map representations (Sect. 3.3). The development of
the indoor scanning techniques are reflected on the introduced problems and we list
some prominent mobile mapping methods (Sect. 3.4). Based on these and given
an application, the reader should to be able to identify the scanning challenges
related to that application and then be able to select a suitable indoor mobile
mapping system for that application. Furthermore, in order to give the reader a
basic understanding in how the indoor mapping systems perform simultaneous
localization and mapping (SLAM), we describe the algorithm based on iterative
closest points (ICP) (Sect. 3.5). This description (along with the cited works) allows
– in principle – for the reader to construct their own indoor mobile scanning system.2

We expect, however, that most readers do not construct their own systems but are
instead interested in the functionality of the existing systems and their development
in the creation of point clouds. The reconstruction of indoor spaces (Sect. 3.6)
covers the necessary step of semantically segmenting the created point cloud and
the following step on turning this labeled point cloud into a meshed model. Hence,
by indoor 3D reconstruction we are referring to the process of generating a meshed
model which is exportable to one of the standard formats such as IFC (industry

1The terms dead reckoning and pedestrian dead reckoning are used in the field of positioning and
navigation.
2Note that ready open source SLAM codes are also available, e.g. https://github.com/
googlecartographer/ (Hess et al. 2016).

https://github.com/googlecartographer/
https://github.com/googlecartographer/
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foundation classes) or IndoorGML (Chen and Clarke 2017). In other words, the
point cloud that is obtained from scanning is replaced by a mesh that consists of
continuous geometrical shapes such as planes. In Sect. 3.7, we review applications.
The book chapter ends with a discussion on future trends (Sect. 3.8) and a list of
exercises for students (Sect. 3.9).

A common thread of this book chapter, as the reader will discover, is that the
scanning trajectory is of critical importance in each of the steps towards the final 3D
model, i.e. an application-suitable digital twin of the indoor space. The concept of
trajectory, i.e. the path that the scanning system has traveled, is at the very core of
mobile mapping and we highlight that it is important to understand what it stands for
as it is exploited not only in scanning but also in reconstruction steps of the indoor
spaces. To this end, we need to review some terminology.

3.1.1 Terminology

The development in indoor mobile mapping has heritage in multiple fields of
science. Hence, there are several words that bear a similar or identical meaning. A
systematic review of the scanning terminology is listed in Table 3.1. Additionally,
there are some apparent ambiguities that need to be clarified. It is important to differ-
entiate between relative positioning, where a map with an internal coordinate system
is created,3 and absolute positioning, where a map with geographic coordinates is
created (typically using a GNSS receiver). Here, the term map follows from robotics
(definition in Sect. 3.3) and does not refer to a cartographic map. When relative
positioning such as SLAM techniques are used to create a map, this map can be
geo-referenced. Geo-referencing is a surveying term that means that the internal
coordinate system of a map or image is transformed into a geographic coordinate
system, typically WGS82 (World Geodetic System). In other words, after an indoor
space is mapped, the obtained map may be connected onto an outdoor map to form
a seamless indoor-outdoor transition in the map. Finally, the range precision of

Table 3.1 Typical terminology related to (indoor) point cloud registration comes from different
disciplines of science (term data registration is sometimes also used). The symbols (xyzθφκ)
correspond to 3 Cartesian coordinates and 3 Euler angles

Discipline Equipment Term Mathematical equivalent

Laser scanning lidar (uses terms below)

Photogrammetry Digital camera Orientation (xyzθφκ)

Computer vision Digital camera External calibration (xyzθφκ)

Robotics Robot (or sensor) Pose (or posture) (xyzθφκ)

Navigation GNSS receiver Position, heading (xyz), (θφκ)

3Typically, the origin is chosen to be at the start point of scanning, i.e. (x, y, z) = (0, 0, 0).
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lidars is around some millimeters, so positioning from dense scans using SLAM
almost never results in issues with precision. Instead, there are problems related to
erroneous scan registrations which are discussed in Sect. 3.5.5 and which we refer
to with the word accuracy or accurate data.

3.2 Properties of Indoor Environments and Identification
of Scanning and Reconstruction Problems

Indoor spaces may be dark or over-illuminated. They can be colorful or lacking
texture. These properties of indoor spaces have an immediate impact on the
functionality of sensors. Sensor capabilities with respect to different conditions in
indoor environments are detailed in Table 3.2. Note that only the most commonly
used sensors are included. The range of a sensor is important when large indoor
facilities are scanned. In addition to sensors, there are further things to consider.

Every object and feature within an interior space has a specific purpose, as they
have been designed by humans. These objects and features come in different sizes,
see Fig. 3.2. There are, in fact, a lot of objects in which people do not normally
pay attention, and some of these may have geometrically complex shapes. Some
are small, such is the width of an electric wire, and some are big, such is a room.
The magnitude of sizes varies from the order of one centimeter to dozens or even
hundreds of meters. In other words, the characteristic length scale of interior spaces
spans four orders of magnitude. We call this as a multi-scale problem (Lehtola et al.
2017).

The multi-scale problem sets apparently conflicting criteria to the design of the
indoor mapping system. On one hand, the sampling resolution should be large to be
able to account for the smallest details, but on the other it should be sparse to make
covering large spaces computationally tractable. However, the fast accumulation
of data from large resolution may be dealt with sophisticated data distillation
techniques. Hence, an ideal system designed for three-dimensional (3D) indoor
reconstruction has a sampling rate that can account for the smallest details, but
is able to do efficient data distillation so that even the largest interior spaces may

Table 3.2 Optical sensor capabilities with respect to different conditions in indoor environments

RGB-D (range
Conditions RGB (camera) camera) lidar RGB and lidar

Nominal Y Y Y Y

Weak textures N Y Y Y

Dark N N Y Y

Direct light or sunlight N N Y Y

Advantage Textures (and
geometry)

Textures and
geometry

Geometry Textures and
geometry

Range Unlimited 6–10 m 30–100 m 30–100+ m
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Fig. 3.2 Multi-scale problem. Each object and feature in indoor environments serves a specific
purpose for which it has been put there. These span a multitude of length scales, for example, a
network cable has 0.6 cm thickness, while the thickness of the radiator is one order of magnitude
larger, i.e. 7 cm. The building itself can span a distance of hundreds of meters. Success in separating
the objects of these different scales depends on the precision of the data and the models used. A
coarse assumption of a rectangular room leads to the elimination of these features, depicted with a
cyan plane. Instead, using a piece-wise planar model shown with red planes allows for the recovery
of the different objects

be covered. Usually for applications, it is important that the level of detail stays
the same regardless of the size of the building. Hence, in practice, the application
determines the properties that the measurement system should fulfill.

The measuring geometry of indoor data is very different from traditional remote
sensing, where the Earth is viewed from above, and from 3D scanning of single
objects, since of two restrictions. First, scanning techniques must account for not
being able to see the surrounding indoor space in one snapshot, as sensors typically
have a field of view that does not cover 360 degree rotation around two directions.
Second, the sensor trajectory is more restricted and difficult measuring geometries
that may lead to registration problems are encountered for example in narrow
doorways. In contrast, an air-borne scanning system can be freely flown above the
Earth or a studio-system freely moved around the single object that is 3D scanned.

Indoor environments are highly convoluted spaces. In topological sense, they can
be thought to resemble Swiss cheeses, i.e. bulks with multiple carved holes. Such a
bulk can be discretized with an occupancy grid for optical ‘mining’ (see Sect. 3.3).
One typical problem that is encountered is the difficulty in distinguishing the points
captured from the two different sides of a thin wall. Another is distinguishing
between an opening caused by missing data and an opening caused by an existing
window.

Occlusions are abundant indoors, since often an object or one part of the area
to be scanned blocks another part of the area to be scanned, see Fig. 3.3. Outdoors,
when large platforms may be used, the problem can be alleviated by fusing sensor
data from different platform locations (Schneider et al. 2010). Indoors, the sensor
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Fig. 3.3 Occlusion is a
common problem indoors.
Some parts of the scene
occlude some other parts of
the scene. Obvious examples
of occluding objects include
static constructs such as
pillars and corners, but there
are also dynamic objects such
as furniture and doors. Here,
a pillar is occluding a part of
the view of the scanning
system located at the red spot
(visible area shown in blue,
occluded area in grey)

systems are purposefully smaller and this approach is less feasible. These occlusions
can be then overcome with footwork, i.e. a thorough scan of the indoor space, which
is likely to require an online interface from which the operator can see what part
of the areas need further scanning. This need for an interface has partly lead the
development and design of commercial indoor scanning products.

Dynamic occlusions and static occlusions are two different things. If a scan
is planned, it needs to be taken into account that indoor spaces are often full of
people and objects. In technical sense, people that move around may be referred
to as dynamic occlusions while objects that do not move present static occlusions.
Dynamic occlusions can be detected by performing scans of the same environment
at different instances of time and then comparing the obtained point clouds. If
only one instance of time is used, then dynamic occlusions may not be easily
detected. Static occlusions need to be treated in the reconstruction phase, for
example, oftentimes a priori knowledge of the environment is used to fill in the
gaps (Sect. 3.6). Different measures to detect changes in indoor MLS point clouds
are discussed in Lehtola et al. (2017).

Reflection is the ‘evil twin’ of occlusion. Reflections of optical rays may occur
from transparent surfaces, e.g. glass, or shiny surfaces, e.g. metal. With digital
images, light sources are probably the most common cause for reflections from
surfaces. As another simple example, the first return of a laser beam is back-
scattered from a window and the second one follows from the beam hitting
something solid beyond that window. These are a typical cause of outliers in the
indoor 3D data. One straightforward way of eliminating these is to use a threshold
value to omit returns that have a low intensity value. However, this is not always
feasible for automated methods, as the threshold value depends on multiple factors
and hence may appear arbitrary.



62 V. V. Lehtola et al.

Outliers in indoor 3D data may be considerably harder to eliminate than the ones
present in 3D object data because objects have a simple (convex hull) topology
while indoor spaces usually do not. In other words, while outlier points inside a 3D
object are harmless, they are a problem inside a room. Also, airborne scanned laser
data that forms a surface with height differences usually is easier to de-noise than
an indoor 3D point cloud that contains empty spaces inside.

In indoor 3D scanning, all surfaces are explicit surfaces in contrast to object 3D
scanning. When scanning separate objects, e.g. by moving a camera around them,
it is typically assumed that the surface of that object does not contain any holes, i.e.
that the surface is implicit. This assumption greatly facilitates the reconstruction,
because then a coherent surface without holes is always recovered. However, this
assumption must be relaxed for indoor spaces, because for example windows (or
arbitrary decorations) form holes on the walls (or other surfaces). This, that all
indoor surfaces are explicit, makes the reconstruction process significantly harder
than what it is for single objects. Data that is missing due to scanning occlusions
or due to incomplete scan coverage must then be identified, and dealt with. The
identification of this missing data is plausible with e.g. machine learning techniques
that can benefit from the consistence of the existing data to create an estimate for
occluded shapes and textures (Sect. 3.6).

List of problems or challenges identified in indoor 3D scanning and reconstruc-
tion is then as follows

• Optical sensor challenges as in Table 3.2 (S)
• Multi-scale problem: objects of different size (S,R)
• Occlusions from the measurement geometry in a highly convoluted space (S)
• Dynamic occlusions (S) and static occlusions (R)
• Reflections and outliers (R)
• Convoluted space with explicit surfaces (S,R)

Note that some of these problems are typically solved in either the scanning (S)
or the reconstruction (R) phase. This depends on the problem characteristics. The
reader should keep these in mind when reading the following sections.

3.3 Map Representations

Computers (or robots) understand the indoor spaces differently than humans. In their
memory, they form a map. How the map looks like is explained in a while. First,
consider the following procedure where a mobile mapping system gathers optical
data of the environment, while being propagated forward by a human operator:

Initially, the map does not exist. It is generated from optical observations.
In this process, we can see that there are two important concepts, positioning
and map expansion. These are intertwined. The captured optical data can be
transformed to expand a map, if and only if the platform movement is known. That
is, if the platform can be accurately positioned with respect to time. In outdoor
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Result: Map (and other scanned data)
Initialize new map from the first scan;
while Scanning do

Observe new data;
if Match between new data and the stored map is found then

Update the position of the system on the map;
Expand the map with the new data (e.g. Figure 1.4) ;

end
end

environments, global navigation satellite system (GNSS) receivers are typically
employed to provide absolute positions for a mobile mapping system in a so-called
PVT format (position, velocity, precise time).4 However, as the GNSS signals are
not available indoors, relative positioning methods must be employed. This means
that the generated map is employed to localize the system on it. Therefore, this is
called simultaneous localization and mapping (SLAM, Sect. 3.5). In other words,
estimating the trajectory of the platform and estimating the map is the very same
problem, that is, the problem has a dualistic nature.

The map itself may have a variety of forms, see Table 3.3. A map can be 2D
or 3D. However, the localization method used to construct it may be limited to 2D
even if it outputs a 3D map. A good example of such system would be a multi-
sensor system that utilizes a 2D lidar to perform the localization but has a 3D lidar
or digital cameras to capture data. In some instances, these systems or methods are
referred to output 2.5D maps. The 2.5D stands for two and half dimensions meaning
that the outputted point clouds are 3D but there are some limitations in the method,
e.g. restricting the mapping of two stories on top of each other into the same map.

Point-based maps are point clouds, such as Fig. 3.1, which are extended as the
scanning continues. The benefits of these maps are that the point density can be
allowed to vary from dense to sparse. The point density is stored and may be utilized
later to evaluate the uncertainties in the scan result. Furthermore, point-based maps
lack the discretization error that is present when the space is discretized into voxels
or when planes are used to represent the space. Their limitation, however, is that
they are not infinitely dense.

The voxel maps (or occupancy grids), such as Fig. 3.4, consist of cells of a given
size, e.g. 5 cm3, that are labeled as either occupied or unoccupied (or unexplored).
For example, the map updating could go as follows: if during a scan a point is
observed and that point resides in a voxel, then that voxel is marked as occupied.
Also, the voxels residing along the line of sight to that point are also marked as
unoccupied. A voxel map does not, however, have to be binary. It can also be
probabilistic, for example see OctoMap (Hornung et al. 2013). Then the voxel
cells are do not have binary states of being either occupied or unoccupied, but

4Navipedia of European Space Agency: https://gssc.esa.int/navipedia/

https://gssc.esa.int/navipedia/
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Table 3.3 Map representations used when scanning indoor environments

2D 3D

Point-based

Voxel

Feature (plane) N/A

have a probability of being full (or empty). Note that in the reconstruction phase5

(Sect. 3.6), the voxels are converted into a binary (occupied or empty) format, while
here they may have unexplored or probabilistic states. Occupancy grids offer a
straightforward way to represent the scanned space and are powerful in 2D, where
they offer a computationally light way for keeping track of dense scans. In 3D,
however, this beneficial property is severely countered by the rapidly increasing
amount of (empty) voxels. The usefulness of a 3D voxel map hence easily suffers
from the amount of memory required to span a large volume, because this demand
increases as O(N3).

Planes are commonly used to represent floors, walls, and ceilings in indoor
reconstruction (Sect. 3.6). Hence, planar features are beneficial in that they may
allow for the SLAM algorithm to output models that are close to ones obtained from
reconstruction (Grant et al. 2019; Karam et al. 2019). Further discussion related
to SLAM algorithms is in Sect. 3.5. Other geometrical features may also be used
instead or in conjunction with planar features.

5In reconstruction literature, voxel maps are also referred to as Manhattan world approximation.
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Fig. 3.4 Occupancy grid representation of an indoor environment: grey areas are not explored,
white areas are empty, except those with lines. Red path is the past trajectory of the mobile mapping
system. Red arc displays the field of view of the scanner. One room door is open and the scanner
can partly see inside that room. Other doors are closed
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Multiple maps may be created and benefited from. If the scanning system
provides a map that is updated online while the operator is walking, it shows the
operator which areas are yet unexplored. This is helpful, so that all the rooms and
corners of the indoor environment get covered in the final detailed map that will be
the output of the scanning.

3.4 Development of Indoor Scanning Systems

The history of the development of indoor scanning systems is briefly visualized
in Fig. 3.5. First conscious attempts to capture whole 3D indoor environments
were concluded using RGB cameras (Fig. 3.5c) and structure from motion tech-
niques (Furukawa et al. 2009). Soon after, consumer-level depth cameras (RGB-D,
Fig. 3.5a were found suitable for some limited mapping tasks but their weakness
remains to be a very limited range6 (Du et al. 2011). Almost simultaneously, a
backpack platform with cameras and laser scanners was put together by Liu et al.
(2010) to enable the capture of accurate geometry and textures.

The following wave of development consisted of improving the way of usage
of one scanline (or 2D) lidars. A single 2D lidar was used in conjunction with an
inertial sensor in a system called Zebedee (Bosse et al. 2012). Another 2D lidar
system used a rotation encoder (Zhang and Singh 2014). Ultimately, a mobile 2D
lidar was used without any other sensors to capture 3D indoor data (Fig. 3.5e,
Lehtola et al. 2015, 2016). In other words, the a-priori model for the ego-motion
required to start registering the data was successfully relaxed at a later stage of the
SLAM processing. Lauterbach et al. (2015) (Fig. 3.5f) combined a 2D laser scanner
in conjunction with a 3D scanner on a backpack system. Here, data from the 3D
scanner could augment the 2D trajectory from an initial localization from the 2D
scanner into full 3D.

The third wave of development consists of multi-line scanners (Fig. 3.5g). These
relatively inexpensive but potent scanners enabled the emergence of multiple
commercial systems. The systems based on these multi-line scanners include for
example hand-held (Fig. 3.5h) and backpack (Fig. 3.5i) systems.

3.4.1 Single Sensor Methods and Multi-sensor Systems

Single sensor methods are important in understanding the possibilities and limita-
tions of the sensors. Their study helps designing multi-sensor systems with optimal
combinations of sensors that complement each other. In the following, we list
selected state-of-the-art systems and methods.

6Today the commercial RGB-D cameras have a range of only up to 10 m.
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Fig. 3.5 Development of indoor 3D scanning platforms, from single sensor systems (a, b, c, d)
to multi-sensor systems (e, f, g, h, i, j). These selected example systems are (a) RGB-D camera
(Kinect), (b) RGB camera, (c) rolling 2D scanner (Aalto VILMA), (d) a multi-line laser scanner,
(e) 3x RGB-D cameras (Matterport), (f) a multi-sensor trolley (NavVis), (g) a multi-sensor pushcart
(FGI Slammer), (h) backpack with a 2D scanner and a 3D scanner (From University of Würzburg),
(i) hand-held system (Kaarta stencil), and (j) multi-sensor backpack (Leica Pegasus). Many more
systems exist. (e, f, g, h, i, j) are reproduced from Lehtola et al. (2017) (CC)

Single sensor methods operate on the data from

• Digital RGB and RGB-D (depth) cameras: visual SLAM, see e.g. Mur-Artal and
Tardós (2017) and review by Taketomi et al. (2017). Individual frames from a
video feed are matched so that the movement of the camera can be estimated.

• 2D lidar (Lehtola et al. 2016). Note that it is very challenging to reconstruct a 3D
model out of 2D lidar data, and therefore these lidars are usually employed in a
multi-sensor system.

• Multi-line lidar (Moosmann and Stiller 2011; Grant et al. 2019). The multi-line
lidar outputs a scan that already has some 3D geometry, and the overlap from
different scans can be employed in 3D scan registration for SLAM (see Sect. 3.5).

Multi-sensor systems are common in mobile mapping of indoor spaces. Our
careful estimate is that there are dozens of different multi-sensor systems. Those
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who are interested in quantitative measures should refer to Lehtola et al. (2017),
where the performance of eight different systems has been compared. Three of these
are further analyzed in Tucci et al. (2018). Here, we divide multi-sensor systems into
human-carriable systems and mobile platforms.

3.4.1.1 Carriable Systems

The simplest multi-sensor systems consist of a 2D lidar and an inertial sensor,
e.g. Zebedee scanner (Bosse et al. 2012), or a 2D lidar and an angular decoder,
e.g. LOAM (Zhang and Singh 2014). These additional sensors provide digital
a-priori knowledge about the motion of the scanner that can be utilized in a
prediction algorithm to make registration of the data feasible. The prediction step is
especially important in providing information about the extra dimension, when a 3D
reconstruction is attempted using the data from a 2D scanner. It is also worthwhile
in keeping track of fast rotations when using a 3D scanner that has a low frequency
(of some 10–20 Hz) in capturing scan lines, see e.g. Velas et al. (2018).

RGB cameras are also used in minimalist systems. Using an inertial measurement
unit (IMU) in conjunction with a RGB camera allows for solving the absolute scale
of the camera network (Nützi et al. 2011) and it provides robustness against sudden
rotations where the camera system would otherwise lose track (Concha et al. 2016).

Lidar backpack systems can mount several sensors and have a combination of
lidars, cameras, and IMUs. One of the first backpack systems had 3 cameras, 3
Hokyuo lidars, and one IMU (Liu et al. 2010). Since then, backpacks are seeing
more 3D lidars such as Riegl VZ-400 (Lauterbach et al. 2015) and multi-line
Velodyne scanners (Blaser et al. 2018).

3.4.1.2 Mobile Platforms

Mobile platforms roll on wheels, having space to mount multiple sensors to ensure
a full capture of the environment. Also, they offers some advantages related to
the predictability of the platform movement. For example, the localization may be
conducted in 2D. Numerous experimental pushcart or trolley platforms have been
assembled. For example, Radler is an instrumented surveyor’s wheel that uses low-
cost sensors, a 2D laser scanner and an IMU, to create 3D point clouds (Borrmann
et al. 2018), while the FGI scanner (Kaijaluoto et al. 2015) (Fig. 3.5g) is more
cumbersome to move, but consists of solely state-of-the-art high-end sensors. One
of the known commercial platforms is NavVis (2016), see Fig. 3.5f.

3.4.1.3 Micro Aerial Vehicles

Micro Aerial Vehicles (MAVs) offer maneuverability and flexibility in mapping
indoor spaces. They have, for example, been used in inventing warehouses (Eudes
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et al. 2018) and mapping caves (Kaul et al. 2016). One captivating scene of
autonomous MAV mapping can be found in the movie Prometheus. In buildings,
however, the use of MAVs is limited by that they cannot open doors and therefore
are restricted by closed doors.

3.5 Iterative Closest Point SLAM

The positioning of indoor mobile mapping systems is performed using simultaneous
localization and mapping (SLAM) techniques, since satellite-based positioning is
unavailable indoors. We offer an example on SLAM techniques in the form of ICP-
based SLAM, but the reader should be aware that there are other SLAM techniques
as well. The ICP algorithm is used for matching new observations against the stored
map, after which the map expansion can be done and the system position may be
updated.

3.5.1 The ICP Algorithm

The ICP algorithm is the de-facto baseline for all other algorithms. The complete
algorithm was invented at the same time in 1991 by Besl and McKay, by Chen
and Medioni and by Zhang. The method is called the Iterative Closest Points (ICP)
algorithm.

Given two independently acquired sets of 3D points, M̂ (model set) and D̂ (data
set) which correspond to a single shape, we want to find the transformation (R, t)
consisting of a rotation matrix R and a translation vector t which minimizes the
following cost function:

E(R, t) = 1

N

N∑

i=1

||mi − (Rdi + t)||2 , (3.1)

All corresponding points can be represented in a tuple (mi , di ) where mi ∈ M ⊂ M̂

and di ∈ D ⊂ D̂. Two things have to be calculated: First, the corresponding
points, and second, the transformation (R, t) that minimizes E(R, t) on the basis of
the corresponding points. The ICP algorithm uses closest points as corresponding
points. A sufficiently good starting guess, i.e. that the matched point sets are quite
similarly oriented already, enables the ICP algorithm to converge to the correct
minimum, see Fig. 3.6.

Current research in the context of ICP algorithms mainly focuses on fast variants
of ICP algorithms (Rusinkiewicz and Levoy 2001). If the input are 3D meshes
then a point-to-plane metric can be used instead of Eq. (3.1). Minimizing using a
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Fig. 3.6 Registration of 3D scans. The scanned scene shows the Domshof in Bremen. Left: 3D
point cloud, Right: Bird eye’s view. Top: Initial registration based on rough estimates. Middle:
Result after 5 iterations of ICP. Below: Final registration after ICP has terminated
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point-to-plane metric outperforms the standard point-to-point one, but requires the
computation of normals and meshes in a pre-processing step.

The computation of closest points is the most expensive step in the ICP
algorithm. Using the optimized k-d trees the cost for finding the closest point to a
given query point is at average in the order of O(log N) (Friedman et al. 1977), thus
the overall cost is O(N log N) (expected time). Note: N can be very large (Elseberg
et al. 2013). Improvements to k-d tree search have been presented by Elseberg et al.
(2012). They include approximate k-d tree search (Greenspan and Yurick 2003),
registration using d2-trees (Mitra et al. 2004) and cached k-d tree search (Nüchter
et al. 2007).

3.5.2 Computing Optimal Poses

Four algorithms are currently known that solve the error function (3.1) in closed
form (Lorusso et al. 1995). The difficulty of this minimization is to enforce the
orthonormality constraint for the rotation matrix R. Three of these algorithms
separate the computation of the rotation R from the computation of the translation
t. These algorithms compute the rotation first and afterward the translation is
derived using the rotation. For this separation, two point sets M ′ and D′ have to
be computed, by subtracting the mean of the points that are used in the matching:

cm = 1

N

N∑

i=1

mi , cd = 1

N

N∑

i=1

di (3.2)

and

M ′ = {m′
i = mi − cm}1,...,N , D′ = {d′

i = di − cd}1,...,N . (3.3)

After replacing Eqs. (3.2) and (3.3) in the error function, E(R, t) Eq. (3.1)
becomes:

E(R, t) = 1

N

N∑

i=1

||m′
i − Rd′

i − (t − cm + Rcd)︸ ︷︷ ︸
=t̃

||2 (3.4)

= 1

N

N∑

i=1

∣∣∣∣m′
i − Rd′

i

∣∣∣∣2 − 2

N
t̃ ·

N∑

i=1

(
m′

i − Rd′
i

) + 1

N

N∑

i=1

∣∣∣∣t̃
∣∣∣∣2

.

In order to minimize the sum above, all terms have to be minimized. The second
sum is zero, since all values refer to centroid. The third part has its minimum for
t̃ = 0 or
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t = cm − Rcd .

Therefore the algorithm has to minimize only the first term, and the error function
is expressed in terms of the rotation only:

E(R, t) ∝
N∑

i=1

∣∣∣∣m′
i − Rd′

i

∣∣∣∣2
. (3.5)

1. The first method was developed in 1987 by Arun, Huang, and Blostein. The
rotation R is represented as an orthonormal 3 × 3 matrix. The optimal rotation is
calculated by R = VUT . Here the matrices V and U are derived by the singular
value decomposition H = U�VT of a cross correlation matrix H. This 3 × 3
matrix H is given by

H =
N∑

i=1

m′T
i d′

i =
⎛

⎝
Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

⎞

⎠ , (3.6)

where Sxx = ∑N
i=1 m′

x,id
′
x,i , Sxy = ∑N

i=1 m′
x,id

′
y,i , . . . .

2. The second method is similar to the previous method and was independently
developed in 1988 by Horn, Hilden and Negahdaripour. Again, a correlation
Matrix H according to Eq. (3.6) is calculated. Afterwards a so-called polar
decomposition is computed, i.e., H = PS, where S = (HT H)1/2. For this polar
decomposition, Horn et al. (1988) define a square root of a matrix. Let H, S and
P the matrices as described above. Then the optimal rotation is given by

R = P = H
(

1√
λ1

u1uT
1 + 1√

λ2
u2uT

2 + 1√
λ3

u3uT
3

)
,

where {λi} are the eigenvalues and {ui} the corresponding eigenvectors of the
matrix HT H (Horn et al. 1988).

3. The third method finds the transformation for the ICP algorithm by using
unit quaternions. This method was invented in 1987 by Horn. The rotation
represented as unit quaternion q̇, that minimizes Eq. (3.1), corresponds to the
largest eigenvalue of the cross covariance matrix N =
⎛

⎜⎜⎜⎝

(Sxx + Syy + Szz) (Syz + Szy) (Szx + Sxz) (Sxy + Syx)

(Syz + Szy) (Sxx − Syy − Szz) (Sxy + Syx) (Szx + Sxz)

(Szx + Sxz) (Sxy + Syx) (−Sxx + Syy − Szz) (Syz + Szy)

(Sxy + Syx) (Syz + Szy) (Szx + Sxz) (−Sxx − Syy + Szz)

⎞

⎟⎟⎟⎠ .

4. The fourth solution method for minimizing Eq. (3.1) uses so-called dual quater-
nions. This method was developed by Walker et al. in 1991. Unlike the first three
methods covered so far the transformation is found in a single step. There is
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no need to apply the trick with centroids to compute the rotation in a separate
fashion. Here, the optimal transformation consisting of a rotation and translation
is again a solution of the eigenvalue problem of a 4 × 4 matrix function that is
built from corresponding point pairs.

The closed-form solutions discussed so far are all non-linear, since they need
an eigenvector/eigenvalue solver, e.g., in case of using the third method, a quartic
equation must be solved (Horn 1987).

For SLAM applications it is necessary to have a notion of the uncertainty of
the poses calculated by the registration algorithm. The following is the extension
of the probabilistic approach first proposed by Lu and Milios (1997) to 6 DoF.
This extension is not straightforward, since the matrix decomposition, i.e., Eq. (3.8)
cannot be derived from first principles. For a more detailed description of the
extension refer to Borrmann et al. (2008a,b). In addition to the pose X, the pose
estimate X̄ and the pose error ΔX are required.

The positional error of a scan at its pose X is described by:

E =
m∑

i=1

‖X ⊕ di − mi‖2 =
m∑

i=1

‖Zi (X)‖2

Here, ⊕ is the compounding operation that transforms a point di into the global
coordinate system. For small pose errors ΔX, E can be linearized by use of a Taylor
expansion:

Zi (X) ≈ X̄ ⊕ di − mi − ∇Zi (X̄)ΔX

= Zi (X̄) − ∇Zi (X̄)ΔX

Utilizing the matrix decomposition MiH of ∇Zi (X̄) that separates the pose X,
which is contained in H from the points mi and di , which are contained in Mi :

Zi (X) ≈ Zi (X̄) − MiHΔX

Appropriate decompositions are given for the Euler angles, quaternion representa-
tion and the Helix transform in the following paragraphs. Because Mi is independent
of the pose, the positional error E is approximated as:

E ≈ (Z − MHΔX)T (Z − MHΔX),

where Z is the concatenation of all Zi (X̄) and M the concatenation of all Mi’s.
E is minimized by the ideal pose:

Ē = (MT M)−1MT Z
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and its covariance is given by

C = s2(MT M),

where s2 is the unbiased estimate of the covariance of the identically, independently
distributed errors of Zi :

s2 = (Z − MĒ)T (Z − MĒ)/(2m − 3). (3.7)

Note that Ē is the minimum for the linearized pose HΔX. To obtain the optimal
X the following transformation is performed:

X = X̄ − H−1Ē,

C = (H−1)C(H−1)T .

The representation of pose X in Euler angles, as well as its estimate and error is
as follows:

X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

tx

ty

tz

θx

θy

θz

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, X̄ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

t̄x

t̄y

t̄z

θ̄x

θ̄y

θ̄z

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,ΔX =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Δtx

Δty

Δtz

Δθx

Δθy

Δθz

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

The matrix decomposition MiH = ∇Zi (X̄), i.e., the Jacobian, is given by:

H =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 t̄z cos(θ̄x) + t̄y sin(θ̄x) t̄y cos(θ̄x) cos(θ̄y) − t̄z cos(θ̄y) sin(θ̄x)

0 1 0 −t̄z −t̄x sin(θ̄x) −t̄x cos(θ̄x) cos(θ̄y) − t̄z sin(θ̄y)

0 0 1 t̄y −t̄x cos(θ̄x) t̄x cos(θ̄y) sin(θ̄x) + t̄y sin(θ̄y)

0 0 0 1 0 sin(θ̄y)

0 0 0 0 sin(θ̄x) cos(θ̄x) cos(θ̄y)

0 0 0 0 cos(θ̄x) − cos(θ̄y) sin(θ̄x)

⎞

⎟⎟⎟⎟⎟⎟⎠
. (3.8)

and

Mi =

⎛

⎜⎜⎝

1 0 0 0 −dy,i −dz,i

0 1 0 dz,i dx,i 0
0 0 1 −dy,i 0 dx,i

⎞

⎟⎟⎠ .

As required, Mi contains all point information while H expresses the pose
information. Thus, this matrix decomposition constitutes a pose linearization
similar to those proposed in the preceding sections. Note that, while the matrix
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decomposition is arbitrary with respect to the column and row ordering of H, this
particular description was chosen due to its similarity to the 3D pose solution given
by Lu and Milios (1997).

3.5.3 Marker and Feature-Based Registration

Sometimes the ICP algorithm does not properly converge from the starting guess
and is attracted into a local minimum. To avoid these issues with starting guess
in the ICP framework, marker based registration uses defined artificial or natural
landmarks as corresponding points. This manual data association ensures that by
minimizing Eq. (3.1) the scans are registered at the correct location. Iterations are no
longer required. Feature based algorithms, like using SIFT features, automatically
extract the 3D position of natural features and do not need any iterations nor manual
interference for registration (Böhm and Becker 2007).

While registering several 3D data sets using the ICP algorithm or marker and
feature-based registration techniques, errors sum up. These errors are due to impre-
cise measurements and small registration errors. Therefore, globally consistent scan
matching algorithm aim at reducing these errors.

3.5.4 ICP-Based SLAM

Chen and Medioni (1992) aimed at globally consistent range image alignment when
introducing an incremental matching method, i.e., all new scans are registered
against the so-called metascan, which is the union of the previously acquired and
registered scans. This method does not spread out the error and is order-dependent.

Bergevin et al. (1996), Stoddart and Hilton (1996), Benjemaa and Schmitt
(1997); Benjemaas and Schmitt (1998), and Pulli (1999) present iterative
approaches. Based on networks representing overlapping parts of images, they
use the ICP algorithm for computing transformations that are applied after all
correspondences between all views have been found. However, the focus of research
is mainly 3D modeling of small objects using a stationary 3D scanner and a
turn table; therefore, the used networks consist mainly of one loop (Pulli 1999),
where the loop closing has to be smoothed. These solutions are locally consistent
algorithms that stick to the mentioned analogy of the spring system (Cunnington
and Stoddart 1999), whereas true globally consistent algorithms minimize the error
function in one step. A probabilistic approach was proposed by Williams et al.
(1999), where each scan point is assigned a Gaussian distribution in order to model
the statistical errors made by laser scanners. This causes high computation time due
to the large amount of data in practice. Krishnan et al. (2000) presented a global
registration algorithm that minimizes the global error function by optimization on
the manifold of 3D rotation matrices.
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The n-scan registration using linearization allows us to compute global optimal
poses in one step given point correspondences between adjacent scans. These scans
are given by a graph, where each link, j → k denotes a set of point pairs, i.e.,
closest points. Following the notation of ICP, scan j serves as the model set,
while scan k serves as data set. Next we present four novel linear methods for the
parameterization of the rotation.

For an uncertainty-based global point cloud registration method or SLAM
method, the 2-scan case, discussed above is extended. Under the assumption that
two poses X′

j and X′
k are related by the linear error metric E′

j,k we wish to minimize
the Mahalanobis distance that describes the global error of all the poses:

W =
∑

j→k

(Ēj,k − E′
j,k)

T C−1
j,k(Ē

′
j,k − E′

j,k)

=
∑

j→k

(Ēj,k − (X′
j − X′

k))C
−1
j,k(Ē

′
j,k − (X′

j − X′
k)). (3.9)

The error between two poses is modeled by the Gaussian distribution (Ēj,k, Cj,k).
In matrix notation, W becomes:

W = (Ē − HX)T C−1(Ē − HX).

Here H is the signed incidence matrix of the pose graph, Ē is the concatenated
vector consisting of all Ē′

j,k and C is a block-diagonal matrix comprised of C−1
j,k

as submatrices. Minimizing this function yields new optimal pose estimates. The
minimization of W is accomplished via the following linear equation system:

(HT C−1H)X =HT C−1Ē

BX =A.

The matrix B consists of the submatrices

Bj,k =

⎧
⎪⎪⎨

⎪⎪⎩

n∑

k=0

C−1
j,k (j = k)

C−1
j,k (j �= k).

The entries of A are given by:

Aj =
n∑

k=0
k �=j

C−1
j,kĒj,k.
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In addition to X, the associated covariance of CX is computed as follows:

CX = B−1

The actual positional error of two poses Xj and Xk is not linear:

Ej,k =
m∑

i=1

∥∥Xj ⊕ di − Xk ⊕ mi

∥∥2 =
m∑

i=1

∥∥Zi (Xj , Xk)
∥∥2

.

Analogous to the simple 2-scan case the linearized pose difference E′
j,k is obtained

by use of a Taylor expansion of Zi (Xj , Xk):

Zi (Xj , Xk) ≈ Zi (X̄j , X̄k) − (∇Xj
Zi (X̄j , X̄k)ΔXj − ∇Xk

Zi (X̄j , X̄k)ΔXk

)
.

Here, ∇Xj
refers to the derivative with respect to Xj . Utilizing the same matrix

decomposition MiH of ∇Zi (X̄) as in the 2-scan case Zi (Xj , Xk) is approximated
as:

Zi (Xj , Xk) ≈ Zi (X̄j , X̄k) − MiE′
j,k,

where E′
j,k is the linear error metric given by:

E′
j,k = (HjΔXj − HkΔXk)

= (X′
j − X′

k).

E′
j,k is linear in the quantities X′

j that will be estimated by the algorithm. Again, the
minimum of E′

j,k and the corresponding covariance are given by

Ēj,k = (MT M)−1MT Z

Cj,k = s2(MT M).

Here Z is the concatenated vector consisting of all Zi = X̄j ⊕ di − X̄k ⊕ mi .
Note that the results have to be transformed in order to obtain the optimal pose

estimates, just like in the 2-scan case.

Xj = X̄j − H−1
j X′

j ,

Cj = (H−1
j )CX

j (H−1
j )T .

Note that SLAM techniques have not been developed for indoor applications
only, as applications for SLAM exist also in undersea, space, underground, and
forest environments. We recommend interested readers to get acquainted with
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probabilistic techniques such as Kalman and particle filtering in SLAM (see e.g.
Thrun et al. 2005).

3.5.5 Assessing the SLAM Errors

The Mahalanobis distance of Eq. (3.9) offers a formulation for a computational
error that can be minimized to match all poses. However, the minimized residual
of this error can not be straightforwardly interpreted to assess the quality of the final
point cloud. For example, it does not take a stance on whether the ICP algorithm
has been attracted into local minima leading to failed pose matching, which in
turn may lead into serious distortions in the final point cloud. In other words, the
residual from Eq. (3.9) can be very small even if the final point cloud is nonsense.
This is because of the dualistic nature of the SLAM problem: the pose errors are
transformed onto errors in the observed 3D shape of the environment. The errors in
the final point cloud are thus a function of all data (as these were used to estimate the
poses), and include sensor errors, system calibration errors, and quality and extent of
observation overlap. For the case of any SLAM (also ICP), the errors can therefore
be

• quantitatively assessed only if reference data is available, from the trajectory or
from the point cloud

• qualitatively assessed with the human eye, which is commonly used in 3D
visualization, from the point cloud

• assessed against a-priori knowledge, e.g. geometric rules that require all walls to
be planar or such that require all corners to be straight.

Point cloud to point cloud comparisons can be conducted by using a measure for
control points, point subsets, or whole point clouds (Lehtola et al. 2017). Different
measures are summarized in Table 3.4. The choice depends on the properties of
the scanned object, i.e. whether it can change shape, and whether the point cloud
has already been smoothed, e.g. filtered for outliers. Shape change is a property
often related to human 3D body scanning but a room with swinging doors could
also be considered with these measures. Smoothing is usually an integrated part of
commercial products, meaning that if the data is captured with such a product, the
output is a smoothed point cloud.

Once a model is reconstructed (see Sect. 3.6) from the scanned point cloud, the
assessment becomes more straightforward. It is then a model to model comparison.
The straightforwardness follows from that the measures such as completeness, that
the model covers the reference, and correctness, that the model does not contain
anything extra with respect to the reference, can be defined (Tran et al. 2019).
However, the cave-at here is that then the total errors are a function of not only the
SLAM process but also the reconstruction process. This may make the assessment
appear oblique if the cause of errors is of interest. In industry, the reconstructed
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Table 3.4 Metrics for point cloud to point cloud comparison. DEM stands for digital elevation
models. (Adapted from Lehtola et al. 2017)

Smoothed point cloud Non-smoothed point cloud

Rigid object Lp norms L1 and L2 norms with cutoff radius

Hausdorff measure Examples: Raw point clouds

Examples: Scanned 3D objects, DEM

Non-rigid object Gromov-Hausdorff N/A

Gromov-Wasserstein

Examples: Shape changing objects

models are in standard formats (see Sect. 3.6) and are validated with commercial
model checkers.

In mobile mapping, a real time map from an online SLAM is sometimes used
to direct the operator when data is gathered. However, pose errors are typically
larger for online SLAM than offline SLAM, since less data is used for overlap
computation in the online versions to keep the computational load tractable. In turn,
the offline, or post-processing, SLAM algorithms can optimize over all data. Such is
the minimization of the Mahalanobis distance of Eq. (3.9) and such are also the so-
called graphSLAM techniques that are based on graphs representing all observations
(Grisetti et al. 2010).

3.6 Indoor 3D Reconstruction

By indoor 3D reconstruction we are referring to the process of generating a mesh
model which is exportable to one of the standard formats such as IFC (industry
foundation classes) or IndoorGML (Chen and Clarke 2017). In other words, the
point clouds are replaced by a mesh that consists of continuous geometrical shapes
such as planes and boundary representations (B-Rep). During a reconstruction
process, a successful composition of walls is the most important factor because it
defines the main layout of the interiors. However, some approaches are contented by
providing a volumetric model of the interiors without an explicit representation of
walls. The reconstruction process here includes the data segmentation step, where
the point cloud is divided into rooms and subspaces. Note that some of the room
segmentation methods explained next directly result in a final mesh model (e.g.
cell decomposition), while some just assign labels to points (e.g. mathematical
morphology) and require another method for the creation of the mesh.
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3.6.1 Space Subdivision and Room Segmentation

Space subdivision is referred to the problem of dividing the space into semantic
subspaces. Another term used in the literature for space subdivision is room
segmentation. However, there are slight differences between the concepts of a room
and a subspace. A room is separated from other rooms by permanent structures
such as walls, floors and ceilings and there should be an opening (e.g. door) to
connect two rooms. A subspace can represent a room or part of a room, for example
a meeting area which is separated from the rest of that room by temporary partitions.
When spaces are physically separated by permanent structures, space subdivision is
equivalent to room segmentation. Several important remarks need to be considered
when dealing with space subdivision:

1. The space subdivision can be done in 2D (Bormann et al. 2016), in 2.5D (Ikehata
et al. 2015) and in full 3D (Mura et al. 2016).

2. The space subdivision can be done with Manhattan-World assumptions
(Khoshelham and Díaz-Vilariño 2014) or without it (Ochmann et al. 2019).
In Manhattan-World assumption, walls are assumed to be perfectly vertical and
perpendicular to each other.

3. The trajectory of the acquisition device, in case of mobile laser scanners, can be
a valuable data source for the space subdivision (Elseicy et al. 2018; Nikoohemat
et al. 2018).

In the following, the most common space subdivision methods in the literature
are presented along with their limitations.

Mathematical morphology The input data is converted into a 2D grid, which is
essentially an image (with pixels), and or into a 3D voxel grid. The pixels (or voxels)
are labeled as occupied (not accessible) or empty (accessible). A morphological
erosion is applied on empty pixels which causes the occupied pixels (e.g. walls)
to grow and the empty pixels to either vanish or get separated, if they had a
weak connection. Then a connected component analysis is run, which identifies
all connected segments of empty space. Each empty segment represents a room
candidate. Finally, a morphological dilation is applied on the generated room
segments to grow until the border of the room meets the occupied space (Bormann
et al. 2016; Nikoohemat et al. 2018). See Fig. 3.7. The limitation of the morphology
approach is that one has to make a selection for the pixel size to provide a good
trade-off between computational cost and accuracy of the room topology. Obviously,
smaller pixel size represents a better accuracy of the room topology but becomes
computationally expensive and needs more iteration to converge to the correct
number of rooms.

Delaunay Triangulation/Voronoi Diagram (Bormann et al. 2016; Turner et al.
2014): For this method, the input is either a set of points representing wall samples
or a 2D grid of occupied and empty pixels (similar to the morphology case).
Delaunay triangulation is run on the input producing a set of triangles that connect
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Fig. 3.7 Room segmentation by mathematical morphology. Each color is one segment. (Repro-
duced from Nikoohemat et al. 2018)

the wall sample points of the input data, see Fig. 3.8. Then the triangles are labeled
as inside or outside using the line of sight established from the scanner trajectory.
If an intersection between the line of sight and the triangle is encountered, then
the triangle is labeled as inside. Inside triangles are used as room seeds. For each
triangle, a circumcircle is generated (i.e. the unique circle that passes through each
corner point of that triangle). It is assumed that the circumcircles with the highest
overlap belong to the same room, and only one of these is stored. The initial set of
room seeds then equals to the largest remaining circumcircles. The result is a rough
location of each room and an initial number of rooms. Finally, candidate rooms
are merged under two conditions: (i) if they share a large perimeter with another
room and (ii) if they share a border which is too large to be a door. This, however,
results in over-segmentation in the long corridors. Delaunay triangulation is mainly
implemented in 2D and then extended to 2.5D. It is not an ideal method for true 3D
modeling.

Cell decomposition is perhaps the most used approach in the literature. It
consists of three steps, see Fig. 3.9. (i) The input data is converted into a set of
lines (2D) or planes (3D). (ii) Lines or planes are elongated so that they intersect
with the bounding box limits of the modeled space. This process generates a 2D or
3D cell complex, where each cell is represented by a piece-wise planar polyhedron
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Fig. 3.8 (a) Delauney triangulation. The shown circles with the longest circumcircles form seeds
for rooms. (b) Obtained room segmentation. (Reproduced from Turner et al. 2014 with permission)

Fig. 3.9 Room segmentation by cell decomposition. Steps in (i) left, (ii) middle, and (iii) right
image explained in text are visualized here. (Reproduced from Mura et al. 2014)

or a convex cell. Additionally, each cell is labeled as an inside cell or an outside
cell. Typically, this is done using line-of-sight ray tracing techniques. (iii) Cells
with the inside label are clustered and merged to form individual rooms. This is the
step where methods show most differences, especially in the way room seeds are
clustered, for example, with Markov clustering (Mura et al. 2016), Integer Linear
Programming (Ochmann et al. 2019), or graph cut optimization (Oesau et al. 2014).
This that there has been multiple different approaches to the optimization of the
cell clustering step tells that it is not a straightforward problem, which may be
considered as a limitation.

MLS trajectory-based method Mobile laser scanner data is registered into a
3D point cloud using SLAM techniques. From that process, for each point in the
point cloud, we can obtain the point on the trajectory from which that particular
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Fig. 3.10 Room segmentation by using the trajectory of a mobile laser scanning system. This
method relies on doorway (opening) detection. Left: Elseicy et al. (2018), right: Mozos (2010,
p.31)

measurement was done. In order to do room segmentation, first the trajectory is
divided to segments using the locations, where a door is detected from the data,
as division points. The location of the doors can be extracted by intersecting the
trajectory with wall candidates, which are lines in 2D and planes in 3D. Obviously,
only doors which were entered during the scanning can be identified and used to
segment the trajectory. In addition, one can consider that each loop in the trajectory
is a possible room candidate, see Fig. 3.10. By applying both criteria (door location
and loops) the trajectory is segmented more robustly in that it takes into account
also the cases where the entryway is larger or otherwise different than a standard
door. Then the subset of the point cloud captured from that trajectory segment can
be collected (using e.g. the time attribute in both point clouds and the trajectory).
One limitation of this approach is the existence of openings, meaning that from
the scanner positions residing inside a room parts of other spaces can also be
scanned if there are openings to those spaces. This causes the room topology
to become inaccurate near doors and windows. Another limitation concerns the
correct detection of loops, for example if the scanning operator enters one room
and exits from another door a loop is not formed. Similarly, if the operator makes
an unnecessary loop in a big hall or a corridor it results in an over-segmentation of
the space (Elseicy et al. 2018; Mozos 2010).

Machine learning methods bring in the possibility of naming the rooms by
their functions. This so-called semantic labeling of rooms goes one step further
than plain room segmentation. Machine learning methods such as random forest,
adaBoost and conditional random field are used to cluster the detected planes or
super segments into rooms with a function (e.g. corridor, kitchen, bedroom, etc.)
(Bassier and Vergauwen 2019; Bormann et al. 2016; Mozos 2010). For this kind of
methods, however, training data needs to be created and that training data should
represent different types of rooms. Another novel approach is using deep learning
(Convolutional Neural Network), which needs an even larger training dataset but
in return is able to produce, for example, floor plans from a large set of RGB-D
samples (Liu et al. 2018). Hence, the effort of creating a method is partly replaced
by an effort to create a set of labeled data to be used for training. On the other
hand, if the method can take sensor data as input, in a so-called end-to-end network
fashion, this can be seen advantageous.
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Other approaches for room segmentation such as graph-based methods, enclo-
sure of the spaces, and shape grammar are referred to in the bibliography (Murali
et al. 2017; Nikoohemat et al. 2019; Tran et al. 2018).

3.6.2 Reconstruction of Walls

Walls can be reconstructed as infinitely-thin planar planes, see Fig. 3.9, or as
volumetric objects that have a non-zero thickness. Oftentimes the choice depends
on the application, for example, in BIM models walls are volumetric objects. Given
a point cloud, there are several approaches to separate walls form the furniture and
to create the correct wall arrangement. Some of these approaches were explained
in Sect. 3.6.1 on room segmentation, because these two problems are related. Room
segmentation determines the room layout and consequently the wall arrangement.
Furthermore, there is another approach that is based on constructive solid geometry
(CSG) (Xiao and Furukawa 2014). It begins by slicing the point clouds to horizontal
layers and looking for primitives such as rectangles in 2D or cuboids in 3D.
Rectangle primitives are the most common shapes in the architecture. By exploiting
a so-called free-space constraint and optimizing an objective function, the best
arrangement of the primitives is selected, which means that some of the rectangles
are merged into one another. Finally, the 2D CSG models are elongated in the third
dimension to make them volumetric, and the objects stacked on top of each other
form the sought-after 3D model with the correct wall arrangement. This approach
generates volumetric walls but it does not create a topology for rooms. That is, the
geometrical objects are created in their respective positions but the relations between
these objects, e.g. how they form rooms, need to be established with additional
means.

3.6.3 Grammar Approach

Grammar represents the rules of how things should be expressed. Ill-defined
grammar or bad grammar results in ambiguities and misunderstandings. A natural
language, English for example, would not function without grammar, because it
would not make sense. Grammar is also widely applied in programming languages
(see e.g. Chomsky 1959). Another types of grammar, ones intended for 3D models,
can also be defined. For example, shape grammars have been used as modeling
techniques in architecture, computer graphic and engineering (Stiny and Gips 1971).
These were decades before the introduction of 3D scanning data. Later, grammar
approaches that exploit the regularity and repetitive pattern of architectures were
employed to generate models that are not based on real data, for urban designers or
for computer games (Wonka et al. 2003).
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Considering scanned 3D data, data-based reconstruction activities started from
building façade reconstruction for city models (e.g. Müller et al. 2006; Musialski
et al. 2013). Soon after, grammar was harnessed to benefit indoor 3D reconstruction
(Becker et al. 2013; Boulch et al. 2013) with the founding idea that data-based
indoor 3D reconstruction would yield BIM models (see Sect. 3.7). Simultaneously,
automatically generated 2D floor plans could also be extracted (Ikehata et al. 2015).
Floor plan generation is important, for example, in Americas as there most homes
lack floor plans. Latest studies present BIM-aimed approaches where grammar rules
are used iteratively to fit the best representations (parametric models with semantics)
into the data (Becker et al. 2015; Tran et al. 2018). Point clouds have been
established as the main input data format for grammar based indoor reconstruction.

The reconstruction of walls, or segmentation of rooms, is the goal also when
we are using grammar. A grammar is a set of components such as terminals,
non-terminals, rules, axioms and attributes. Rules define how the non-terminals
(e.g. shape) should be transformed to terminals during the model creation. Rules
generally are defined by an expert and this is the challenging part of the grammar.
Some of the common rules in shape grammar are merge, split and a set of
transformations. Attributes can be color, texture, material and labels. Attributes are
not always part of the grammar unless we are using an attribute grammar.

One basic idea to apply grammar in indoor reconstruction is to define a primitive
shape such as a cuboid as an axiom and fit the cuboid to the data (e.g. a point
cloud). For this purpose a parametric shape can be defined and placed aligned with
the axis in the data. If the data is axis-aligned then a Manhattan World can be
assumed and fitting the cuboid to the data becomes easy. By placing, scaling, and
transforming more cuboids the model can be reconstructed. Then, based on the fact
that whether there are enough points to support the faces of each cuboid as valid
walls, the cuboids can be merged or split to form rooms. Useful information may
additionally be obtained from the locations of doorways which can be used to justify
whether some cuboid faces should be added to split the cuboids (e.g. one cuboid per
room). Similar approach is used by Ikehata et al. (2015) and Khoshelham and Díaz-
Vilariño (2014). One limitation of using grammar lies in assuming Manhattan-World
structures, as the rooms are considered to be in a grid. Another limitation is the need
of an expert who defines the rules. However, as a line of research, it is possible to
attempt to learn the rules form a large training data.

3.6.4 Detection and Reconstruction of Openings

Detection of openings (e.g. doors and windows) from the scanned data is important
so that these openings can be successfully reconstructed. This adds an important
level of detail to the model. It turns out that in most of indoor environments the
structural surfaces are actually occluded (see Sect. 3.2), and as a consequence there
are holes, for example, on the walls, which necessarily do not represent openings.
The challenge then is to discriminate between these holes caused by occlusion and
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Fig. 3.11 Left: A window in a point cloud. Middle: Ray casting divides the voxels into occupied
(red) and unoccupied (blue) classes. Right: Results after Eq. (3.10) include also occluded (green)
and opening (yellow) classes. (Reproduced from Nikoohemat et al. 2017)

the holes which represent windows or doorway openings, for instance. We discuss
two types of opening detection methods. First, ray casting can be used generally for
opening detection. Second, trajectory-based methods are used for door detection.

classes
1. Ray casting is illustrated in Fig. 3.11. Initially, an image is generated for

each wall surface, defined by a surface plane. The optical axis of the image is
taken parallel to the normal vector of the surface plane. The image is bounded by
a bounding box encompassing the wall surface. All the pixels are labeled by an
initial label L0. The objective then is to label the pixels on the surface to opening,
occluded or occupied. A ray is cast from each scanner position Si to each point Pi

in the point cloud and the ray intersects with a surface at the intersection point Ij .
Then two distances can be calculated from these three points: DSi−Pi

, which is the
distance between the scanner position and the measured point. DSi−Ij

, which is the
distance between scanner position and the intersection point. By comparing these
two distances, we have

Label =

⎧
⎪⎨

⎪⎩

Occlusion, ifDSi−P i < Dsi−Ij

Occupied, ifDSi−P i = Dsi−Ij

Opening, ifDSi−P i > Dsi−Ij

(3.10)

Note that some of the pixels remain with the label L0 and in the image on
the right they are shown in blue. After labeling each surface, the openings can be
distinguished from occlusions and the borders of the openings can be extracted.
Adan and Huber (2011) use a support vector machine (SVM) method to further
reconstruct the border of the opening in each surface. Additionally, note that ray
casting can also be done in 3D by using a set of voxels, which enables the treatment
of more complex geometries for openings. Finally, a common drawback of any
occlusion reasoning method is that when an opening is partially occluded it is hard
to reconstruct the border between the opening and the occlusion.

2. Using the Trajectory: When indoor data is collected with a mobile laser
scanning system, the trajectory of the laser scanner intersects doorways, see
Fig. 3.12. Nikoohemat et al. (2017) exploits this fact to detect the doorways. Given
a point cloud, the 3D space is voxelized and the voxels are labeled as empty and
occupied (depending if there are points in the voxel). For doorway detection, the
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Fig. 3.12 (a) Snapshot from inside a point cloud with the trajectory from a mobile mapping system
shown with a line. (b) Reconstruction of openings with the help of a known trajectory. ((a) is
reproduced from Nikoohemat et al. 2018)

goal is to find the voxels at the center and on the top of the door frame, which
gives us an approximate location of the doorway and its orientation. Note that this
approach does not require any knowledge about the walls. Three criteria are checked
for each voxel. It represents the center of a doorway if (i) above it, there are several
occupied voxels, (ii) it resides close to the trajectory, e.g. distance is within 15 cm,
and (iii) it is surrounded by empty voxels when considering a short radius (of e.g.
30 cm). The first criterion scouts for the top of the door frame. The second one is
self-explanatory. The third criterion implies that the door center is in the middle of
an opening (i.e. not a door that was closed). When identifying the voxel candidates
for the door center, the voxels on top of the door center (considering a standard
door height) are similarly identified as top of the door. For identifying closed doors,
the empty voxels in the third criterion are replaced by occupied voxels, because
we expect the center of a closed door is occupied by points. One of the benefits of
this approach is that the doorways can be identified regardless of whether the doors
are being opened or closed during the measurement. This approach has later been
extended by others (Elseicy et al. 2018; Staats et al. 2019).

This method can be simplified if the wall surfaces are known. For example, each
place where the trajectory intersects a wall is a probable doorway candidate. Also,
the orientation of the door can be derived from the wall normal vector. Obviously,
the limitation in using the trajectory knowledge is that there is no guarantee that any
untraversed doorways would be detected (e.g. with closed doors).

3.6.5 Reconstructing Occluded Data by Machine Learning

When an object is between the measurement instrument and another object, the
first object occludes the other object (see Sect. 3.2). In a point cloud, this is seen
as missing data (or holes) that are shaped as a shadow of the first object. For
2D images, inpainting is a well-known technique to restore missing pixels (so-
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Fig. 3.13 Left: Point cloud with occlusion. Right: Disocclusion by inpainting. (Reproduced from
Xiong et al. 2013)

Fig. 3.14 Inpainting a 3D point cloud separately for geometry and colors and then combining the
results. (Reproduced from Väänänen and Lehtola 2019)

called disocclusion in computer vision). For 3D data, a common approach is to
take snapshots from the point cloud and then apply some known 2D techniques to
fill the missing data. Xiong et al. (2013) use a 3D Markov Random Field inpainting
algorithm for disocclusion, shown in Fig. 3.13. Essentially, the algorithm uses planar
patches that are labeled as wall, ceiling, floor, or clutter, and the characteristics of
opening shape and location for each patch class are learned using machine learning
techniques. This learning allows for enough prior knowledge in order to distinguish
between occlusion and openings, so that occlusions are filled but openings are left
as they are.

Arbitrary geometries and textures can also be patched up, see Fig. 3.14. Väänänen
and Lehtola (2019) train the patches separately for geometry and colors with a
generative adversarial network (GAN) for each pre-defined class in the point cloud.
Their method is noteworthy in that there is no need for external data, i.e. each point
cloud can be inpainted per se, and the inpainting is independent of both the occlusion
shape and cause. There are limitations as well. The patch size is essentially the size
of the band-aid that is laid on the occluded holes, and covering large areas well is
difficult.
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3.7 Applications

As we have seen, indoor 3D data is important as reconstruction material and that
reconstruction aims for industry standardized formats (see Sect. 3.6) in building
information modeling (BIM). Figure 3.15 displays applications in facility man-
agement, asset management, and construction. Other applications for BIM include
real estate brokering and various planning activities. The planning, building, and
operating actions can be thought to form a so-called BIM cycle. The BIM-supported
decisions relate either to the construction (or renovation) phase, during which the
indoor spaces are physically modified, or to the operational phase, during which the
indoor spaces are being used. The cycle is closed when the planning is revisited with
the scanned as-built data and other data gathered while operating functions inside
the building.

In the construction phase, for example, making spaces that are energy efficient
brings savings in the fixed costs. This can be achieved through the integration of
thermal data (Lagüela et al. 2013) onto 3D models which allows for insulation
planning and energy conservation. Also, daylight simulations on the other hand
allow for optimization of the electrical illumination (Díaz-Vilariño et al. 2014).

On the other hand, designing the spaces so that they facilitate the activities
increases the efficiency of operations, which brings savings in the operational costs.
Importantly, 3D models allow for detailed modeling of future operations, which in
turn enables better advance planning before construction. As a specific example,
hospitals are interested in the smooth flow of people and equipment and in tracking
the room occupancy data. Indoor routing for pedestrians can be planned with the
help of navigation graphs (Flikweert et al. 2019). Also, BIM helps with inventory
data such as equipment serial numbers and make and model data so that it can be
connected to room data and accessed when needed. See Fig. 3.15.

Automated model checkers are by themselves a commercial application.7 Model
checkers bring economic savings in altering the ways that problems are handled
in construction. One classic example is the overlap of pipelines, meaning that a
pipeline is planned to run in a space occupied already for another purpose such
as another pipeline. Conventionally, such overlaps were detected in the field and
solved by ad hoc methods in the order of occurrence. With 3D planning and model
checking, such problems are detected already in the planning phase, and therefore
better solutions are plausible. Concerning the public sector, these model checkers
can be programmed to test and validate whether e.g. private 3D building plans
comply with state regulations.

7For example, https://www.solibri.com/how-it-works

https://www.solibri.com/how-it-works
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Fig. 3.15 3D BIM models for industry applications, e.g. facility and asset management (top,
courtesy of Engworks) and construction (bottom, courtesy of Youbim, youbim.com). Building
information modeling (BIM) is important also for various other planning applications
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Imagine that your company would possess a large real-estate portfolio. To
make most profit out of it, your company would benefit from having a detailed
understanding of this ownership. Once the company has the understanding,
it can be matched to meet the needs of clients. Further questions may then
emerge: are the indoor spaces adjustable for different functions? What are
the cost estimates for the adjustments? What functions would provide the
most income? Is the portfolio missing something? Asset management is also
important. Example assets are lights, fire extinguishers, tables, chairs, etc. Your
company is asking: are all the assets that are supposed to be there in place?
Are there some synergies inside the portfolio related to the procurement of new
assets? Can maintenance be optimized?
Concerning the public sector, consider the vast amount of indoor spaces owned
by state ministries, health services, schools, public transportation systems, and
even universities. Same questions apply.

3.8 Future Trends

At the time of writing, we see the future trends in scanning, in reconstruction, and
in society, as follows.

In scanning, several indoor mobile mapping systems (e.g. commercial systems
Kaarta Stencil, Paracosm PX-80, Leica Pegasus: backpack) are relying on lidars
that capture multiple scan lines simultaneously. This is because these multiline
scanners offer robustness in the SLAM registration process. The authors expect
that these multiline scanners will be upgraded into solid-state lidars which have no
micro-mechanical moving parts and therefore offer more robustness in mobile use
and further miniaturization possibilities for these platforms. New applications are
likely to emerge. Single photon techniques are also interesting, since they require
less energy to operate than traditional pulsed beams. Their cave-at is background
illumination, mainly from sunlight, which may not manifest as overly restrictive in
indoor environments (Lehtola et al. 2019).

In reconstruction, one of the main problems encountered is that the trouble in
the capture of point clouds often leads into imperfections of the scanned surfaces.
Some of these imperfections follow from the scanning geometry and from visual
occlusions and manifest themselves as holes and missing observations. The authors
expect that machine learning based methods that learn from the intact surfaces
to tailor covering patches for the holes and missing observations shall become
even more popular in the near future. Also, note that the BIM models in Fig. 3.15
are reconstructed from mobile mapping data and abide industry standards. The
difference between these standardized BIM models and the reconstructed models
shown in Sect. 3.6 is that there is an extra step in between. The reconstruction into
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a standardized BIM format typically requires manual effort as it is very hard to
automate reliably, but this is about to change.

In society, the shift from 2D to 3D will eventually be completed. At the time
of writing, 3D cadaster registration has been started, for example in Northern
Europe, to allow for non-surface (underground) properties. In planning, private
businesses are leading the way. Building information modeling (BIM) is widely
used for construction planning by large construction companies, especially in
Northern Europe. One major hindrance still standing in front of these models are
the official processes of the state and the municipalities, such as construction permit
admission processes. Oftentimes these processes cannot be set in motion with the
3D models, even if they abide an industrial standard, but the official process requires
that floorplans need to be extracted into a conservative 2D form and stored in
portable document format (PDF). The work on standards is therefore important (e.g.
Zlatanova et al. 2016).

Finally, the authors hope that more open data sets would become available for
indoor method testing in addition to the ISPRS dataset (Khoshelham et al. 2017).

3.9 Exercises for Students

The following exercises require the reading of this book chapter, some of the cited
work, and – some thinking.

• How does the scanning process differ for building interiors and exteriors?
• How does the reconstruction process differ for building interiors and exteriors?
• Write a definition for the trajectory of an indoor mobile mapping system, using

mathematical expressions when necessary. Let t denote time.
• An indoor space has been scanned. Give an example on how the available

trajectory can be utilized to benefit the reconstruction of an indoor model.
• What are occlusions and how can they be avoided and/or dealt with to obtain

watertight models?
• Give two examples on how machine learning can be benefited from in indoor

scanning and/or reconstruction.
• Which representation contains more information about the indoor environment:

a scanned point cloud or a reconstructed meshed model? Why?
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