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Abstract

We consider the least-squares regression problem with unknown noise variance, where

the observed data points are allowed to be corrupted by outliers. Building on the median-

of-means (MOM) method introduced by Lecue and Lerasle [15] in the case of known

noise variance, we propose a general MOM approach for simultaneous inference of both

the regression function and the noise variance, requiring only an upper bound on the

noise level. Interestingly, this generalization requires care due to regularity issues that

are intrinsic to the underlying convex-concave optimization problem. In the general case

where the regression function belongs to a convex class, we show that our simultaneous

estimator achieves with high probability the same convergence rates and a similar risk

bound as if the noise level was unknown, as well as convergence rates for the estimated

noise standard deviation.

In the high-dimensional sparse linear setting, our estimator yields a robust analog of

the square-root LASSO. Under weak moment conditions, it jointly achieves with high

probability the minimax rates of estimation s1/p
√
(1/n) log(p/s) for the ℓp-norm of the

coefficient vector, and the rate
√
(s/n) log(p/s) for the estimation of the noise standard

deviation. Here n denotes the sample size, p the dimension and s the sparsity level. We

finally propose an extension to the case of unknown sparsity level s, providing a jointly

adaptive estimator (β̃, σ̃, s̃). It simultaneously estimates the coefficient vector, the noise

level and the sparsity level, with proven bounds on each of these three components that

hold with high probability.
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1 Introduction

We consider the statistical learning problem of predicting a real random variable Y by means

of an explanatory variable X belonging to some measurable space X . Given a dataset D
of observations and a function class F , the goal is to choose a function f̂ ∈ F in such a

way that f̂(X) approximates Y as well as possible. In particular, we study the problem of

predicting Y with the mean-squared loss, which corresponds to the estimation of an oracle

function f∗ ∈ argminf∈F E[(Y − f(X))2]. This setting has been formalized by [15] in the

context of robust machine learning. In this framework, one observes a (possibly) contaminated

dataset consisting of informative observations (sometimes called inliers), and outliers. The

statistician does not know which data points are corrupted and nothing is usually assumed

about the outliers, however one expects the informative observations to be sufficient to solve

the problem at hand if the number of outliers is not too large. Even when the inliers are a

sample of i.i.d. observations with finite second-moment, such a corrupted dataset can break

naive estimators even in the simplest of problems: a single big outlier can push an empirical

average towards infinity when estimating the mean of a real random variable. A much better

choice of estimator in the presence of outliers is the so-called median-of-means, which is

constructed as follows: given a partition of the dataset into some number K of blocks, one

computes the empirical average relative to each block, and then takes the median of all these

empirical averages. The resulting object is robust to K/2 outliers and has good performance

even when the underlying distribution has no second moment, see [10, Section 4.1]. Some of

the key ideas behind the median-of-means construction can be traced back to the work on

stochastic optimization [21, 16], sampling from large discrete structures [12], and sketching

algorithms [1].

Our work builds on the MOM method introduced in [15], which solves the least-squares

problem by implementing a convex-concave optimization of a suitable functional. In the sparse

linear case, this problem can be rewritten as the estimation of β∗ in the model Y = XTβ∗+ ζ

for some noise ζ, where Fs∗ = {x 7→ xTβ : β ∈ R
d, |β|0 ≤ s∗} for some sparsity level

s∗ > 0 and |β|0 is the number of non-zero components of β. The MOM-LASSO method [15]

yields there a robust version of the LASSO estimator, which is known to be minimax optimal,

see [2, 3, 4], but its optimal penalization parameter has to be proportional to the noise

standard deviation σ∗. However, in practical applications this noise level σ∗ is often unknown

to the statistician, and, as a consequence, it may be difficult to apply the MOM-LASSO. We

extend this MOM approach to the case of unknown noise variance and highlight the challenges

that arise from this formulation of the problem. The main contribution of our paper is the

choice of a new functional in the convex-concave procedure that yields, in the sparse linear

case, a robust version of the square-root LASSO introduced in [5], which was shown to be

minimax optimal by [8], while its penalization parameter does not require knowledge of σ∗.

Interestingly, intuitive and seemingly innocuous choices of functional end up requiring too

restrictive assumptions, such as a known (or estimated) lower bound σ− > 0 on the noise

standard deviation as in [9], whereas in this article, we only require a known (or estimated)
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upper bound σ+.

Our main results deal with the simultaneous estimation of the oracle function f∗ and standard

deviation σ∗ of the residual ζ := Y − f∗(X). In the high-dimensional sparse linear regression

setting with unknown σ∗, if the sparsity level s∗ ≤ d is known and the number of outliers is no

more than O(s∗ log(ed/s∗)), we prove that our MOM achieves the optimal rates of estimation

of β∗ using a number of blocks K of order O(s∗ log(ed/s∗)). We also prove that our estimator

of the noise standard deviation satisfies |σ̂K,µ − σ∗| . σ+

√
s∗

n log
(
ed
s∗

)
with high probability,

improving the rates compared to the previous best estimator σ̂, see [6, Corollary 2], which

satisfies |σ̂2 − σ2| . σ∗2
(
s∗ log(n∨d logn)

n +

√
s∗ log(d∨n)

n + 1√
n

)
whenever the noise has a finite

fourth moment. Note that these rates for the estimation of σ∗ derived in [6] correspond to

a different penalty level than the one used in [8] that allows to derive optimal rates for the

estimation of β∗. A related paper is [7], which studies optimal noise level estimation for the

sparse Gaussian sequence model.

Since the sparsity level may be unknown in practice, we provide an aggregated adaptive

procedure based on Lepski’s method, that is, we first infer an estimated sparsity s̃ and then

an estimated number of blocks K̃ of order O(s̃ log(ed/s̃)).We show that the resulting adaptive

estimator (β̃, σ̃, s̃) attains the minimax rates for the estimation of β∗ while still being adaptive

to the unknown noise variance σ2 and selecting a sparse model (s̃ ≤ s∗) with high probability.

Estimator Rate on β Adapt. to s Rate and adapt. to σ∗ Robustness

Lasso Optimal [3] - - -

Aggreg. Lasso Optimal [3] Yes - -

Square-root Lasso Optimal [8] - Yes, complicated rate [6] -

Aggreg. Square-root Lasso Optimal [8] Yes Yes, but no rate -

MOM-Lasso Optimal [15] - - Yes

Aggreg. MOM-Lasso Optimal [15] Yes - Yes

Robust SR-Lasso Optimal (Th. 4.4) -
√

s∗

n log
(
ed
s∗

)
(Th. 4.4) Yes

Aggreg. Robust SR-Lasso Optimal (Th. 4.7) Yes
√

s∗

n log
(
ed
s∗

)
(Th. 4.7) Yes

Table 1: Comparison of estimators of sparse high-dimensional regressions and their main

theoretical properties. Names in bold print refer to the new estimators that we propose in

this article.

In Table 1, we detail a comparison of the Lasso-type estimators and their different theoretical

properties in this sparse high-dimensional regression framework. The two new estimators

that we propose solve the problem of minimax-optimal robust estimation of β. Even in the

setting where no outliers are present, our estimators still improve the best-known bounds on

the estimation of the noise variance σ∗2. Moreover, the second estimator (β̃, σ̃, s̃) attains the

same rate of simultaneous estimation of β∗ and σ∗ adaptively to the sparsity level s∗. Finally,

the estimator (β̃, σ̃) is robust to the same number of outliers as the estimator which uses the

knowledge of the true sparsity level s∗. For every σ∗ > 0, let P(σ∗) be a class of distributions

of (X, ζ) such that the kurtosis of ζ is bounded, Var[ζ] = σ∗2 and X is isotropic, satisfies a

weak moment condition and is such that the weighted norms L1(PX), L
2(PX), and L4(PX)
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are equivalent on R
d.We work with a dataset D = (Xi, Yi)i=1,...,n that might be contaminated

by a set of outliers (Xi, Yi)i∈O (for some O ⊂ {1, . . . , n}) in the sense that, for i ∈ O, (Xi, Yi)

is an arbitrary outlier while for i /∈ O, (Xi, Yi) is i.i.d. distributed as (X, Y ). We denote by

D(N) the set of all possible modifications of D by at most N observations. To sum up, our

joint estimator (β̃, σ̃, s̃) satisfies the following worst-case simultaneous deviation bound

inf
s∗=1,...,s+

inf
β∗ ∈ Fs∗

σ∗ < σ+

inf
PX,ζ∈P(σ∗)

P⊗n
β∗,PX,ζ

(
Aσ∗,β∗,s∗(D)

)
≥ 1− φ(s+, d),

where the event Aσ∗,β∗,s∗(D) describes the performance of the aggregated estimator over a

class of contaminations of the dataset D by arbitrary outliers. Formally,

Aσ∗,β∗,s∗(D) :=
⋂

D′∈D
(
cs∗ log(ed/s∗)

)
Aσ∗(D′) ∩ Aβ∗(D′) ∩ As∗(D′),

Aσ∗(D′) :=

{∣∣∣σ̃
(
D′)− σ∗

∣∣∣ ≤ Cσ+

√
s∗

n
log
(ed
s∗

)}
,

Aβ∗(D′) :=

{∣∣∣β̃
(
D′)− β∗

∣∣∣
p
≤ Cσ+s

∗1/p
√

1

n
log
(ed
s∗

)}
,

As∗(D′) :=
{
s̃
(
D′) ≤ s∗

}
,

where (β̃(D′), σ̃(D′), s̃(D′)) is the joint estimator obtained from the perturbed dataset D′.

Our method only requires the knowledge of the upper bounds (σ+, s+), where Fs is the set

of s-sparse vectors, | · |p is the ℓp norm, φ(s, d) := 4(log2(s) + 1)2(2s/ed)C
′s for a universal

constant C ′ > 0, the constants c, C > 0 only depend on the class P(σ∗), |O| denotes the

cardinality of the set O and Pβ∗,PX,ζ
is the distribution of (X, Y ) when (X, ζ) ∼ PX,ζ and

Y = X⊤β∗ + ζ.

The manuscript is organized as follows. In Section 2, we introduce the main framework and

notation, as well as the step-by-step construction of the MOM estimator. In Section 3 we

present our results in the general situation of a convex class F of regression functions. The

results for the high-dimensional sparse linear regression framework are presented in Section 4.

In Section 5 we discuss the contraction rates, the construction of the MOM estimator and

some known results from the literature. The proofs are gathered in the appendix.

2 Notation and framework

2.1 General notation

Vectors are denoted by bold letters, e.g. x := (x1, . . . , xd)
⊤. For S ⊆ {1, . . . , d}, we write

|S| for the cardinality of S. As usual, we define |x|p := (
∑d

i=1 |xi|p)1/p, |x|∞ := maxi |xi|,
|x|0 :=

∑d
i=1 1(xi 6= 0), where 1 is the indicator function and write ‖f‖Lp(D) for the L

p norm

of f on D. If there is no ambiguity concerning the domain D, we also write ‖ · ‖p. We set
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|x|2,n := |x|2/
√
n and, for a measure µ on R

d and a function f in a class of functions F ,
we define ‖f‖2,ν := ‖f‖L2(ν). The expected value of a random variable X with respect to a

measure P is denoted PX. For two sequences (an)n and (bn)n we write an . bn if there exists

a constant C such that an ≤ Cbn for all n. Moreover, an ≍ bn means that (an)n . (bn)n and

(bn)n . (an)n.

2.2 Mathematical framework

The goal is to predict a square-integrable random variable Y ∈ R by means of an explanatory

random variable X, on a measurable space X , and a dataset D = {(Xi, Yi) ∈ X × R :

i = 1, . . . , n}. Let PX be the law of X and L2(PX) the corresponding weighted L2−space.

Let F ⊆ L2(PX) be a convex class of functions from X to R, so that, for any f ∈ F ,
‖f‖22,X :=

∫
X f(x)

2dPX(x) is finite. We consider the least-squares problem, which requires

to minimize the risk Risk(f) := E[(Y − f(X))2] among all possible predictions f(X) for Y,

which in turn minimizes the variance of the residuals ζf := Y − f(X). The best predictor on

L2(PX) is the conditional mean f(X) = E[Y |X], which can only be computed when the joint

distribution of (X, Y ) is given. Therefore, one solves the least-squares problem by estimating

any oracle solution

f∗ ∈ F∗ := argmin
f∈F

E
[
(Y − f(X))2

]
, (2.1)

which is unique, i.e. F∗ = {f∗}, if the class F ⊆ L2(PX) is closed (on top of being convex).

The resulting representation is

Y = f∗(X) + ζ, ζ := Y − f∗(X), (2.2)

where the residual ζ and X may not be independent.

Assumption 2.1. We make the following assumptions on the residual ζ,

E[ζ] = 0, σ∗ := E[ζ2]
1
2 ≤ σ+, m

∗ := E[ζ4]
1
4 ≤ m+ := σ+κ+, κ∗ :=

m
∗4

σ∗4
≤ κ+, (2.3)

with possibly unknown σ∗,m∗, κ∗ and upper bounds σ+, κ+ either given or estimated from the

data. We use the convention that κ∗ = 0 if both σ∗ and m
∗ are zero.

Without loss of generality we have σ+ ≤ m+, since any upper bound on m
∗ is also an upper

bound on the standard deviation σ∗. The requirement of a known upper bound on the fourth

moment of the noise is natural when dealing with MOM procedures, this is in line with

Assumption 3.1 in [18]. We aim at simultaneously estimating (f∗, σ∗) from the dataset D,
but the problem is made more difficult due to possible outliers in the observations.

Assumption 2.2. We assume the dataset D can be partitioned into an informative set DI
and an outlier set DO satisfying the following.

• Informative data. We assume that the pairs (Xi, Yi)i∈I =: DI with I ⊆ {1, . . . , n}
are independent and distributed as (X, Y ) in the regression model (2.2).
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• Outliers. Nothing is assumed on the pairs (Xi, Yi)i∈O =: DO with O ⊆ {1, . . . , n}.
They might be deterministic or even adversarial, in the sense that they might depend on

the informative sample (Xi, Yi)i∈I defined above, or on the choice of estimator.

The i.i.d. requirement on the informative data can be weakened, as in [15], by assuming that

the observations (Xi, Yi)i∈I are independent and, for all i ∈ I

E[(Yi − f∗(Xi))(f − f∗)(Xi)] = E[(Y − f∗(X))(f − f∗)(X)],

E[(f − f∗)2(Xi)] = E[(f − f∗)2(X)].

In other words, the distributions of (Xi, Yi) and (X, Y ) induce the same L2−metric on the

function space F − f∗ = {f − f∗ : f ∈ F}.

By construction, I∪O = {1, . . . , n} and I∩O = ∅, but the statistician does not know whether

any fixed index i ∈ {1, . . . , n} belongs to I or O. Otherwise, one could just remove this group

from the dataset and perform the inference of the informative part. In order to achieve robust

inference, we implement a median-of-means approach.

The sparse linear case. We highlight the special case when X = R
d, with a fixed dimension

d > 0. For β ∈ R
d, set fβ : Rd → R the linear map fβ(x) = x⊤β. For any 1 ≤ s ≤ d, we

define

F := {fβ : β ∈ R
d}, Fs :=

{
fβ ∈ F : β ∈ R

d, |β|0 ≤ s
}
,

here |β|0 is the number of non-zero entries of β ∈ R
d.

2.3 Convex-concave formulation

We follow the formalization made in [15]. For any function f ∈ F , and any (x, y) ∈ X × R,

set ℓf (x, y) := (y − f(x))2. In our setting we find

f∗ ∈ argmin
f∈F

E
[
ℓf (X, Y )

]
, σ∗ = E

[
ℓf∗(X, Y )

] 1
2 ,

since E[ℓf∗(X, Y )] = E[ζ2] is the risk of the oracle function f∗. The oracle pair (f∗, σ∗) is a

solution of the convex-concave problem

f∗ ∈ argmin
f∈F

sup
g∈F

E
[
ℓf (X, Y )− ℓg(X, Y )

]
, σ∗ = E

[
ℓf∗(X, Y )

] 1
2 , (2.4)

and the goal is to build an estimator (f̂ , σ̂) such that, with probability as high as possible,

the quantities

Risk(f̂)− Risk(f∗), ‖f̂ − f∗‖2,X, |σ̂ − σ∗|,

are as small as possible. The quantity Risk(f̂) − Risk(f∗) is the excess risk, whereas the

quantity ‖f̂ − f∗‖2,X is the convergence rate in L2(PX)−norm of the random function f̂ to

f∗. Since f̂ is a function of the dataset D, we always mean that the expectation is conditional

on D, i.e. ‖f̂ − f∗‖2,X = E[(f̂ − f∗)2(X)|D]. Finally, the quantity |σ̂ − σ∗| is the convergence

rate of σ̂ to σ∗.
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2.4 Construction of the estimator

The starting point of our approach is the regularized median-of-means (MOM) tournament

introduced in [17], which has been proposed as a procedure to outperform the regularized

empirical risk minimizer (RERM)

f̂RERM
λ := argmin

f∈F

{
1

n

n∑

i=1

(Yi − f(Xi))
2 + λ‖f‖

}
,

with ‖·‖ a penalization norm on the linear span of F and λ > 0 a penalization parameter. The

penalization term reduces overfitting by assigning a higher cost to functions that are big with

respect to ‖ · ‖. The RERM estimator above is susceptible to outliers since it involves all the

pairs (Xi, Yi) in the dataset D, whereas replacing the empirical average by the corresponding

median-of-means over a number of blocks leads to robustness. The MOM method in [15]

builds directly on the theory of the MOM tournaments and it exploits the fact that f̂RERM
λ

is computed by minimizing n−1
∑n

i=1 ℓf (Xi, Yi) + λ‖f‖. From this, the authors deal with the

convex-concave equivalent

f̂RERM
λ := argmin

f∈F
sup
g∈F

{
1

n

n∑

i=1

ℓf (Xi, Yi)−
1

n

n∑

i=1

ℓg(Xi, Yi) + λ(‖f‖ − ‖g‖)
}
,

by replacing the empirical average n−1
∑n

i=1

(
ℓf (Xi, Yi) − ℓg(Xi, Yi)

)
with the median-of-

means over a chosen number of blocks. Our goal is to extend the scope of this procedure

to the estimation of the unknown σ∗. To this end, we modify the convex-concave RERM

by replacing the functional R(ℓg, ℓf ) = ℓf − ℓg with a new Rc(ℓg, χ, ℓf , σ) that incorporates

χ, σ ∈ I+ = (0, σ+]. This leads to a generalized empirical estimator

(f̂µ, σ̂µ) := argmin
(f,σ)∈F×I+

sup
(g,χ)∈F×I+

{
1

n

n∑

i=1

Rc (ℓg(Xi, Yi), χ, ℓf (Xi, Yi), σ) + µ(‖f‖ − ‖g‖)
}
,

which we robustify using the MOM. The choice of the functional Rc is crucial for the per-

formance of the procedure and a main contribution of our paper is providing a suitable

Rc(ℓg, χ, ℓf , σ), we refer to Section 5 for a detailed discussion motivating our choice.

We give the step-by-step construction of a family of MOM estimators for (f∗, σ∗) from

model (2.1)–(2.3). We start with a preliminary definition.

Quantiles. For any K ∈ N, set [K] = {1, . . . ,K}. For all α ∈ (0, 1) and x = (x1, . . . , xK) ∈
R
K , we call α−quantile of x any element Qα[x] of the set

Qα[x] :=
{
u ∈ R :

∣∣{k = 1, . . . ,K : xk ≥ u}
∣∣ ≥ (1− α)K,

and
∣∣{k = 1, . . . ,K : xk ≤ u}

∣∣ ≥ αK
}
. (2.5)

This means that Qα[x] is a α−quantile of x if at least (1 − α)K components of x are bigger

than Qα[x] and at least αK components of x are smaller than Qα[x]. For all t ∈ R, we write

Qα[x] ≥ t when there exists J ⊂ [K] such that |J | ≥ (1− α)K and, for all k ∈ J, xk ≥ t. We

write Qα[x] ≤ t if there exists J ⊂ [K] such that |J | ≥ αK and, for all k ∈ J, xk ≤ t.
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STEP 1. Partition of the dataset.

Let K ∈ N be a fixed positive integer. Partition the dataset D = {(Xi, Yi) : i = 1, . . . , n} into

K blocks D1, . . . ,DK of size n/K (assumed to be an integer). This corresponds to a partition

of {1. . . . , n} into blocks B1, . . . , BK .

STEP 2. Local criterion.

With c > 1 and f, g ∈ F , σ, χ ∈ R+, define the functional

Rc(ℓg, χ, ℓf , σ) := (σ − χ)

(
1− 2

ℓf + ℓg
(σ + χ)2

)
+ 2c

ℓf − ℓg
σ + χ

. (2.6)

Since ℓf (x, y) = (y − f(x))2 for all (x, y) ∈ X × R, the latter definition induces the map

(x, y) 7→ Rc(ℓg(x, y), χ, ℓf (x, y), σ) over (x, y) ∈ X × R. For each k = [K], we define the

criterion of (f, σ) against (g, χ) on the block Bk as the empirical mean of the functional

Rc(ℓg, χ, ℓf , σ) on that block, that is,

PBk

(
Rc(ℓg, χ, ℓf , σ)

)
:=

1

|Bk|
∑

i∈Bk

Rc

(
ℓg(Xi, Yi), χ, ℓf (Xi, Yi), σ

)
, (2.7)

for all (g, χ, f, σ) ∈ F × R+ ×F × R+. Here |Bk| = n/K denotes the cardinality of Bk.

STEP 3. Global criterion.

For any α ∈ (0, 1) and number of blocks K, set

Qα,K

[
Rc(ℓg, χ, ℓf , σ)

]
:= Qα

[(
PBk

(
Rc(ℓg, χ, ℓf , σ)

))
k∈[K]

]
,

the α−quantile of the vector of local criteria defined in the previous step. For α = 1/2 we get

the median. We define the global criterion of (f, σ) against (g, χ) as

MOMK

(
Rc(ℓg, χ, ℓf , σ)

)
:= Q1/2,K

[
Rc(ℓg, χ, ℓf , σ)

]
, (2.8)

for all (g, χ, f, σ) ∈ F × R+ ×F × R+. With some norm ‖ · ‖ on the span of F , we denote

TK,µ(g, χ, f, σ) :=MOMK

(
Rc(ℓg, χ, ℓf , σ)

)
+ µ(‖f‖ − ‖g‖), (2.9)

where µ > 0 is a tuning parameter, the functional TK,µ is the penalized version of the global

criterion.

STEP 4. MOM estimator.

With σ+ the known upper bound in (2.3), we define the MOM−K estimator of (f∗, σ∗) as

(f̂K,µ,σ+, σ̂K,µ,σ+) := argmin
f∈F , σ≤σ+

max
g∈F , χ≤σ+

TK,µ(g, χ, f, σ), (2.10)

where TK,µ is the penalized functional in (2.9). Furthermore, set

CK,µ(f, σ) := max
g∈F , χ≤σ+

TK,µ(g, χ, f, σ). (2.11)

The estimator (f̂K,µ,σ+, σ̂K,µ,σ+) only depends on the upper bound σ+, the numberK of blocks

and the tuning parameter µ.
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3 Results for a general class F

We assume the following regularity condition on the function class F and the inliers.

Assumption 3.1. There exist constants θ0, θ1 > 1 such that, for all i ∈ I and f ∈ F ,

1. ‖f − f∗‖22,X = E[(f − f∗)2(Xi)] ≤ θ20E[|f − f∗|(Xi)]
2 = θ20‖f − f∗‖21,X.

2. ‖f − f∗‖24,X = E[(f − f∗)4(Xi)]
1/2 ≤ θ21E[(f − f∗)2(Xi)] = θ21‖f − f∗‖22,X.

This assumption guarantees that the L1(PX), L2(PX), L
4(PX)−norms are equivalent on the

function space F − f∗. The equivalence between ‖ · ‖1,X and ‖ · ‖2,X in the first condition

matches Assumption 3 in [15]. The equivalence between ‖ · ‖2,X and ‖ · ‖4,X in the second

condition, together with the finiteness of fourth moment of the noise in Assumption 2.1, helps

controlling the dependence between ζ and X; this also matches Assumption 3.1 in [18]. We do

not necessarily assume that ζ is independent of X, but the Cauchy-Schwarz inequality gives

‖ζ(f − f∗)‖22,X = E[ζ2(f − f∗)2(X)]

≤ E[ζ4]
1
2E[(f − f∗)4(X)]

1
2

≤ θ21m
∗2
E[(f − f∗)2(X)].

The bound ‖ζ(f − f∗)‖22,X ≤ θ21m
∗2‖f − f∗‖22,X is Assumption 2 in [15] with θ2m = θ21m

∗2,

whereas in our setting this is a consequence of Assumption 2.1 and Assumption 3.1.

3.1 Complexity parameters

With the introduction of MOM tournaments procedures, see [18] and references therein, the

authors have characterized the underlying geometric features that drive the performance of a

learning method. For any ρ > 0, r > 0, and f ∈ F , we set

B(f, ρ) :=
{
g ∈ F : ‖g − f‖ ≤ ρ

}
, B2(f, r) :=

{
g ∈ F : ‖g − f‖2,X ≤ r

}
,

respectively the ‖ · ‖−ball of radius ρ and the ‖ · ‖2,X−ball of radius r, both centered around

f ∈ F . We denote by B(ρ) and B2(r) the balls centered around zero. We define the regular

ball around f∗ of radii ρ > 0, r > 0 as

B(f∗, ρ, r) := {f ∈ F : ‖f − f∗‖ ≤ ρ, ‖f − f∗‖2,X ≤ r}.

For any subset of inlier indexes J ⊆ I, we define the standard empirical process on J as

f 7→ PJ(f − f∗) :=
1

|J |
∑

i∈J
(f − f∗)(Xi).

9



Similarly, we define the quadratic empirical process on J and the multiplier empirical process

on J as

f 7→ PJ

(
(f − f∗)2

)
:=

1

|J |
∑

i∈J
(f − f∗)2(Xi),

f 7→ PJ (−2ζ(f − f∗)) := − 2

|J |
∑

i∈J
ζi(f − f∗)(Xi),

where ζi = (Yi − f∗(Xi)). These processes arise naturally when dealing with the empirical

excess risk on J, which is

RiskJ(f)− RiskJ(f
∗) : =

1

|J |
∑

i∈J
(Yi − f(Xi))

2 − 1

|J |
∑

i∈J
(Yi − f∗(Xi))

2

=
1

|J |
∑

i∈J
(f − f∗)2(Xi)−

2

|J |
∑

i∈J
ζi(f − f∗)(Xi)

= PJ

(
(f − f∗)2

)
+ PJ (−2ζ(f − f∗)) .

The empirical processes defined above only involve observations that are not contaminated

by outliers and we are interested in controlling them when the indexing function class is a

regular ball B(f∗, ρ, r).

Let ξi be Rademacher variables, that is, independent random variables uniformly distributed

on {−1, 1}, and independent from the dataset D. For any r > 0 and ρ > 0, consider the

regular ball B(f∗, ρ, r) defined above. For every γP , γQ, γM > 0, we define the complexity

parameters

rP (ρ, γP ) := inf

{
r > 0 : sup

J⊂I,|J |≥n
2

E

[
sup

f∈B(f∗,ρ,r)

∣∣∣ 1|J |
∑

i∈J
ξi(f − f∗)(Xi)

∣∣∣
]
≤ γP r

}
,

rQ(ρ, γQ) := inf

{
r > 0 : sup

J⊂I,|J |≥n
2

E

[
sup

f∈B(f∗,ρ,r)

∣∣∣ 1|J |
∑

i∈J
ξi(f − f∗)2(Xi)

∣∣∣
]
≤ γQr

2

}
,

rM (ρ, γM ) := inf

{
r > 0 : sup

J⊂I,|J |≥n
2

E

[
sup

f∈B(f∗,ρ,r)

∣∣∣ 1|J |
∑

i∈J
ξiζi(f − f∗)(Xi)

∣∣∣
]
≤ γMr

2

}
,

(3.1)

and let r = r(·, γP , γM ) be a continuous non-decreasing function r : R+ → R+ depending on

γP , γM , such that

r(ρ) ≥ max
{
rP (ρ, γP ), rM (ρ, γM )

}
, (3.2)

for every ρ > 0. The definitions above depend on f∗ and require that |I| ≥ n/2. The function

r(·) matches the one defined in Definition 3 in [15]. We refer to Section 5 for a detailed

discussion on the role of complexity parameters, here we only mention that in the sub-Gaussian

setting of [13], for some choice of γP , γM , the quantity r∗(ρ) = max{rP (ρ, γP ), rM (ρ, γM )} is

the minimax convergence rate over the function class B(f∗, ρ).

3.2 Sparsity equation

We follow the setup of [15], that we restate here for convenience.

10



Subdifferential. Let E be the vector space generated by F and ‖ ·‖ a norm on E . We denote

by (E∗, ‖ · ‖∗) the dual normed space of (E , ‖ · ‖), that is, the space of all linear functionals z∗

from E to R. The subdifferential of ‖ · ‖ at any f ∈ F is denoted by

(∂‖ · ‖)f := {z∗ ∈ E∗ : ‖f + h‖ ≥ ‖f‖+ z∗(h), ∀h ∈ E}.

The penalization term of the functional TK,µ in Section 2.4 is of the form µ(‖f‖ − ‖g‖), for
f, g ∈ F , and the subdifferential is useful in obtaining lower bounds for ‖f‖ − ‖f∗‖. For any
ρ > 0 and complexity parameter r(ρ) as in (3.2), we denote Hρ = {f ∈ F : ‖f − f∗‖ =

ρ, ‖f − f∗‖2,X ≤ r(ρ)}. Furthermore, we set

Γf∗(ρ) :=
⋃

f∈F : ‖f−f∗‖≤ρ/20

(
∂‖ · ‖

)
f
,

∆(ρ) := inf
f∈Hρ

sup
z∗∈Γf∗(ρ)

z∗(f − f∗).
(3.3)

The set Γf∗(ρ) is the set of subdifferentials of all functions that are close to f∗ (no more than

ρ/20) in penalization norm ‖·‖. The quantity ∆(ρ) measures the smallest level ∆ > 0 for which

the chain ‖f‖ − ‖f∗‖ ≥ ∆ − ρ/20 holds. In fact, if f∗∗ ∈ F is such that ‖f∗ − f∗∗‖ ≤ ρ/20,

then ‖f‖ − ‖f∗‖ ≥ ‖f‖ − ‖f∗∗‖ − ‖f∗∗ − f∗‖ ≥ z∗(f − f∗∗) − ρ/20, for any subdifferential

z∗ ∈ (∂‖ · ‖)f∗∗ .

Sparsity equation. The sparsity equation and its smallest solution are

∆(ρ) ≥ 4

5
ρ, ρ∗ := inf

{
ρ > 0 : ∆(ρ) ≥ 4ρ

5

}
, (3.4)

if ρ∗ exists, the sparsity equation holds for any ρ ≥ ρ∗.

3.3 Main result in the general case

We now present a result dealing with the simultaneous estimation of (f∗, σ∗) by means of a

family of MOM estimators constructed as in Section 2.4. Fix any constant c > 2 in the defi-

nition on the functional Rc in (2.6) and, with σ+,m+, κ+ the known bounds on the moments

of the noise ζ = Y − f∗(X), set

cµ := 200(c + 2)κ
1/2
+ ,

ε :=
c− 2

192 θ20(c+ 2)
(
8 + 134κ

1/2
+ ((1 + σ+

σ∗ ) ∨ 6
5)
) ,

c2α :=
3(c− 2)

5θ20
,

(3.5)

and γP = 1/(1488 θ20), γM = ε/744 and γQ = ε/372. Let ρ∗ be the smallest solution of the

sparsity equation in (3.4) and r(·) any function such that r(ρ) ≥ max{rP (ρ, γP ), rM (ρ, γM )}
as in (3.2). Define K∗ as the smallest integer satisfying

K∗ ≥ nε2r2(ρ∗)

384 θ21m
∗2 , (3.6)

11



and, for any integer K ≥ K∗, also define ρK as the implicit solution of

r2(ρK) =
384 θ21m

∗2K
nε2

. (3.7)

Assumption 3.2. We assume that there exists an absolute constant cr ≥ 1 such that, for all

ρ > 0, we have r(ρ) ≤ r(2ρ) ≤ crr(ρ).

The role of the latter assumption is to simplify the statement of the main result. We are

mainly interested in the sparse linear case, where this holds with cr = 2 by construction of

the function r(·), see Section 5.4.

Theorem 3.3. With the notation above, let Assumptions 2.1–3.1 and Assumption 3.2 hold.

With C2 := 384 θ21c
2
rc

2
ακ

1/2
+ , suppose that nε2 > 32C2 and |O| ≤ nε2/(32C2). Then, for

any integer K ∈
[
K∗ ∨ 32|O|, nε2/C2

]
, and for every ιµ ∈ [1/4, 4], the MOM−K estimator

(f̂K,µ,σ+, σ̂K,µ,σ+) defined in (2.10) with K blocks and penalization parameter

µ := ιµcµε
r2(ρK)

m
∗ρK

, (3.8)

satisfies, with probability at least 1− 4 exp(−K/8920), for any possible |O| outliers,

‖f̂K,µ,σ+ − f∗‖ ≤ 2 ρK , ‖f̂K,µ,σ+ − f∗‖2,X ≤ r(2ρK), |σ̂K,µ,σ+ − σ∗| ≤ cαr(2ρK), (3.9)

R(f̂K,µ,σ+) ≤ R(f∗) +

(
2 + 2cα + (44 + 5cµ) ε+

25κ∗1/2

8θ21
ε2
)
r2(2ρK)

+ 4 θ21ε
(
r2(2ρK) ∨ r2Q(2ρK , γQ)

)
.

(3.10)

The proof of Theorem 3.3 is given in Appendix A. It provides theoretical guarantees for the

MOM−K estimator (f̂K,µ,σ+, σ̂K,µ,σ+): this estimator recovers (f∗, σ∗), with high probability,

whenever the number K of blocks is chosen to be at least K∗ ∨ 32|O| and at most nε2/C2.

Specifically, the random function f̂K,µ,σ+ belongs to the regular ball B(f∗, 2ρK , r(2ρK)),

whereas the random standard deviation σ̂K,µ,σ+ is at most cαr(2ρK) away from σ∗. The best

achievable rates are obtained for K = K∗ when |O| ≤ K∗/32. Any estimator (f̂K,µ,σ+, σ̂K,µ,σ+)

only depends on the penalization parameter µ, the number of blocks K and the upper bound

σ+, thus the result is mainly of interest when these quantities can be chosen without knowledge

of (f∗, σ∗). Our Theorem 3.3 extends the scope of Theorem 1 in [15] to the case of unknown

noise variance. In the latter reference, the authors obtain the same convergence rates for a

MOM−K estimator f̂K,λ defined by using a penalization parameter λ that we compare to our

µ,

λ := 16ε
r2(ρK)

ρK
, µ := cµε

r2(ρK)

m
∗ρK

,

so that µ is proportional to λ/m∗. For the sparse linear case, [15] shows that the optimal choice

is λ ∼ m
∗√log(ed/s∗)/n, which is proportional to the noise level σ∗. This in turn guarantees

that our penalization parameter can be chosen of the form µ ∼
√

log(ed/s∗)/n to obtain the

optimal rates, and that such a choice does not depend on the moments of the noise.
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4 The high-dimensional sparse linear regression

4.1 Results for known sparsity

In this section, we will give non-asymptotic bounds that will hold adaptively and uniformly

over a certain class of joint distributions for (X, ζ). We now define the class of interest PI ,

parametrized by an interval I. This interval I represents the set of possible values for the

standard deviation σ∗ of the noise ζ.

Definition 4.1 (Class of distributions of interest). For I ⊂ R+, θ0, θ1, c0, L, κ+ > 1, let us

define PI = PI(θ0, θ1, c0, L, κ+) to be the class of distributions PX,ζ on R
d+1 satisfying:

1. The standard deviation σ∗ of ζ belongs to I and the kurtosis of ζ is smaller than κ+.

2. For all β ∈ R
d, E

[
(X⊤β)2

] 1
2 ≤ θ0E

[
|X⊤β|

]
, and E

[
(X⊤β)4

] 1
2 ≤ θ21E

[
(X⊤β)2

]
.

3. X is isotropic: for all β ∈ R
d, ‖fβ‖2,X := E[(X⊤β)2] = |β|2, where fβ(x) = x⊤β.

4. X satisfies the weak moment condition: for all 1 ≤ p ≤ c0 log(ed), 1 ≤ j ≤ d,

E
[
|X⊤ej|p

] 1
p ≤ L

√
pE
[
|X⊤ej|2

] 1
2 .

The class PI only requires a finite fourth moment on ζ, allowing it to follow heavy-tailed

distributions. The weak moment condition only bounds moments of X up to the order log(d),

which is weaker than the sub-Gaussian assumption, see [13] and the references therein for a

discussion and a list of examples.

Definition 4.2 (Contaminated datasets). For a dataset D = (xi, yi)i=1,...,n ∈ R
(d+1)×n and

for N ∈ [n], we denote by D(N) the set of all datasets D′ = (x′
i, y

′
i)i=1,...,n ∈ R

(d+1)×n that

differ from D by at most N observations, i.e.

D(N) :=
{
D′ ∈ R

(d+1)×n :
∣∣D \ D′∣∣ ≤ N

}
,

where D \ D′ is defined as the difference between the (multi-)sets D and D′, meaning that if

there exists duplicated observations in D that appear also in D′, they are removed from D up

to their multiplicities in D′. This encodes all the possible corrupted versions of D by means

of up to N arbitrary outliers.

Definition 4.3. Let Pβ∗,PX,ζ
be the distribution of (X, Y ) when (X, ζ) ∼ PX,ζ and Y :=

X⊤β∗ + ζ.

In the following, we will use the minimax optimal rates of convergence defined for p ∈ [1, 2]

by rp := s∗1/p
√

(1/n) log(ed/s∗) and the allowed maximum number of outliers defined by

rO := s∗ log(ed/s∗) = nr22.

Theorem 4.4. Assume that r2 < 1. For every θ0, θ1, c0, L, κ+ > 1, there exists universal

constants c̃1, . . . , c̃5 > 0 such that for every σ+ and for every ιK , ιµ ∈ [1/2, 2]2, setting

K = ⌈ιK c̃1s∗ log(ed/s∗)⌉, µ = ιµc̃2

√
1

n
log

(
ed

s∗

)
,
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the estimator (β̂K,µ,σ+ , σ̂K,µ,σ+) satisfies

inf
PX,ζ ∈ P[0, σ+]

β∗ ∈ Fs∗

PD∼P⊗n
β∗,PX,ζ

(
sup

D′∈D(c̃3rO)

{
r
−1
2

∣∣σ̂(D′)− σ∗
∣∣

∨ sup
p∈[1,2]

r
−1
p

∣∣β̂(D′)− β∗∣∣
p

}
≤ c̃4σ+

)
≥ 1− 4

( s∗
ed

)c̃5s∗
,

This theorem is proved in Section B.1. Theorem 4.4 ensures that, with high probability,

the estimator (β̂K,µ,σ+, σ̂K,µ,σ+) achieves the rates |β̂ − β∗|p . σ+s
∗1/p√(1/n) log(ed/s∗)

and |σ̂ − σ∗| . σ+
√

(s∗/n) log(ed/s∗), uniformly over the class of distributions P[0, σ+] with

bounded variance while being robust to up to c̃3s
∗ log(ed/s∗) arbitrary outliers. However, the

uniform constants appearing in the statement might be difficult to compute in practice, to

obtain precise values, one would need to quantify the constants in Theorem 1.6 in [20] and

Lemma 5.3 in [14]. As usual for MOM estimators, the maximum number of outliers is of the

same order as the number of blocks. Note that the estimator needs the knowledge of an upper

bound on the noise level σ+ and the sparsity level s.

In [3], it has been proved that the optimal minimax rate of estimation of β∗ in the | · |p
norm is σ∗

√
(s∗/n) log(ed/s∗) when σ∗ is fixed and the noise is sub-Gaussian. Our theorem

shows that the rate of estimation of β over P[0, σ+] is the optimal minimax rate of estimation

for the worst-case noise level σ+. In particular, this means that in the noiseless case when

σ∗ = 0, the estimator β̂K,µ,σ+ does not achieve perfect reconstruction of the signal β∗. This

is worse than the square-root Lasso [8] which achieves the minimax optimal rate |β̂SR-Lasso−
β∗|p . σ∗s∗1/p

√
(1/n) log(ed/s∗) adaptively over σ∗ ∈ R+. However, the square-root Lasso

is not robust to even one outlier in the dataset. Furthermore, this optimal rate for the

square-root Lasso has only been proved for sub-Gaussian noise ζ whereas in Theorem 4.4, we

allow for any distribution of ζ with finite fourth moment. The MOM-Lasso [15] achieves the

optimal rate |β̂MOM−Lasso − β∗|p . σ∗s∗1/p
√

(1/n) log(ed/s∗), but needs the knowledge of

σ∗. Therefore, this bound can uniformly hold only on a class of the form P[C1σ∗,C2σ∗] for some

fixed 0 < C1 ≤ C2.

To our knowledge, the estimator σ̂ is the first estimator of σ∗ that achieves robustness. Its

rate of estimation
√

(s∗/n) log(ed/s∗) is slower than the parametric rate 1/
√
n that one would

get if β∗ was known. Theorem 5 in [7] suggests that this rate r2 might be minimax as well:

the authors show that, albeit in a Gaussian sequence model, the factor
√
s∗ log(ed/s∗) arises

naturally in the estimation of σ∗ by means of any adaptive procedure in a setting where

the distribution of the noise ζ is unknown. Even in the case where no outliers are present,

we improve on the best known bound on the estimation of σ∗, [6, Corollary 2] which was
∣∣(σ̂SR-Lasso)2 − σ2

∣∣ . σ2
(
s∗ log(n∨d logn)

n +

√
s∗ log(d∨n)

n + 1√
n

)
.

Remark 4.5. When β∗ is not sparse but very close to a sparse vector (i.e. |β∗ − β∗∗|1 .

σ∗
√
s∗ log(ed/s∗)/n for a sparse vector β∗∗ ∈ Fs∗ , the complexity parameter r(ρ) is in fact

unchanged compared to the sparse case and the upper bounds on the rates of estimation |β̂ −
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β∗|p . σ+s
∗1/p

√
(1/n) log(ed/s∗) and |σ̂ − σ∗| . σ+

√
(s∗/n) log(ed/s∗) still hold, extending

Theorem 4.4.

In practice, it may not be obvious to choose what a good value for σ+ could be. This means

that the (unknown) distribution belongs in fact to the class P[0,+∞] =
⋃

σ+>0P[0,σ+]. A

natural idea is to cut the data into two parts. On the first half of the data, we estimate the

variance Var[Y ] by the MOM estimator σ̂2K,+ := Q1/2,K

[
Y 2
]
−
(
Q1/2,K [Y ]

)2
. On the second

half of the data, we use σ̂K,+ as the “known” upper bound σ+ and apply our algorithm as

defined in Equation (2.10). The following corollary, proved in Section B.3, gives a bound on

the performance of this estimator on the larger class P[0,+∞].

Corollary 4.6 (Performance of the estimator with estimated σ+ on P[0,+∞]). Let s∗ > 0.

Then, for every PX,ζ ∈ P[0,+∞] and β∗ ∈ Fs∗, there exists a constant C > 0 such that, for

any n > Cs∗ log(p/s∗) the estimator (β̂K,µ,σ̂K,+
, σ̂K,µ,σ̂K,+

) satisfies

PD∼P⊗n
β∗,P

X,ζ

(
sup

D′∈D(c̃3rO)

{
r
−1
2

∣∣σ̂(D′)− σ∗
∣∣ ∨ sup

p∈[1,2]
r
−1
p

∣∣β̂(D′)− β∗∣∣
p

}

≤ 4 c̃4
√
1 + SNRσ∗

)
≥ 1− 4

( s∗
ed

)c̃5s∗ − 2
( s∗
ed

)c̃6s∗
,

where c̃6 is a universal constant and SNR denotes the signal-to-noise ratio, defined by SNR :=

Var[X⊤β∗]/σ∗2 = β∗⊤Var[X]β∗/σ∗2.

This corollary ensures that, with high probability, the estimator (β̂K,µ,σ̂K,+
, σ̂K,µ,σ̂K,+

) achieves

the rates of estimation |β̂ − β∗|p .
√
1 + SNRσ∗s∗1/p

√
(1/n) log(ed/s∗) and |σ̂ − σ∗| .√

1 + SNRσ∗
√

(s∗/n) log(ed/s∗). The factor
√
1 + SNR describes how the estimation rates

of β∗ and σ∗ are degraded as a function of the signal-to-noise ratio. Indeed, when the noise

level is of the same order or higher than the standard deviation of f∗(X), the rates are optimal.

On the contrary, when the noise level is very small (SNR ≪ 1), the rates of estimation are

dominated by
√

Var
[
X⊤β

]
rp.

4.2 Adaptation to the unknown sparsity

We now provide an adaptive to s version of Theorem B.1 by introducing an estimator (β̃, σ̃, s̃)

that simultaneously estimates the vector of coefficients, the noise standard deviation and the

sparsity level. This procedure is inspired by [8, Section 4] that proposes a general Lepski-type

method for constructing an adaptive to s estimator from a sequence of estimators that attains

the same rate for each value of s. This method is different from the one proposed in [15] for

making the MOM-LASSO estimator adaptive to the sparsity level s, which seems difficult to

adapt for the case of unknown noise level.

The main idea of this procedure is to compute different estimators for several possible sparsity

levels. Starting from a sparsity of 2, we try different estimators by increasing each time the
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sparsity by a factor of 2 unless the difference between an estimator and the next one is too

small. We choose this stopping value as the estimated sparsity level, and it gives directly an

estimated number of blocks to use, since there exists an optimal number of blocks for each

sparsity level. More precisely, given a sparsity estimator s̃, we take K̃ = ⌈c̃2s̃ log(ed/s̃)⌉.

Given a known upper bound s+ ≤ d on the sparsity, we define the sequence of MOM−K
estimators (β̂(s),σ+

, σ̂(s),σ+
)s=1,...,s+ by β̂(s) := β̂Ks,µs,σ+ , σ̂(s),σ+

:= σ̂Ks,µs,σ+ and

Ks :=

⌈
c̃2s log

(
ed

s

)⌉
, µs := c̃µ

√
1

n
log

(
ed

s

)
. (4.1)

The adaptive procedure yields an estimator of the form s̃ = 2m̃ for some integer m̃ ∈
{1, . . . , ⌈log2(s+)⌉ + 1}, from which we get the simultaneous adaptive (to s and σ∗) MOM

estimator (β̃σ+ , σ̃σ+ , s̃σ+) = (β̂(s̃),σ+
, σ̂(s̃),σ+

, s̃σ+).

Algorithm for adaptation to sparsity. The steps of the adaptive procedure are as follows.

• Set M := ⌈log2(s+)⌉.

• For everym ∈ {1, . . . ,M+1}, compute (β̂(2m),σ+
, σ̂(2m), σ+) =

(
β̂K2m ,µ2m ,σ+ , σ̂K2m ,µ2m ,σ+

)
,

with K2m and µ2m as defined in Equation (4.1).

• For u ∈ {1, . . . , 2s+}, let rp(u) = u1/p
√

(1/n) log(ed/u) and

M :=

{
m ∈ {1, . . . ,M} : for all k ≥ m, |β̂(2k−1) − β̂(2k)|1 ≤ C1σ̂(2M+1)r1(2

k),

|β̂(2k−1) − β̂(2k)|2 ≤ C2σ̂(2M+1)r2(2
k) and |σ̂(2k−1) − σ̂(2k)| ≤ C3σ̂(2M+1)r2(2

k)

}
.

• Set m̃ := minM, with the convention that m̃ := M + 1 if M = ∅.

• Define s̃σ+ := 2m̃ and (β̃σ+ , σ̃σ+) := (β̂(s̃),σ+
, σ̂(s̃),σ+

).

The following theorem is proved in Section C.2 and gives uniform bounds for the performance

of the aggregated estimator (β̃σ+ , σ̃σ+ , s̃σ+).

Theorem 4.7. Let θ0, θ1, c0, L, κ+ > 1. Let s+ ∈ {1, . . . , d/(2e)} and assume that r2(2s
+) < 1.

Then the aggregated estimator (β̃σ+ , σ̃σ+ , s̃σ+) satisfies

inf
s∗=1,...,s+

inf
PX,ζ ∈ P[0, σ+]

β∗ ∈ Fs∗

P⊗n
β∗,PX,ζ

(
sup

D′∈D(c̃3rO)

{
r2(s

∗)−1
∣∣σ̂(D′)− σ∗

∣∣ ∨ sup
p∈[1,2]

rp(s
∗)−1

∣∣β̂(D′)− β∗∣∣
p

}

≤ 4c̃4σ+

)
≥ 1− 4(log2(s+) + 1)2

(
2s+
ed

)2c̃5s+

and for all D′ ∈ D(c̃3rO), s̃σ+(D′) ≤ s∗ on the same event.
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This theorem guarantees that for every s∗ ∈ {1, . . . , s+}, both estimators β̃ and σ̃ converge

to their true values at the rate σ+s
∗1/p√(1/n) log(ed/s∗) as if the true sparsity level s∗ was

known. However, the probability bounds are slightly deteriorated due to the knowledge of an

upper bound s+ only.

Note that the estimator presented above uses the knowledge of the upper bound on the

standard deviation σ+. If σ+ is not available, the estimator presented in Corollary 4.6 can be

aggregated in the same way. It will satisfy the same bounds up to some small degradation in

the probability of the event.

5 From the choice of the functional Rc to empirical process

bounds

Our construction in Section 2.4 produces a family of MOM estimators

(f̂K,µσ+, σ̂K,µ,σ+) = argmin
f∈F , σ≤σ+

max
g∈F , χ≤σ+

{
MOMK

(
Rc(ℓg, χ, ℓf , σ)

)
+ µ

(
‖f‖ − ‖g‖

)}
,

where Rc is a carefully chosen functional in (2.6). As mentioned in Section 2.3, this extends

the scope of the MOM estimator in [15]

f̂K,λ = argmin
f∈F

max
g∈F

{
MOMK

(
R(ℓg, ℓf )

)
+ λ

(
‖f‖ − ‖g‖

)}
,

where R(ℓg, ℓf ) = ℓf − ℓg, which was constructed in the setting of known σ∗. In this section

we discuss in detail the role of the functional Rc. In Section 5.1 we motivate our choice by

showing that, in the sparse linear setting, we recover a robust version of the square-root

LASSO. In Section 5.2 we lay down our proving strategy and highlight the contribution of Rc

in recovering convergence rates and excess risk bounds in terms of complexity parameters. In

Section 5.3 and Section 5.4 we reproduce the main results on complexity parameters in the

sub-Gaussian and sparse linear case respectively.

5.1 Adaptivity to σ∗: choice of the functional Rc and corresponding condi-

tions

Since we implement the same proving strategy as in [15], we introduce the following properties

as natural assumptions that the functional Rc should satisfy.

P1. Anti-symmetry. For all f, g ∈ F , χ, σ ∈ R+ and (x, y) ∈ X × R, we have

Rc

(
ℓg(x, y), χ, ℓf (x, y), σ

)
= −Rc

(
ℓf (x, y), σ, ℓg(x, y), χ

)
,

in short, we write Rc(ℓg, χ, ℓf , σ) = −Rc(ℓf , σ, ℓg, χ).
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The latter is a crucial requirement for the whole convex-concave procedure to work, as we

show in the next section. It is automatically satisfied when σ∗ is known, since R(ℓg, ℓf ) =

ℓf − ℓg = −R(ℓf , ℓg).

P2. Concavity in χ, given f = g. For any fixed f = g ∈ F , σ ∈ R+ and (x, y) ∈ X ×R,

the function χ 7→ Rc(ℓf (x, y), χ, ℓf (x, y), σ) is concave and has a unique maximum for

χ ∈ R+.

This is an additional requirement that has no counterpart when σ∗ is known. In fact, for

f = g, we have R(ℓg, ℓf ) = ℓf − ℓg ≡ 0.

P3. Maximization over g. For any fixed f ∈ F and χ, σ ∈ R+, the problems of maximizing

the functionals

g 7→MOMK

(
Rc(ℓg, χ, ℓf , σ)

)
, g 7→MOMK

(
ℓf − ℓg

)
,

over g ∈ F are equivalent.

The latter condition requires that our functional Rc(ℓg, χ, ℓf , σ) behaves similarly toR(ℓg, ℓf ) =

ℓf − ℓg when viewed as a functional on g ∈ F .

As a consequence of anti-symmetry, the following properties are equivalent to P1–P3 above:

P1’. Anti-symmetry. For all f, g ∈ F and χ, σ ∈ R+, we haveRc(ℓg, χ, ℓf , σ) = −Rc(ℓf , σ, ℓg, χ).

P2’. Convexity in σ, given f = g. For any fixed f = g ∈ F , χ ∈ R+ and (x, y) ∈ X ×R,

the function σ 7→ Rc(ℓf (x, y), χ, ℓf (x, y), σ) is convex and has a unique minimum for

σ ∈ R+.

P3’. Minimization over f. For any fixed g ∈ F and χ, σ ∈ R+, the problems of minimizing

the functionals

f 7→MOMK

(
Rc(ℓg, χ, ℓf , σ)

)
, f 7→MOMK

(
ℓf − ℓg

)
,

over f ∈ F are equivalent.

Consider the sparse linear setting, where we want to recover oracle solutions

β∗ ∈ argmin
β∈Rd

E

[
(Y −X⊤β)2

]
, σ∗ = E

[
(Y −X⊤β∗)2

] 1
2
.

Any linear function f : X → R can be identified with some βf ∈ R
d such that f(x) = x⊤βf

and ℓf (x, y) = ℓβf
(x, y) = (y − x⊤βf )

2. The MOM method in [15] yields a robust version of

the LASSO estimator

β̂L ∈ argmin
β∈Rd

{
1

n

n∑

i=1

(Yi −X⊤
i β)

2 + λ|β|1
}
,
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which has been shown to be minimax optimal in [4, 2, 3], but its optimal tuning parameter λ

is proportional to σ∗. An adaptive version of the LASSO is the square-root LASSO introduced

in [5], which is also minimax optimal, as shown in [8]. This adaptive method uses

β̂SR-Lasso ∈ argmin
β∈Rd





(
1

n

n∑

i=1

(Yi −X⊤
i β)

2

) 1
2

+ µ|β|1



 ,

and its optimal tuning parameter µ does not require the knowledge of σ∗. The key insight

behind the square-root LASSO, see for example Section 5 in [11], is that when β is close to

β∗ one can approximate σ∗2 by E[(Y −X⊤β)2]. Thus, with λ = σ∗µ, one finds

E[(Y −X⊤β)2]
σ∗

+
λ

σ∗
|β|1 ≃ E[(Y −X⊤β)2]

1
2 + µ|β|1,

and the minimization problem is independent of σ∗.

In view of the discussion above, a candidate natural implementation of the robust square-root

LASSO is given by

R̃c(ℓg, χ, ℓf , σ) =
ℓf
σ

+ σ − ℓg
χ

− χ,

= (σ − χ)

(
1− ℓf

σχ

)
+
ℓf − ℓg
χ

,

T̃K,µ(g, χ, f, σ) =MOMK

(
R̃c(ℓg, χ, ℓf , σ)

)
+ µ

(
‖f‖ − ‖g‖

)
,

since R̃c implements the idea that, in the linear setting, dividing ℓf by σ should lead to the

square-root of ℓf . Also, this choice satisfies the properties P1–P3:

• Anti-symmetry holds by construction.

• When f = g, replace ℓf (x, y) = ℓg(x, y) by some positive real number a2 > 0, then the

function

χ 7→ R̃c(a
2, χ, a2, σ) = (σ − χ)

(
1− a2

σχ

)
,

is concave and has a unique maximum for χ ∈ R+.

• By definition, maximizing g 7→ MOMK(ℓf − ℓg) with fixed f ∈ F is equivalent to

maximizing the empirical average

g 7→ − 1

|Bk|
∑

i∈Bk

ℓg(Xi, Yi),

where the block Bk realizes the median. For the same reason, maximising g 7→MOMK(R̃c(ℓg, χ, ℓf , σ))

is equivalent to maximizing the empirical average

g 7→ 1

|Bk|
∑

i∈Bk

(
ℓf (Xi, Yi)

σ
+ σ − ℓg(Xi, Yi)

χ
− χ

)
,

where the block Bk realizes the median. Since the quantities f, σ, χ are fixed, this

coincides with the above.
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However, this choice comes with a drawback. The proof of our main result is based on the

argument proposed in [15], which requires sharp bounds for the functional T̃K,µ(ℓg, χ, ℓf∗ , σ∗)

over the possible values of (g, χ). This is done by carefully slicing the domain and assessing

the contribution of each term appearing in T̃K,µ. In particular, one finds a slice in which

χ < σ∗ − cαr(2ρK) and the leading term of T̃K,µ is of the form 2ε/χ, with some small fixed

ε > 0. Since 2ε/χ → +∞, for χ → 0, we cannot control the supremum of T̃K,µ(ℓg, χ, ℓf∗ , σ∗)

over this slice. The only way around it would be to assume from the start that σ∗ > σ−, for

some known lower bound σ− > 0, but this would be a stronger assumption than the upper

bound σ+ we use in (2.3). This issue is caused by the fact that the two terms of R̃c(ℓg, χ, ℓf , σ)

are

(ℓg, χ, ℓf , σ) 7→ (σ − χ)

(
1− ℓf

σχ

)
, (ℓg, χ, ℓf , σ) 7→

ℓf − ℓg
χ

,

and the second one cannot be controlled if χ → 0. A way to introduce stability is to replace

the denominator χ by the average (σ+χ)/2, which is always bounded away from zero when σ

is fixed. However, making this substitution alone breaks the anti-symmetry of the functional,

so we have to take care of both terms simultaneously. To this end, we use

Rc(ℓg, χ, ℓf , σ) = (σ − χ)

(
1− 2

ℓf + ℓg
(σ + χ)2

)
+ 2c

ℓf − ℓg
σ + χ

,

TK,µ(g, χ, f, σ) =MOMK

(
Rc(ℓg, χ, ℓf , σ)

)
+ µ

(
‖f‖ − ‖g‖

)
,

for all (f, g) ∈ F × F and (σ, χ) ∈ (0, σ+] × (0, σ+], which guarantees that Rc satisfies

properties P1–P3. In fact, anti-symmetry holds for both terms

(ℓg, χ, ℓf , σ) 7→ (σ − χ)

(
1− 2

ℓf + ℓg
(σ + χ)2

)
, (ℓg, χ, ℓf , σ) 7→ 2c

ℓf − ℓg
σ + χ

,

separately. Also, for any fixed f = g ∈ F , σ ∈ R+, we have

χ 7→ Rc(ℓf , χ, ℓf , σ) = (σ − χ)

(
1− 4ℓf

(σ + χ)2

)
,

which satisfies property P2. Finally, for any fixed f ∈ F , σ, χ ∈ R+, we can rewrite

g 7→MOMK (Rc(ℓg, χ, ℓf , σ))

=MOMK

(
(σ − χ) +

2ℓf
σ + χ

(
c− σ − χ

σ + χ

)
− 2ℓg
σ + χ

(
c+

σ − χ

σ + χ

))
.

Since the quantity c+(σ−χ)/(σ+χ) belongs to the interval [c−1, c+1] and c > 1, property

P3 is satisfied.

5.2 From Rc to convergence rates and excess risk bounds

The choice of Rc induces a penalized functional TK,µ which characterizes the MOM−K esti-

mator

(f̂K,µ,σ+, σ̂K,µ,σ+) = argmin
f∈F , σ∈I+

max
g∈F , χ∈I+

TK,µ(g, χ, f, σ), I+ = (0, σ+].
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Our goal is to guarantee that, with as high probability as possible, the function estimator

f̂K,µ,σ+ recovers f∗ with as small as possible rates in ‖ · ‖ and ‖ · ‖2,X, and that the standard

deviation estimator σ̂K,µ,σ+ recovers σ∗ with as small as possible rates in absolute value. With

the same high probability, we also want that the excess risk Risk(f̂K,µ)−Risk(f∗) is as small

as possible.

Starting with the convergence rates, they can be obtained by showing that the estimator

(f̂K,µ,σ+, σ̂K,µ,σ+) belongs to a bounded ball of the form

B
∗(2ρ) :=

{
(f, σ) ∈ F × I+ : ‖f − f∗‖ ≤ 2ρ, ‖f − f∗‖2,X ≤ r(2ρ), |σ − σ∗| ≤ cαr(2ρ)

}
,

with appropriate radius ρ and complexity measure r(2ρ). In the proof of Theorem 3.3, we show

that this can be achieved with ρ = ρK and any r(ρ) ≥ max{rP (ρ, γP ), rM (ρ, γM )}, which only

requires the complexities rP , rM . The convergence rates 2ρK , r(2ρK) are perfectly in line with

those obtained with the MOM tournaments procedure in [18] and the robust MOM method in

[15]. The key idea behind this result is to essentially show that the evaluation of TK,µ at the

point (f̂K,µ,σ+, σ̂K,µ,σ+ , f
∗, σ∗) is too big for (f̂K,µ,σ+, σ̂K,µ,σ+) to be outside of the bounded

ball B∗(2ρK). Precisely, we show that, for some B1,1 > 0,

TK,µ(f̂K,µ,σ+, σ̂K,µ,σ+ , f
∗, σ∗) ≥ −B1,1, sup

(g,χ)/∈B∗(2ρK ,r(2ρK))
TK,µ(g, χ, f

∗, σ∗) < −B1,1,

which guarantees that (f̂K,µ,σ+, σ̂K,µ,σ+, f
∗, σ∗) ∈ B

∗(2ρK). The problem of finding a suitable

bound B1,1 is solved as follows.

• The problem is equivalent to −TK,µ(f̂K,µ, σ̂K,µ, f
∗, σ∗) ≤ B1,1.

• By the anti-symmetry property P1 of Rc, together with the quantile properties in

Lemma D.2, we have −TK,µ(f, σ, f
∗, σ∗) ≤ TK,µ(f

∗, σ∗, f, σ) and it is sufficient to find

TK,µ(f
∗, σ∗, f̂K,µ,σ+, σ̂K,µ,σ+) ≤ B1,1.

• The evaluation at (f∗, σ∗) can be bounded with the supremum over the domain, that

is, we look for sup(g,χ)∈F×I+ TK,µ(g, χ, f̂K,µ,σ+ , σ̂K,µ,σ+) ≤ B1,1.

• By definition, the MOM−K estimator (f̂K,µ,σ+, σ̂K,µ,σ+) minimizes the latter supremum

if we allow for other pairs (f, σ). In particular, with (f, σ) = (f∗, σ∗), it is enough to

find sup(g,χ)∈F×I+ TK,µ(g, χ, f
∗, σ∗) ≤ B1,1.

• Finally, in Lemma A.11 we show that the supremum is achieved on the bounded ball

B
∗(ρK), that is, the solution to the problem is the sharpest bound such that

sup
(g,χ)∈B∗(ρK )

TK,µ(g, χ, f
∗, σ∗) ≤ B1,1.

The argument we just sketched can be found in the proof of the main result in [15], it is a

clever exploitation of the convex-concave formulation of the problem. One key element of

the argument is that the computations only require lower bounds on the quantiles of the
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quadratic and multiplier empirical processes, which in turn can be obtained by means of the

complexities rP and rM alone. These facts has been established in [14, 17] and we provide

them in Lemma D.5, Lemma D.6.

The fact that the estimator (f̂K,µ,σ+, σ̂K,µ,σ+) belongs to the ball B∗(2ρK) is instrumental in

obtaining excess risk bounds. First, one writes

Risk(f̂K,µ,σ+)− Risk(f∗) = ‖f̂K,µ,σ+ − f∗‖22,X + E[−2ζ(f̂K,µ,σ+ − f∗)(X)],

and then bounds ‖f̂K,µ,σ+−f∗‖22,X ≤ r2(2ρK). By applying a quantile inequality, see Lemma D.7,

and adding the quadratic term (f̂K,µ,σ+ − f∗)2, the expectation term becomes

E[−2ζ(f̂K,µ,σ+ − f∗)(X)] ≤ Q1/4,K

[
−2ζ(f̂K,µ,σ+ − f∗)

]
+ α2

M

≤ Q1/4,K

[
ℓ
f̂K,µ,σ+

− ℓf∗

]
+ α2

M ,

since ℓf − ℓf∗ = (f − f∗)2 − 2ζ(f − f∗). Since the 1/4−quantile is always smaller than

the 1/2−quantile, which is the median, some algebraic manipulations allow to rewrite the

difference ℓ
f̂K,µ,σ+

− ℓf∗ in terms of our functional Rc(ℓf∗ , σ∗, ℓ
f̂K,µ,σ+

, σ̂K,µ,σ+) and to recover

the penalized TK,µ(f
∗, σ∗, f̂K,µ,σ+ , σ̂K,µ,σ+). Specifically, in Lemma D.9 we find

E[−2ζ(f̂K,µ,σ+ − f∗)(X)] ≤ σ̂K,µ,σ+ + σ∗

2c
TK,µ(f

∗, σ∗, f̂K,µ,σ+, σ̂K,µ,σ+) + remainder,

≤ σ̂K,µ,σ+ + σ∗

2c
B1,1 + remainder,

where B1,1 is the upper bound we found when dealing with the convergence rates. It is easy to

show that B1,1 . r2(2ρK), the majority of the work is spent on bounding the remainder terms.

In the same lemma, we show that they are: the quantity µρK . r2(ρK) where µ ≃ r2(ρK)/ρK

is the penalization parameter, the quantity α2
M . r2(2ρK) related to the quantiles of the

multiplier process, the mixed terms

• |σ̂K,µ,σ+ − σ∗| ·Q15/16,K

[
(f̂K,µ,σ+ − f∗)2

]
,

• |σ̂K,µ,σ+ − σ∗| ·Q15/16,K

[
−2ζ(f̂K,µ,σ+ − f∗)

]
,

involving the quantiles of the quadratic and multiplier processes. The standard deviation

estimator satisfies |σ̂K,µ,σ+ −σ∗| . r(2ρK). In Lemma D.7 we show that Q15/16,K [−2ζ(f̂K,µ−
f∗)] ≤ E[−2ζ(f̂K,µ,σ+ − f∗)] + α2

M , so that the Cauchy-Schwarz inequality is sufficient for

E[−2ζ(f̂K,µ,σ+ − f∗)] ≤ 4σ∗‖f̂K,µ,σ+ − f∗‖2,X . r(2ρK). Finally, in Lemma D.8 we find

Q15/16,K [(f̂K,µ,σ+ − f∗)2] ≤ r2(2ρK) + α2
Q . r2(2ρK) ∨ r2Q(2ρK , γQ).

5.3 Complexity parameters in the sub-Gaussian setting

We follow the construction presented in [13]. Let G = (G(f) : f ∈ L2(PX)) the Gaussian

process indexed on L2(PX) and such that E[G(f)] = 0 and E[G(f)G(h)] = E[f(X)h(X)]. For
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any F ′ ⊆ F , we set

E [‖G‖F ′ ] := sup

{
E

[
sup
h∈H

G(h)

]
: H ⊆ F ′ is finite

}
.

As an example, if F ′ = {x 7→ x⊤β : β ∈ T ⊂ R
d} and X is a random vector in R

d with

covariance matrix Σ, then G ∼ N (0,Σ) and

E [‖G‖F ′ ] = E

[
sup
β∈T

G⊤β

]
.

Sub-Gaussian class. We say that F is sub-Gaussian if there exists a constant L such that,

for all f, h ∈ F and p ≥ 2, one has ‖f − h‖p,X ≤ L
√
p‖f − h‖2,X.

Gaussian complexities. For any r ≥ 0, set B2(r) = {f ∈ L2(PX) : ‖f‖2,X ≤ r} and

F − F = {f − h : f, h ∈ F}. For any γ, γ′ > 0, take

s∗n(γ) := inf{r > 0 : E
[
‖G‖B2(r)∩(F−F)

]
≤ γr2

√
n},

r∗n(γ
′) := inf{r > 0 : E

[
‖G‖B2(r)∩(F−F)

]
≤ γ′r

√
n}.

(5.1)

The goal of this section is to provide the following bounds.

Lemma 5.1. Under the sub-Gaussian assumption, there exist absolute constants c2, c3 such

that the complexity parameters rP , rQ, rM defined in (3.1) satisfy

rP (ρ, γP ) ≤ r∗n

(
γP
c2L2

)
, rQ(ρ, γQ) ≤ r∗n

(
γQ
c2L2

)
, rM (ρ, γM ) ≤ s∗n

(
γM

c3Lm∗

)
. (5.2)

In particular, any continuous non-decreasing function ρ 7→ r(ρ) with

r(ρ) ≥ max

{
r∗n

(
γP
c2L2

)
, s∗n

(
γM

c3Lm∗

)}
,

is a valid choice in (3.2).

Proof of Lemma 5.1. We invoke Lemma 5.2, Lemma 5.3 and Lemma 5.4 below. They are all

based on a symmetrization argument in [19], which controls the processes

sup
f∈F :‖f−f∗‖2,X≤r

∣∣∣∣
1

n

n∑

i=1

(f − f∗)(Xi)− E[(f − f∗)(X)]

∣∣∣∣,

sup
f∈F :‖f−f∗‖2,X≤r

∣∣∣∣
1

n

n∑

i=1

(f − f∗)2(Xi)− E[(f − f∗)2(X)]

∣∣∣∣,

sup
f∈F :‖f−f∗‖2,X≤r

∣∣∣∣
1

n

n∑

i=1

ζi(f − f∗)(Xi)− E[ζ(f − f∗)(X)]

∣∣∣∣,
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in terms of the processes

sup
f∈F :‖f−f∗‖2,X≤r

∣∣∣∣
1

n

n∑

i=1

ξi(f − f∗)(Xi)

∣∣∣∣,

sup
f∈F :‖f−f∗‖2,X≤r

∣∣∣∣
1

n

n∑

i=1

ξi(f − f∗)2(Xi)

∣∣∣∣,

sup
f∈F :‖f−f∗‖2,X≤r

∣∣∣∣
1

n

n∑

i=1

ξiζi(f − f∗)(Xi)

∣∣∣∣,

with Rademacher variables (ξi)i=1,...,n. These processes play a role in the definition of the

complexities in (3.1).

Lemma 5.2 below shows that, for any r > r∗n(γ
′),

sup
f,h∈F :‖f−h‖2,X≤r

∣∣∣∣
1

n

n∑

i=1

(f − h)(Xi)− E[(f − h)(X)]

∣∣∣∣ ≤ c2γ
′Lr,

with probability bigger than 1 − 2 exp(−c1γ′2n). Choosing γ′ = γP /(c2L) and h = f∗ gives,

for all r > r∗n(γQ/(c2L)),

sup
f∈F :‖f−f∗‖2,X≤r

∣∣∣∣
1

n

n∑

i=1

(f − f∗)(Xi)− E[(f − f∗)(X)]

∣∣∣∣ ≤ γQr.

By definition, the complexity rP (ρ, γP ) is the smallest level r at which the latter display holds

for all functions f in the smaller set B(f∗, ρ, r). Thus rP (ρ, γP ) ≤ r∗n(γP /(c2L)).

Lemma 5.3 below shows that, for any r > r∗n(γ
′),

sup
f,h∈F :‖f−h‖2,X≤r

∣∣∣∣
1

n

n∑

i=1

(f − h)2(Xi)− E[(f − h)2(X)]

∣∣∣∣ ≤ c2γ
′L2r2,

with probability bigger than 1− 2 exp(−c1γ′2n). Choosing γ′ = γQ/(c2L
2) and h = f∗ gives,

for all r > r∗n(γQ/(c2L
2)),

sup
f∈F :‖f−f∗‖2,X≤r

∣∣∣∣
1

n

n∑

i=1

(f − f∗)2(Xi)− E[(f − f∗)2(X)]

∣∣∣∣ ≤ γQr
2.

By definition, the complexity rQ(ρ, γQ) is the smallest level r at which the latter display holds

for all functions f in the smaller set B(f∗, ρ, r). Thus rQ(ρ, γQ) ≤ r∗n(γQ/(c2L
2)).

With E[ζ4]1/4 = m
∗, Lemma 5.4 below shows that, for any r > s∗n(γ),

sup
f,h∈F :‖f−h‖2,X≤r

∣∣∣∣
1

n

n∑

i=1

ζi(f − h)(Xi)− E[ζ(f − h)(X)]

∣∣∣∣ ≤ c3γm
∗Lr2,

with probability bigger than 1 − 4 exp(−c1nmin{γ2r2, 1}). Choosing γ = γM/(c3Lm
∗) and

h = f∗ gives, for all r > s∗n(γM/(c3Lm
∗)),

sup
f∈F :‖f−f∗‖2,X≤r

∣∣∣∣
1

n

n∑

i=1

ζi(f − f∗)(Xi)− E[ζ(f − f∗)(X)]

∣∣∣∣ ≤ γMr
2.

By definition, the complexity rM (ρ, γM ) is the smallest display r at which the latter display

holds for all functions f in the smaller set B(f∗, ρ, r). Thus rM (ρ, γM ) ≤ s∗n(γM/(c3Lm
∗)).
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Lemma 5.2 (Corollary 1.8 in [19]). There exist absolute constants c1, c2 for which the fol-

lowing holds. Let F be an L−sub-Gaussian class, assume that F − F is star-shaped around

0. If γ′ ∈ (0, 1) and r > r∗n(γ
′), then with probability at least 1− 2 exp(−c1γ′2n), we have

sup
f,h∈F :‖f−h‖2,X≤r

∣∣∣∣
1

n

n∑

i=1

(f − h)(Xi)− E[(f − h)(X)]

∣∣∣∣ ≤ c2γ
′Lr.

Lemma 5.3 (Lemma 2.6 in [13]). There exist absolute constants c1, c2 for which the following

holds. Let F be an L−sub-Gaussian class, assume that F − F is star-shaped around 0. If

γ′ ∈ (0, 1) and r > r∗n(γ
′), then with probability at least 1− 2 exp(−c1γ′2n), we have

sup
f,h∈F :‖f−h‖2,X≤r

∣∣∣∣
1

n

n∑

i=1

(f − h)2(Xi)− E[(f − h)2(X)]

∣∣∣∣ ≤ c2γ
′L2r2.

Lemma 5.4 (Corollary of Theorem 2.7 in [13]). Let F be an L−sub-Gaussian class, assume

that F − F is star-shaped around 0. Let E[|ζ|q]1/q = m
∗ for some q > 2, there exists an

absolute constant c3(q), depending on q only, for which the following holds. For some γ > 0

and r > s∗n(γ), with probability at least 1− 4 exp(−c1nmin{γ2r2, 1}), we have

sup
f,h∈F :‖f−h‖2,X≤r

∣∣∣∣
1

n

n∑

i=1

ζi(f − h)(Xi)− E[ζ(f − h)(X)]

∣∣∣∣ ≤ c3(q)γm
∗Lr2.

5.4 Complexity parameters in the sparse linear setting

The next result shows that, in the linear setting, it is possible to weaken the sub-Gaussian

assumption and still be able to control the complexity parameters rP , rM as in (5.2).

Theorem 5.5 (Theorem 1.6 in [20]). There exists an absolute constant c1 and for K ≥ 1,

L ≥ 1 and q0 > 2 there exists a constant c2 that depends only on K,L, q0 for which the

following holds. Consider

• V ⊂ R
d for which the norm ‖ · ‖V = supv∈V |〈v, ·〉| is K−unconditional with respect to

the basis {e1, . . . , ed};

• m
∗ = E

[
|ζ|q0

]1/q0 < +∞;

• an isotropic random vector X ∈ R
d which satisfies the weak moment condition: for some

constants c0, L > 1, for all y ∈ R
d, 1 ≤ p ≤ c0 log(ed), 1 ≤ j ≤ d,

E
[
|X⊤ej|p

] 1
p ≤ L

√
pE
[
|X⊤ej|2

] 1
2 .

If (Xi, ζi)
n
i=1 are i.i.d. copies of (X, ζ), then

E

[
sup
v∈V

∣∣∣∣∣
1√
n

n∑

i=1

(
ζiX

⊤
i v − E[ζX⊤v]

)∣∣∣∣∣

]
≤ c2m

∗
E[‖G‖V ].
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Since this result deals with the multiplier empirical process and, when ζ ≡ 1, with the standard

empirical process, by arguing as in the proof of Lemma 5.1 we find that any function

ρ 7→ r(ρ) ≥ max

{
r∗n

(
γP
c2

)
, s∗n

(
γM
c2m∗

)}
,

is a valid choice in (3.2). Our Definition 4.1 restricts our analysis to settings where the

assumptions of the previous theorem are satisfied.

By following Section 4 in [13], we provide bounds for the complexity parameters r∗n, s
∗
n in (5.2).

For any β ∈ R
d, set fβ : Rd → R the linear map fβ(x) = x⊤β, consider F =

{
fβ : β ∈ R

d
}

and, for any ρ > 0,

B1(ρ) =
{
fβ ∈ F : |β|1 ≤ ρ

}
.

Assume that X is an isotropic random vector that satisfies the weak moment condition of

Theorem 5.5, recall that m
∗ = E[ζ4]1/4. By symmetry, B1(ρ) − B1(ρ) = B1(2ρ) and it is

sufficient to control the function r 7→ E
[
‖G‖B1(2ρ)∩B2(r)

]
. One finds, for every 2ρ/

√
d ≤ r,

E
[
‖G‖B1(2ρ)∩B2(r)

]
= E

[
sup

β∈Rd:|β|1≤2ρ,|β|2≤r

∣∣∣∣
d∑

i=0

giβi

∣∣∣∣
]
∼ ρ
√

log(edmin{r2/ρ2, 1}),

and if r ≤ 2ρ/
√
d, then

E
[
‖G‖B1(2ρ)∩B2(r)

]
= E

[
sup

β∈Rd:|β|1≤2ρ,|β|2≤r

∣∣∣∣
d∑

i=0

giβi

∣∣∣∣
]
∼ ρ

√
d.

With CγP some constants only depending on L and γP , one finds

r∗2n

(
γP
c2

)
≤ C2

γP
×





ρ2

n log
(
ed
n

)
if n ≤ c3d,

ρ2

d if c3d ≤ n ≤ c4d,

0 n > c4d,

the constants c3, c4 depend only on L. Similarly, with CγM some constants only depending on

L and γM ,

s∗2n

(
γM
c2m∗

)
≤ C2

γM ×





ρm∗
√

log d
n if ρ2n ≤ m

∗2 log d,

ρm∗
√

1
n log

(
ed2m∗2

ρ2n

)
if m∗2 log d ≤ ρ2n ≤ m

∗2d2,

m
∗2 d

n ρ2n ≥ m
∗2d2.

The bounds given above are valid for any regime of n and d, but we continue the discussion

for the more interesting high-dimensional case, that is d ≫ n. This simplifies the notation

and allows to choose, for some constant CγP ,γM only depending on L, γP , γM ,

r2(ρ) = C2
γP ,γM





max
{
ρm∗

√
log d
n , ρ2

n log
(
ed
n

) }
, if ρ ≤ m

∗
√
log d√
n

,

max
{
ρm∗

√
1
n log

(
ed2m∗2

ρ2n

)
, ρ2

n log
(
ed
n

)}
, if m

∗
√
log d√
n

≤ ρ ≤ m
∗d√
n
,

(5.3)
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which coincides with the function obtained in Section 4.4 in [15].

Solution of the sparsity equation. We study the case n ≥ s log(ed/s) and assume there

exists a s−sparse vector in β∗ + B1(ρ/20). In the proof of Theorem 1.4 in [14], it is shown

that the smallest solution of the sparsity equation (3.4) is

ρ∗ = C∗
γP ,γM

m
∗s∗

√
1

n
log

(
ed

s∗

)
,

for some constant C∗
γP ,γM only depending on L, γP , γM . We now compute r2(ρ∗). Up to mul-

tiplying ρ∗ by a big constant, we have ρ∗ & m
∗√log d/

√
n, since s∗

√
log(ed/s∗) >

√
log d for

all 1 < s∗ ≤ d. By definition, we have

r2(ρ∗) = C2
γP ,γM

max
{
ρ∗m∗

√
1

n
log

(
ed2m∗2

ρ∗2n

)
,
ρ∗2

n
log

(
ed

n

)}

= C2
γP ,γMρ

∗
m

∗

√
1

n
log

(
ed2m∗2

ρ∗2n

)

= C2
γP ,γMC

∗
γP ,γM

m
∗2s∗

n

√
log

(
ed

s∗

)√√√√log

(
ed2

C∗2
γP ,γM s

∗2 log
(
ed
s∗

)
)

≤
√
2C2

γP ,γMC
∗
γP ,γM

m
∗2s∗

n
log

(
ed

s∗

)
,

in the last inequality we have used that log(a2) = 2 log(|a|) and C∗
γP ,γM > 1/

√
log(ed/s∗). The

latter is true without loss of generality in the high-dimensional setting d≫ n ≥ s∗ log(ed/s∗).

The quantity r(ρ∗) is the convergence rate of the LASSO estimator with penalization param-

eter λ ∼ r2(ρ∗)/ρ∗ ∼ m
∗√log(ed/s∗)/n. This choice of λ requires the knowledge of the true

sparsity parameter s∗.
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Appendix A Proof of Theorem 3.3

The structure of the proof is as follows. First, we control the supremum of the functional

TK,µ(g, χ, f
∗, σ∗) over possible values of (g, χ) by partitioning the domain in slices. Each slice

is treated separately by the results from Lemma A.2 to Lemma A.10. Then, we compare the

bounds over different slices in Lemma A.11 and show that the leading contribution comes

from a bounded ball of the form

B
∗(ρK) =

{
(g, χ) ∈ F × (0, σ+] : ‖g − f∗‖ ≤ ρK , ‖g − f∗‖2,X ≤ r(ρK), |χ− σ∗| ≤ cαr(ρK)

}
.

In Lemma A.12 we translate the supremum bounds into convergence rates by showing that the

MOM−K estimator belongs to a bounded ball B∗(2ρK). We finalize the proof by computing

the excess risk bound in Lemma A.13.

In the notation of Theorem 3.3, for any c > 2 we have

cµ := 200(c + 2)κ
1/2
+ ,

ε :=
c− 2

192θ20(c+ 2)
(
8 + 134κ

1/2
+ ((1 + σ+

σ∗ ) ∨ 6
5 )
) ,

c2α :=
3(c − 2)

5θ20
,

furthermore, we use the auxiliary parameters

γP =
1

1488θ0
, γQ =

ε

360
, γM =

ε

744
, η =

1

16
, γ =

31

32
, α = x =

1

93
. (A.1)

We denote by r(·) a function such that r(ρ) ≥ max{rP (ρ, γP ), rM (ρ, γM )}. By Assumption 3.2,

there exists an absolute constant such that r(ρ) ≤ r(2ρ) < crr(ρ). With C2 = 384θ21c
2
rc

2
ακ

1/2
+ ,

we allow for K ∈
[
K∗ ∨ 32|O|, nε2/C2

]
. We denote by Ω(K) the intersection of the event

Ω1(K) in Lemma D.4, the event Ω2(K) in Lemma D.7 and the event Ω3(K) in Lemma D.8.

The probability of Ω(K) = Ω1(K) ∩ Ω2(K) ∩ Ω3(K) is at least 1 − P(Ω1(K)) − P(Ω2(K)) −
P(Ω3(K)) ≥ 1− 4 exp(−K/8920). For any cρ ∈ {1, 2}, we denote

αK,cρ := cαr(cρρK), δ2K,n :=
25m∗4K

n
, r2(ρK) =

384θ21δ
2
K,n

25m∗2ε2
, (A.2)

the last equation rewrites the implicit definition of ρK in (3.7).

The next lemma checks that the choices made in Theorem 3.3 satisfy a set of sufficient

conditions that are required by our proving strategy. In principle, our main result is valid for

different choices as long as the relevant quantities satisfy the conditions below.
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Lemma A.1. The assumptions of Theorem 3.3 imply, with c2K = 384 and any ιµ ∈ [1/4, 4],

nε2 > Kc2Kθ
2
1c

2
rc

2
ακ

1/2
+ , (A.3)

ιµcµ >
1600κ

3/4
+ ε

c2Kθ
2
1

+ 48κ
1/2
+ (c+ 2), (A.4)

c− 2

24θ20
>

800κ
1/2
+ ε2

c2Kθ
2
1

+ 16(c + 2)ε+

(
1 + σ+

σ∗

3
∨ 36

10

)
ιµcµε, (A.5)

c2α >
1800κ

1/2
+ ε2

c2Kθ
2
1

+ 108(c + 2)ε+
144ιµcµε

10
. (A.6)

Conditions (A.3) and (A.6) imply 4δK,n/σ
∗ < αK,cρ < σ∗. Condition (A.5) implies both

1

16θ20
> 4ε+

(σ∗ + σ+)ιµcµε

2(c− 2)m∗ , (A.7)

c− 2

24θ20
>

800κ∗1/2ε2

c2Kθ
2
1

+ 16(c + 2)ε+
36ιµcµε

10
. (A.8)

Proof of Lemma A.1. Condition (A.3) is equivalent to the upper bound K ≤ nε2/C2 on

the number of blocks. We have r2(ρK) = c2Kθ
2
1m

∗2K/(ε2n) and r2(2ρK) ≤ c2rr
2(ρK), by

Assumption 3.2. Since αK,2 = cαr(2ρK), then also αK,2 ≤ crαK,1, therefore

α2
K,1

σ∗2
≤
α2
K,2

σ∗2
≤
c2rα

2
K,1

σ∗2
= c2rc

2
α

c2Kθ
2
1m

∗2K

σ∗2nε2
= c2rc

2
α

c2Kθ
2
1κ

∗1/2K

nε2
< 1,

where the last inequality is condition (A.3), then αK,cρ < σ∗. We show 4δK,n/σ
∗ < αK,cρ

using

16δ2K,n

σ∗2
=

400m∗4K
σ∗2n

= κ∗1/2
400m∗2K

n
< c2α

384θ21m
∗2K

nε2
= αK,1, (A.9)

where the only inequality is implied by condition (A.6).

By definition of cµ in (3.5), we have

ιµcµ ≥ cµ
4

= 50(c+ 2)κ
1/2
+ = 2(c+ 2)κ

1/2
+ + 48(c + 2)κ

1/2
+ ,

thus (A.4) is satisfied since, as we show below,

ε <
c2Kθ

2
1(c+ 2)

800κ
1/4
+

=
12θ21(c+ 2)

25κ
1/4
+

.

With c2K = 384, we rewrite condition (A.5) as

50κ
1/2
+ θ20ε

2

(c− 2)θ21
+

384θ20(c+ 2)ε

c− 2
+

(
1 + σ+

σ∗

3
∨ 36

10

)
24θ20ιµcµε

c− 2
< 1.

With the definition of cµ in (3.5) and ιµ = 4, this becomes

50κ
1/2
+ θ20

(c− 2)θ21
ε2 +

48θ20(c+ 2)

c− 2

(
8 +

400κ
1/2
+

3

((
1 +

σ+
σ∗

)
∨ 12

10

))
ε < 1.
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The inequality above has the form Aε2 + Bε < 1, which is satisfied by any ε smaller

than min{1/
√
2A, 1/2B}. The definition of ε in (3.5) coincides with imposing ε = cε ·

min{1/
√
2A, 1/2B} = cε/2B, with cε = 1/2 and

1√
2A

=
√
c− 2

θ1

10θ0κ
1/4
+

,

1

2B
=

c− 2

96θ20(c+ 2)
(
8 + 134κ

1/2
+ ((1 + σ+

σ∗ ) ∨ 6
5 )
) ,

we have used that 400/3 < 134. Thus, condition (A.5) is satisfied. It is immediate to verify

that this implies both (A.7) and (A.8).

With c2K = 384, the definition of cµ in (3.5) and ιµ = 4, we rewrite (A.6) as

c2α >
75κ

1/2
+

16θ21
ε2 + 108(c + 2)

(
1 +

320

3
κ
1/2
+

)
ε.

By the discussion on ε above, it is sufficient that, with cε = 1/2 and 320/3 < 107,

c2α >
75κ

1/2
+

16θ21
· c

2
ε(c− 2)θ21

100θ20κ
1/2
+

+ 108(c + 2)
(
1 + 107κ

1/2
+

) cε(c− 2)

96θ20(c+ 2)
(
8 + 134κ

1/2
+ ((1 + σ+

σ∗ ) ∨ 6
5 )
) .

This is equivalent to

c2α >
15(c − 2)

320θ20
c2ε +

27(c − 2)(1 + 107κ
1/2
+ )

24θ20
(
8 + 134κ

1/2
+ ((1 + σ+

σ∗ ) ∨ 6
5 )
)cε,

and, with

1 + 107κ
1/2
+

8 + 134κ
1/2
+ ((1 + σ+

σ∗ ) ∨ 6
5)
< 1,

and cε = 1/2, condition (A.6) holds if

c2α ≥ 15(c − 2)

320θ20
c2ε +

27(c − 2)

24θ20
cε =

(c− 2)

16θ20

(
15

80
+

27

3

)
=

441(c − 2)

768θ20
.

This is exactly the case from the definition of cα in (3.5), since 3/5 > 441/768. The proof is

complete.
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A.1 Control of the supremum of TK,µ(g, χ, f
∗, σ∗)

With σ+ the known upper bound on σ∗, set I+ = (0, σ+] and, with r(·) any function such

that r(ρ) ≥ {rP (ρ, γP ), rM (ρ, γM )}, any cρ ∈ {1, 2} and αK,cρ = cαr(cρρK), let us define

F (cρ)
1 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X ≤ r(cρρK), |σ∗ − χ| ≤ αK,cρ}

F (cρ)
2 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X > r(cρρK), |σ∗ − χ| ≤ αK,cρ}

F (cρ)
3 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ > cρρK , |σ∗ − χ| ≤ αK,cρ}

F (cρ)
4 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X ≤ r(cρρK), χ > σ∗ + αK,cρ}

F (cρ)
5 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X > r(cρρK), χ > σ∗ + αK,cρ}

F (cρ)
6 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ > cρρK , χ > σ∗ + αK,cρ}

F (cρ)
7 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X ≤ r(cρρK), χ < σ∗ − αK,cρ}

F (cρ)
8 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X > r(cρρK), χ < σ∗ − αK,cρ}

F (cρ)
9 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ > cρρK , χ < σ∗ − αK,cρ}.

The sets above are a partition of the domain F × I+ where the functional

TK,µ(g, χ, f
∗, σ∗) =MOMK

(
Rc(ℓg, χ, ℓf∗ , σ∗)

)
+ µ(‖f∗‖ − ‖g‖)

takes inputs. For cρ ∈ {1, 2} and i = 1, . . . , 9, we set Bi,cρ some upper bound for the supremum

of TK,µ(g, χ, f
∗, σ∗) over (g, χ) ∈ F (cρ)

i . That is,

sup
(g,χ)∈F(cρ)

i

TK,µ(g, χ, f
∗, σ∗) ≤ Bi,cρ, (A.10)

and the goal of this section is to give sharp bounds for each slice separately. Using the

definition of Rc(ℓg, χ, ℓf∗ , σ∗) in (2.6), and ℓg = ℓf∗ + ℓg − ℓf∗ , we find

Rc(ℓg, χ, ℓf∗ , σ∗) = (σ∗ − χ)

(
1− 2

ℓf∗ + ℓg
(σ∗ + χ)2

)
+ 2c

ℓf∗ − ℓg
σ∗ + χ

= (σ∗ − χ)

(
1− 4ℓf∗

(σ∗ + χ)2

)
+ 2

ℓf∗ − ℓg
σ∗ + χ

(
c+

σ∗ − χ

σ∗ + χ

)

= Rc(ℓf∗ , χ, ℓf∗ , σ∗) + 2∆c(χ, σ
∗)
ℓf∗ − ℓg
σ∗ + χ

.

with

∆c(χ, σ) :=

(
c+

σ − χ

σ + χ

)
∈ [c− 1, c+ 1], ∀σ, χ ∈ (0,+∞), (A.11)

and c > 2 by construction. We plug this into the functional TK,µ(g, χ, f
∗, σ∗), so that

TK,µ(g, χ, f
∗, σ∗) =MOMK

(
Rc(ℓf∗ , χ, ℓf∗ , σ∗) + 2∆c(χ, σ

∗)
ℓf∗ − ℓg
σ∗ + χ

)
+ µ(‖f∗‖ − ‖g‖).

For all (x, y) ∈ X × R, we have the decomposition

ℓf (x, y) − ℓg(x, y) = 2
(
y − f(x)

)(
g(x) − f(x)

)
−
(
g(x)− f(x)

)2
,
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and this gives ℓf∗ − ℓg = 2ζ(g − f∗) − (g − f∗)2. By the triangular quantile property in

Lemma D.2, we can write

TK,µ(g, χ, f
∗, σ∗)

= Q3/4,K

[
Rc(ℓf∗ , χ, ℓf∗ , σ∗) + 2∆c(χ, σ

∗)
ℓf∗ − ℓg
σ∗ + χ

]
+ µ(‖f∗‖ − ‖g‖)

≤ Q3/4,K

[
Rc(ℓf∗ , χ, ℓf∗ , σ∗)

]
+

2∆c(χ, σ
∗)

(σ∗ + χ)
Q3/4,K

[
2ζ(g − f∗)− (g − f∗)2

]

+ µ(‖f∗‖ − ‖g‖).

(A.12)

By arguing as in the proof of Lemma D.9, see bound for (D.2), the quantity

Q3/4,K

[
Rc(ℓf∗ , χ, ℓf∗ , σ∗)

]
= Q3/4,K

[
(σ∗ − χ)

(
1− 4ℓf∗

(σ∗ + χ)2

)]

is bounded above, when χ ≥ σ∗, by

Q3/4,K

[
Rc(ℓf∗ , χ, ℓf∗ , σ∗)

]
≤ (χ− σ∗)

(4σ∗2 + 4δK,n

(σ∗ + χ)2
− 1
)
, (A.13)

or, when χ ≤ σ∗, by

Q3/4,K

[
Rc(ℓf∗ , χ, ℓf∗ , σ∗)

]
≤ (σ∗ − χ)

(
1− 4σ∗2 − 4δK,n

(σ∗ + χ)2

)
. (A.14)

The following lemmas show that, on the event Ω(K), one can choose bounds Bi,cρ in (A.10),
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for i = 1, . . . , 9 and cρ ∈ {1, 2}, as

B1,cρ =
16

σ∗(2σ∗ − αK,cρ)
2
δ2K,n +

8(c + 2)ε

2σ∗ − αK,cρ

r2(cρρK) +
cµεcρ
m

∗ r2(ρK),

B2,cρ =
16

σ∗(2σ∗ − αK,cρ)
2
δ2K,n + 2(c − 2)

4ε − (4θ0)
−2

2σ∗ + αK,cρ

r2(cρρK) +
cµεcρ
m

∗ r2(ρK),

B3,cρ = max

{
16

σ∗(2σ∗ − αK,cρ)
2
δ2K,n + cρ

(
8(c + 2)ε

2σ∗ − αK,cρ

− 4cµε

5m∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK),

16

σ∗(2σ∗ − αK,cρ)
2
δ2K,n + cρ

(
2(c− 2)

4ε − (4θ0)
−2

2σ∗ + αK,cρ

+
cµε

m
∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK)

}
,

B4,cρ = − 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ +

8(c+ 2)ε

2σ∗ + αK,cρ

r2(cρρK) +
cµεcρ
m

∗ r2(ρK),

B5,cρ = − 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ + 2(c− 2)

4ε − (4θ0)
−2

σ∗ + σ+
r2(cρρK) +

cµεcρ
m

∗ r2(ρK),

B6,cρ = max

{
− 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ + cρ

(
8(c + 2)ε

2σ∗ + αK,cρ

− 4cµε

5m∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK),

− 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ + cρ

(
2(c− 2)

4ε − (4θ0)
−2

σ∗ + σ+
+
cµε

m
∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK)

}
,

B7,cρ = − 2σ∗

(2σ∗ − αK,cρ)
2
α2
K,cρ +

8(c+ 2)ε

σ∗
r2(cρρK) +

cµεcρ
m

∗ r2(ρK),

B8,cρ = − 2σ∗

(2σ∗ − αK,cρ)
2
α2
K,cρ + 2(c− 2)

4ε − (4θ0)
−2

2σ∗ − αK,cρ

r2(cρρK) +
cµεcρ
m

∗ r2(ρK),

B9,cρ = max

{
− 2σ∗

(2σ∗ − αK,cρ)
2
α2
K,cρ +

(
8(c+ 2)εcρ

σ∗
− 4cµεcρ

5m∗ +
cµε

10m∗

)
r2(ρK),

− 2σ∗

(2σ∗ − αK,cρ)
2
α2
K,cρ + cρ

(
2(c− 2)

4ε − (4θ0)
−2

2σ∗ − αK,cρ

+
cµε

m
∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK)

}
.

Lemma A.2. On the event Ω(K), for all cρ ∈ {1, 2}, the supremum of TK,µ(g, χ, f
∗, σ∗) over

the set

F (cρ)
1 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X ≤ r(cρρK), |σ∗ − χ| ≤ αK,cρ},

is bounded above by

B1,cρ :=
16

σ∗(2σ∗ − αK,cρ)
2
δ2K,n +

8(c+ 2)ε

2σ∗ − αK,cρ

r2(cρρK) +
cµεcρ
m

∗ r2(ρK).

Proof of Lemma A.2. Let (g, χ) ∈ F (cρ)
1 . Using the bound obtained in (A.12), the inequality

(g − f∗)2 ≥ 0 and the triangular inequality, the quantity TK,µ(g, χ, f
∗, σ∗) is bounded above

by

Q3/4,K

[
Rc(ℓf∗ , χ, ℓf∗ , σ∗)

]
+

2∆c(χ, σ
∗)

σ∗ + χ
Q3/4,K

[
2ζ(g − f∗)− (g − f∗)2

]
+ µ(‖f∗‖ − ‖g‖)

≤ Q3/4,K

[
Rc(ℓf∗ , χ, ℓf∗ , σ∗)

]
+

2∆c(χ, σ
∗)

σ∗ + χ
Q3/4,K

[
2ζ(g − f∗)

]
+ µ‖f∗ − g‖.
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By Lemma D.7, Q3/4,K [2ζ(g − f∗)] ≤ α2
M ≤ 4εr2(cρρK) and, with ∆c(χ, σ

∗) ≤ c+ 2, we find

TK,µ(g, χ, f
∗, σ∗) ≤ Q3/4,K

[
Rc(ℓf∗ , χ, ℓf∗ , σ∗)

]
+

8(c + 2)ε

2σ∗ − αK,cρ

r2(cρρK) + µcρρK

= Q3/4,K

[
Rc(ℓf∗ , χ, ℓf∗ , σ∗)

]
+

8(c + 2)ε

2σ∗ − αK,cρ

r2(cρρK) +
cµεcρ
m

∗ r2(ρK),

where in the last step we put our choice µ = (cµε/m
∗)r2(ρK)/ρK .We now bound the quantile

term appearing in the latter display. Directly from (A.13) and (A.14), we get

Q3/4,K

[
Rc(ℓf∗ , χ, ℓf∗ , σ∗)

]

≤ max

{
sup

χ∈[σ∗,σ∗+αK,cρ ]
|σ∗ − χ|

(4σ∗2 + 4δK,n

(σ∗ + χ)2
− 1
)
, sup

χ∈[σ∗−αK,cρ ,σ
∗]
|σ∗ − χ|

(
1− 4σ∗2 − 4δK,n

(σ∗ + χ)2

)}
.

By arguing as in the proof of Lemma D.9, see bounds on (D.2), with αK,cρ > 2δK,n/σ
∗ we

obtain

TK,µ(g, χ, f
∗, σ∗) ≤ 16

σ∗(2σ∗ − αK,cρ)
2
δ2K,n +

8(c+ 2)ε

2σ∗ − αK,cρ

r2(cρρK) +
cµεcρ
m

∗ r2(ρK),

which is what we wanted.

Lemma A.3. On the event Ω(K), for all cρ ∈ {1, 2}, the supremum of TK,µ(g, χ, f
∗, σ∗) over

the set

F (cρ)
2 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X > r(cρρK), |σ∗ − χ| ≤ αK,cρ},

is bounded above by

B2,cρ :=
16

σ∗(2σ∗ − αK,cρ)
2
δ2K,n + 2(c − 2)

4ε− (4θ0)
−2

2σ∗ + αK,cρ

r2(cρρK) +
cµεcρ
m

∗ r2(ρK).

Proof of Lemma A.3. Let (g, χ) ∈ F (cρ)
2 . The space F (cρ)

2 shares with F (cρ)
1 the conditions

‖g − f∗‖ ≤ cρρK and |χ − σ∗| ≤ αK,cρ. By arguing as in the proof of Lemma A.2, we know

already that

TK,µ(g, χ, f
∗, σ∗)

≤ 16

σ∗(2σ∗ − αK,cρ)
2
δ2K,n +

2∆c(χ, σ
∗)

(σ∗ + χ)
Q3/4,K

[
2ζ(g − f∗)− (g − f∗)2

]
+
cµεcρ
m

∗ r2(ρK).

An application of Lemma D.7 bounds from above the quantiles of 2ζ(g− f∗) and from below

the quantiles of (g − f∗)2, together with ∆c(χ, σ
∗) ≥ c− 2 this leads to

TK,µ(g, χ, f
∗, σ∗)

≤ 16

σ∗(2σ∗ − αK,cρ)
2
δ2K,n +

2∆c(χ, σ
∗)

(σ∗ + χ)
Q3/4,K

[
2ζ(g − f∗)− (g − f∗)2

]
+
cµεcρ
m

∗ r2(ρK)

≤ 16

σ∗(2σ∗ − αK,cρ)
2
δ2K,n +

2∆c(χ, σ
∗)

(σ∗ + χ)

(
α2
M − (4θ0)

−2‖g − f∗‖22,X
)
+
cµεcρ
m

∗ r2(ρK)

≤ 16

σ∗(2σ∗ − αK,cρ)
2
δ2K,n + 2(c− 2)

4ε − (4θ0)
−2

2σ∗ + αK,cρ

r2(cρρK) +
cµεcρ
m

∗ r2(ρK),

since 4ε < 1/(4θ0)
2 by condition (A.7), so α2

M −‖g−f∗‖22,X(4θ0)−2 ≤ (4ε− (4θ0)
−2)r2(cρρK).
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Lemma A.4. On the event Ω(K), for all cρ ∈ {1, 2}, the supremum of TK,µ(g, χ, f
∗, σ∗) over

the set

F (cρ)
3 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ > cρρK , |σ∗ − χ| ≤ αK,cρ},

is bounded above by

B3,cρ := max

{
16

σ∗(2σ∗ − αK,cρ)
2
δ2K,n + cρ

(
8(c+ 2)ε

2σ∗ − αK,cρ

− 4cµε

5m∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK),

16

σ∗(2σ∗ − αK,cρ)
2
δ2K,n + cρ

(
2(c− 2)

4ε − (4θ0)
−2

2σ∗ + αK,cρ

+
cµε

m
∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK)

}
.

Proof of Lemma A.4. Let (g, χ) ∈ F (cρ)
3 . The space F (cρ)

3 shares with F (cρ)
1 ,F (cρ)

2 the con-

straint |χ − σ∗| ≤ αK,cρ. By arguing as in the proofs of Lemma A.2 and Lemma A.3, the

bound in (A.12) becomes

TK,µ(g, χ, f
∗, σ∗)

≤ 16

σ∗(2σ∗ − αK,cρ)
2
δ2K,n +

2∆c(χ, σ
∗)

(σ∗ + χ)
Q3/4,K

[
2ζ(g − f∗)− (g − f∗)2

]
+ µ(‖f∗‖ − ‖g‖)

≤ 16

σ∗(2σ∗ − αK,cρ)
2
δ2K,n +

2∆c(χ, σ
∗)

(σ∗ + χ)
Q3/4,K

[
2ζ(g − f∗)− (g − f∗)2

]

− µ sup
z∗∈Γf∗(ρK)

z∗(g − f∗) +
µρK
10

,

where the last inequality follows from the application of Lemma D.1 with ρ = ρK . We

follow now the proof of Lemma 5 in [15]. Let us define f := f∗ + ρK(g − f∗)/‖g − f∗‖, this
function belongs to the function class F by convexity. Let Υ := ‖g−f∗‖/ρK . By construction,

‖f − f∗‖ = ρK and g − f∗ = Υ(f − f∗). Then,

TK,µ(g, χ, f
∗, σ∗)

≤ 16

σ∗(2σ∗ − αK,cρ)
2
δ2K,n +

2Υ∆c(χ, σ
∗)

(σ∗ + χ)
Q3/4,K

[
2ζ(f − f∗)− (f − f∗)2

]

− µΥ sup
z∗∈Γf∗(ρK )

z∗(f − f∗) +
µρK
10

.

From here, we separate the cases ‖f − f∗‖2,X ≤ r(ρK) and ‖f − f∗‖2,X > r(ρK).

We start with ‖f − f∗‖2,X ≤ r(ρK). Since ‖f − f∗‖ = ρK , we have f ∈ HρK with HρK =

{f ∈ F : ‖f − f∗‖ ≤ ρK , ‖f − f∗‖2,X ≤ r(ρK)} defined in Section 3.2. Recall that K∗ is

defined as the smallest integer satisfying K∗ ≥ nεr2(ρ∗)/c2Kθ
2
m, with ρ∗ the smallest value

ρ > 0 satisfying the sparsity inequality

inf
f∈Hρ

sup
z∗∈Γf∗(ρK )

z∗(f − f∗) ≥ 4

5
ρ.

Since K ≥ K∗, we get ρK ≥ ρ∗ and ρK satisfies the sparsity inequality

sup
z∗∈Γf∗(ρK )

z∗(f − f∗) ≥ 4

5
ρK .
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Using our choice of µ = (cµε/m
∗)r2(ρK)/ρK , we get

−µ sup
z∗∈Γf∗(ρK )

z∗(f − f∗) ≤ −4cµε

5m∗ r
2(ρK).

The latter display, the fact that (f − f∗)2 ≥ 0, the bound ∆c(χ, σ
∗) ≤ c+2, and the quantile

bound Q3/4,K [2ζ(f − f∗)] ≤ α2
M ≤ 4εr2(ρK) in Lemma D.7, all together yield

TK,µ(g, χ, f
∗, σ∗) ≤ 16

σ∗(2σ∗ − αK,cρ)
2
δ2K,n +Υ

(
8(c+ 2)ε

2σ∗ − αK,cρ

− 4cµε

5m∗

)
r2(ρK) +

µρK
10

.

By condition (A.4), the term multiplied by Υ is negative. This is true because κ
1/4
+ ≥ κ∗1/4 =

m
∗/σ∗ > 1 and

cµ >
5m∗(c+ 2)

σ∗
=⇒ 4cµε

5m∗ >
4(c+ 2)ε

σ∗
>

4(c + 2)ε

2σ∗ − αK,cρ

,

the last inequality follows from αK,cρ < σ∗, which is guaranteed by Lemma A.1. Since Υ > cρ,

we have

TK,µ(g, χ, f
∗, σ∗) ≤ 16

σ∗(2σ∗ − αK,cρ)
2
δ2K,n + cρ

(
8(c+ 2)ε

2σ∗ − αK,cρ

− 4cµε

5m∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK).

This concludes the first part of the proof.

We now consider the case ‖f − f∗‖2,X > r(ρK). Since ‖f − f∗‖ = ρK and ∆c(χ, σ
∗) ≥ c− 2,

an application of Lemma D.7 bounds from above the quantiles of 2ζ(g − f∗) and from below

the quantiles of (g − f∗)2, this gives

TK,µ(g, χ, f
∗, σ∗)

≤ 16

σ∗(2σ∗ − αK,cρ)
2
δ2K,n +Υ

(
2(c − 2)

4ε − (4θ0)
−2

2σ∗ + αK,cρ

r2(ρK) + µρK

)
+
µρK
10

≤ 16

σ∗(2σ∗ − αK,cρ)
2
δ2K,n + cρ

(
2(c− 2)

4ε − (4θ0)
−2

2σ∗ + αK,cρ

+
cµε

m
∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK),

using that Υ > cρ and the term multiplied by Υ is negative, by condition (A.7). This can be

seen by

1

16θ20
> 4ε+

(σ∗ + σ+)cµε

2(c − 2)m∗

⇐⇒ 0 > 2(c − 2)
4ε − (4θ0)

−2

σ∗ + σ+
+
cµε

m
∗ > 2(c − 2)

4ε− (4θ0)
−2

2σ∗ + αK,cρ

+
cµε

m
∗ .

This concludes the second part of the proof.

Lemma A.5. On the event Ω(K), for all cρ ∈ {1, 2}, the supremum of TK,µ(g, χ, f
∗, σ∗) over

the set

F (cρ)
4 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X ≤ r(cρρK), χ > σ∗ + αK,cρ},

is bounded above by

B4,cρ := − 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ +

8(c+ 2)ε

2σ∗ + αK,cρ

r2(cρρK) +
cµεcρ
m

∗ r2(ρK).
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Proof of Lemma A.5. Let (g, χ) ∈ F (cρ)
4 . The space F (cρ)

4 shares with F (cρ)
1 the conditions

‖g − f∗‖ ≤ cρρK and ‖g − f∗‖2,X ≤ r(cρρK). By arguing as in the proof of Lemma A.2 and

using that χ > σ∗ + αK,cρ, from (A.13) we get

TK,µ(g, χ, f
∗, σ∗)

≤ sup
χ>σ∗+αK,cρ

(χ− σ∗)
(4(σ∗2 + δK,n)

(σ∗ + χ)2
− 1
)
+

8(c+ 2)ε

2σ∗ + αK,cρ

r2(cρρK) +
cµεcρ
m

∗ r2(ρK)

= −αK,cρ

(
1− 8(σ∗2 + δK,n)

(2σ∗ + αK,cρ)
2

)
+

8(c+ 2)ε

2σ∗ + αK,cρ

r2(cρρK) +
cµεcρ
m

∗ r2(ρK).

Since αK,cρ > 2δK,n/σ
∗, one has

1− 4(σ∗2 + δK,n)

(2σ∗ + αK,cρ)
2
=

4(σ∗αK,cρ − δK,n)

(2σ∗ + αK,cρ)
2

+
α2
K,cρ

(2σ∗ + αK,cρ)
2
>

4(σ∗αK,cρ − δK,n)

(2σ∗ + αK,cρ)
2

>
2σ∗αK,cρ

(2σ∗ + αK,cρ)
2
,

and

TK,µ(g, χ, f
∗, σ∗) ≤ − 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ +

8(c + 2)ε

2σ∗ + αK,cρ

r2(cρρK) +
cµεcρ
m

∗ r2(ρK).

This is enough to conclude.

Lemma A.6. On the event Ω(K), for all cρ ∈ {1, 2}, the supremum of TK,µ(g, χ, f
∗, σ∗) over

the set

F (cρ)
5 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X > r(cρρK), χ > σ∗ + αK,cρ},

is bounded above by

B5,cρ := − 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ + 2(c− 2)

4ε − (4θ0)
−2

σ∗ + σ+
r2(cρρK) +

cµεcρ
m

∗ r2(ρK).

Proof of Lemma A.6. Let (g, χ) ∈ F (cρ)
5 . The space F (cρ)

5 shares with F (cρ)
1 the condition

‖g− f∗‖ ≤ cρρK , with F (cρ)
2 the condition ‖g− f∗‖2,X > r(ρK), and with F (cρ)

4 the condition

χ > σ∗ +αK,cρ. By arguing as in the proofs of Lemma A.2, Lemma A.3 and Lemma A.5, one

gets

TK,µ(g, χ, f
∗, σ∗) ≤ − 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ + 2(c− 2)

4ε − (4θ0)
−2

σ∗ + σ+
r2(cρρK) +

cµεcρ
m

∗ r2(ρK),

where σ+ is the upper bound on χ.

Lemma A.7. On the event Ω(K), for all cρ ∈ {1, 2}, the supremum of TK,µ(g, χ, f
∗, σ∗) over

the set

F (cρ)
6 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ > cρρK , χ > σ∗ + αK,cρ},

is bounded above by

B6,cρ := max

{
− 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ + cρ

(
8(c + 2)ε

2σ∗ + αK,cρ

− 4cµε

5m∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK),

− 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ + cρ

(
2(c− 2)

4ε − (4θ0)
−2

σ∗ + σ+
+
cµε

m
∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK)

}
.
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Proof of Lemma A.7. Let (g, χ) ∈ F (cρ)
6 . The space F (cρ)

6 shares with F (cρ)
3 the condition

‖g− f∗‖ > cρρK , and with F (cρ)
5 the condition χ > σ∗ +αK,cρ. By arguing as in the proofs of

Lemma A.4 and Lemma A.6, we find

TK,µ(g, χ, f
∗, σ∗) ≤ − 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ +

2Υ∆c(χ, σ
∗)

σ∗ + χ
Q3/4,K

[
2ζ(f − f∗)− (f − f∗)2

]

− µΥ sup
z∗∈Γf∗(ρK)

z∗(f − f∗) +
µρK
10

,

with the function f = f∗+ ρK(g− f∗)/‖g− f∗‖ and the quantity Υ = ‖g− f∗‖/ρK , as in the

proof of Lemma A.4. By following the same argument, we split the cases ‖f −f∗‖2,X ≤ r(ρK)

and ‖f − f∗‖2,X > r(ρK).

We start with ‖f − f∗‖2,X ≤ r(ρK). We find,

−µ sup
z∗∈Γf∗(ρK )

z∗(f − f∗) ≤ −4cµε

5m∗ r
2(ρK).

Combining this the fact that (f − f∗)2 ≥ 0, we get

TK,µ(g, χ, f
∗, σ∗) ≤ − 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ +Υ

(
8(c+ 2)ε

2σ∗ + αK,cρ

− 4cµε

5m∗

)
r2(ρK) +

µρK
10

≤ − 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ + cρ

(
8(c+ 2)ε

2σ∗ + αK,cρ

− 4cµε

5m∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK),

using that the quantity multiplied by Υ is negative by condition (A.4), and Υ > cρ. This

concludes the first part of the proof.

We now consider ‖f − f∗‖2,X > r(ρK). We have,

TK,µ(g, χ, f
∗, σ∗)

≤ − 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ +Υ

(
2(c− 2)

4ε − (4θ0)
−2

σ∗ + σ+
r2(ρK) + µρK

)
+
µρK
10

≤ − 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ + cρ

(
2(c− 2)

4ε − (4θ0)
−2

σ∗ + σ+
+
cµε

m
∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK),

using that the quantity multiplied by Υ is negative by condition (A.7), and Υ > cρ. This

concludes the proof.

Lemma A.8. On the event Ω(K), for all cρ ∈ {1, 2}, the supremum of TK,µ(g, χ, f
∗, σ∗) over

the set

F (cρ)
7 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X ≤ r(cρρK), χ < σ∗ − αK,cρ},

is bounded above by

B7,cρ := − 2σ∗

(2σ∗ − αK,cρ)
2
α2
K,cρ +

8(c+ 2)ε

σ∗
r2(cρρK) +

cµεcρ
m

∗ r2(ρK).
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Proof of Lemma A.8. Let (g, χ) ∈ F (cρ)
7 . The space F (cρ)

7 shares with F (cρ)
1 the conditions

‖g − f∗‖ ≤ cρρK and ‖g − f∗‖2,X ≤ r(cρρK). By arguing as in the proof of Lemma A.2 and

using χ < σ∗ − αK,cρ, from (A.14) we get

TK,µ(g, χ, f
∗, σ∗)

≤ sup
χ<σ∗−αK,cρ

(σ∗ − χ)
(
1− 4(σ∗2 − δK,n)

(σ∗ + χ)2

)
+

8(c+ 2)ε

σ∗
r2(cρρK) +

cµεcρ
m

∗ r2(ρK)

= −αK,cρ

( 4(σ∗2 − δK,n)

(2σ∗ − αK,cρ)
2
− 1
)
+

8(c+ 2)ε

σ∗
r2(cρρK) +

cµεcρ
m

∗ r2(ρK).

Since 4δK,n/σ
∗ < αK,cρ < σ∗ by Lemma A.1, we find

4(σ∗2 − δK,n)

(2σ∗ − αK,cρ)
2
− 1 =

4σ∗αK,cρ − 4δK,n − α2
K,cρ

(2σ∗ − αK,cρ)
2

>
2σ∗αK,cρ

(2σ∗ − αK,cρ)
2
,

and

TK,µ(g, χ, f
∗, σ∗) ≤ − 2σ∗

(2σ∗ − αK,cρ)
2
α2
K,cρ +

8(c + 2)ε

σ∗
r2(cρρK) +

cµεcρ
m

∗ r2(ρK),

which is sufficient to conclude.

Lemma A.9. On the event Ω(K), for all cρ ∈ {1, 2}, the supremum of TK,µ(g, χ, f
∗, σ∗) over

the set

F (cρ)
8 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X > r(cρρK), χ < σ∗ − αK,cρ},

is bounded above by

B8,cρ := − 2σ∗

(2σ∗ − αK,cρ)
2
α2
K,cρ + 2(c− 2)

4ε − (4θ0)
−2

2σ∗ − αK,cρ

r2(cρρK) +
cµεcρ
m

∗ r2(ρK).

Proof of Lemma A.9. Let (g, χ) ∈ F (cρ)
8 . The space F (cρ)

8 shares with F (cρ)
1 the condition

‖g − f∗‖ ≤ cρρK , with F (cρ)
2 the condition ‖g − f∗‖ > r(cρρK), and with F (cρ)

7 the condition

χ < σ∗ −αK,cρ. By arguing as in the proofs of Lemma A.2, Lemma A.3 and Lemma A.8, one

finds

TK,µ(g, χ, f
∗, σ∗) ≤ − 2σ∗

(2σ∗ − αK,cρ)
2
α2
K,cρ + 2(c− 2)

4ε − (4θ0)
−2

2σ∗ − αK,cρ

r2(cρρK) +
cµεcρ
m

∗ r2(ρK),

which concludes the proof.

Lemma A.10. On the event Ω(K), for all cρ ∈ {1, 2}, the supremum of TK,µ(g, χ, f
∗, σ∗)

over the set

F (cρ)
9 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ > cρρK , χ < σ∗ − αK,cρ},

is bounded above by

B9,cρ := max

{
− 2σ∗

(2σ∗ − αK,cρ)
2
α2
K,cρ +

(
8(c+ 2)εcρ

σ∗
− 4cµεcρ

5m∗ +
cµε

10m∗

)
r2(ρK),

− 2σ∗

(2σ∗ − αK,cρ)
2
α2
K,cρ + cρ

(
2(c− 2)

4ε − (4θ0)
−2

2σ∗ − αK,cρ

+
cµε

m
∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK)

}
.
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Proof of Lemma A.10. Let (g, χ) ∈ F (cρ)
9 . The space F (cρ)

9 shares with F (cρ)
6 the condition

‖g− f∗‖ > cρρK , and with F (cρ)
7 the condition χ < σ∗ −αK,cρ. By arguing as in the proofs of

Lemma A.7 and Lemma A.8, we get

TK,µ(g, χ, f
∗, σ∗) ≤ − 2σ∗

(2σ∗ − αK,cρ)
2
α2
K,cρ +

2Υ∆c(χ, σ
∗)

σ∗ + χ
Q3/4,K

[
2ζ(f − f∗)− (f − f∗)2

]

− µΥ sup
z∗∈Γf∗(ρK)

z∗(f − f∗) +
µρK
10

,

with the function f = f∗ + ρK(g− f∗)/‖g − f∗‖ and the quantity Υ = ‖g− f∗‖/ρK . We now

split the cases ‖f − f∗‖2,X ≤ r(ρK) and ‖f − f∗‖2,X > r(ρK).

For ‖f − f∗‖2,X ≤ r(ρK), we find

−µ sup
z∗∈Γf∗(ρK )

z∗(f − f∗) ≤ −4cµε

5m∗ r
2(ρK),

which we combine with the fact that (f − f∗)2 ≥ 0, this gives

TK,µ(g, χ, f
∗, σ∗) ≤ − 2σ∗

(2σ∗ − α2
K,cρ

)2
α2
K,cρ +Υ

(
8(c+ 2)ε

σ∗
− 4cµε

5m∗

)
r2(ρK) +

µρK
10

≤ − 2σ∗

(2σ∗ − α2
K,cρ

)2
α2
K,cρ + cρ

(
8(c+ 2)ε

σ∗
− 4cµε

5m∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK),

using that the quantity multiplied by Υ is negative by condition (A.4), and Υ > cρ. This

concludes the first part of the proof.

We now consider the case ‖f − f∗‖2,X > r(ρK). We find

TK,µ(g, χ, f
∗, σ∗)

≤ − 2σ∗

(2σ∗ − αK,cρ)
2
α2
K,cρ +Υ

(
2(c− 2)

4ε − (4θ0)
−2

2σ∗ − αK,cρ

r2(ρK) + µρK

)
+
µρK
10

≤ − 2σ∗

(2σ∗ − αK,cρ)
2
α2
K,cρ + cρ

(
2(c− 2)

4ε − (4θ0)
−2

2σ∗ − αK,cρ

+
cµε

m
∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK),

using that the quantity multiplied by Υ is negative by condition (A.7), and Υ > cρ. This

concludes the proof.

A.2 Comparison between the bounds

This section compares the bounds B1,cρ , . . . , B9,cρ found above. We show that, for cρ = 1, the

quantity B1,1 dominates the bounds Bi,1 on the slices i = 2, . . . , 9. Furthermore, for cρ = 2,

the negative quantity −B1,1 is also bigger than any other bound Bi,2 on the slices i = 2, . . . , 9.

This implicitly shows that the bounds Bi,2 are negative and bounded away from zero, if i 6= 1.

Lemma A.11. We have B1,1 = maxi=1,...,9Bi,1 and −B1,1 > maxi=2,...,9Bi,2.
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Proof of Lemma A.11. We start by showing that B1,1 is bigger than the other Bi,1, i =

2, . . . , 9. By Lemma A.2, we have

B1,1 =
16

σ∗(2σ∗ − αK,1)2
δ2K,n +

8(c+ 2)ε

2σ∗ − αK,1
r2(ρK) +

cµε

m
∗ r

2(ρK).

Take i = 2. By Lemma A.3, we have

B2,1 =
16

σ∗(2σ∗ − αK,1)2
δ2K,n + 2(c − 2)

4ε − (4θ0)
−2

2σ∗ + αK,1
r2(cρρK) +

cµε

m
∗ r

2(ρK),

so that imposing B2,1 ≤ B1,1 is equivalent to

2(c− 2)
4ε − (4θ0)

−2

2σ∗ + αK,1
≤ 8(c+ 2)ε

2σ∗ − αK,1
,

which is always true since 4ε− (4θ0)
−2 < 0, by condition (A.7).

Take i = 3. By Lemma A.4, we have

B3,1 = max

{
16

σ∗(2σ∗ − αK,1)2
δ2K,n +

(
8(c+ 2)ε

2σ∗ − αK,1
− 4cµε

5m∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK),

16

σ∗(2σ∗ − αK,1)2
δ2K,n +

(
2(c − 2)

4ε− (4θ0)
−2

2σ∗ + αK,1
+
cµε

m
∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK)

}
,

so that imposing B3,1 ≤ B1,1 requires both

8(c+ 2)ε

2σ∗ − αK,1
− 17cµε

10m∗ ≤ 8(c+ 2)ε

2σ∗ − αK,1
,

2(c− 2)
4ε − (4θ0)

−2

2σ∗ + αK,1
+

cµε

10m∗ ≤ 8(c+ 2)ε

2σ∗ − αK,1
.

The first inequality is always true, whereas the second is equivalent to

8(c− 2)ε

2σ∗ + αK,1
− 8(c+ 2)ε

2σ∗ − αK,1
+

cµε

10m∗ ≤ 2(c − 2)
(4θ0)

−2

2σ∗ + αK,1
.

Since 2σ∗ + αK,1 > 2σ∗ − αK,1, the latter condition is implied by

cµε

10m∗ − 32ε

2σ∗ − αK,1
≤ c− 2

8θ20(2σ
∗ + αK,1)

.

By Lemma A.1, we have 0 < αK,1 < σ∗ and the above display is satisfied if

cµε

10m∗ ≤ 16ε

σ∗
+

c− 2

24θ20σ
∗ .

We multiply by σ∗ and use that κ∗1/4 = m
∗/σ∗ ≥ 1, so it is sufficient that

cµε

10
≤ 16ε+

c− 2

24θ20
,

which holds by condition (A.8).
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Take i = 4. By Lemma A.5, we have

B4,1 = − 2σ∗

(2σ∗ + αK,1)2
α2
K,1 +

8(c+ 2)ε

2σ∗ + αK,1
r2(ρK) +

cµε

m
∗ r

2(ρK),

so that imposing B4,1 ≤ B1,1 is equivalent to

− 2σ∗

(2σ∗ + αK,1)2
α2
K,1

r2(ρK)
+

8(c + 2)ε

2σ∗ + αK,1
≤ 16

σ∗(2σ∗ − αK,1)2
δ2K,n

r2(ρK)
+

8(c+ 2)ε

2σ∗ − αK,1
,

which is always satisfied.

Take i = 5. By Lemma A.6, we have

B5,1 = − 2σ∗

(2σ∗ + αK,1)2
α2
K,1 + 2(c− 2)

4ε − (4θ0)
−2

σ∗ + σ+
r2(ρK) +

cµε

m
∗ r

2(ρK),

so that imposing B5,1 ≤ B1,1 is equivalent to

− 2σ∗

(2σ∗ + αK,1)2
α2
K,1

r2(ρK)
+ 2(c− 2)

4ε − (4θ0)
−2

σ∗ + σ+
≤ 16

σ∗(2σ∗ − αK,1)2
δ2K,n

r2(ρK)
+

8(c+ 2)ε

2σ∗ − αK,1
,

which is always satisfied, since the term on the left is negative by condition (A.7).

Take i = 6. By Lemma A.7, we have

B6,1 = max

{
− 2σ∗

(2σ∗ + αK,1)2
α2
K,1 +

(
8(c + 2)ε

2σ∗ + αK,1
− 4cµε

5m∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK),

− 2σ∗

(2σ∗ + αK,1)2
α2
K,1 +

(
2(c− 2)

4ε − (4θ0)
−2

σ∗ + σ+
+
cµε

m
∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK)

}
,

so that imposing B6,1 ≤ B1,1 is equivalent to both

8(c+ 2)ε

2σ∗ + αK,1
− 7cµε

10m∗ ≤ 2σ∗

(2σ∗ + αK,1)2
α2
K,1

r2(ρK)
+

16

σ∗(2σ∗ − αK,1)2
δ2K,n

r2(ρK)
+

8(c+ 2)ε

2σ∗ − αK,1
+
cµε

m
∗ ,

which is always true, and

2(c− 2)
4ε − (4θ0)

−2

σ∗ + σ+
+

11cµε

10m∗ ≤ 2σ∗

(2σ∗ + αK,1)2
α2
K,1

r2(ρK)
+

16

σ∗(2σ∗ − αK,1)2
δ2K,n

r2(ρK)

+
8(c+ 2)ε

2σ∗ − αK,1
+
cµε

m
∗ .

The first term on the left side is negative, by condition (A.7). With the ratio δ2K,n/r
2(ρK)

in (A.2), it is sufficient that

cµε

10m∗ ≤ 2σ∗

(2σ∗ + αK,1)2
c2α +

16

σ∗(2σ∗ − αK,1)2
· 25m

∗2ε2

c2Kθ
2
1

+
8(c+ 2)ε

2σ∗ − αK,1
.

By Lemma A.1, we have 0 < αK,1 < σ∗, so it is enough that

cµε

10m∗ ≤ 2c2α
9σ∗

+
400m∗2ε2

4σ∗3c2Kθ
2
1

+
8(c+ 2)ε

2σ∗
.
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We now multiply by m
∗ and use that κ∗1/4 = m

∗/σ∗ ≥ 1, this gives the sufficient condition

9cµε

20
≤ c2α +

450ε2

c2Kθ
2
1

+ 18(c + 2)ε,

which follows from condition (A.6).

Take i = 7. By Lemma A.8, we have

B7,1 = − 2σ∗

(2σ∗ − αK,1)2
α2
K,1 +

8(c+ 2)ε

σ∗
r2(ρK) +

cµε

m
∗ r

2(ρK),

so that imposing B7,1 ≤ B1,1 is equivalent to

8(c+ 2)ε

σ∗
≤ 2σ∗

(2σ∗ − αK,1)2
α2
K,1

r2(ρK)
+

16

σ∗(2σ∗ − αK,1)2
δ2K,n

r2(ρK)
+

8(c+ 2)ε

2σ∗ − αK,1
.

We argue as for i = 6, we plug in the ratio δ2K,n/r
2(ρK) from (A.2) and use 0 < αK,1 < σ∗

and 2σ∗ − αK,1 < 2σ∗ + αK,1, it is enough that

8(c + 2)ε

σ∗
≤ 2c2α

9σ∗
+

400m∗2ε2

4σ∗3c2Kθ
2
1

+
8(c+ 2)ε

2σ∗
.

We now multiply by σ∗ and use that κ∗1/4 = m
∗/σ∗ ≥ 1, this gives the sufficient condition

8(c+ 2)ε ≤ 2c2α
9

+ 100ε2 + 4(c + 2)ε,

which is true if 18(c+ 2)ε ≤ c2α + 450ε2, which holds thanks to condition (A.6).

Take i = 8. By Lemma A.9, we have

B8,1 = − 2σ∗

(2σ∗ − αK,1)2
α2
K,1 + 2(c− 2)

4ε − (4θ0)
−2

2σ∗ − αK,1
r2(ρK) +

cµε

m
∗ r

2(ρK),

so that imposing B8,1 ≤ B1,1 is equivalent to

− 2σ∗

(2σ∗ − αK,1)2
α2
K,1

r2(ρK)
+ 2(c− 2)

4ε − (4θ0)
−2

2σ∗ − αK,1
≤ 16

σ∗(2σ∗ − αK,1)2
δ2K,n

r2(ρK)
+

8(c+ 2)ε

2σ∗ − αK,1
,

which holds since the left side is negative, thanks to condition (A.7).

Take i = 9. By Lemma A.10, we have

B9,1 = max

{
− 2σ∗

(2σ∗ − αK,1)2
α2
K,1 +

(
8(c + 2)ε

σ∗
− 4cµε

5m∗ +
cµε

10m∗

)
r2(ρK),

− 2σ∗

(2σ∗ − αK,1)2
α2
K,1 +

(
2(c− 2)

4ε − (4θ0)
−2

2σ∗ − αK,1
+
cµε

m
∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK)

}
,

so that imposing B9,1 ≤ B1,1 is equivalent to both

8(c+ 2)ε

σ∗
− 7cµε

10m∗ ≤ 2σ∗

(2σ∗ − αK,1)2
α2
K,1

r2(ρK)
+

16

σ∗(2σ∗ − αK,1)2
δ2K,n

r2(ρK)
+

8(c+ 2)ε

2σ∗ − αK,1
+
cµε

m
∗ ,
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which is always true, and

2(c− 2)
4ε − (4θ0)

−2

2σ∗ − αK,1
+

cµε

10m∗ ≤ 2σ∗

(2σ∗ − αK,1)2
α2
K,1

r2(ρK)
+

16

σ∗(2σ∗ − αK,1)2
δ2K,n

r2(ρK)
+

8(c+ 2)ε

2σ∗ − αK,1
.

Arguing as in i = 6, the first term on the left side is negative by condition (A.7), then it is

sufficient that

cµε

10m∗ ≤ 2σ∗

(2σ∗ − αK,1)2
α2
K,1

r2(ρK)
+

16

σ∗(2σ∗ − αK,1)2
δ2K,n

r2(ρK)
+

8(c+ 2)ε

2σ∗ − αK,1
,

which coincides with the bound obtained in i = 6.

The first part of the proof is complete. We now show that −B1,1 is bigger than Bi,2, for all

i = 2, . . . , 9. We recall that Lemma A.2 gives

B1,1 =
16

σ∗(2σ∗ − αK,1)2
δ2K,n +

8(c+ 2)ε

2σ∗ − αK,1
r2(ρK) +

cµε

m
∗ r

2(ρK).

Take i = 2. By Lemma A.3, we have

B2,2 =
16

σ∗(2σ∗ − αK,2)2
δ2K,n + 2(c− 2)

4ε − (4θ0)
−2

2σ∗ + αK,2
r2(2ρK) +

2cµε

m
∗ r

2(ρK),

so that imposing B2,2 +B1,1 < 0 gives

16

σ∗(2σ∗ − αK,2)2
δ2K,n +

8(c− 2)ε

2σ∗ + αK,2
r2(2ρK) +

2cµε

m
∗ r

2(ρK)

+
16

σ∗(2σ∗ − αK,1)2
δ2K,n +

8(c+ 2)ε

2σ∗ − αK,1
r2(ρK) +

cµε

m
∗ r

2(ρK) < 2(c − 2)
(4θ0)

−2

2σ∗ + αK,2
r2(2ρK),

Since r2(2ρK) ≥ r2(ρK), αK,2 ≥ αK,1, it is sufficient to show

32

σ∗(2σ∗ − αK,2)2
δ2K,n

r2(2ρK)
+

8(c− 2)ε

2σ∗ − αK,2
+

8(c+ 2)ε

2σ∗ − αK,2
+

3cµε

m
∗ <

c− 2

8θ20(2σ
∗ + αK,2)

.

By Lemma A.1, we have 0 < αK,2 < σ∗ and, with the ratio δK,n2/r2(ρK) in (A.2), it is enough

that

800m∗2ε2

σ∗2c2Kθ
2
1

+ 8(c− 2)ε + 8(c + 2)ε+
3cµεσ

∗

m
∗ <

c− 2

24θ20
.

Since κ∗1/4 = m
∗/σ∗ ≥ 1, we find the sufficient condition

800κ∗1/2ε2

c2Kθ
2
1

+ 16(c + 2)ε+ 3cµε <
c− 2

24θ20
,

which is true by condition (A.8).

Take i = 3. By Lemma A.4, we have

B3,2 = max

{
16

σ∗(2σ∗ − αK,2)2
δ2K,n + 2

(
8(c+ 2)ε

2σ∗ − αK,2
− 4cµε

5m∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK),

16

σ∗(2σ∗ − αK,2)2
δ2K,n + 2

(
2(c− 2)

4ε − (4θ0)
−2

2σ∗ + αK,2
+
cµε

m
∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK)

}
,
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so that imposing B3,2 +B1,1 < 0 requires both

32

σ∗(2σ∗ − αK,2)2
δ2K,n

r2(2ρK)
+

16(c + 2)ε

2σ∗ − αK,2
+

8(c + 2)ε

2σ∗ − αK,1
<

cµε

2m∗ ,

32

σ∗(2σ∗ − αK,2)2
δ2K,n

r2(2ρK)
+

16(c− 2)ε

2σ∗ + αK,2
+

8(c+ 2)ε

2σ∗ − αK,1
+

31cµε

10m∗ <
c− 2

4θ20(2σ
∗ + αK,2)

.

By arguing as for i = 2, it is sufficient that both

800κ∗1/2ε2

c2Kθ
2
1

+ 16(c + 2)ε+ 8(c+ 2)ε <
cµε

2κ∗1/4
,

800κ∗1/2ε2

c2Kθ
2
1

+ 8(c− 2)ε + 8(c + 2)ε+
31cµε

10κ∗1/4
<
c− 2

12θ20
.

The first bound holds by condition (A.4), so we plug it into the second line using κ∗ ≥ 1, we

obtain the sufficient condition 36cµε/10 < (c− 2)/(12θ20), which follows from condition (A.8).

Take i = 4. By Lemma A.5, we have

B4,2 = − 2σ∗

(2σ∗ + αK,2)2
α2
K,2 +

8(c + 2)ε

2σ∗ + αK,2
r2(2ρK) +

2cµε

m
∗ r

2(ρK),

so that imposing B4,2 +B1,1 < 0 gives

16

σ∗(2σ∗ − αK,1)2
δ2K,n

r2(2ρK)
+

8(c+ 2)ε

2σ∗ + αK,2
+

8(c+ 2)ε

2σ∗ − αK,1
+

3cµε

m
∗ <

2σ∗

(2σ∗ + αK,2)2
α2
K,2

r2(2ρK)
.

By arguing as for i = 3, it is sufficient that

400κ∗1/2ε2

c2Kθ
2
1

+ 4(c+ 2)ε+ 8(c + 2)ε+
3cµε

κ∗1/4
<

2c2α
9
.

With κ∗ ≥ 1, it is enough that

1800κ∗1/2ε2

c2Kθ
2
1

+ 54(c + 2)ε +
27cµε

2
< c2α,

which follows from condition (A.6).

Take i = 5. By Lemma A.6, we have

B5,2 = − 2σ∗

(2σ∗ + αK,2)2
α2
K,2 + 2(c− 2)

4ε − (4θ0)
−2

σ∗ + σ+
r2(2ρK) +

2cµε

m
∗ r

2(ρK),

so that imposing B5,2 +B1,1 < 0 gives

16

σ∗(2σ∗ − αK,1)2
δ2K,n

r2(2ρK)
+ 2(c− 2)

4ε − (4θ0)
−2

σ∗ + σ+
+

3cµε

m
∗ +

8(c + 2)ε

2σ∗ − αK,1
<

2σ∗

(2σ∗ + αK,2)2
α2
K,2

r2(2ρK)
.

The second term in the latter display is negative by condition (A.7). By arguing as for i = 4,

it is sufficient that

400κ∗1/2ε2

c2Kθ
2
1

+
3cµε

κ∗1/4
+ 8(c + 2)ε <

2c2α
9
.
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With κ∗ ≥ 1, it is enough that

1800κ∗1/2ε2

c2Kθ
2
1

+
27cµε

2
+ 36(c + 2)ε < c2α,

which is true thanks to condition (A.6).

Take i = 6. By Lemma A.7, we have

B6,2 = max

{
− 2σ∗

(2σ∗ + αK,2)2
α2
K,2 + 2

(
8(c+ 2)ε

2σ∗ + αK,2
− 4cµε

5m∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK),

− 2σ∗

(2σ∗ + αK,2)2
α2
K,2 + 2

(
2(c− 2)

4ε − (4θ0)
−2

σ∗ + σ+
+
cµε

m
∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK)

}
,

so that imposing B6,2 +B1,1 < 0 requires both

16

σ∗(2σ∗ − αK,1)2
δ2K,n

r2(ρK)
+

16(c + 2)ε

2σ∗ + αK,2
+

8(c+ 2)ε

2σ∗ − αK,1
− cµε

2m∗ <
2σ∗

(2σ∗ + αK,2)2
α2
K,2

r2(ρK)
,

16

σ∗(2σ∗ − αK,1)2
δ2K,n

r2(ρK)
+

8(c + 2)ε

2σ∗ − αK,1
+

31cµε

10m∗ + 4(c− 2)
4ε − (4θ0)

−2

σ∗ + σ+
<

2σ∗

(2σ∗ + αK,2)2
α2
K,2

r2(ρK)
.

By condition (A.7), the last terms on the left side of both equations are negative. By arguing

as in i = 5, we find the sufficient conditions

400κ∗1/2ε2

c2Kθ
2
1

+ 24(c + 2)ε <
2c2α
9
,

400κ∗1/2ε2

c2Kθ
2
1

+ 8(c+ 2)ε +
31cµε

10κ∗1/4
<

2c2α
9
.

With κ∗ ≥ 1, it is enough that

1800κ∗1/2ε2

c2Kθ
2
1

+ 108(c + 2)ε < c2α,

1800κ∗1/2ε2

c2Kθ
2
1

+ 36(c + 2)ε + 14cµε < c2α,

which follow from condition (A.6).

Take i = 7. By Lemma A.8, we have

B7,2 = − 2σ∗

(2σ∗ − αK,2)2
α2
K,2 +

8(c + 2)ε

σ∗
r2(2ρK) +

2cµε

m
∗ r

2(ρK),

so that imposing B7,2 +B1,1 < 0 gives

16

σ∗(2σ∗ − αK,1)2
δ2K,n

r2(2ρK)
+

8(c+ 2)ε

σ∗
+

8(c+ 2)ε

2σ∗ − αK,1
+

3cµε

m
∗ <

2σ∗

(2σ∗ − αK,2)2
α2
K,2

r2(2ρK)
.

By arguing as in i = 6, it is sufficient that

400κ∗1/2ε2

c2Kθ
2
1

+ 8(c+ 2)ε+ 8(c + 2)ε+
3cµε

κ∗1/4
<

2c2α
9
.
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With κ∗ ≥ 1, it is enough that

1800κ∗1/2ε2

c2Kθ
2
1

+ 72(c + 2)ε +
27cµε

2
< c2α,

which follows from condition (A.6).

Take i = 8. By Lemma A.9, we have

B8,2 = − 2σ∗

(2σ∗ − αK,2)2
α2
K,2 + 2(c− 2)

4ε − (4θ0)
−2

2σ∗ − αK,2
r2(2ρK) +

2cµε

m
∗ r

2(ρK),

so that imposing B8,2 +B1,1 < 0 gives

16

σ∗(2σ∗ − αK,1)2
δ2K,n

r2(2ρK)
+

8(c+ 2)ε

2σ∗ − αK,1
+

3cµε

m
∗ + 2(c− 2)

4ε − (4θ0)
−2

2σ∗ − αK,2
<

2σ∗

(2σ∗ − αK,2)2
α2
K,2

r2(2ρK)
.

By condition (A.7), the last term on the left side is negative. By arguing as in i = 7, it is

sufficient that

400κ∗1/2ε2

c2Kθ
2
1

+ 8(c+ 2)ε+
3cµε

κ∗1/4
<

2c2α
9
.

With κ∗ ≥ 1, it is enough that

1800κ∗1/2ε2

c2Kθ
2
1

+ 36(c + 2)ε +
27cµε

2
< c2α,

which holds thanks to condition (A.6).

Take i = 9. By Lemma A.10, we have

B9,2 = max

{
− 2σ∗

(2σ∗ − αK,2)2
α2
K,2 +

(
16(c + 2)ε

σ∗
− 8cµε

5m∗ +
cµε

10m∗

)
r2(ρK),

− 2σ∗

(2σ∗ − αK,2)2
α2
K,2 + 2

(
2(c− 2)

4ε − (4θ0)
−2

2σ∗ − αK,2
+
cµε

m
∗

)
r2(ρK) +

cµε

10m∗ r
2(ρK)

}
,

so that imposing B9,2 +B1,1 < 0 gives both

16

σ∗(2σ∗ − αK,1)2
δ2K,n

r2(ρK)
+

16(c + 2)ε

σ∗
+

8(c+ 2)ε

2σ∗ − αK,1
− 5cµε

10m∗ <
2σ∗

(2σ∗ − αK,2)2
α2
K,2

r2(ρK)
,

16

σ∗(2σ∗ − αK,1)2
δ2K,n

r2(ρK)
+

8(c + 2)ε

2σ∗ − αK,1
+

32cµε

10m∗ + 4(c− 2)
4ε − (4θ0)

−2

2σ∗ − αK,2
<

2σ∗

(2σ∗ − αK,2)2
α2
K,2

r2(ρK)
.

By condition (A.7), the last terms on the left side in the latter display are negative. By

arguing as in i = 8, it is sufficient that

400κ∗1/2ε2

c2Kθ
2
1

+ 16(c + 2)ε+ 8(c + 2)ε <
2c2α
9
,

400κ∗1/2ε2

c2Kθ
2
1

+ 8(c+ 2)ε+
32cµε

10κ∗1/4
<

2c2α
9
.
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With κ∗ ≥ 1, it is enough that

1800κ∗1/2ε2

c2Kθ
2
1

+ 108(c + 2)ε < c2α,

1800κ∗1/2ε2

c2Kθ
2
1

+ 36(c + 2)ε +
144cµε

10
< c2α,

which both follow from condition (A.6).

A.3 Contraction rates and risk bound

In this section we obtain convergence rates and risk bounds by exploiting the results of the pre-

vious section. We recall that we are using a function r(·) such that r(ρ) ≥ max{rP (ρ, γP ), rM (ρ, γM )}.
By Assumption 3.2, there exists an absolute constant cr such that r(ρ) ≤ r(2ρ) < crr(ρ).

With C2 = 384θ21c
2
rc

2
ακ

1/2
+ , we allow for K ∈

[
K∗ ∨ 32|O|, nε2/C2

]
. We denote by Ω(K)

the intersection of the event Ω1(K) in Lemma D.4, the event Ω2(K) in Lemma D.7 and the

event Ω3(K) in Lemma D.8. The probability of Ω(K) = Ω1(K) ∩ Ω2(K) ∩ Ω3(K) is at least

1− P(Ω1(K))− P(Ω2(K))− P(Ω3(K)) ≥ 1− 4 exp(−K/8920).

Lemma A.12. On the event Ω(K) defined above, the MOM−K estimator (f̂K,µ,σ+, σ̂K,µ,σ+)

belongs to the slice

F (2)
1 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ 2ρK , ‖g − f∗‖2,X ≤ r(2ρK), |σ∗ − χ| ≤ cαr(2ρK)},

thus recovering the convergence rates in (3.9).

Proof of Lemma A.12. By definition (2.11), we have

CK,µ(f̂K,µ, σ̂K,µ) ≤ CK,µ(f
∗, σ∗) = sup

g∈F , χ<σ+

TK,µ(g, χ, f
∗, σ∗) ≤ B1,1,

where the last inequality follows from Lemma A.11. Then,

B1,1 ≥ CK,µ(f̂K,µ, σ̂K,µ) = sup
g∈F , χ<σ+

TK,µ(g, χ, f̂K,µ, σ̂K,µ)

≥ TK,µ(f
∗, σ∗, f̂K,µ, σ̂K,µ) ≥ −TK,µ(f̂K,µ, σ̂K,µ, f

∗, σ∗),

in the last step we have used Q1/2[x] ≥ −Q1/2[−x] from Lemma D.2. We deduce that,

on the event Ω(K), TK,µ(f̂K,µ, σ̂K,µ, f
∗, σ∗) ≥ −B1,1. Applying Lemma A.11 again, we have

−B1,1 > supi=2,...9Bi,2 and

max
i=2,...,9

sup
(g,χ)∈F(2)

i

TK,µ(g, χ, f
∗, σ∗) ≤ max

i=2,...,9
Bi,2 < −B1,1.

Thus, the estimator (f̂K,µ,σ+, σ̂K,µ,σ+) is outside ∪9
i=2F

(2)
i , which means that (f̂K,µ,σ+, σ̂K,µ,σ+)

belongs to F (2)
1 . By definition of F (2)

1 , we have ‖f̂K,µ,σ+ − f∗‖ ≤ 2ρK , ‖f̂K,µ,σ+ − f∗‖2,X ≤
r(2ρK), and |σ̂K,µ,σ+ − σ∗| ≤ αK,2 = cαr(2ρK). The proof is complete.
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Lemma A.13. On the event Ω(K) defined above, the MOM−K estimator (f̂K,µ,σ+, σ̂K,µ,σ+)

satisfies

R(f̂K,µ,σ+)−R(f∗) ≤
(
2 + 2cα + (44 + 5cµ) ε+

25κ∗1/2

8θ21
ε2

)
r2(2ρK)

+ 4θ21ε
(
r2(2ρK) ∨ r2Q(2ρK , γQ)

)
,

thus recovering the excess risk bound in (3.10).

Proof of Lemma A.13. We apply Lemma D.9 with ρ = 2ρK and αK,cρ = αK,2, which gives

R(f̂K,µ)−R(f∗) = ‖f̂K,µ − f∗‖22,X + E[−2ζ(f̂K,µ − f∗)(X)]

≤ r2(2ρK) +
2σ∗ + αK,2

2c
TK,µ(f

∗, σ∗, f̂K,µ, σ̂K,µ) +
2σ∗ + αK,2

c
µρK + α2

M

+
8(2σ∗ + αK,2)

cσ∗(2σ∗ − αK,2)2
δ2K,n +

αK,2

c(2σ∗ − αK,2)

(
2σ∗r(2ρK) + r2(2ρK) + α2

Q + α2
M

)
.

In the proof of Lemma A.12 we have shown that TK,λ(f
∗, σ∗, f̂K,µ, σ̂K,µ) ≤ CK,λ(f̂K,µ, σ̂K,µ) ≤

B1,1. By Lemma A.2 and the ratio δ2K,n/r
2(2ρK) in (A.2), we have

B1,1 =
16

σ∗(2σ∗ − αK,1)2
δ2K,n +

8(c + 2)ε

2σ∗ − αK,1
r2(ρK) +

cµε

m
∗ r

2(ρK)

=

(
25m∗2ε2

24θ21σ
∗(2σ∗ − αK,1)2

+
8(c + 2)ε

2σ∗ − αK,1
+
cµε

m
∗

)
r2(ρK)

≤
(
25κ∗1/2ε2

24θ21σ
∗ +

8(c+ 2)ε

σ∗
+
cµε

σ∗

)
r2(ρK),

in the last inequality we have used m
∗ > σ∗ and αK,1 < σ∗, which holds by Lemma A.1. This

gives

2σ∗ + αK,2

2c
B1,1 ≤

3σ∗

2c

(
25κ∗1/2ε2

24θ21σ
∗ +

8(c+ 2)ε

σ∗
+
cµε

σ∗

)
r2(2ρK)

=

(
25κ∗1/2ε2

16θ21c
+

12(c + 2)ε

c
+

3cµε

2c

)
r2(2ρK).

By construction, we have µ = (cµε/m
∗)r2(ρK)/ρK , so that

2σ∗ + αK,2

c
µρK ≤ 3σ∗

c

cµε

m
∗ r

2(ρK) ≤ 3cµε

c
r2(ρK),

since m
∗ > σ∗ and αK,2 < σ∗.

By Lemma D.7 we have α2
M ≤ 4εr2(2ρK), whereas by Lemma D.8 we bound

α2
Q ≤ εmax

(
‖f − f∗‖22,X

1488θ41
ε2

K

n
, r2Q(ρ, γQ), ‖f − f∗‖22,X

)

≤ ε
(
r2(2ρK) ∨ r2Q(2ρK , γQ)

)
max

(
1488θ41K

nε2
, 1

)
≤ 4θ21ε

(
r2(2ρK) ∨ r2Q(2ρK , γQ)

)
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since K ≤ nε2/C2, C2 = 384θ21c
2
rc

2
αk

1/2
+ and 1488/384 < 4.

With αK,2 < σ∗ and the ratio δ2K,n/r
2(ρK) in (A.2), we find

8(2σ∗ + αK,2)

cσ∗(2σ∗ − αK,2)2
δ2K,n ≤ 24

cσ∗2
δ2K,n ≤ 25κ∗1/2ε2

16θ21c
r2(ρK).

By putting together all the previous bounds we have

R(f̂K,µ,σ+)−R(f∗) ≤ r2(2ρK) +

(
25κ∗1/2ε2

16θ21c
+

12(c + 2)ε

c
+

3cµε

2c
+

3cµε

c
+ 4ε

)
r2(2ρK)

+
25κ∗1/2ε2

16θ21c
r2(2ρK) +

cα
cσ∗

(
2σ∗r2(2ρK) + (1 + 4ε)r3(2ρK)

)

+
4θ21cαε

cσ∗
r(2ρK)

(
r2(2ρK) ∨ r2Q(2ρK , γQ)

)
.

Using cαr(2ρK) = αK,2 < σ∗ in the second and third lines of the latter display, we find

R(f̂K,µ)−R(f∗) ≤ r2(2ρK) +

(
25κ∗1/2ε2

16θ21c
+

12(c + 2)ε

c
+

3cµε

2c
+

3cµε

c
+ 4ε

)
r2(2ρK)

+
25κ∗1/2ε2

16θ21c
r2(2ρK) +

(
cα
c
2r2(2ρK) +

1

c
(1 + 4ε)r2(2ρK)

)

+
4θ21ε

c

(
r2(2ρK) ∨ r2Q(2ρK , γQ)

)
.

With c > 1 and (c+ 2)/c < 3, this recovers

R(f̂K,µ)−R(f∗) ≤
(
2 + 2cα + (44 + 5cµ) ε+

25κ∗1/2

8θ21
ε2

)
r2(2ρK)

+ 4θ21ε
(
r2(2ρK) ∨ r2Q(2ρK , γQ)

)
,

which completes the proof.

Appendix B Proofs for the high-dimensional sparse linear re-

gression

B.1 Proof of Theorem 4.4

In Section B.2, we prove the following Theorem B.1. We show now how this theorem can be

used to derive our Theorem 4.4.

Theorem B.1. Assume that PX,ξ ∈ P[0,σ+]. There exists universal constants c̃µ, (c̃i)i=0,...,5

that only depend on θ0, θ1, γQ, γM such that the following holds. Assume that |I| ≥ n/2,

|O| ≤ c̃0s
∗ log(ed/s∗), n ≥ s∗ log(ed/s∗) and β∗ ∈ Fs∗.
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For every ιK , ιµ ∈ [1/2, 2]2, let K = ⌈ιK c̃2s∗ log(ed/s∗)⌉ and let (β̂K,µ,σ+, σ̂K,µ,σ+) be the

MOM−K estimator defined in (2.10) with penalization parameter

µ := ιµc̃µ

√
1

n
log

(
ed

s∗

)
.

Then, for all p ∈ [1, 2], we have

|β̂K,µ,σ+ − β∗|p ≤ c̃3ε
−1κ∗σ∗s∗

1
p

√
1

n
log

(
ed

s∗

)
,

|σ̂K,µ,σ+ − σ∗| ≤ cαc̃3ε
−1κ∗σ∗s∗

1
2

√
1

n
log

(
ed

s∗

)
.

(B.1)

with probability at least 1− 4 exp(−K/8920).

With high probability, we have

|β̂K,µ − β∗|p ≤ c̃3ε
−1κ∗σ∗s∗

1
p

√
1

n
log

(
ed

s∗

)
.

We can explicit the value of ε−1 as

ε−1 =
192θ20(c+ 2)

(
8 + 134κ

1/2
+ ((1 + σ+

σ∗ ) ∨ 6
5 )
)

c− 2
= C

(
(1 +

σ+
σ∗

) ∨ 6

5

)
.

for a constant C > 0, and therefore

|β̂K,µ − β∗|p .
(
(1 +

σ+
σ∗

) ∨ 6

5

)
σ∗s∗

1
p

√
1

n
log

(
ed

s

)
.

Since by assumption σ∗ < σ+, we deduce

|β̂K,µ − β∗|p . σ+s
∗ 1
p

√
1

n
log

(
ed

s

)
.

The proof for the bound on σ̂K,µ,σ+ follows the same computations as it involves a factor of

ε−1.

B.2 Proof of Theorem B.1

In this section we use the results in Theorem 3.3 and the computations in Section 5.4 for the

sparse linear setting. For any fixed ε ∈ (0, 1), the function

r2ε(ρ) = C2
γP ,γM





max
{
ρm∗

√
log d
nε2

, ρ2

nε2
log
(

ed
nε2

) }
, if ρ ≤ m

∗
√
log d√
nε2

,

max
{
ρm∗

√
1

nε2
log
(
ed2m∗2

ρ2nε2

)
, ρ2

nε2
log
(

ed
nε2

) }
, if m

∗
√
log d√
nε2

≤ ρ ≤ m
∗d√
nε2

,

(B.2)
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is a strict upper bound on r2(ρ) defined in (5.3). By arguing as in the discussion above, the

smallest solution of the sparsity equation is of the form

ρ∗ = C∗
γP ,γMm

∗s∗

√
1

nε2
log

(
ed

s∗

)
, r2ε(ρ

∗) = C∗2
γP ,γM

m
∗2s∗

nε2
log

(
ed

s∗

)
.

For any fixed constant C > 0, let K∗ be the smallest integer such that

K∗ ≥ nε2

C2
m

∗2 r
2
ε(ρ

∗),

this matches definition (3.6) in Theorem 3.3 with C2 = 384θ21 and r = rε. By definition, this

is equivalent to

K∗ ≥
C∗2
γP ,γM

C2
s log

(
ed

s

)
,

which gives the heuristic that the minimum number of blocks is of order K∗ ∼ s log(ed/s).

For any integer K ≥ K∗, we compute the radii ρK solving

K =
nε2

C2
m

∗2 r
2
ε(ρK),

which is a rearrangement of definition (3.7) in Theorem 3.3. For all ρ∗ ≤ ρK . m
∗√nε2, we

have

r2ε(ρK) = C2
γP ,γMρKm

∗
√

1

nε2
log

(
ed2m∗2

ρ2Knε
2

)
,

and the implicit solutions ρK are of the form

ρK = CKKm
∗

√
1

nε2

[
log

(
ed2

K2

)]−1

,

with CK some absolute constant, for all K . nε2. In fact, let us compute

nε2

Km
∗2 r

2
ε(ρK) = C2

γP ,γM
CK

√[
log

(
ed2

K2

)]−1

log

(
ed2

C2
KK

2
log

(
ed2

K2

))

= C2
γP ,γM

CK

√√√√√
log
(
ed2

K2

)
+ log log

(
ed2

K2

)
− log

(
C2
K

)

log
(
ed2

K2

) ,

which we want to be equal to the given C2. Since d ≫ n and K . nε2, without loss of

generality C2
K ≪ d/n, thus

1

2
< 1− log

(
C2
K

)

log
(
ed2

K2

) <
log
(
ed2

K2

)
+ log log

(
ed2

K2

)
− log

(
C2
K

)

log
(
ed2

K2

) < 2− log
(
C2
K

)

log
(
ed2

K2

) < 2,

which allows for an absolute constant CK ∈ [C2
γP ,γM

/(
√
2C2),

√
2C2

γP ,γM
/C2] recovering the

solution.
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As mentioned earlier, we can write K∗ = ⌈c̃s∗ log(ed/s∗)⌉ with c̃ = C∗2
γP ,γM/(384θ

2
1) and, with-

out loss of generality, c̃ ≥ 1. Assume that the number of outliers is smaller than c̃0s
∗ log(ed/s∗)

with c̃0 = c̃/32, this results in 32|O| ≤ K∗ and the choice K = K∗ is valid in Theorem 3.3.

Then set c̃2 = 2c̃ and apply Theorem 3.3 separately for any choice K = ⌈ιK c̃2s∗ log(ed/s∗)⌉
for all ιK ∈ [1/2, 2]. Then, for any ιµ ∈ [1/4, 4], any penalization parameter of the form

µ = ιµcµε
r2ε(ρK)

m
∗ρK

= ιµcµC
2
γP ,γM

ε

√
1

nε2
log

(
ed2m∗2

ρ2Knε
2

)
= ιµc̃µ

√
1

n
log

(
ed2

K2

)
,

with universal constant c̃µ = cµC
2
γP ,γM

, is a compatible choice. Furthermore, one finds

µ = ιµcµC
2
γP ,γM

√
1

n

(
log

(
ed2

s∗2

)
− 2 log log

(
ed

s∗

)
− 2 log(ιK c̃2)

)
.

We observe that, since ιK c̃2 ≥ 1,

log

(
ed2

s2

)
− 2 log log

(
ed

s∗

)
− 2 log(ιK c̃2) ≤ log

(
ed2

s∗2

)
,

and, with log(ed/s∗) ≤ (
√
ed/s∗)1/2 and ιK c̃2 ≤ (ed/s∗)1/4,

log

(
ed2

s∗2

)
− 2 log log

(
ed
∗

)
− 2 log(ιK c̃2) ≥

1

2
log

(
ed2

s∗2

)
− 2 log(ιK c̃2) ≥

1

4
log

(
ed2

s∗2

)
.

Therefore, any penalization parameter in the smaller interval

µ ∈
[
1

2
c̃µ

√
1

n
log

(
ed2

s∗2

)
, 2c̃µ

√
1

n
log

(
ed2

s∗2

)]
,

with absolute constant c̃µ = cµC
2
γP ,γM

, is valid. This matches the construction required by

Theorem B.1 for any ιK , ιµ ∈ [1/2, 2]2 and shows that the penalization parameter µ can be

chosen without knowledge of the moments of the noise.

The convergence rates in Theorem 3.3 become

|β̃ − β∗|1 ≤ 2ρK = 2CKε
−1

m
∗K

√
1

n

[
log

(
ed2

K2

)]−1

,

|β̃ − β∗|2 ≤ rε(2ρK) ≤ 2Cε−1
m

∗
√
K

n
,

|σ̂K,µ − σ∗| ≤ cαrε(2ρK) ≤ 2cαCε
−1

m
∗
√
K

n
.

Finally, for K ≃ K∗, one gets

|β̃ − β∗|1 ≤ 2ρK∗ . 2C∗
γP ,γM ε

−1
m

∗s∗

√
1

n
log

(
ed

s∗

)
,

|β̃ − β∗|2 ≤ rε(2ρK∗) . 2C∗
γP ,γM

ε−1
m

∗

√
s∗

n
log

(
ed

s∗

)
,

|σ̂K,µ − σ∗| ≤ cαr(2ρK∗) . 2cαC
∗
γP ,γM ε

−1
m

∗

√
s∗

n
log

(
ed

s∗

)
.

The bounds in (B.1) for p ∈ [1, 2] are obtained by applying the interpolation inequality

|β|p ≤ |β|−1+2/p
1 |β|2−2/p

2 . This concludes the proof.
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B.3 Proof of Corollary 4.6

Recall the definition of signal-to-noise ratio

SNR :=
Var(f∗)
Var(ζ)

=
Var(f∗)
σ∗2

,

and denote

A2
Y :=

Var(Y 2)

Var(Y )2
, B2

Y :=
E[Y ]2

Var(Y )
.

The following proposition allows us to bound above and below the estimator σ̂K,+ on an event

with high probability.

Proposition B.2. Assume that Var(Y ) > 0 and consider the quantities AY , BY defined

above. For any integer

K ∈
[
8|O|, nε

2

C2
∧ n

177A2
Y

∧ n

706B2
Y

]
,

there exists an event Ω(K) with probability at least 1 − 2 exp(−7K/3600) such that, on this

event, the estimator

σ̂2K,+ := Q1/2,K

[
Y 2
]
−
(
Q1/2,K [Y ]

)2
,

satisfies σ∗2 ≤ 8σ̂2K,+ ≤ 16σ∗2(SNR+ 1).

Combining Proposition B.2 and Theorem 4.4 by replacing σ+ by σ̂K,+ and reasoning on the

intersection of both events yields the conclusion.

We now prove Proposition B.2.

Proof. We start with

Var(Y ) = Var(f∗(X) + ζ) = Var(f∗(X)) + σ∗2 + 2Cov(f∗(X), ζ) = Var(f∗(X)) + σ∗2,

where in the last step we have used that f∗(X) = X⊤β∗ is the orthogonal projection of the

square-integrable random variable Y = X⊤β∗ + ζ onto the closed and convex set of square-

integrable random variables A := {X⊤β : β ∈ R
d}. Thus, Var(Y ) = σ∗2(SNR+ 1).

We apply Lemma D.3 to the variable Z = Y 2. We choose η = 1/2 and γ = 7/8, x = 1/15,

δ2K,n = a2K,n := 15(K/n)Var(Y 2), so that γ(1− 1/15 − x) ≥ 1/2, in fact

γ

(
1− 1

15
− x

)
=

7

8

(
1− 1

15
− 1

15

)
=

91

120
>

1

2
.

Therefore, on an event Ω1(K) with probability at least 1−exp(−7K/3600), we have Q1/2,K

[
Y 2
]
∈

[E[Y 2]− aK,n,E[Y
2] + aK,n].
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We now repeat the argument for Z = Y. We choose again η = 1/2 and γ = 7/8, x = 1/15,

δ2K,n = b2k,n := 15(K/n)Var(Y ), so that γ(1− 1/15− x) ≥ 1/2. Therefore, on an event Ω2(K)

with probability at least 1− exp(−7K/3600), we have (Q1/2,K [Y ])2 ∈ [(E[Y ]− bK,n)
2, (E[Y ]+

bK,n)
2].

We now work on the event Ω(K) = Ω1(K) ∩ Ω2(K) which has probability at least 1 −
2 exp(−7K/3600). We have

σ̂2K,+ ∈
[
Var(Y )− aK,n − 2E[Y ]bK,n − b2K,n, Var(Y ) + aK,n + 2E[Y ]bK,n − b2K,n

]
,

with a2K,n = 15(K/n)Var(Y 2), b2K,n = 15(K/n)Var(Y ). We now show that

σ∗2

4
≤ 2σ̂2K,+ ≤ 4Var(Y ),

which would give the claim. We start with the lower bound, we want

1 ≤
2Var(Y )− 2aK,n − 4E[Y ]bK,n − 2b2K,n

σ∗2/4
,

and we show the stronger

max

{
2aK,n

σ∗2/4
,
4E[Y ]bK,n

σ∗2/4
,
2b2K,n

σ∗2/4

}
≤ 1

3

(
2Var(Y )

σ∗2/4
− 1

)
.

By construction, we have

8aK,n

σ∗2
=

√
Var(Y 2)

σ∗2

√
960K

n
,

16E[Y ]bK,n

σ∗2
=

E[Y ]
√

Var(Y )

σ∗2

√
3840K

n
,

8b2K,n

σ∗2
=

Var(Y )

σ∗2
120K

n
,

and the quantities AY , BY are defined in such a way that
√

Var(Y 2) = AY Var(Y ) and

E[Y ] = BY

√
Var(Y ). Therefore, it is enough that

AY (SNR+ 1)

√
8640K

n
≤ 8(SNR+ 1)− 1,

BY (SNR+ 1)

√
34560K

n
≤ 8(SNR+ 1)− 1,

(SNR+ 1)
360K

n
≤ 8(SNR+ 1)− 1.

We now divide by (SNR+ 1) and use 1/(SNR + 1) ≤ 1, the stronger condition

AY

√
8640K

n
≤ 7,

BY

√
34560K

n
≤ 7,

360K

n
≤ 7,
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is then satisfied if K ≤ n/max{177A2
Y , 706B2

Y , 52}, which is true by assumption on the

upper bound on the number of blocks. This completes the proof of σ∗2 ≤ 8σ̂2K,+ on the event

Ω(K).

We now deal with 2σ̂2K,+ ≤ 4Var(Y ). Since the quantity −b2K,n is negative, it is sufficient that

2Var(Y ) + 2aK,n + 2E[Y ]bK,n ≤ 2Var(Y ) and, dividing by σ∗2,

2aK,n

σ∗2
+

2E[Y ]bK,n

σ∗2
≤ 2Var(Y )

σ∗2
.

We show the stronger inequalities

2aK,n

σ∗2
≤ Var(Y )

σ∗2
,

2E[Y ]bK,n

σ∗2
≤ Var(Y )

σ∗2
,

by arguing as for the previous step. It is sufficient that

AY (SNR+ 1)

√
60K

n
≤ (SNR+ 1),

BY (SNR+ 1)

√
60K

n
≤ (SNR+ 1),

which holds if K ≤ n/max{60A2
Y , 60B

2
Y }, and the latter is true by assumption on the upper

bound on the number of blocks. This completes the proof of 2σ̂2K,+ ≤ 4Var(Y ) on the event

Ω(K).

Appendix C Proofs for adaptivity to the sparsity level s

C.1 A general algorithm for simultaneous adaptivity

In this section, we prove a more general theorem, that will yield Theorem 4.7 as a particular

case.

Algorithm for adaptation to sparsity. The steps of the adaptive procedure are as follows.

• Let w1, w2, w3 be three functions [1, d/e] → R+ and set M := ⌊log2(s+)⌋.

• For every m ∈ {1, . . . ,M + 1}, compute (β̂(2m), σ̂(2m)).

• Set

M :=

{
m ∈ {1, . . . ,M} : for all k ≥ m, |β̂(2k−1) − β̂(2k)|1 ≤ C1σ̂w1(2

k),

|β̂(2k−1) − β̂(2k)|2 ≤ C2σ̂w2(2
k) and |σ̂(2k−1) − σ̂(2k)| ≤ C3σ̂w3(2

k)

}
.

• Set m̃ := minM, with the convention that m̃ := M + 1 if M = ∅.
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• Define s̃ := 2m̃ and (β̃, σ̃) := (β̂(s̃), σ̂(s̃)).

Definition C.1. Let Θ be a subset of R
d × R+ and ‖ · ‖ a norm on Θ. For a given s ∈

{2, . . . , d/(2e)}, we say that an estimator θ̂(s) ∈ Θ robustly converges to θ∗ ∈ Θ in norm ‖ · ‖
with bound C1σ

∗w(s) if

inf
β∗∈Fs, σ∗>0

P⊗n
β∗,PX,ζ

(
∀D′ ∈ D(N), ‖θ̂(s)(D′)− θ∗‖ ≤ C1σ

∗w(s)
)
≥ 1− c̃6C2

( s
ed

)c̃5s − un,

(C.1)

inf
β∗∈F̃2s, σ∗>0

P⊗n
β∗,PX,ζ

(
∀D′ ∈ D(N), ‖θ̂(s)(D′)− θ∗‖ ≤ C1σ

∗w(s)
)
≥ 1− c̃6C2

(
2s

ed

)2c̃5s

− un.

(C.2)

and if the function w(·) : [1, d/e] → R+ satisfies the following conditions:

1. w(·) is increasing on [1, d/e] ;

2. There exists a constant C ′ > 0 such that, for all m = 1, . . . , ⌊log2(s+)⌋, we have

m∑

k=1

w(2k) ≤ C ′ · w(2m) ;

3. There exists a constant C ′′ > 0 such that, for all b = 1, . . . , s+,

w(2b) ≤ C ′′w(b).

Theorem C.2 (Joint adaptation of (β̂, σ̂) to s). Let s+ ∈ {2, . . . , d/(2e)} and for s =

1, . . . , 2s+, let (β̂(s), σ̂(s)) be a joint estimator of (β∗, σ∗) such that

1. β̂(s) robustly converges to β∗ in | · |1-norm with bound C1σ
∗w1(s);

2. β̂(s) robustly converges to β∗ in | · |2-norm with bound C2σ
∗w2(s);

3. σ̂(s) robustly converges to σ∗ in | · |-norm with bound C3σ
∗w3(s);

for some constants N > 0, c̃6 > 0 C1 > 0, un > 0 and for some functions w1, w2, w3 such that

C3w3(2s+) ≤ 1/2. Then, there exists constants C̃1, C̃2, C̃3 such that, for all s∗ ∈ {1, . . . , s+}
and β∗ ∈ F̃s∗ , the aggregated estimator (β̃, σ̃, s̃) satisfies

P⊗n
β∗,PX,ζ

(
∀D′ ∈ D(N), |β̃ − β∗|1 ≤ C̃1σ

∗w1(s
∗), |β̃ − β∗|2 ≤ C̃2σ

∗w2(s
∗), |σ̃ − σ∗| ≤ C̃3σ

∗w3(s
∗)
)

≥ 1− 21(log2(s+) + 1)2

(
c̃5

(
2s∗

d

)2c̃6s∗

+ un

)
− 21c̃6

(
2M+1

d

)c̃52M+1

− 21un

and

Pβ∗

(
∀D′ ∈ D(N), s̃ ≤ s∗

)
≥ 1− 6(log2(s+) + 1)2

(
c̃6

(
2s∗

d

)2c̃5s∗

+ un

)
− 6 c̃6

(
2M+1

d

)c̃52M+1

− 6un.

We adapt the proof given in [8, Section 7.3.1] to this new setting where the adaptation is done

on both estimators simultaneously. Proof of Theorem C.2 is given in Section C.3.
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C.2 Proof of Theorem 4.7

To prove Theorem 4.7, we will apply Theorem C.2. We first check that its assumption are

satisfied. We choose the functions w1(s) = s
√

(1/n) log(ed/s), w2(s) = w3(s) = w1(s) =

s1/2
√

(1/n) log(ed/s). By Lemma 4.4 in [8], w1, w2 and w3 satisfy the 3 conditions in Defini-

tion C.1.

It remains to check that the following bounds in probability (C.1) and (C.2) hold for all

s∗ = 1, . . . , s+. Applying Theorem 4.4 gives

inf
β∗∈Fs∗ , σ

∗>0
P⊗n
β∗,PX,ζ

(
sup

D′∈D(c̃3rO)

{
r
−1
2

∣∣σ̂(D′)− σ∗
∣∣ ∨ sup

p∈[1,2]
r
−1
p

∣∣β̂(D′)− β∗∣∣
p

}
≤ c̃4σ+

)
≥ 1− 4

( s∗
ed

)c̃5s∗
,

proving that the bound (C.1) is satisfied.

Furthermore, we have

K2s =

⌈
c̃22s

∗ log

(
ed

2s∗

)⌉
=

⌈
c̃22s

∗
(
log

(
ed

s∗

)
+ log(2)

)⌉
= γ(2s∗)Ks∗ ,

µ2s∗ = c̃µ

√
1

n
log

(
ed

2s∗

)
= c̃µ

√
1

n
log

(
ed

s∗

)
− log(2)

n
= γ̃(2s∗)µs,

with some γ(2s∗), γ̃(2s∗) ∈ [1/2, 2]2 . This gives β̂K2s∗/γ(2s
∗), µ2s∗/γ̃(2s

∗) = β̂Ks∗ ,µs∗
and, apply-

ing Theorem 4.4 with 2s∗ instead of s∗, yields

inf
β∗∈F2s∗ , σ

∗>0
P⊗n
β∗,PX,ζ

(
∀D′ ∈ D(c̃3rO),

{∣∣σ̂(D′)− σ∗
∣∣ ≤ c̃4σ+

√
2s∗

n
log

(
ed

2s∗

)

and ∀p ∈ [1, 2],
∣∣β̂(D′)− β∗∣∣

1
≤ c̃4σ+(2s

∗)1/p

√
1

n
log

(
ed

2s∗

))
≥ 1− 4

(2s∗
ed

)c̃52s∗
,

proving that the bound (C.2) is satisfied with c̃4 multiplied by 4.

C.3 Proof of Theorem C.2

We choose s ∈ [1, s+] and assume that β∗ ∈ Fs. Define P := Pβ∗,σ∗ and m0 := ⌊log2(s)⌋+ 1.

For p = 1, 2, define θ̂
(p)
(s) := β̂(s), θ̃

(p) := β̃, θ(p),∗ := β∗ and dp be the distance on R induced by

the norm | · |p. Define θ̂
(3)
(s) = σ̂(s), θ̃

(3) := σ̃, θ(3),∗ := σ∗ and d3 be the distance on R induced

by the absolute value.

Bound on σ̂ with high probability. Combining the definition σ̂ = σ̂2s+ with the assump-

tions that C3w3(2s+) ≤ 1/2 and that σ̂(s) robustly converges to σ∗ in | · |-norm with bound

C3σ
∗w3(s), we get

P
(
∀D′ ∈ D(N), σ∗/2 ≤ σ̂ ≤ (3/2)σ∗

)
≥ 1− c̃6

(
2M+1

d

)c̃52M+1

− un (C.3)
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Bound on the probability P(∃D′ ∈ D(N), m̃ ≥ m0 + 1). We have

P(∃D′ ∈ D(N), m̃ ≥ m0 + 1) ≤
M∑

m=m0+1

P(∃D′ ∈ D(N), m̃ = m0 + 1)

≤
M∑

m=m0+1

M∑

k=m

P

(
∃D′ ∈ D(N), |β̂(2k−1) − β̂(2k)|1 > 4C1σ̂w1(2

k)

or |β̂(2k−1) − β̂(2k)|2 > 4C2σ̂w2(2
k) or |σ̂(2k−1) − σ̂(2k)| > 4C3σ̂w3(2

k)

)

≤
M∑

m=m0+1

M∑

k=m

P

(
∃D′ ∈ D(N),∃p ∈ [3], dp

(
θ̂
(p)

(2k−1)
, θ̂

(p)

(2k)

)
> 4Cpσ̂wp(2

k)

)

≤
3∑

p=1

M∑

m=m0+1

M∑

k=m

P

(
∃D′ ∈ D(N), dp

(
θ̂
(p)

(2k−1)
, θ̂

(p)

(2k)

)
> 4Cpσ̂wp(2

k)

)

≤
3∑

p=1

M∑

m=m0+1

M∑

k=m

P

(
∃D′ ∈ D(N), dp

(
θ̂
(p)

(2k−1)
, θ(p),∗

)
> 4Cpσ̂wp(2

k)

)

+ P

(
∃D′ ∈ D(N), dp

(
θ̂
(p)

(2k)
, θ(p),∗

)
> 4Cpσ̂wp(2

k)

)

≤ 2
3∑

p=1

M∑

m=m0+1

M∑

k=m−1

P

(
∃D′ ∈ D(N), dp

(
θ̂
(p)

(2k−1)
, θ(p),∗

)
> 4Cpσ̂wp(2

k)

)

≤ 2

3∑

p=1

M∑

m=m0+1

M∑

k=m−1

P

(
∃D′ ∈ D(N), dp

(
θ̂
(p)

(2k−1)
, θ(p),∗

)
> 4Cpσ̂wp(2

k), σ̂ ≥ σ

2

)

+ 6P

(
∃D′ ∈ D(N), σ̂ <

σ

2

)
.

Combining the previous equation with Equation (C.3), and then with the assumption on the

bound on the estimator θ̂
(p)

(2k−1)
for the distance dp, we get

P(∃D′ ∈ D(N), m̃ ≥ m0 + 1)

≤ 2

3∑

p=1

M∑

m=m0+1

M∑

k=m−1

P

(
∃D′ ∈ D(N), dp

(
θ̂
(p)

(2k−1)
, θ(p),∗

)
> 2Cpσ̂wp(2

k)

)

− 6c̃6

(
2M+1

d

)c̃52M+1

− 6un

≤ 6M2c̃6

((
2s

p

)2c̃5s

+ un

)
− 6c̃6

(
2M+1

d

)2M+1c̃5

− 6un

≤ 6(log2(s+) + 1)2c̃6

((
2s

p

)2c̃6s

+ un

)
− 6c̃6

(
2M+1

d

)c̃52M+1

− 6un. (C.4)

This gives the bound on s̃ as claimed.
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Bound on the deviation probability of θ̃(p). For any a > 0, we have

P
(
∃D′ ∈ D(N), dp(θ̃

(p), θ(p),∗) ≥ a
)
≤ P

(
∃D′ ∈ D(N), dp(θ̃

(p), θ(p),∗) ≥ a, m̃ ≤ m0

)

+ P(∃D′ ∈ D(N), m̃ ≥ m0 + 1). (C.5)

On the event {m̃ ≤ m0}, we have the decomposition

dp(θ̃
(p), θ(p),∗) ≤

m0∑

k=m̃+1

dp

(
θ̂
(p)

(2k−1)
, θ̂

(p)

(2k)

)
+ dp(θ̂

(p)
(2m0 ), θ

(p),∗). (C.6)

Using the assumption on the function wp, we get that,

m0∑

k=m̃+1

dp

(
θ̂
(p)

(2k−1)
, θ̂

(p)

(2k)

)
≤

m0∑

k=m̃+1

4σ̂C0w(2
k)

≤ 4σ̂CpC
′wp(2

m0) ≤ 4σ̂CpC
′C ′′wp(s). (C.7)

We have 2m0 ≤ 2s, therefore applying Assumption (C.2), we have with Pβ∗, σ∗ -probability at

least 1− c̃5 (2s/p)
2c̃6s − un, for all D′ ∈ D(N),

dp(θ̂
(p)
(2m0 )

, θ(p),∗) ≤ Cpσ̂w(2s) ≤ CpC
′′σ̂w(s). (C.8)

Combining Equations (C.6), (C.7), (C.8) and (C.3), we get with Pβ∗-probability at least

1− c̃5(2s/p)
2c̃6s − c̃5(2

M+1/p)c̃62
M+1 − 2un, for all D′ ∈ D(N),

dp(θ̃
(p), θ(p),∗) ≤

(
4CpC

′C ′′ + (3/2)CpC
′′)σw(s). (C.9)

Combining Equation (C.4) with Equations (C.5) and (C.9), we finally get that

P

(
∃D′ ∈ D(N), dp(θ̃

(p), θ(p),∗) ≥
(
4CpC

′C ′′ + (3/2)CpC
′′)σwp(s)

)

≤ 7(log2(s+) + 1)2

(
c̃6

(
2s

p

)2c̃5s

+ un

)
− 7 c̃6

(
2M+1

d

)c̃52M+1

− 7un.

By a union bound, we then obtain

Pβ∗, σ∗

(
∀D′ ∈ D(N),∀p = 1, 2, 3, dp(θ̃

(p), θ(p),∗) ≥
(
4C ′C ′′ + (3/2)C ′′)Cpσwp(s)

)

≥ 1− 21(log2(s+) + 1)2

(
c̃6

(
2s

d

)2c̃5s

+ un

)
− 21 c̃6

(
2M+1

d

)c̃52M+1

− 21un.

as claimed.

Appendix D Auxiliary results

In this section we give auxiliary results that are used in the proofs of the main results.
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Lemma D.1 (Lemma 6 in [15]). Let ρ ≥ 0, Γf∗(ρ) :=
⋃

f∈F : ‖f−f∗‖≤ρ/20

(
∂|| · ||

)
f
. For all

g ∈ F , we have

‖f∗‖ − ‖g‖ ≤ ρ

10
− sup

z∗∈Γf∗(ρ)
z∗(g − f∗).

We recall here the definition of quantiles we used in Section 2.4. For any K ∈ N, set [K] =

{1, . . . ,K}. For all α ∈ (0, 1) the α−quantile of a vector x = (x1, . . . , xK) ∈ R
K is any element

Qα[x] of the set

Qα[x] :=
{
u ∈ R :

∣∣{k ∈ [K] : xk ≥ u}
∣∣ ≥ (1− α)K,

∣∣{k ∈ [K] : xk ≤ u}
∣∣ ≥ αK

}
.

For all t ∈ R, we write Qα[x] ≥ t when there exists J ⊂ [K] such that |J | ≥ (1 − α)K and,

for all j ∈ J, xj ≥ t. We write Qα[x] ≤ t if there exists J ⊂ [K] such that |J | ≥ αK and, for

all j ∈ J, xj ≤ t.

Lemma D.2. We have the following properties.

1. Monotonicity

For all α ∈ (0, 1), β ∈ (0, α] and x ∈ R
K , Qβ[x] ≤ Qα[x].

2. Opposite

For all α ∈ (0, 1) and x ∈ R
K , Qα[x] ≥ −Q1−α[−x].

3. Linearity

For all α ∈ (0, 1), x ∈ R
K and a, b ∈ R, Qα[ax+ b] = |a|Qα[sgn(a)x] + b.

4. Difference

For all α, β ∈ (0, 1) and x,y ∈ R
K , Qα[x− y] ≤ Qα+β[x]−Qβ[y].

5. Triangular

For all α, β ∈ (0, 1) and x,y ∈ R
K , Qα[x+ y] ≤ Qα+β[x] +Q1−β[y].

Proof of Lemma D.2. We prove property 1. Write x = (xj)j∈[K]. The property Qβ[x] ≤
Qα[x] is true by construction, because Qα[x] ≤ u implies that there are at least αK ≥ βK

components such that xj ≤ u.

We prove property 2. Write x = (xj)j∈[K] and Qα[x] = u, then there are at least (1 − α)K

components such that xj ≥ u and at least αK components such that xj ≤ u. We now show

that u ≥ −Q1−α[−x]. This is equivalent to Q1−α[−x] ≥ −u, which requires at least αK

components such that −xj ≥ −u, that is, xj ≤ u. The latter is true by construction.

We prove property 3. Write x = (xj)j∈[K]. The property Qα[ax+b] = Qα[ax]+b follows from

the definition, that is, if Qα[ax] = u then there are at least (1 − α)K components such that

axj ≥ u and at least αK components such that axj ≤ u. Thus, the same components also

satisfy axj+b ≥ u+b or axj+b ≤ u+b. It remains to show that Qα[ax] = |a|Qα[sgn(a)x]. Let

Qα[ax] = u.We show that we have at least (1−α)K components sgn(a)xj ≥ u/|a| and at least
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αK components sgn(a)xj ≤ u/|a|. The latter conditions are equivalent to |a| sgn(a)xj ≥ u

and |a| sgn(a)xj ≤ u. This is enough to conclude since a = sgn(a)|a| and Qα[ax] = u.

We prove property 4. Write x = (xj)j∈[K], y = (yi)i∈[K] and Qα+β[x] = u, Qβ[y] = l. By

construction:

• there are at least (1− α− β)K components xj ≥ u;

• there are at least (α+ β)K components xj ≤ u;

• there are at least (1− β)K components yi ≥ l;

• there are at least βK components yi ≤ l.

With (x−y) = (xk−yk)k∈[K], we want to show that Qα[x−y] ≤ u− l, which means there are

αK components xk− yk ≤ u− l. We now count how many times this inequality fails. In order

for a component to be xk − yk ≥ u− l, it is necessary that either xk ≥ u, which can happen

at most (1− α− β)K times, or yk ≤ l, which can happen at most βK times. Therefore, the

inequality xk − yk ≥ u− l is satisfied by at most (1−α−β)K +βK = (1−α)K components,

leaving at least αK components where xk − yk ≤ u− l. This is enough to conclude.

We prove property 5 as a consequence of property 4 and property 2.

In the following, we use the notation [K] = {1, . . . ,K} and [K]I := {k ∈ [K] : Bk ⊂ I}. We

denote by KI the cardinality of [K]I .

Lemma D.3. Let Z = Z(X, Y ) be a real-valued random variable. Let η ∈ (0, 1) and

γ, δK,n, x > 0 such that γ(1−KV ar(Z)/(nδ2K,n)−x) ≥ max{η, 1−η}. Let K ∈ [|O|/(1−γ), n].
There exists an event Ω = Ω(Z,K) with P(Ω) ≥ 1− exp(−Kγx2/2) such that, on this event

∣∣{k ∈ [K] : |PBk
(Z)− E[Z]| ≤ δK,n}

∣∣ ≥ max{η, 1 − η}K,

thus the quantiles Qη[Z], Q1−η[Z] belong to the interval [E[Z]− δK,n,E[Z] + δK,n].

Proof of Lemma D.3. We have

|{k ∈ [K] : |PBk
(Z)− E[Z]| ≤ δK,n}| ≥

∑

k∈[K]I

1{|PBk
(Z)− E[Z]| ≤ δK,n}

= KI −
∑

k∈[K]I

PX{|PBk
(Z)− E[Z]| ≥ δK,n}

−
∑

k∈[K]I

(
1{|PBk

(Z)− E[Z]| ≥ δK,n} − PX{|PBk
(Z)− E[Z]| ≥ δK,n}

)
.

We bound the second term using Chebychev’s inequality

∑

k∈[K]I

PX{|PBk
(Z)− E[Z]| ≥ δK,n} ≤ KI

V ar[PBk
(Z)− E[Z]]

δ2K,n

= KI
V ar[Z]

|Bk|δ2K,n

= KI
KV ar[Z]

nδ2K,n

.
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We bound the last term using Hoeffding’s inequality

∑

k∈[K]I

(
1{|PBk

(Z)− E[Z]| ≥ δK,n} − PX{|PBk
(Z)− E[Z]| ≥ δK,n}

)
≤ xKI ,

on an event Ω(Z,K) of probability greater than 1− exp(−x2KI/2). Combining the previous

inequalities, we get that on Ω(Z,K),

|{k ∈ [K]I : |PBk
(Z)− E[Z]| ≤ δK,n}| ≥ KI

(
1− KV ar[Z]

nδ2K,n

− x

)
≥ Kγ

(
1− KV ar[Z]

nδ2K,n

− x

)
,

and the last term is bigger than max{η, 1−η}K by assumption. By definition, this also means

that the quantiles Qη[Z], Q1−η [Z] belong to the interval [E[Z]− δK,n,E[Z] + δK,n].

Lemma D.4. Let K ∈ [16|O|, n]. On an event Ω(K) with probability P(Ω(K)) ≥ 1 −
exp(−K/4320), the quantiles Q1/8,K [ζ2], Q7/8,K [ζ2] belong to the interval [σ∗2 − δK,n, σ

∗2 +

δK,n], with δK,n defined in (A.2).

Proof of Lemma D.4. We use Lemma D.3 with η = 1/8, Z = ζ2, Var(Z) = E[ζ4] − E[ζ2]2 =

σ∗4(κ∗ − 1), η = 1/8, γ = 15/16, x = 1/45, and δ2K,n ≥ 25(K/n)Var(Z). Then,

γ

(
1− x− KV ar(Z)

nδ2K,n

)
≥ 15

16

(
1− 1

45
− 1

25

)
=

15

16
− 7

120
>

7

8
= 1− η.

The probability of the corresponding event is P(Ω(K)) ≥ 1−exp(−Kγx2/2) = 1−exp(−K/4320).

Lemma D.5 (Lemma 3 in [15]). Grant Assumption 3.1. Fix η ∈ (0, 1) and ρ ∈ (0,+∞]. Let

α, γ, γP , x be positive real numbers such that γ(1 − α − x − 16γP θ0) ≥ 1 − η. Assume that

K is an integer in [|O|/(1 − γ), nα/4θ20 ]. Then, there exists an event ΩQ(K) with probability

P(ΩQ(K)) ≥ 1 − 4 exp(−Kγx2/2) and, on this event: for all f ∈ F with ‖f − f∗‖ ≤ ρ, if

‖f − f∗‖2,X ≥ rP (ρ, γP ) then

∣∣{k ∈ [K] : PBk
(f − f∗)2 ≥ (4θ0)

−2‖f − f∗‖22,X
}∣∣ ≥ (1− η)K

In particular, Qη,K [(f − f∗)2] ≥ (4θ0)
−2‖f − f∗‖22,X.

Lemma D.6 (Lemma 4 in [15]). Grant Assumption 3.1. Fix η ∈ (0, 1) and ρ ∈ (0,+∞].

Let α, γ, γM , x be positive real numbers such that γ(1 − α − x − 8γM/ε) ≥ 1 − η. Assume

that K is an integer in [|O|/(1 − γ), n]. Then, there exists an event ΩM (K) with probability

P(ΩM(K)) ≥ 1− exp(−Kγx2/2) and, on this event: for all f ∈ F with ‖f − f∗‖ ≤ ρ,

∣∣{k ∈ [K] : |(PBk
− E)(2ζ(f − f∗)| ≤ α2

M

}∣∣ ≥ (1− η)K,

with

α2
M := εmax

(
16θ2m
ε2α

K

n
, r2M (ρ, γM ), ‖f − f∗‖22,X

)
.
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Lemma D.7. Let K ∈
[
32|O|, n/(372θ20)

]
. There exists an event Ω(K) of probability bigger

than 1−2 exp(−K/8928) such that, for all ρ ∈ {ρK , 2ρK}, and all f ∈ F such that ‖f−f∗‖ ≤
ρ, we have

1. if ‖f − f∗‖2,X ≥ rP (ρ, γP ), then Q1/16,K

(
(f − f∗)2

)
≥ (4θ0)

−2‖f − f∗‖22,X;

2. Q15/16,K

[
− 2ζ(f − f∗)

]
≤ E[−2ζ(f − f∗)(X)] + α2

M ,

3. Q1/16,K [−2ζ(f − f∗)] ≥ E[−2ζ(f − f∗)(X)] − α2
M .

4. Q15/16,K

[
2ζ(f − f∗)

]
≤ α2

M ,

with

α2
M := εmax

(
1488θ2m
ε2

K

n
, r2M (ρ, γM ), ‖f − f∗‖22,X

)
, θm = θ1m

∗.

Furthermore, for r(·) as in Theorem 3.3 and ‖f − f∗‖2,X ≤ r(ρ), we find α2
M ≤ 4εr2(ρ).

Proof of Lemma D.7. The first property follows from applying Lemma D.5 with η = 1/16,

ρ ∈ {ρK , 2ρK}, α = x = 1/93, γ = 31/32, γP = 1/(1488θ0) and checking that γ(1 − α − x−
16γP θ0) ≥ 1− η. With our choices, we find

31

32

(
1− 1

93
− 1

93
− 16

1488

)
=

31

32

(
1− 1

31

)
=

30

32
=

15

16
.

The corresponding event Ω1 has probability at least 1− exp(−Kγx2/2) = 1− exp(−K/8928).

The second and third properties follow from applying Lemma D.6 with η = 1/16, ρ ∈ ρK , 2ρK ,

α = x = 1/93, γ = 31/32, γM = ε/744 and checking that γ(1−α−x− 8γM/ε) ≥ 1− η. With

our choices, we find

31

32

(
1− 1

93
− 1

93
− 8

744

)
=

31

32

(
1− 1

31

)
=

30

32
=

15

16
.

The corresponding event Ω2 has probability at least 1− exp(−Kγx2/2) = 1− exp(−K/8928).

The fourth property holds on the same event Ω2 given above, and is a consequence of the

nearest point theorem and the convexity of the function class F , which guarantee that E[2ζ(f−
f∗)(X)] ≤ 0.

Given all the above, the probability of the event Ω(K) = Ω1∩Ω2 is at least 1−P(Ω1)−P(Ω1) =

1− 2 exp(−K/8928).

We finally bound, with r2(ρK) = 384θ2mK/(nε
2),

α2
M

r2(2ρK)
≤ α2

M

r2(ρK)
= εmax

(
1488θ2m
ε2

K

n

1

r2(ρK)
, 1

)
= ε

1488

384
< 4ε.
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Lemma D.8. Let K ∈ [32|O|, n/(372θ20)]. There exists an event ΩQ(K) of probability bigger

than 1−exp(−K/8928) such that, for all ρ ∈ {ρK , 2ρK}, and all f ∈ F such that ‖f−f∗‖ ≤ ρ,

we have

Q15/16,K

[
(f − f∗)2

]
≤ ‖f − f∗‖22,X + α2

Q,

with

α2
Q := εmax

(
‖f − f∗‖22,X

1488θ41
ε2

K

n
, r2Q(ρ, γQ), ‖f − f∗‖22,X

)
.

Proof of Lemma D.8. Take η = 1/16, γ = 31/32, α = x = 1/93 and γQ = ε/372. We follow

the steps of the proof of Lemma 4 in [15]. For all f ∈ F and ρ > 0, set B(f, ρ) = {g ∈ F :

‖g − f‖ ≤ ρ}. For all k ∈ [K], set Dk = (Xi, Yi)i∈Bk
and

gf (Dk) := (PBk
− E)[(f − f∗)2],

α2
Q(f) := εmax

(
‖f − f∗‖22,X

4θ41
ε2α

· K
n
, r2Q(ρ, γQ), ‖f − f∗‖22,X

)
.

Let [K]I = {k ∈ [K] : Bk ⊂ I} and consider any k ∈ [K]I . An application of Markov

inequality gives

P
(
2|gf (Dk)| ≥ α2

Q(f)
)
≤

4E
[
|gf (Dk)|2

]

α2
Q(f) · α2

Q(f)
.

The denominator of the last term in the previous display can be bounded below using both

α2
Q(f) ≥ ε‖f − f∗‖22,X and α2

Q(f) ≥ ‖f − f∗‖22,X4θ41K/(εαn). This gives

P
(
2|gf (Dk)| ≥ α2

Q(f)
)
≤

4E
[(
(PBk

− PX)(f − f∗)2
)2]

‖f − f∗‖22,X
4θ41
α

K
n ‖f − f∗‖22,X

≤
∑

i∈Bk
Var

(
(f − f∗)2(Xi)

)

|Bk|2 θ41
α

K
n ‖f − f∗‖42,X

≤ E[(f − f∗)4(X)]

|Bk|θ
4
1
α

K
n ‖f − f∗‖42,X

≤
α‖f − f∗‖44,X
θ41‖f − f∗‖42,X

≤ α,

since ‖f − f∗‖4,X ≤ θ1‖f − f∗‖2,X by Assumption 3.1. The following bound follows exactly

from the proof of Lemma 4 in [15]. Take J = ∪k∈[K]IBk and write rQ(ρ) = rQ(ρ, γQ). Take

B(f∗, ρ, rQ(ρ)) the set of functions f ∈ B(f∗, ρ) such that ‖f − f∗‖2,X ≤ rQ(ρ). We have

E

[
sup

f∈B(f∗ ,ρ)

∑

k∈[K]I

ξk
gf (Dk)

α2
Q(f)

]
≤ 2

εr2Q(ρ)
E

[
sup

f∈B(f∗,ρ,rQ(ρ))

∣∣∣
∑

k∈[K]I

ξk(PBk
− E)(f − f∗)2

∣∣∣
]
.
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Furthermore, we can apply the symmetrization argument in the proof of Lemma 4 in [15].

Together with the definition of rQ(·), we find

E

[
sup

f∈B(f∗,ρ)

∑

k∈[K]I

ξk
gf (Dk)

α2
Q(f)

]
≤ 4K

εn
γQ|[K]I |

n

K
=

4γQ
ε

|[K]I |.

Now we utilize the function ψ found in the proof of Lemma 4 in [15]. On an event Ω(K) with

probability at least 1− exp(−Kγx2/2) = 1− exp(−K/8928),
∑

k∈[K]I

1
(
|gf (Dk)| < α2

Q(f)
)

≥ (1− α)|[K]I | − 2E

[
sup

f∈B(f∗,ρ)

∑

k∈[K]I

ψ

( |gf (Dk)|
α2
Q(f)

)]
+ |[K]I |x

≥ (1− α)|[K]I | − 2E

[
sup

f∈B(f∗,ρ)

∑

k∈[K]I

ξk
|gf (Dk)|
α2
Q(f)

]
− |[K]I |x

≥ |[K]I |
(
1− α− x− 4γQ

ε

)

≥ γK

(
1− α− x− 4γQ

ε

)
.

We now check that the latter is bigger than (1− η)K. With our choices, this gives

31

32

(
1− 1

93
− 1

93
− 4

372

)
=

31

32

(
1− 1

31

)
=

30

32
=

15

16
,

which is what we want. As a consequence, Q15/16,K [(f − f∗)2] ≤ ‖f − f∗‖22,X + α2
Q(f).

In the next result we use the event Ω(K) := Ω1(K) ∩ Ω2(K) ∩ Ω3(K) with Ω1(K),Ω2(K) and

Ω3(K) respectively defined as the events in Lemma D.4, Lemma D.7 and Lemma D.8. The

event Ω(K) has probability at least 1− 4 exp(−K/8920). We also denote by r(·) any function

satisfying r(ρ) ≥ max{rP (ρ, γP ), rM (ρ, γM )}. For any integer K and cρ ∈ {1, 2}, we will use

the notation αK,cρ := cαr(cρρ) and δ
2
K,n := 25m∗4K/n.

Lemma D.9. Let C2 = 384θ21c
2
rc

2
ακ

1/2
+ and

K ∈
[
32|O|, n

372θ20
∧ n

25κ+
∧ nε2

C2

]
.

On the event Ω(K) defined above, for all f ∈ F such that ‖f − f∗‖ ≤ cρρK , ‖f − f∗‖2,X ≤
r(cρρK) and |σ − σ∗| ≤ αK,cρ,

E[−2ζ(f − f∗)(X)] ≤ 2σ∗ + αK,cρ

2c
TK,µ(f

∗, σ∗, f, σ) +
2σ∗ + αK,cρ

2c
µρ+ α2

M

+
8(2σ∗ + αK,cρ)

cσ∗(2σ∗ − αK,cρ)
2
δ2K,n +

αK,cρ

c(2σ∗ − αK,cρ)

(
2σ∗r(cρρK) + r2(cρρK) + α2

Q + α2
M

)
,

where α2
M , α

2
Q are given in Lemma D.7 and Lemma D.8.
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Proof of Lemma D.9. We start by applying Lemma D.7, which gives

E[−2ζ(f − f∗)(X)] ≤ Q1/4,K [−2ζ(f − f∗)] + α2
M ≤ Q1/4,K [(f − f∗)2 − 2ζ(f − f∗)] + α2

M ,

the second inequality follows from the fact that (f − f∗)2 is positive. Using the definition of

TK,µ(f
∗, σ∗, f, σ) in (2.9) and the quantile properties in Lemma D.2, we can rewrite

E[−2ζ(f − f∗)(X)]

≤ Q1/4,K [(f − f∗)2 − 2ζ(f − f∗)] + α2
M

=
σ + σ∗

2c
Q1/4,K

[
2c
ℓf − ℓf∗

σ + σ∗

]
+ α2

M

=
σ + σ∗

2c
Q1/4,K

[
Rc(ℓf∗ , σ∗, ℓf , σ)− (σ − σ∗)

(
1− 2

ℓf + ℓf∗

(σ + σ∗)2

)]
+ α2

M

≤ σ + σ∗

2c

(
Q1/2,K

[
Rc(ℓf∗ , σ∗, ℓf , σ)

]
−Q1/4,K

[
(σ − σ∗)

(
1− 2

ℓf + ℓf∗

(σ + σ∗)2

)])
+ α2

M

≤ σ + σ∗

2c

(
Q1/2,K

[
Rc(ℓf∗ , σ∗, ℓf , σ)

]
+ µ(‖f‖ − ‖f∗‖)

)
+
σ + σ∗

2c
µρ+ α2

M

− σ + σ∗

2c
Q1/4,K

[
(σ − σ∗)

(
1− 2

ℓf + ℓf∗

(σ + σ∗)2

)]

=
σ + σ∗

2c
TK,µ(f

∗, σ∗, f, σ) +
σ + σ∗

2c

(
µρ−Q1/4,K

[
(σ − σ∗)

(
1− 2

ℓf + ℓf∗

(σ + σ∗)2

)])
+ α2

M .

Since σ + σ∗ ≤ 2σ∗ + αK,cρ, it remains to show that

−σ + σ∗

2c
Q1/4,K

[
(σ − σ∗)

(
1− 2

ℓf + ℓf∗

(σ + σ∗)2

)]
(D.1)

≤ 8(2σ∗ + αK,cρ)

cσ∗(2σ∗ − αK,cρ)
2
δ2K,n +

αK,cρ

c(2σ∗ − αK,cρ)

(
2σ∗r(cρρK) + r2(cρρK) + α2

Q + α2
M

)
.

First, by the quantile properties in Lemma D.2, we have

−σ + σ∗

2c
Q1/4,K

[
(σ − σ∗)

(
1− 2

ℓf + ℓf∗

(σ + σ∗)2

)]
≤ σ + σ∗

2c
Q3/4,K

[
(σ − σ∗)

(
2
ℓf + ℓf∗

(σ + σ∗)2
− 1

)]
.

By expanding ℓf = ℓf∗ + ℓf − ℓf∗ , we get

σ + σ∗

2c
Q3/4,K

[
(σ − σ∗)

(
2
ℓf + ℓf∗

(σ + σ∗)2
− 1

)]

=
σ + σ∗

2c
Q3/4,K

[
(σ − σ∗)

(
4ℓf∗

(σ + σ∗)2
− 1

)
+ (σ − σ∗)

2(ℓf − ℓf∗)

(σ + σ∗)2

]

≤ σ + σ∗

2c
Q7/8,K

[
(σ − σ∗)

(
4ℓf∗

(σ + σ∗)2
− 1

)]
+
Q7/8,K [(σ − σ∗)(ℓf − ℓf∗)]

c(σ + σ∗)
.

Since the term (σ−σ∗) has different signs for σ < σ∗ and σ > σ∗, we need to account for this

in the bounds. We focus first on the term

Q7/8,K

[
(σ − σ∗)

(
4ℓf∗

(σ + σ∗)2
− 1

)]

≤ max

{
sup

σ∈(σ∗ ,σ∗+αK,cρ ]
(σ − σ∗)

(
4Q7/8,K [ℓf∗ ]

(σ + σ∗)2
− 1

)
, sup

σ∈[σ∗−αK,cρ ,σ
∗)
(σ∗ − σ)

(
1− 4Q7/8,K [ℓf∗ ]

(σ + σ∗)2

)}
.
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Thanks to Lemma D.4, the quantile Q7/8,K [ℓf∗ ] = Q7/8,K [ζ2] is in the interval [σ∗2−δK,n, σ
∗2+

δK,n], therefore

Q7/8,K

[
(σ − σ∗)

(
4ℓf∗

(σ + σ∗)2
− 1

)]

≤ max

{
sup

σ∈(σ∗,σ∗+αK,cρ ]
(σ − σ∗)

(
4(σ∗2 + δK,n)

(σ + σ∗)2
− 1

)
, sup

σ∈[σ∗−αK,cρ ,σ
∗)
(σ∗ − σ)

(
1− 4(σ∗2 − δK,n)

(σ + σ∗)2

)}
.

(D.2)

We denote a2+ = σ∗2 + δK,n and a2− = σ∗2 − δK,n. The first function in the latter display is

positive (or zero) for σ ∈ [σ∗, 2a+ − σ∗]. Let σa+ be the point achieving the maximum, then

σa+ belongs to the same interval and |σa+ − σ∗| ≤ 2a+ − 2σ∗ = 2σ∗(
√

1 + δK,n/σ∗2 − 1). By

construction, the quantity δK,n/σ
∗2 is smaller than one, since

δ2K,n

σ∗4
=

25µ∗4K
σ∗4n

=
25κ∗K
n

≤ 25κ+K

n
≤ 1

and K ≤ n/(25κ+). For all x ∈ (0, 1), the inequality
√
1 + x ≤ 1 + x holds, so that

|σa+ − σ∗| ≤ 2σ∗
(√

1 +
δK,n

σ∗2
− 1

)
≤ 2σ∗

(
1 +

δK,n

σ∗2
− 1

)
=

2δK,n

σ∗
.

Now we repeat the same argument for the second function in (D.2), using
√
1− x ≥ 1−x for all

x ∈ (0, 1), thus getting a point σa− achieving the maximum such that |σa− − σ∗| ≤ 2δK,n/σ
∗.

By Lemma A.1, we have 2δK,n/σ
∗ < αK,cρ < σ∗. With δa = 2δK,n/σ

∗, this yields

Q7/8,K

[
(σ − σ∗)

(
4ℓf∗

(σ + σ∗)2
− 1

)]

≤ max

{
(σ∗ − σa−)

(
1− 4a2−

(σa− + σ∗)2

)
, (σa+ − σ∗)

(
4a2+

(σa+ + σ∗)2
− 1

)}

≤ 2δK,n

σ∗
max

{
1− 4σ∗2 − 4δK,n

(2σ∗ − δa)2
,
4σ∗2 + 4δK,n

(2σ∗ + δa)2
− 1

}

=
2δK,n

σ∗
max

{
4σ∗δa + δ2a + 4δK,n

(2σ∗ − δa)2
,
4δK,n − 4σ∗δa − δ2a

(2σ∗ + δa)2

}

≤
16δ2K,n

σ∗(2σ∗ − δa)2

≤
16δ2K,n

σ∗(2σ∗ − αK,cρ)
2
.

One last term needs to be bounded in order to obtain (D.1). We only consider the case when

σ ∈ [σ∗, σ∗ + αK,cρ], the case σ ∈ [σ∗ − αK,cρ, σ
∗] follows the same steps. With ℓf∗ − ℓf =

2ζ(f − f∗)− (f − f∗)2, we get

1

c(σ + σ∗)
Q7/8,K [(σ − σ∗)(ℓf − ℓf∗)] =

(σ − σ∗)
c(σ + σ∗)

Q7/8,K

[
(f − f∗)2 − 2ζ(f − f∗)

]

≤ αK,cρ

c(2σ∗ − αK,cρ)

(
Q15/16,K

[
(f − f∗)2

]
+Q15/16,K [−2ζ(f − f∗)]

)

≤ αK,cρ

c(2σ∗ − αK,cρ)

(
‖f − f∗‖22,X + α2

Q + E[−2ζ(f − f∗)(X)] + α2
M

)
,
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the last inequality follows from Lemma D.7 and Lemma D.8. By the Cauchy-Schwarz inequal-

ity, E[−2ζ(f − f∗)(X)] ≤ 2σ∗‖f − f∗‖2,X ≤ 2σ∗r(cρρK). By putting everything together, we

conclude

E[−2ζ(f − f∗)(X)] ≤ 2σ∗ + αK,cρ

2c
TK,µ(f

∗, σ∗, f, σ) +
2σ∗ + αK,cρ

2c
µρ+ α2

M

+
8(2σ∗ + αK,cρ)

cσ∗(2σ∗ − αK,cρ)
2
δ2K,n +

αK,cρ

c(2σ∗ − αK,cρ)

(
2σ∗r(cρρK) + r2(cρρK) + α2

Q + α2
M

)
,

which gives the claim.
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