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Abstract

In various applications of regression analysis, in addition to errors in the dependent
observations also errors in the predictor variables play a substantial role and need to be in-
corporated in the statistical modeling process. In this paper we consider a nonparametric
measurement error model of Berkson type with fixed design regressors and centered ran-
dom errors, which is in contrast to much existing work in which the predictors are taken
as random observations with random noise. Based on an estimator that takes the error
in the predictor into account and on a suitable Gaussian approximation, we derive finite
sample bounds on the coverage error of uniform confidence bands, where we circumvent
the use of extreme-value theory and rather rely on recent results on anti-concentration of
Gaussian processes. In a simulation study we investigate the performance of the uniform
confidence sets for finite samples.

Keywords: Berkson errors-in-variables; deconvolution; Gaussian approximation; uniform con-
fidence bands

1 Introduction

In mean regression problems a predictor variable X, either a fixed design point or a random
observation, is used to explain a response variable Y in terms of the conditional mean re-
gression function g(x) = E[Y |X = x]. The case of a random covariate occurs when both
X and Y are measured during an experiment and the case of fixed design corresponds to
situations in which covariates can be set by the experimenter such as a machine setting, say,
in a physical or engineering experiment. Writing ε = Y − E[Y |X] gives the standard form
of the non-parametric regression model Y = g(X) + ε, that is, the response is observed with
an additional error but the predictor can be set or measured error-free. In many experimen-
tal settings this is not a suitable model assumption since either the predictor can also not be
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measured precisely, or since the presumed setting of the predictor does not correspond exactly
to its actual value. There are subtle differences between these two cases, which we illustrate
by the example of drill core measurements of the content of climate gases in the polar ice.
Assume that the content of climate gas Y at the bottom of a drill hole is quantified. The
depth of the drill hole X is measured independently with error ∆ giving the observation W .
A corresponding regression model is of the following form

Y = g(X) + ε, W = X + ∆, (1)

where W , ∆ and ε are independent, ∆ and ε are centered, and observations of (Y,W ) are
available. This model is often referred to as classical errors-in-variables model. A change in
the experimental set-up might require a change in the model that is imposed. Assume that
in our drill core experiment we fix specific depths w at which the drill core is to be analyzed.
However, due to imprecisions of the instrument we cannot accurately fix the desired value of
w, rather the true (but unknown) depth where the measurement is acquired is w + ∆. In
this case a corresponding model, referred to as Berkson errors-in-variables model (Berkson,
1950), is of the form

Y = g(w + ∆) + ε, (2)

where ∆ and ε are independent and centered, w is set by the experimenter and Y is ob-
served. In this paper we construct uniform confidence bands in the non-parametric Berkson
errors-in-variables model with fixed design (2). In particular, we provide finite sample bounds
on the coverage error of these bands. We also address the question how to choose the grid
when approximating the supremum of a Gaussian process on [0, 1]. For Berkson-type mea-
surement errors, a fixed design as considered in the present paper seems to be of particular
relevance in experimentation in physics and engineering. Instead of using the classical ap-
proach based on results from extreme-value theory (Bickel and Rosenblatt, 1973), we propose
a multiplier bootstrap procedure and construct asymptotic uniform confidence regions by
using anti-concentration properties of Gaussian processes which were recently derived by
Chernozhukov et al. (2014).
For an early, related contribution see Neumann and Polzehl (1998), who develop the wild
bootstrap originally proposed by Wu (1986) to construct confidence bands in a nonpara-
metric heteroscedastic regression model with irregular design. While their method could
potentially also be adopted in our setting, we preferred to work with the multiplier bootstrap
which allows for a more transparent analysis.
There is a vast literature on errors-in-variables models, where most of the earlier work is
focused on parametric models (Berkson, 1950; Anderson, 1984; Stefanski, 1985; Fuller, 1987).
A more recent overview of different models and methods can be found in the monograph by
Carroll et al. (2006). In a non-parametric regression context, Fan and Truong (1993) consider
the classical errors-in-variables setting (1), construct a kernel-type deconvolution estimator
and investigate its asymptotic performance with respect to weighted Lp-losses and L∞-loss
and show rate-optimality for both ordinary smooth and super smooth known distributions
of errors ∆. The case of Berkson errors-in-variables with random design is treated, e. g., in
Delaigle et al. (2006), who also assume a known error distribution, Wang (2004), who assumes
a parametric form of the error density, and Schennach (2013), whose method relies on the
availability of an instrumental variable instead of the full knowledge of the error distribution.
Furthermore, Delaigle et al. (2008) consider the case in which the error-distribution is un-
known but repeated measurements are available to estimate the error distribution. A mixture
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of both types of errors-in-variables is considered in Carroll et al. (2007) and the estimation
of the observation-error variance is studied in Delaigle and Hall (2011).
However, in the aforementioned papers the focus is on estimation techniques and the investi-
gation of theoretical as well as numerical performance of the estimators under consideration.
In the non-parametric setting only very little can be found about the construction of statis-
tical tests or confidence statements. Model checks in the Berkson measurement error model
are developed in Koul and Song (2008, 2009), who construct goodness-of-fit tests for a para-
metric point hypothesis based on an empirical process approach and on a minimum-distance
principle for estimating the regression function, respectively. The construction of confidence
statements seems to be discussed only for classical errors in variables models with random
design in Delaigle et al. (2015), who focus on pointwise confidence bands based on bootstrap
methods and in Kato and Sasaki (2019), who provide uniform confidence bands.
This paper is organized as follows. In Section 2 we discuss the mathematical details of our
model and describe non-parametric methods for estimating the regression function in the fixed
design Berkson model. In Section 3 we state the main theoretical results and in particular
discuss the construction of confidence bands in Section 3.2, where we also discuss the choice of
the bandwidth. The numerical performance of the proposed confidence bands is investigated
in Section 4. Section 5 outlines an extension to error densities for which the Fourier transform
is allowed to oscillate. Some auxiliary lemmas are stated in Section 6. Technical proofs of
the main results from Section 3 are provided in Section 7, while details and proofs for the
extension in Section 5 along with some additional technical details are given in the Appendix,
Section A. In the following, for a function f , which is bounded on some given interval [a, b],
we denote by ‖f‖ = ‖f‖[a,b] = supx∈[a,b] |f(x)| its supremum norm. The Lp-norm of f over

all of R is denoted by ‖f‖p. Further, for w ∈ R we set 〈w〉 := (1 + w2)
1
2 .

2 The Berkson errors-in-variables model with fixed design

The Berkson errors-in-variables model with fixed design that we shall consider is given by

Yj = g(wj + ∆j) + εj , (3)

where wj = j/(nan), j = −n, . . . , n, are the design points on a regular grid, an is a design
parameter that satisfies an → 0, nan → ∞, and ∆j and εj are unobserved, centered, inde-
pendent and identically distributed errors for which Var[ε1] = σ2 > 0 and E|ε1|M < ∞ for
some M > 2. The density f∆ of the errors ∆j is assumed to be known. For ease of notation,
we consider an equally spaced grid of design points here. However, this somewhat restrictive
assumption can be relaxed to more general designs with a mild technical effort, as we elab-
orate in the Appendix, Section A.2. For random design Berkson errors-in-variables models,
Delaigle et al. (2006) point out that identification of g on a given interval requires an infinitely
supported design density if the error density is of infinite support. This corresponds to our
assumption that asymptotically, the fixed design exhausts the whole real line, which is assured
by the requirements on the design parameter an. Meister (2010) considers the particular case
of normally distributed errors ∆ and bounded design density, where a reconstruction of g is
possible by using an analytic extension. If we define γ as the convolution of g and f∆(−·),
that is,

γ(w) =

∫
R
g(z)f∆(z − w) dz,
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then E[Yj ] = γ(wj), and the calibrated regression model (Carroll et al., 2006) associated with
(3) is given by

Yj = γ(wj) + ηj , ηj = g(wj + ∆j)− γ(wj) + εj . (4)

Here the errors ηj are independent and centered as well but no longer identically distributed
since their variances ν2(wj) = E[η2

j ] depend on the design points. To be precise, we have that

ν2(wj) =

∫ (
g(wj + δ)− γ(wj)

)2
f∆(δ) d δ + σ2 ≥ σ2 > 0. (5)

This reveals the increased variability due to the errors in the predictors. The following

Figure 1: Alleged data points (wj , Yj), actual data points (wj+∆j , Yj), a comparison between
g (dashed line) and γ (solid line) and a comparison between σ2 (dashed line) and ν2 (solid
line) (clockwise from upper left to lower left).

considerations show that ignoring the errors in variables can lead to misinterpretations of the
data at hand. To illustrate, in the setting of simulation Section 4, scenario 2, Figure 1 (upper
left panel) shows the alleged data points (wj , Yj), that is, the observations at the incorrect,
presumed positions, for a sample of size n = 100. In addition to the usual variation introduced
by the errors εi in y-direction this display shows a variation in x-direction introduced by the
errors in the wj . The upper right panel shows the actual but unobserved data points (wj +
∆j , Yj) that only contain the variation in the y-direction. Ignoring the errors-in-variables leads
to estimating γ instead of g, which introduces a systematic error. The functions γ (solid line)
and g (dashed line) are both shown in the lower right panel of Figure 1. The corresponding
variance function is shown in the lower left panel of Figure 1 (solid line) in comparison to
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the constant variance σ2 (dotted line). Apparently, there is a close connection between the
calibrated model (4) and the classical deconvolution regression model as considered in Birke
et al. (2010) and Proksch et al. (2015) in univariate and multivariate settings, respectively.
In contrast to the calibrated regression model (4), in both works an i.i.d. error structure
is assumed. Also, our theory provides finite sample bounds and is derived under weaker
assumptions, requiring different techniques of proof. In particular, the previous, asymptotic,
results are derived under a stronger assumption on the convolution function f∆.To estimate
g, we estimate the Fourier transform of γ,

Φγ(t) =

∫
eitwγ(w) dw, by Φ̂γ(t) =

1

nan

n∑
j=−n

Yje
itwj .

An estimator for g is then given by

ĝn(x;h) =
1

2π

∫
R
e−itxΦk(ht)

Φ̂γ(t)

Φf∆
(−t)

dt. (6)

Here h > 0 is a smoothing parameter called the bandwidth, and Φk is the Fourier transform of
a bandlimited kernel function k that satisfies Assumption 2 below. Notice that both Φγ and
Φf∆

tend to zero as |t| → ∞ such that estimation of Φγ in (6) introduces instabilities for large
values of |t|. Since the kernel k is bandlimited, the function Φk is compactly supported and
the factor Φk(ht) discards large values of t, therefore serving as regularization. The estimator
can be rewritten in kernel form as follows:

ĝn(x;h) =
1

nanh

n∑
j=−n

YjK

(
wj − x
h

;h

)
,

where the deconvolution kernel K(·;h) is given by

K(w;h) =
1

2π

∫
R
e−itw

Φk(t)

Φf∆
(−t/h)

dt. (7)

3 Theory

By Wm(R) we denote the Sobolev spaces Wm(R) = {g | ‖Φg(·) 〈 · 〉m‖2 < ∞}, m > 0, where

we recall that 〈w〉 := (1 + w2)
1
2 for w ∈ R. We shall require the following assumptions.

Assumption 1. The functions g and f∆ satisfy

(i) g ∈ Wm(R) ∩ Lr(R) for all r ≤ M and for some m > 5/2,

(ii) f∆ is a bounded, continuous, square-integrable density,

(iii) Φg∗f∆
= Φg · Φf∆

∈ Ws(R) for some s > 1/2.

Assumption 1 (i) stated above is a smoothness assumption on the function g. In Lemma 1
in Section 6.1 we list the properties of g that are frequently used throughout this paper and
that are implied by this assumption. In particular, by Sobolev embedding, m > 5/2 implies
that the function g is twice continuously differentiable, which is used in the proof of Lemma
5.
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Assumption 2. Let Φk ∈ C2(R) be symmetric, Φk(t) ≡ 1 for all t ∈ [−D,D], 0 < D < 1,
|Φk(t)| ≤ 1 and Φk(t) = 0, |t| > 1.

In contrast to kernel-estimators in a classical non-parametric regression context, the kernel
K(·;h), defined in (7), depends on the bandwidth h and hence on the sample size via the
factor 1/Φf∆

(−t/h). For this reason, the asymptotic behavior of K(·;h) is determined by the
properties of the Fourier transform of the error-density f∆. The following assumption on Φf∆

is standard in the non-parametric deconvolution context (see, e.g., Kato and Sasaki, 2019;
Schmidt-Hieber et al., 2013) and will be relaxed in Section 5 below.

Assumption 3. Assume that Φf∆
(t) 6= 0 for all t ∈ R and that there exist constants β > 0

and 0 < c < C, 0 < CS such that

c〈t〉−β ≤ |Φf∆
(t)| ≤ C〈t〉−β and

∣∣Φ(1)
f∆

(t)
∣∣ ≤ CS〈t〉−β−1. (S)

A standard example of a density that satisfies Assumption 3 is the Laplace density with
parameter a > 0,

f∆,0(a;x) = a
2e
−a|x| with Φf∆,0

(a; t) = 〈t/a〉−2. (8)

In this case we find β = 2, C = a2 ∨ 1, c = a2 ∧ 1 and CS = 2/a2 ∨ 2a2.

Remark 1. Our asymptotic theory cannot accommodate the case of exponential decay of
the Fourier transform of the density f∆, as the asymptotic behaviour of the estimators in the
supersmooth case and the ordinary smooth case differs drastically. While for the ordinary
smooth case considered here ĝ(x) and ĝ(y) are asymptotically independent if x 6= y, convolu-
tion with a supersmooth distribution is no longer local and causes dependencies throughout
the domain. This leads to different properties of the suprema supx∈[0,1] |ĝ(x;h)− E[ĝ(x;h)]|,
which play a crucial role in the construction of our confidence bands. In particular, the
asymptotics strongly depend on the exact decay of the characteristic function Φf∆

and needs
a treatment on a case to case basis (more details on the latter issue can be found in van Es
and Gugushvili (2008))).

3.1 Simultaneous inference

Our main goal is to derive a method to conduct uniform inference on the regression function
g, which is based on a Gaussian approximation to the maximal deviation of ĝn from g.
We consider the usual decomposition of the difference g(x)− ĝn(x;h) into deterministic and
stochastic parts, that is

g(x)− ĝn(x;h) = g(x)− E[ĝn(x;h)] + E[ĝn(x;h)]− ĝn(x;h),

where

ĝn(x;h)− E[ĝn(x;h)] =
1

nanh

n∑
j=−n

ηjK

(
wj − x
h

;h

)
. (9)

If the bias, the rate of convergence of which is given in Lemma 5 in Section 6, is taken
care of by choosing an undersmoothing bandwidth h, the stochastic term (9) in the above
decomposition dominates.
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Theorem 1 below is the basic ingredient for the construction of the confidence statements
under Assumption 3. It guarantees that the random sum (9) can be approximated by a
distribution free Gaussian version, uniformly with respect to x ∈ [0, 1], that is, a weighted
sum of independent, normally distributed random variables such that the required quantiles
can be estimated from this approximation. In the following assumption conditions on the
bandwidth and the design parameter are listed which will be needed for the theoretical results.

Assumption 4.

(i) ln(n)n
2
M
−1/(anh) + h

an
+ ln(n)2h+ ln(n)an + 1

nanh1+2β = o(1),

(ii)
√
nanh2m+2β +

√
na2s+1

n h2 + 1/
√
nanh2 = o(1/

√
ln(n)).

The following example is a short version of a lengthy discussion given in the Appendix, Section
A.3. More details can be found there.

Example 1. In a typical setting, the conditions listed in Assumption 4 are satisfied if h is the
rate optimal bandwidth of classical deconvolution problems. As an example, consider the case
of a function g ∈ Wm(R),m > 5/2, of bounded support, f∆ as in (8) and E[ε4

1] ≤ ∞. Then
β = 2 and Assumption 1 (iii) holds for any s > 0 such that an can be chosen of order n−ε

for ε arbitrarily small. The rate optimal bandwidth in the classical deconvolution problem
is of order n−1/(2(mβ)) (Fan, 1991). With the choices of an = n−ε and h = n−1/(2(mβ)), ε
sufficiently small and s sufficiently large, Assumption 4 (i) and (ii) reduce to the requirements
1/(nanh

1+2β) = o(1) and nanh
2m+2β ln(n) = o(1), respectively. These are met for small ε > 0

since 1/(nanh
1+2β) ≥ n−1+ε+5/9 and nanh

2m+2β ln(n) = ln(n)n−ε.

The first term in Assumption 4 (i) stems from the Gaussian approximation and becomes less
restrictive if the number of existing moments of the errors εi increases. The last term in
(i) guarantees that the variance of the estimator tends to zero. The terms in between are
only weak requirements and are needed for the estimation of certain integrals. Assumption
4 (ii) guarantees that the bias is negligible under Assumption 3. The first term guarantees
undersmoothing, the second term stems from the fact that only observations from the finite
grid [−1/an, 1/an] are available, while the third term accounts for the discretization bias. It
is no additional restriction if β > 1/2. For a given interval [a, b], recall that ‖f‖ = ‖f‖[a,b]
denotes the supremum norm of a bounded function on [a, b].

Theorem 1. Let Assumptions 2 - 3 and 4 (i) be satisfied. For some given interval [a, b] of
interest, let ν̂n be a nonparametric estimator of the standard deviation in model (4) such that
ν̂ > σ/2 and

P
(∥∥ 1

ν̂ −
1
ν

∥∥
[a,b]

> n2/M
√
nanh

)
= o(1). (10)

(i) There exists a sequence of independent standard normally distributed random variables
(Zn)n∈Z such that for

Dn(x) :=

√
nanhh

β

ν̂(x)

(
ĝn(x;h)− E[ĝn(x;h)]

)
,

Gn(x) :=
hβ√
nanh

n∑
j=−n

ZjK
(
wj−x
h ;h

)
, (11)
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we have that for all α ∈ (0, 1)

∣∣P(‖Dn‖ ≤ q‖Gn‖(α)
)
− α

∣∣ ≤ rn,1, (12)

where q‖Gn‖(α) is the α-quantile of ‖Gn‖ and for some constant C > 0

rn,1 = P
(∥∥ 1

ν̂ −
1
ν

∥∥ > n2/M
√
nanh

)
+ C

(
1
n +

n2/M
√

ln(n)3)√
nanh

)
.

(ii) If, in addition, Assumption 4 (ii) and Assumption 1 are satisfied, E[ĝn(x;h)] in (11)

can be replaced by g(x) with an additional error term of order rn,2 =
√
nanh2m+2β +√

na2s+1
n h2 + 1/

√
nanh2.

In particular, Theorem 1 implies that limn→∞ P
(
‖Dn‖ ≤ q‖Gn‖(α)

)
= α for all α ∈ (0, 1). Re-

garding assumption (10), properties of variance estimators in a heteroscedastic non-parametric
regression model are discussed in Wang et al. (2008).
The following theorem is concerned with suitable grid widths of discrete grids Xn,m ⊂ [a, b]
such that the maximum over [a, b] and the maximum over Xn,m behave asymptotically equiv-
alently.

Theorem 2. For some given interval [a, b] of interest, let Xn,m ⊂ [a, b] a grid of points
a = x0,n ≤ x1,n ≤ . . . ≤ xm,n = b. Let ‖f‖Xn,m := maxx∈Xn,m |f(x)|. If the grid is sufficiently
fine, i.e.,

|Xn,m| := max
1≤i≤m

|xi,m − xi−1,m| ≤
h1/2

na
1/2
n

,

then, under the assumptions of Theorem 1, The following holds.

(i) For all α ∈ (0, 1) ∣∣∣P(‖Dn‖ ≤ q‖Gn‖Xn,m (α)
)
− α

∣∣∣ ≤ rn,1(1 + o(1)). (13)

(ii) If, in addition, Assumption 4 (ii) and Assumption 1 are satisfied, E[ĝn(x;h)] in (13)

can be replaced by g(x) with an additional error term of order rn,2 =
√
nanh2m+2β +√

na2s+1
n h2 + 1/

√
nanh2.

3.2 Construction of the confidence sets and bandwidth choice

In this section we present an algorithm which can be used to construct uniform confidence
sets based on Theorem 1. Let Gn(x) be the statistic defined in (11). In order to obtain
quantiles that guarantee uniform coverage of a confidence band, generate M times ‖Gn‖Xn,m ,

where |Xn,m| = o(h3/2a
1/2
n / ln(n)) (see Theorem 2), that is, calculate ν̂n(x) for x ∈ Xn,m,

generate M times 2n+ 1 realizations of independent, standard normally distributed random
variables Z1,j , . . . , Z2n+1,j , j = 1, . . . ,M. Calculate Mn,j := maxx∈Xn,m |Gn,j(x)|. Estimate
the (1 − α)-quantile of ‖Gn‖ from Mn,1, . . . ,Mn,M and denote the estimated quantile by
q̂‖Gn‖Xn,m (1− α). From Theorem 1 we obtain the confidence band

ĝn(x;h) ± q̂‖Gn‖Xn,m (1− α)
ν̂n(x)

√
nanh1/2+β

, x ∈ [a, b]. (14)
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Remark 2. Given a suitable estimator for the variance ν2, Theorem 1 and Example 1 imply
that, typically, the coverage error of the above bands will be of order n2/M

√
ln(n)/

√
nanh+√

nanh2m+2β. The first term is determined by the accuracy of the Gaussian approximation
and will be negligible if the distribution of the errors εi possesses sufficiently many moments,
while the second term is of order

√
an if the optimal bandwidth of classical deconvolution

problems is used. This shows that, in contrast to confidence bands based on asymptotic
quantiles, the coverage error typically decays polynomially in n.

Remark 3. In nonparametric regression without errors-in-variables the widths of uniform
confidence bands are of order

√
ln(n)/

√
nh (see, e.g., Neumann and Polzehl, 1998). Our

bands (14) are wider by the factor 1/(anh
β) which is due to the ill-posedness (β) and the,

possibly slow, decay of γ (expressed in terms of an).

For the choice of the bandwidth, Giné and Nickl (2010) (see also (Chernozhukov et al., 2014))
convincingly demonstrated how to use Lepski’s method to adapt to unknown smoothness
when constructing confidence bands. In our framework, choose an exponential grid of band-
widths hk = 2−k for k ∈ {kl, . . . , ku}, with kl, ku ∈ N being such that 2−ku ' 1/n and

2−kl '
(
(log n)/(nan)

)1/(β+m̄)
and where m̄ corresponds to the maximal degree of smooth-

ness to which one intends to adapt. Then for a sufficiently large constant CL > 0 choose the
index k according to

k̂ = min
{
k ∈ {kl, . . . , ku} | ‖ĝ(·;hk)− ĝ(·;hl)‖ ≤ CL

( log n

nan h
1+2β
l

)1/2

∀ k ≤ l ≤ ku
}
,

and choose an undersmoothing bandwidth according as ĥ = hk̂/ log n. A result in anal-
ogy to Giné and Nickl (2010) would imply that under an additional self-similarity con-
dition on the regression function g, using ĥ in (14) produces confidence bands of width(

log n/(nan)
)m−1/2
β+m (log n)β+1/2 if g has smoothness m. Technicalities in our setting would

be even more involved due to the truncated exhaustive design involving the parameter an.
Therefore, we refrain from going into the technical details. In the subsequent simulations we
use a simplified bandwidth selection rule which, however, resembles the Lepski method.

4 Simulations

n = 100 n = 100 n = 750 n = 750
σ = σδ = 0.1 σ = σδ = 0.05 σ = σδ = 0.1 σ = σδ = 0.05

ga 0.25 0.24 0.21 0.12

gb 0.20 0.22 0.22 0.11

Table 1: Regularization parameter used in the subsequent simulations. See text for details
on its selection.

In this section we investigate the numerical performance of our proposed methods in finite
samples. We consider several different computational scenarios. As regression functions we
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n = 100 n = 100 n = 750 n = 750
σ = σδ = 0.1 σ = σδ = 0.05 σ = σδ = 0.1 σ = σδ = 0.05

ga 5.8% 7.2% 5.1% 5.6%

gb 1.8% 5.3% 5.0% 5.0%

Table 2: Simulated rejection probabilities for bootstrap confidence bands.

n = 100 n = 100 n = 750 n = 750
σ = σδ = 0.1 σ = σδ = 0.05 σ = σδ = 0.1 σ = σδ = 0.05

ga 0.44 0.16 0.21 0.14

gb 0.86 0.28 0.24 0.22

Table 3: Average width of bootstrap confidence bands.

consider

ga(x) = (1− 4(x− 0.1)2)5I[0,1](2|x− 0.1|),

and

gb(x) = (1− 4(x+ 0.4)2)5I[0,1](2|x+ 0.4|) + (1− 4(x− 0.3)2)5I[0,1](2|x− 0.3|).

For the error distribution f∆ we chose two densities of a Laplace distribution as defined in
(8) with a = 0.1√

2
and a = 0.05√

2
, i.e. standard deviations σδ = 0.1 and σδ = 0.05, respectively.

Finally, an = 2/3 in all simulations discussed below. Our estimation is based on an application
of the Fast Fourier transform implemented in python/scipy. The integration used a damped
version of a spectral cut off with cut-off function I(ω) = 1− exp(− 1

(ω·h)2 ) in spectral space.

Construction of the confidence bands requires the selection of a regularization parameter for
the estimator ĝ. In our simulations, we have chosen this parameter by a visual inspection
of a sequence of estimates for the regularization parameter, covering a range from over- to
under-smoothing, see Figure 2. We chose the minimal regularization parameter for which
the estimates do not change systematically in overall amplitude, but appear to only exhibit
additional random fluctuations at smaller values of the parameter. In the case shown here,
we chose a regularization parameter of 0.27. The same procedure was followed for other
combinations of n, σ, σδ and signal ga resp. gb) and the results can be found in Table 1.
This regularization parameter was then kept fixed for each combination of n, σ, σδ and signal
g ∈ {ga, gb}. Figures 3 and 4 show four random examples each for estimates of ga and gb,
respectively, together with the associated confidence bands from 250 bootstrap simulations.
Solid lines represent the true signal ga and gb and dashed lines the estimates ĝn together with
their associated confidence bands. Again, in both cases, n = 100, σ = 0.1 and σδ = 0.1.
Next, we discuss the practical performance of the bootstrap confidence bands in more detail
for the first scenario, where the model is correctly specified and the errors in the predictors
are taken into account as well. The results are shown in Tables 2 and 3 for the simulated
rejection probabilities (one minus the coverage probability) at a nominal value of 5% and for
the (average) width of the confidence bands. In all cases, we performed simulations based
on 500 random samples of data and nominal rejection probability 5% (i.e. confidence bands
with nominal coverage probability of 95%). For each of these data samples, we repeated 250

10



Figure 2: Sequence of estimates for increasing regularization parameter from a random
sample of observations of signal gb with n = 100 and σ = σδ = 0.1.

times the following scenario. First, we determined the width of the confidence bands from
250 bootstrap simulations and second, we evaluated whether the confidence bands cover the
true signal everywhere in an interval of interest. The numbers shown in the table give the
percentage of rejections, i.e. of where the confidence bands do not overlap the true signal
everywhere in such an interval. Here, the intervals of interest are chosen as an interval where
the respective signal is significantly different from 0. The intention of this is that in many
practical applications the data analyst is particularly interested in those parts of the signal.
Here, we chose the interval [−0.7, 0.6] as ’interval of interest’ for ga and gb. From the tables
we conclude that the method performs well, particularly for n = 750, where the confidence
bands are substantially less wide.

5 Extensions

The following assumption is less restrictive than Assumption 3, (S).

Assumption 5. Assume that Φf∆
(t) 6= 0 for all t ∈ R and that there exist constants β > 0

and 0 < c < C, 0 < CW such that

c〈t〉−β ≤ |Φf∆
(t)| ≤ C〈t〉−β and

∣∣Φ(1)
f∆

(t)
∣∣ ≤ CW 〈t〉−β. (W)

An example for a density that satisfies Assumption 5 but not Assumption 3 is given by the

11



Figure 3: True signal (solid line), observable signal (dash-dotted line) and estimates and
associated confidence bands (dashed lines) from four random samples for ga for n = 100 (top)
and n = 750 (bottom) and σ = σδ = 0.1.

mixture

f∆,1(1;x) =
λ

2
f∆,0(1;x− µ) +

λ

2
f∆,0(1;x+ µ) + (1− λ)f∆,0(1;x), (15)

where λ ∈ (0, 1/2) and µ 6= 0, and f∆,0 is the Laplace density defined in (8). We find

Φf∆,1
(t) = (1− λ+ λ cos(µt))〈t〉−2,

which yields β = 2, c = 1− 2λ and CW = λµ+ 4.

Technically, Assumption 3, (S) allows for sharper estimates of the tails of the deconvolution
kernel (7) than does Assumption 4, (W), see Lemma 4 in Section 6. In this case we have to
proceed differently as the approximation via a distribution free process such as Gn can no
longer be guaranteed and we can only find a suitable Gaussian approximation depending on
the standard deviation ν.
Roughly speaking, we approximate Dn(x) in (11) by the process

G̃n(x) =

√
nanh1+2β

h ν̃n(x)

∑
j

ν̃n(ωj)Zj K

(
wj − x
h

;h

)
, (16)

for a variance estimator ν̃n on growing intervals |x| ≤ nan (1 − δ) for some δ > 0. We
then replace the quantiles involving Gn in (12), (13) and in (14) by (the conditional quantiles
given the sample) of G̃n. Our theoretical developments involve a sample splitting, hence are
somewhat cumbersome so that details are deferred to the Appendix, Section A.4.
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Figure 4: True signal (solid line), observable signal (dash-dotted line) and estimates and
associated confidence bands (dashed lines) from four random samples for gb for n = 100 (top)
and n = 750 (bottom) and σ = σδ = 0.1.

We have also simulated a version of the bootstrap for the extended model. However, as
simulations show, the results are clearly not as good as for the more restrictive assumptions
on f∆. We have used

f∆,1(x) =
λ

2
· f∆,0(a;x− 0.3) + (1− λ) · f∆,0(a;x) +

λ

2
· f∆,0(a;x+ 0.3),

with f∆,0 again the Laplace density defined in (8), a = 0.05/
√

2 and λ = 0.2. For the signal
ga in Section 4 we find confidence band widths of 0.686 and 0.462 for n = 100 and n = 750,
respectively, at simulated coverage probabilities of 6.3% and 4.5% and bandwidths of 0.59
and 0.32, for σ = σδ = 0.1.
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6 Auxiliary Lemmas

The proofs for the results in this section are given in Section 8.
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6.1 Properties of the regression function g, the variance function ν and the
convolution kernel K

Assumption 1 stated above is basically a smoothness assumption on the function g. In the
following lemma we list the properties of g that are frequently used throughout this paper
and that are implied by Assumption 1.

Lemma 1. Let Assumption 1 hold.

(i) The function g is twice continuously differentiable.

(ii) The function g has uniformly bounded derivatives: ‖g(j)‖∞ <∞, j ≤ 2.

Given Assumption 1 (ii), the properties of the function g given in Lemma 1 are transferred
to the convolution γ = g ∗ f∆. This is made precise in the following lemma.

Lemma 2. Let Assumption 1 hold.

(i) The function γ = g ∗ f∆ is twice continuously differentiable with derivatives γ(j) =
g(j) ∗ f∆.

(ii) γ ∈ Wm(R).

(iii) The function γ has uniformly bounded derivatives: ‖γ(j)‖∞ <∞, j ≤ 2.

Furthermore, the variance function ν2, defined in (5), is a function that depends on f∆, γ and
g. The following lemma lists the properties of ν2, which are implied by the previous Lemmas
1 and 2, and that are frequently used throughout this paper.

Lemma 3. Let Assumption 1 hold.

(i) The variance function ν2 is uniformly bounded and bounded away from zero.

(ii) The variance function ν2 is twice continuously differentiable with uniformly bounded
derivatives.

For the tails of the kernel, we have the following estimate.

Lemma 4. For any a > 1 and x ∈ [0, 1] we have∫
{|z|>a}

(
K

(
z − x
h

;h

))2

dz ≤ C 2a

a2 − x2
·

{
h−2β , if Ass. 4, (W) holds,

h−2β+2, if Ass. 3, (S) holds.

Lemma 5. Let Assumptions 1 and 2 be satisfied. Further assume that h/an → 0 as n→∞.

(i) Then for the bias, we have that

sup
x∈[0,1]

∣∣E[ĝn(x;h)
]
− g(x)

∣∣ = O

(
hm−

1
2 +

1

nanhβ+
3
2

)
+

{
o
(
a
s+1/2
n h1−β

)
, Ass. 3, (S),

o
(
a
s+1/2
n h−β

)
, Ass. 4, (W).

(ii) a) For the variance if Assumption 5, (W) holds and nanh
1+β →∞, then we have that

σ2

2Cπ
(1 +O(an)) ≤ nanh1+2βVar[ĝn(x;h)] ≤ 2β supx∈R ν

2(x)

cπ
.

(ii) b) If actually Assumption 3, (S) holds and nanh
1+β →∞, then

ν2(x)

Cπ
(1 +O(an)) ≤ nanh1+2βVar[ĝn(x;h)] ≤ ν2(x)

cπ
(1 +O (h/an)).

Here c, C and β are the constants from Assumption 5 respectively 3.
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6.2 Maxima of Gaussian processes

Let {Xt | t ∈ T} be a Gaussian process and ρ be a semi-metric on T . The packing number
D(T, δ, ρ) is the maximum number of points in T with distance ρ strictly larger than δ > 0.
Similarly to the packing numbers, the covering numbers N(T, δ, ρ) are defined as the number
of closed ρ-balls of radius δ, needed to cover T . Let further dX denote the standard deviation
semi-metric on T , that is,

dX(s, t) =
(
E
[
|Xt − Xs|2

]) 1
2

for s, t ∈ T.

In the following, we drop the subscript if it is clear which process induces the pseudo-metric
d.

Lemma 6. There exist constants CE , CÊ ∈ (0,∞) such that

(i) N(T, δ, dGn) ≤ D(T, δ, dGn) ≤ CE

h3/2a
1/2
n δ

.

(ii) N(T, δ, dGK̂n
) ≤ D(T, δ, dGK̂n

) ≤
C
Ê

h3/2a
1/2
n δ

, where GK̂
n is defined as Gn with K replaced

by K̂, where K̂(z;h) = zK(z;h).

Lemma 7. Let (Xn,1(t), t ∈ T ) and (Xn,2(t), t ∈ T ) be almost surely bounded, centered Gaus-
sian processes on a compact index set T and suppose that for any fixed n ∈ N diamdXn,1

(T ) >

Dn > 0. If

dXn,1(s, t) ≤ dXn,2(s, t) ∀ s, t ∈ T and E
[
‖Xn,2‖

]
= o(1/

√
ln(n)),

we have that

E [‖Xn,1‖] ≤ 2E [‖Xn,2‖] and hence ‖Xn,1‖ = oP(1/
√

ln(n)).

7 Proofs of Theorems 1 and 2

In the following, the letter C denotes a generic, positive constant, whose value may vary form
line to line. The abbreviations Rn and R̃n, possibly with additional subscripts, are used to
denote remainder terms and their definition may vary from proof to proof.

Proof of Theorem 1. We first prove assertion (i). Let ρn := n2/M ln(n)/
√
nanh and notice

that

P
(
‖Dn‖ ≤ q‖Gn‖(α)

)
≤ P

(
‖Gn‖ ≤ q‖Gn‖(α) + ρn

)
+ P

(∣∣‖Dn‖ − ‖Gn‖
∣∣ > ρn

)
≤ α+ P

(
q‖Gn‖(α) ≤ ‖Gn‖ ≤ q‖Gn‖(α) + ρn

)
+ P

(∣∣‖Dn‖ − ‖Gn‖
∣∣ > ρn

)
,

since the distribution of ‖Gn‖ is absolutely continuous. Analogously, it holds

P
(
‖Dn‖ ≤ q‖Gn‖(α)

)
≥ α− P

(
q‖Gn‖(α)− ρn ≤ ‖Gn‖ ≤ q‖Gn‖(α)

)
− P

(∣∣‖Dn‖ − ‖Gn‖
∣∣ > ρn

)
,
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and therefore∣∣P(‖Dn‖ ≤ q‖Gn‖(α)
)
− α

∣∣ ≤ sup
x∈R

P (|‖Gn‖ − x| ≤ ρn) + P
(∣∣‖Gn‖ − ‖Dn‖

∣∣ > ρn
)
.

The first term on the right hand side of the inequality is the concentration function of the
random variable ‖Gn‖, which can be estimated by Theorem 2.1 of Chernozhukov et al. (2014).
This gives∣∣P(‖Dn‖ ≤ q‖Gn‖(α)

)
− α

∣∣ ≤ 4ρn (E[‖Gn‖] + 1) + P
(∣∣‖Gn‖ − ‖Dn‖

∣∣ > ρn
)
.

By Lemma 6 we have N([0, 1], δ, dGn) ≤ CE/(h3/2a
1/2
n δ), which allows to estimate the expec-

tation E[‖Gn‖] as follows.

E[‖Gn‖] ≤ C
∫ diamdGn

([0,1])

0

√√√√ln

(
CE

h3/2a
1/2
n δ

)
dδ ≤ C

√
ln(n).

This yields ∣∣P(‖Dn‖ ≤ q‖Gn‖(α)
)
− α

∣∣ ≤ C√ln(n)ρn + P
(∣∣‖Gn‖ − ‖Dn‖

∣∣ > ρn
)
.

We now estimate the term P
(∣∣‖Gn‖ − ‖Dn‖

∣∣ > ρn
)

in several steps. With the definition

Gn,0(x) :=
hβ

ν(x)
√
nanh

n∑
j=−n

ν(wj)ZjK

(
wj − x
h

;h

)
, (17)

we find

P
(∣∣‖Gn‖ − ‖Dn‖

∣∣ > ρn
)
≤ P (‖Gn − Dn‖ > ρn)

≤ P
(
‖Gn,0 − Dn‖ >

ρn
2

)
+ P

(
‖Gn −Gn,0‖ >

ρn
2

)
,

and thus

P
(∣∣‖Gn‖ − ‖Dn‖

∣∣ > ρn
)
≤ P

(
‖νGn,0 − νnDn‖ > σρn

8

)
+ P

(∥∥ 1
ν −

1
ν̂

∥∥ ‖νGn,0‖ > ρn
4

)
+ P

(
‖Gn −Gn,0‖ > ρn

2

)
=: Rn,1 +Rn,2 +Rn,3.

Consider first term Rn,2. Let κ > 0 be a constant and n sufficiently large such that
κ/
√

ln(n) < 1. Then

Rn,2 ≤ P
(∥∥ 1

ν −
1
ν̂

∥∥ > κ ρn

4
√

ln(n)

)
+ P

(
‖νGn,0‖ >

√
lnn
κ

)
=: Rn,2,1 +Rn,2,2.

The term Rn,2,1 is controlled by assumption and the term Rn,2,2 can be estimated by Borell’s
inequality. To this end, denote by d the pseudo distance induced by the process νGn,0. It
holds that

E
[

sup
x∈[0,1]

ν(x)Gn,0(x)
]
≤ E[‖νGn,0‖] ≤ C

∫ diam([0,1])

0

√
ln (N(δ, [0, 1], d)) dδ

≤ C
∫ diam([0,1])

0

√
ln
(

C

h
3
2 a

1
2
n δ

)
dδ,
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where the last estimate follows by an application of Lemma 6. By a change of variables, using
that for any a ≤ 1

1

a

∫ a

0

√
− ln(x) dx ≤

√
− ln(a) +

1√
−2 ln(a)

≤ C
√
− ln(a),

we obtain

E
[

sup
x∈[0,1]

ν(x)Gn,0(x)
]
≤ E[‖νGn,0‖] ≤ C

√
ln(n). (18)

Next,

Rn,2,2 ≤ 2P

(
sup
x∈[0,1]

(νGn,0)(x) >
√

lnn
2κ

)

= P

(
sup
x∈[0,1]

(νGn,0)(x)− E
[

sup
x∈[0,1]

(νGn,0)(x)
]
>
√

lnn
2κ − E

[
sup
x∈[0,1]

(νGn,0)(x)
])

≤ P

(
sup
x∈[0,1]

(νGn,0)(x)− E
[

sup
x∈[0,1]

(νGn,0)(x)
]
>
√

lnn
4κ

)
,

for sufficiently small κ such that E
[

supx∈[0,1] ν(x)Gn,0(x)
]
<
√

lnn
4κ . An application of Borell’s

inequality yields

Rn,2,2 ≤ exp

(
ln(n)

32κ2σ2
[0,1]

)
,

where σ2
[0,1] := supx∈[0,1] Var[ν(x)Gn,0(x)] is a bounded quantity by Lemma 6. For sufficiently

small κ, this yields the estimate

Rn,2 ≤ P
(∥∥ 1

ν −
1
ν̂

∥∥ > κ ρn

4
√

ln(n)

)
+
C
n
.

Next, we estimate the term Rn,1, i.e., we consider the approximation of Dn by a suitable
Gaussian process. To this end, consider the standardized random variables ξj := ηj/ν(wj)
and write

ν̂n(x)Dn(x) =
hβ√
nanh

n∑
j=−n

ξjν(wj)K

(
wj − x
h

;h

)
=

hβ√
nanh

[
ξ0ν(w0)K

(
−x
h

;h
)

+

n∑
j=1

ξjν(wj)K

(
wj − x
h

;h

)
+

−1∑
j=−n

ξjν(wj)K

(
wj − x
h

;h

)]
=: D0

n(x) + D+
n (x) + D−n (x), (19)

where the processes D+
n (x), D−n (x) and D0

n(x) are defined in an obvious manner. Define the
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j-th partial sum Sj :=
∑j

ν=1 ξν , set S0 ≡ 0 and write

n∑
j=1

ξjν(wj)K

(
wj − x
h

;h

)
= Snν(wn)K

(
wn − x
h

;h

)

−
n−1∑
j=0

Sj

[
ν(wj+1)K

(
wj+1 − x

h
;h

)
− ν(wj)K

(
wj − x
h

;h

)]

= Snν(wn)K

(
wn − x
h

;h

)
−
n−1∑
j=1

Sj

∫
[wj ,wj+1]

d

dz

(
ν(z)K

(
z − x
h

;h

))
dz.

By assumption, there exists a constant M > 2 such that E[|ε1|M] < ∞. By Lemma 2, γ is
uniformly bounded, which implies E[|ηj |M] ≤ M for some M > 0 and all j. By Corollary
4, §5 in Sakhanenko (1991) there exist iid standard normally distributed random variables
Z1, . . . , Zn such that, for W (j) :=

∑n
j=1 Zj the following estimate holds for any positive

constant C:

P
(

max
1≤j≤n

|Sj −W (j)| > n2/M

2C

)
≤

n∑
j=1

E[|ξj |M]

(
C

n2/M

)M

+ P

(
max

1≤j≤n
ξj >

n2/M

C

)
. (20)

Therefore,

‖ν̂nD+
n − νG+

n,0‖ ≤
max1≤j≤n |Sj −W (j)|

σ
√
nanh

[
sup
x∈[0,1]

ν(wn)hβ
∣∣∣∣K (wn − xh

;h

)∣∣∣∣
+ sup
x∈[0,1]

∫
[w1,wn]

∣∣∣∣ ddz
(
hβν(z)K

(
z − x
h

;h

))∣∣∣∣ dz],
where G+

n,0 is defined in analogy to D+
n in (19), with ξj replaced by Zj . For n sufficiently

large, we have an < 1/2 and thus, for x ∈ [0, 1] we have that (wn − x)/h ∈ [1/(2anh), 1/anh]
and thus

ν(wn)hβ
∣∣∣∣K (wn − xh

;h

)∣∣∣∣ ≤ ν(wn)hβ sup
u>1/(2anh)

|K (u;h)|

≤ ν(wn)hβ sup
u>1/(2anh)

|2anhuK (u;h)| ≤ 2anh
β+1ν(wn)‖ ·K (·;h) ‖∞ ≤ Canh,

by (21). Next,

sup
x∈[0,1]

∫
[w1,wn]

∣∣∣∣ ddz
(
hβν(z)K

(
z − x
h

;h

))∣∣∣∣ dz
≤ Chβ sup

x∈[0,1]

∫
[w1,wn]

∣∣∣∣K (z − xh ;h

)∣∣∣∣+
1

h

∣∣∣∣K ′(z − xh ;h

)∣∣∣∣ dz
≤ Chβ sup

x∈[0,1]

∫ 1
anh

− 1
h

h |K (u;h)|+
∣∣K ′ (u;h)

∣∣ dz ≤ C ln(n)

by (S3) in the appendix. This yields

‖ν̂nD+
n − νG+

n ‖ ≤ ‖ν̂nDn − νGn‖ ≤ C ln(n)
max1≤j≤n |Sj −W (j)|√

nanh
.
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Hence,

Rn,1 ≤ P
(
C ln(n)

max1≤j≤n |Sj −W (j)|√
nanh

>
ρn
2

)
≤ P

(
max

1≤j≤n
|Sj −W (j)| > n2/M

2C

)
.

Since 0 < σ < ν(wj), E[|ξj |M] ≤M/σM for all 1 ≤ j ≤ n, we have Rn,2 ≤ C/n by (20).
Last, we need to estimate the term Rn,3. We have

Rn,3 = P
(
‖Gn −Gn,0‖ > ρn

4

)
≤ P

(
‖R̃n‖ > ρn

4

)
,

where

R̃n(x) :=
hβ√
nanh

n∑
j=−n

Zj(ν(wj)− ν(x))K

(
wj − x
h

;h

)
.

Using that by Lemma 3 |ν(wj)− ν(x)| ≤ C|wj − x| = hC|wj − x|/h, we find that

N
(

[0, 1], δ, d
R̃n

)
≤ C√

anhδ
.

Furthermore, there exist positive constants ĉ and Ĉ such that

ĉ
h2

nanh
≤ sup

x∈[0,1]
Var

[
R̃n(x)

]
≤ Ĉ h2

nanh
.

By Theorem 4.1.2 in Adler and Taylor (2007), there exists a universal constant K such that,

for all u > 2
√
Ĉ h2

nanh
,

P

(
sup
x∈[0,1]

R̃(x) ≥ u

)
≤ Kun

√
anh

ĉh2
·Ψ

(
u√

Ĉ h2

nanh

)
,

where Ψ denotes the tail function of the standard normal distribution. Setting u = ρn/8
yields, for sufficiently large n,

P

(
sup
x∈[0,1]

R̃(x) ≥ ρn
8

)
≤ Kun

√
anh

ĉh2
·Ψ

(
u√

Ĉ h2

nanh

)

≤ Kn
1
2

+ 2
M ln(n)

8ĉh2
·Ψ
(

ln(n)n
2
M

8h
√
Ĉ

)
≤ Cn exp(−n4/M/h) ≤ C

n
.

Therefore, Rn,3 ≤ C/n, which concludes the proof of assertion (i).
Assertion (ii) is again an immediate consequence of Lemma 5.

Proof of Theorem 2. On the one hand,

P
(
‖Dn‖ ≤ q‖Gn‖Xn,m (α)

)
≤ P

(
‖Dn‖ ≤ q‖Gn‖(α)

)
≤ α+ rn,1,
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by Theorem 1. On the other hand,

P
(
‖Dn‖ ≤ q‖Gn‖Xn,m (α)

)
≥ α− C

n
− P

(
q‖Gn‖Xn,m (α)− ρn ≤ ‖Gn‖ ≤ q‖Gn‖Xn,m (α)

)
.

Note that (23) implies

|s− t| ≤ |Xn,m| ⇒ dGn(s, t) ≤ |Xn,m|h
β‖K(1)(·;h)‖∞
h3/2a

1/2
n

≤ C|Xn,m|
h3/2a

1/2
n

.

Hence,

‖Gn‖Xn,m ≤ ‖Gn‖ ≤ ‖Gn‖Xn,m + sup
s,t:|s−t|≤|Xn,m|

|Gn(s)−Gn(t)|

≤ ‖Gn‖Xn,m + sup
s,t:dGn (s,t)≤C |Xn,m|

h3/2a
1/2
n

|Gn(s)−Gn(t)| =: ‖Gn‖Xn,m + τn.

This yields

P
(
‖Dn‖ ≤ q‖Gn‖Xn,m (α)

)
≥ α− C

n
− P

(
q‖Gn‖Xn,m (α)− ρn − τn ≤ ‖Gn‖Xn,m ≤ q‖Gn‖Xn,m (α)

)
.

By Corollary 2.2.8 in van der Vaart and Wellner (1996) and Lemma 6, we find

E[τn] ≤ C
∫ C |Xn,m|

h3/2a
1/2
n

0

√
ln
(
N([0, 1], dGn , η)

)
dη ≤ C |Xn,m|

√
− ln(|Xn,m|)

h3/2a
1/2
n

.

Since |Xn,m| ≤ h1/2/na
1/2
n , we have that

|Xn,m|
√
− ln(|Xn,m|)

h3/2a
1/2
n

= o(ρ2
n) and therefore, by Markov’s

inequality,

P (τn ≥ ρn) ≤ C |Xn,m|
√
− ln(|Xn,m|)

h3/2a
1/2
n

1

ρn
= o(ρn).

This yields

P
(
‖Dn‖ ≤ q‖Gn‖Xn,m (α)

)
≥ α− C

n
− P

(
q‖Gn‖Xn,m (α)− 2ρn ≤ ‖Gn‖Xn,m ≤ q‖Gn‖Xn,m (α)

)
− o(ρn)

≥ α− C
n
− sup
x∈R

P
(
‖Gn‖Xn,m ∈ [x− 2ρn, x+ 2ρn]

)
− o(ρn) ≥ α− C

(
1
n − ρn

)
,

where we applied Theorem 2.1 in Chernozhukov et al. (2014). Claim 1 of this theorem now
follows. Claim 2 is an immediate consequence of Lemma 5.

20



8 Proofs of the auxiliary lemmas

Proof of Lemma 1. Assertion (i) is a direct consequence of Sobolev’s Lemma.
(ii) By an application of the Hausdorff-Young inequality we obtain∥∥∥ dj

dxj
g
∥∥∥
∞
≤ 1

2π

∥∥∥Φ dj

dxj
g

∥∥∥
1
, j = 0, 1, 2.

Fourier transformation converts differentiation into multiplication, that is,∥∥∥Φ dj

dxj
g

∥∥∥
1

= ‖(·)jΦg‖1, j = 0, 1, 2.

Since g ∈ Wm(R) for m > 5/2 by Assumption 1 it follows by an application of the Cauchy-
Schwarz inequality that ‖(·)jΦg‖1 <∞ for j = 0, 1, 2 and the assertion follows.

Proof of Lemma 2. Assertion (i) follows from Proposition 8.10 in Folland (1984) since f∆ is
a density and is hence integrable.
Assertion (ii) is a direct consequence of Assumption 1 and the convolution theorem:

Φγ = Φg∗f∆(−·) = Φg · Φf∆
,

since Φf∆
is bounded.

Assertion (iii) follows in the same manner as the second claim of Lemma 1.

Proof of Lemma 3. (i) Recall from definition (5) that

ν2(z) =

∫ (
g(z + δ)− γ(z)

)2
f∆(δ) d δ + σ2, σ2 > 0.

Hence, it follows from Lemma 1 (ii) and Lemma 2 (iii) that

0 < σ2 ≤ ν2(z) ≤ σ2 + 2(‖g‖2∞ + ‖γ‖2∞) <∞.

(ii) By the first assertions of Lemma 1 and Lemma 2, the functions g and γ are twice contin-
uously differentiable and f∆ is continuous. This yields for j = 1, 2

dj

dzj
ν2(z) =

∫
∂j

∂zj

((
g(z + δ)− γ(z)

)2
f∆(δ)

)
d δ.

Since by Lemma 1 and Lemma 2 the derivatives of g and γ are uniformly bounded and f∆ is
a probability density, we find for j = 1, 2∣∣∣∣ djdzj ν2(z)

∣∣∣∣ ≤ sup
z∈R

∣∣∣ ∂j
∂zj

(
g(z + δ)− γ(z)

)2∣∣∣.
Proof of Lemma 4. From (7), we deduce for w ∈ R

iwK(w;h) =
1

2π

∫
R
e−itw

d

dt

(
Φk(t)

Φf∆
(−t/h)

)
dt

=
1

2π

∫
R
e−itw

 Φ
(1)
k (t)

Φf∆
(−t/h)

+
Φk(t) · Φ

(1)
f∆

(−t/h)

h(Φf∆
(−t/h))2

 dt.
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Hence,

sup
w∈R
|wK(w;h)| ≤ 1

2πc

∥∥∥∥∥∣∣∣Φ(1)
k

∣∣∣ 〈 ·h〉β +

∣∣∣Φk·Φ(1)
f∆

(−·/h)
∣∣∣

ch

〈 ·
h

〉2β

∥∥∥∥∥
1

=

{
O(h−β−1), (W),

O(h−β), (S).
(21)

In particular, for all w ∈ R\{0},

|K(w;h)| ≤ C
|w|
·

{
h−β−1, (W),

h−β, (S).
(22)

Now, let a > 1. Then∫
{|z|>a}

(
K

(
z − x
h

;h

))2

dz ≤ C
∫
{|z|>a}

(
h

z − x

)2

dz ·

{
h−2β−2, (W)

h−2β, (S)

≤ C 2a

a2 − x2

{
h−2β, (W)

h−2β+2, (S)
.

Proof of Lemma 5. The proof of Lemma 5 is straightforward but tedious. We therefore omit
the proof here and defer it to the appendix.

Proof of Lemma 6.

dGn(s, t)2 = E|Gn(s)−Gn(t)|2 =
h2β

nanh

n∑
j=−n

∣∣∣K(wj − s
h

;h
)
−K

(wj − t
h

;h
)∣∣∣2

≤ h2β‖K(1)(·;h)‖2∞
anh

(
s− t
h

)2

≤ C h
2β

anh

∥∥∥∥t Φk(t)

Φ(−t/h)

∥∥∥∥2

1

(
s− t
h

)2

, (23)

where the last estimate follows by the Hausdorff-Young inequality and definition (7). There-

fore, by Assumption 3, there exists a constant CE such that dGn(s, t) ≤ CE |s − t|/(a
1
2
nh

3
2 ).

Now, consider the equidistant grid

Gn,δ :=

{
tj = j a

1
2
n
CE
δ, j = 1, . . . ,

⌊
CE

a
1
2
n h

3
2 δ

⌋}
⊂ [0, 1]

and note that for each s ∈ [0, 1] there exists a tj ∈ Gn,δ such that |s− tj | ≤ a1/2
n h3/2δ/(2CE),

which implies dGn(s, tj) ≤ δ/2. Therefore, the closed dGn-balls with centers tj ∈ Gn,δ and
radius δ/2 cover the space [0, 1], i.e.,

N([0, 1], δ/2, dGn) ≤ CE

h
3
2 a

1
2
n δ
.

The relationship N([0, 1], δ, dGn) ≤ D([0, 1], δ, dGn) ≤ N([0, 1], δ/2, dGn) now yields the first
claim of the lemma. Using that, by Assumption 3,

‖K̂(1)(·, h)‖∞ ≤ ‖ ·K(1)(·, h)‖∞ + ‖K(·, h)‖∞

≤ C
(∥∥∥∥ d

dt

(
tΦk(t)

Φf∆
(−t/h)

)∥∥∥∥
1

+

∥∥∥∥( tΦk(t)

Φf∆
(−t/h)

)∥∥∥∥
1

)
≤ Ch−β,

the second claim follows along the lines of the first claim.
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A Appendix: Proofs of technical results in the main paper

A.1 Proof of Lemma 5

(i) We have that

E [ĝn(x;h)] =
1

nanh

n∑
j=−n

γ(wj)K

(
wj − x
h

;h

)

=
1

h

n∑
j=−n

∫ wj+
1

nan

wj

γ(wj)K

(
wj − x
h

;h

)
dz

=

∫ 1
an

+ 1
nan

− 1
an

γ(z)K

(
z − x
h

;h

)
dz +Rn,1(x) +Rn,2(x),

where

Rn,1(x) =
1

h

n∑
j=−n

∫ wj+
1

nan

wj

d

du

(
γ(u)K

(
u− x
h

;h

)) ∣∣∣∣
u=z

(wj − z) dz

and

Rn,2(x) =
1

2h

n∑
j=−n

∫ wj+
1

nan

wj

d2

du2

(
γ(u)K

(
u− x
h

;h

)) ∣∣∣∣
u=w̃j(z)

(wj − z)2 dz.

Then,

Rn,1(x) =
1

h

n∑
j=−n

∫ wj+
1

nan

wj

γ′(z)K

(
z − x
h

;h

)
(wj − z) dz

− 1

h2

n∑
j=−n

∫ wj+
1

nan

wj

γ(z)K ′
(
z − x
h

;h

)
(wj − z) dz

=: Rn,1,1(x) +Rn,1,2(x).

Now,

nanh|Rn,1,1(x)| ≤
∫ 1

an

− 1
an

∣∣∣∣γ′(z)K (z − xh ;h

)∣∣∣∣ dz ≤ ‖γ′‖2 ∥∥∥∥K ( · − xh ;h

)∥∥∥∥
2

= O

(
1

h−
1
2+β

)
.

Analogously,

|Rn,1,2(x)| = O

(
1

nanh
3
2

+β

)
.
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Furthermore

|Rn,2(x)| ≤
[

1

n2a2
nh

n∑
j=−n

∫ wj+
1

nan

wj

∣∣∣∣γ′′(w̃j(z))K ( w̃j(z)− xh
;h

)∣∣∣∣ dz
+

2

n2a2
nh

2

n∑
j=−n

∫ wj+
1

nan

wj

∣∣∣∣γ′(w̃j(z))K ′( w̃j(z)− xh
;h

)∣∣∣∣ dz]

+
1

n2a2
nh

3

n∑
j=−n

∫ wj+
1

nan

wj

∣∣∣∣γ(w̃j(z))K
′′
(
w̃j(z)− x

h
;h

)∣∣∣∣ dz
=: [Rn,2,1(x)] +Rn,2,2(x).

Then, Rn,2,1(x) = O
(

1
n2a3

nh
2+β + 1

n2a3
nh

2+β

)
= o

(
1

nanh
3
2 +β

)
, since h/an → 0. By Assumption

1 (iii) Fγ ∈ Ws, s > 1
2 , therefore γ ∈ L1(R) and hence

Rn,2,2 ≤
C

h3+β(nan)2

(
‖γ‖1 +

1

na2
n

)
= O

(
1

n2a2
nh

3+β
+

1

n3a4
nh

3+β

)
= O

(
1

nanh
3
2

+β

(
1

nanh
3
2

+
1

n2a3
nh

3
2

+β

))
= o

(
1

nanh
3
2

+β

)
,

where we used again that h/an → 0. Hence, in total we find

E[ĝn(x;h)] =
1

h

∫ 1
an

− 1
an

γ(z)K
(z − x

h
;h
)
dz +O

( 1

nanh
3
2

+β

)
.

Next, we enlarge the domain of integration and estimate the remainder as follows. By the
Cauchy-Schwarz inequality we obtain

∫
|z|> 1

an

γ(z)K

(
z − x
h

;h

)
dz ≤

(∫
|z|> 1

an

|γ(z)|2 dz

) 1
2

×

(∫
|z|> 1

an

∣∣∣∣K (z − xh ;h

)∣∣∣∣2 dz
) 1

2

.

By Assumption 1 (iii)∫
|z|> 1

an

|γ(z)|2 dz ≤
∫
|z|> 1

an

(1 + z2)s

(1 + 1
a2
n

)s
|γ(z)|2 dz ≤ Ca2s

n .

By Lemma 4∫
{|z|> 1

an
}

(
K

(
z − x
h

;h

))2

dz ≤ Can

{
h−2β, (W )

h−2β+2, (S)

}
= O(an‖K(·;h)‖22).
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Hence,

E[ĝn(x;h)] =
1

h

∫
γ(z)K

(z − x
h

;h
)
dz + o

(
1

nanh
3
2

+β

)

+

O
(
a
s+1/2
n h1−β

)
, Ass. 3, (S),

O
(
a
s+1/2
n h−β

)
, Ass. 4, (W).

Furthermore, by Plancherel’s equality and the convolution theorem,

1

h

∫
γ(z)K

(z − x
h

;h
)
dz =

1

h

∫
γ(z)K̃

(z − x
h

;h
)
dz

=
1

2πh

∫
Φγ(z)Φ

K̃( ·−x
h

;h)
(z) dz =

1

2π

∫
exp(ixz)Φγ(z)Φ

K̃(·;h)
(zh) dz

=
1

2π

∫
exp(ixz)Φf∆

(z)Φg(z)
Φk(hz)

Φf∆
(−z)

dz =
1

2π

∫
exp(ixz)Φg(−z)Φk(hz) dz.

Hence,

1

h

∫
γ(z)K

(z − x
h

;h
)
dz

=
1

2π

∫
exp(ixz)Φg(−z) dz +

1

2π

∫
exp(ixz)Φg(−z) (Φk(hz)− 1) dz

= g(x) +
1

2π

∫
exp(ixz)Φg(z) (Φk(hz)− 1) dz = g(x) +Rn(x).

Finally,

|Rn(x)| ≤ C
∫
|z|>D/h

|Φg(z)| dz ≤

(∫
|z|>D/h

(
1

1 + z2

)m
dz

) 1
2

×

(∫
|z|>D/h

|〈z〉2m|Φg(z)|2 dz

) 1
2

,

which yields the estimate Rn(x) = O(hm−
1
2 ).

(ii) In the situation of both, (ii)a) and (ii)b), we have

Var
[
ĝn(x;h)

]
=

1

n2a2
nh

2

n∑
j=−n

ν2(wj)

∣∣∣∣K(wj − xh
;h
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=
1

nanh2

∫ 1
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+ 1
nan

− 1
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K
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dz +Rn(x),
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Rn(x) =
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Then

Rn(x) =
1

nanh2

n∑
j=−n

∫ wj+
1

nan

wj

ν2(wj)

[(
K
(wj − x

h
;h
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nanh2
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=: Rn,1(x) +Rn,2(x).

By uniform Lipschitz continuity of ν2 (see Lemma 3 (ii)), it is immediate that
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2
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h
;h
))2
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nh
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= O

(
1

n2a2
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)
.

Next, we consider the term Rn,1 for which we will use a Taylor expansion of K2(·;h). To this
end, notice first from (7) that for any l

K(l)(w;h) =
(−1)l

2π

∫
e−itwΦk(t) · tl

Φf∆(−t/h)
dt,

where the functions Fl : t 7→ Φk(t) · tl is uniformly bounded by 1 and twice continuously
differentiable by Assumption 2 for any l ∈ N. It follows that K2(·;h) is smooth with integrable
derivatives of all orders l ∈ N, since

(K2)(l)(w;h) = (K ·K)(l)(w;h) =
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(
l

k

)
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by Lemma 4 and the previous discussion. Let M ∈ N be such that M ≥ 2
β −1. It follows that

|Rn,1(x)| ≤ C
nanh2
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By (S1), we deduce
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1
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Since M ≥ 2
β − 1, we finally obtain

|Rn,1(x)| = o

(
1

nanh1+2β

)
.

An application of Plancherel’s theorem and Assumption 5 give

1

πCh2β
≤ ‖K(·;h)‖22 =

1

2π

∥∥∥∥ Φk

Φf∆
(·/h)

∥∥∥∥2

2

≤ 1
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1

h2

)β
. (S2)

Now, if (S) holds, an application of Lemma 4 yields

sup
x∈[0,1]
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K
(z − x

h
;h
))2

dz = hν2(x)‖K(·;h)‖22(1 +O(han)) +Rn,3(x),

where

|Rn,3(x)| :=
∣∣∣∣ ∫ 1

an
+ 1
nan

− 1
an

(
ν2(z)− ν2(x)

)(
K
(z − x

h
;h
))2

dz

∣∣∣∣
≤ Ch

∫ 2
anh

− 2
anh

∣∣ν2(zh− x)− ν2(x)
∣∣(K(z;h)

)2
dz

≤ Ch
∫ 2

anh

− 2
anh

∣∣zh∣∣(K(z;h)
)2
dz.

By (24) we have |z ·K
(
z;h
)
| ≤ C/hβ and

|Rn,3(x)| ≤ Ch2−β
∫ 2

anh

− 2
anh

∣∣K(z;h)
∣∣ dz = O

(
h2 ln(n)

h2β

)
,

since, by (24) and (25) in the proof of Lemma 4 and (S),∫ 2
anh

− 2
anh

∣∣K(z;h)∣∣ dz ≤ C
hβ

+

∫
1≤|z|≤ 2

anh

∣∣K(z;h)∣∣ dz
≤ C
hβ

(
1 +

∫
1≤|z|≤ 2

anh

1

|z|
dz

)
≤ C
hβ

(1 + ln(2/anh)) = O(ln(n)/hβ). (S3)

Assertion (ii)b) now follows.
(ii)a) Under (W)∫ 1

an
+ 1
nan

− 1
an

ν2(z)

(
K
(z − x

h
;h
))2

dz ≤ sup
y∈R

ν2(y)h

∫
|K(z;h)|2 dz,
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and the second inequality of (ii)a) follows by (S2). Furthermore,∫ 1
an

+ 1
nan

− 1
an

ν2(z)

(
K
(z − x

h
;h
))2

dz ≥ σ2

∫ 1
an

+ 1
nan

− 1
an

(
K
(z − x

h
;h
))2

dz

≥ hσ2

2
‖K(·;h)‖22,

for sufficiently large n by Lemma 4. Now, the first inequality of (ii)a) follows by (S2), which
concludes the proof of this lemma.

A.2 Extensions to non-equidistant design

For ease of notation, we considered an equally spaced design in the main document. However,
this can be relaxed to more general designs. In this section, we restate the main results
(Theorem 1, Theorem 2, Lemma 5) and adjust their proofs to the case where the design is
generated by a known positive design density fD,n on [0,∞) as follows

j

n+ 1
=

∫ wj

0
fD,n(z) dz, j = 1, . . . , n,

and wj = −w−j . Note that, given the latter definition, we have fD,n(z) = (n+1)/nanI[0,1/an](z).
Furthermore, we require the following regularity assumptions.

Assumption 6.

(i) The density fD,n is continuously differentiable, fD,n ∈ C1(supp(fD,n)).

(ii) There exist constants cD and CD such that cDan ≤ fD,n ≤ CDan.

(iii) The derivative f ′D,n is uniformly bounded, |f ′D,n| ≤ anCD′ .

Regarding our estimator, we need to make the following adjustment to accommodate the
more general design

ĝn(x;h) =
1

nh

n∑
j=−n

Yj
fD,n(wj)

K

(
wj − x
h

;h

)
.

This yields the following adjusted Lemma 5 and adjusted proof.

Lemma 8. Let Assumptions 1 and 2 be satisfied. Further assume that h/an → 0 as n→∞.

(i) Then for bias, we have that

sup
x∈[0,1]

∣∣E[ĝn(x;h)
]
− g(x)

∣∣ = O

(
hm−

1
2 +

1

nanhβ+
3
2

)
+

{
o
(
a
s+1/2
n h1−β

)
, Ass. 3, (S),

o
(
a
s+1/2
n h−β

)
, Ass. 4, (W).

(ii) a) For the variance if Assumption 5, (W) holds and nanh
1+β →∞, then we have that

1

CD
· σ

2

2Cπ
(1 +O(an)) ≤ nanh1+2βVar[ĝn(x;h)] ≤ 2β supx∈R ν

2(x)

cπ
· 1

cD
.
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(ii) b) If actually Assumption 3, (S) holds and nanh
1+β →∞, then

1

fD,n(x)
· ν

2(x)

Cπ
(1 +O(an)) ≤ nanh1+2βVar[ĝn(x;h)] ≤ ν2(x)

cπ
(1 +O (h/an)) · 1

fD,n(x)
,

Here c, C and β are the constants from Assumption 5 respectively 3.

Proof of Lemma 8. (i) We have that

E [ĝn(x;h)] =
1

nh

n∑
j=−n

γ(wj)

fD,n(wj)
K

(
wj − x
h

;h

)

=
1

nh

n−1∑
j=−n

∫ wj+1

wj

γ(wj)

fD,n(wj)(wj+1 − wj)
K

(
wj − x
h

;h

)
dz.

Next, observe

fD,n(wj)(wj+1 − wj) = FD,n(wj+1)− FD,n(wj)−
1

2
f ′D,n(w∗j )(wj+1 − wj)2,

=
1

n+ 1
+

1

2
f ′D,n(w∗j )(wj+1 − wj)2,

where FD,n is the primitive of fD,n. This yields∣∣∣∣fD,n(wj)(wj+1 − wj)−
1

n

∣∣∣∣ ≤ 1

n2
+

1

2
CD′

1

n2a2
ncD

and thus

1

fD,n(wj)(wj+1 − wj)
= n

(
1 +O

(
1
na2
n

))
. (S4)

Replacement of 1/fD,n(wj)(wj+1 − wj) by the latter estimate now yields

E [ĝn(x;h)] =
1

h

∫ 1
an

− 1
an

γ(z)K

(
z − x
h

;h

)
dz
(

1 +O
(

1
na2
n

))
+Rn,1(x) +Rn,2(x),

where

Rn,1(x) =
1

h

n−1∑
j=−n

∫ wj+1

wj

d

du

(
γ(u)K

(
u− x
h

;h

)) ∣∣∣∣
u=z

(wj − z) dz

and

Rn,2(x) =
1

2h

n−1∑
j=−n

∫ wj+1

wj

d2

du2

(
γ(u)K

(
u− x
h

;h

)) ∣∣∣∣
u=w̃j(z)

(wj − z)2 dz.

For z ∈ [wj , wj+1] we obtain the following estimates by Assumption 6:

|wj − z| ≤ |wj − wj+1| ≤ 1/(nancD)
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. Therefore, the rest of the proof of claim (i) follows along the lines of the proof of Lemma 5
(i).
(ii) In the situation of both, (ii)a) and (ii)b), we have

Var
[
ĝn(x;h)

]
=

1

n2h2

n∑
j=−n

ν2(wj)

fD,n(wj)2

∣∣∣∣K(wj − xh
;h
)∣∣∣∣2

=
1

nh2

∫ 1
an

− 1
an

ν2(z)

fD,n(z)

(
K
(z − x

h
;h
))2

dz ·
(

1 +O

(
1

na2
n

))
+Rn(x),

where

Rn(x) =
1

nh2

n−1∑
j=−n

∫ wj+1

wj

[
ν2(wj)

nfD,n(wj)2(wj+1 − wj)

(
K
(wj − x

h
;h
))2

− ν2(z)

fD,n(z)

(
K
(z − x

h
;h
))2]

dz.

Then

Rn(x) =
1

nh2

n−1∑
j=−n

∫ wj+1

wj

ν2(wj)

nfD,n(wj)2(wj+1 − wj)

[(
K
(wj − x

h
;h
))2

−
(
K
(z − x

h
;h
))2]

dz

+
1

nh2

n∑
j=−n

∫ wj+1

wj

(
K
(z − x

h
;h
))2[

ν2(wj)

nfD,n(wj)2(wj+1 − wj)
− ν2(z)

fD,n(z)

]
dz.

Using (S4), we further obtain

Rn(x) =
1

nh2

n−1∑
j=−n

∫ wj+1

wj

ν2(wj)

fD,n(wj)

[(
K
(wj − x

h
;h
))2

−
(
K
(z − x

h
;h
))2]

dz ·
(

1 +O
(

1
nan

))

+
1

nh2

n−1∑
j=−n

∫ wj+1

wj

(
K
(z − x

h
;h
))2[ ν2(wj)

fD,n(wj)
− ν2(z)

fD,n(z)

]
dz

+
C

n2anh2

n−1∑
j=−n

∫ wj+1

wj

(
K
(z − x

h
;h
))2 ν2(wj)

fD,n(wj)
dz =: Rn,1(x) +Rn,2(x) +Rn,3(x).

It holds that

|Rn,3(x)| ≤ C
n2a2

nh
‖K(·, h)‖22 = O

(
1

n2anh2β+1

)
.

Furthermore,

Rn,2(x) =
1

nh2

n−1∑
j=−n

∫ wj+1

wj

(
K
(z − x

h
;h
))2

ν2(z)
fD,n(z)− fD,n(wj)

fD,n(z)fD,n(wj)
dz

+
1

nh2

n−1∑
j=−n

∫ wj+1

wj

(
K
(z − x

h
;h
))2[ν2(wj)− ν2(z)

fD,n(wj)

]
dz
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By uniform Lipschitz continuity of ν2 (see Lemma 3 (ii)) and fD,n (by Assumption 6), it is
immediate that

|Rn,2(x)| ≤ C
n2a2

nh
2

∫ (
K
(z − x

h
;h
))2

≤ C
n2a2

nh
‖K(·, h)‖2

= O

(
1

n2a2
nh

1+2β

)
.

Using again that |wj−z| ≤ |wj−wj+1| ≤ 1/(nancD), the rest of the proof of claim (ii) follows
along the lines of the proof of Lemma 5 (ii).

A.3 Role of the hyperparameters

In this section, we discuss the setting presented in Example 1 of the main document in more
detail, in order to shed some light into the role of the parameters an and h, as well as the
assumptions made for our theoretical considerations. In particular, we show that, in a typical
setting, the conditions listed in Assumption 4 are satisfied if h is the rate optimal bandwidth.
As an example, we consider the case of a function g ∈ Wm(R),m > 5/2, of bounded support,
[−1, 1], say, f∆ as in Definition (8) in the main document with a = 1, i.e.,

f∆(x) = 1
2e
−|x| with Φf∆

(t) = 〈t〉−2,

and E[ε4
1] ≤ ∞, i.e., M = 4. Here, the parameter β, which gives the degree of ill-posedness of

the problem and which is defined in Assumption 3 in the main document is given by β = 2.
In this example, Assumption 4 (i) becomes

ln(n)

n−
1
2anh

+
h

an
+ ln(n)2h+ ln(n)an +

1

nanh5
= o(1).

Given that h/an = o(1), the last term asymptotically dominates the first one, such that
Assumption 4 (i) reduces to

h

an
+ ln(n)2h+ ln(n)an +

1

nanh5
= o(1). (S5)

In density deconvolution, where the target density g is contained in a Hölder ball such that
|g(r)(x)−g(r)(x+δ)| ≤ Bδa for some radius B > 0, some positive integer r and some a ∈ [0, 1),
the rate optimal bandwidth is of order n−1/(2(r+a+β)−1). According to our Assumption 1 (i),
we have g ∈ Wm. Due to the embedding Wm(R) ⊂ Cr+a(R), we can replace r + a in the
above bandwidth by m− 1/2 in terms of our parametrization of the smoothness of the target
function. This yields h ' n−1/(2(m+β)). With this choice of h, given that 1/(nanh

5) = o(1)
by Assumption 4 (i), Assumption 4 (ii) becomes

√
an +

√
n(m+β−1)/(m+β)a2s+1

n = o(1/
√

ln(n)). (S6)

Next, we will consider the design parameter an.This parameter ensures that asymptotically,
observations on the whole real line are available. This is necessary since the function γ will
typically be of unbounded support, even if the function g itself is of bounded support as it
is the case in this example. Condition (S6) can only be satisfied if an = n−ε, where ε can
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only be as small as the parameter s (see Assumption 1 (iii)) allows. Assumption 1 (iii) in
the main document is an assumption on the decay of γ. As a rule of thumb it can be said
that this assumption is met if both functions g and f∆ decay sufficiently fast. To give some
more intuition, we now provide some computations for our specific example, for which the
assumption is met for any s. We find∫

〈z〉2s(γ(z))2 dz =

∫
〈z〉2s

(∫
g(t)f∆(t− z) dt

)2

dz

=
1

4

∫
〈z〉2s

(∫
g(t) exp(−|t− z|) dt

)2

dz.

Since g is supported on [−1, 1] by assumption, we now split the outer integral into integrals
over different regions, such that all values of t with a contribution to the inner integral will
be either larger or smaller. The remaining term is bounded by a constant.∫

〈z〉2s(γ(z))2 dz ≤ C +
1

4

∫
|z|>1
〈z〉2s

(∫
|t|≤1

g(t) exp(−|t− z|) dt

)2

dz.

If z > 1 in the outer integral, exp(−|t− z|) = exp(−z + t) and thus∫
z>1

exp(−z)〈z〉2s
(∫
|t|≤1

g(t) exp(t) dt

)2

dz <∞,

for any s > 0. Analogously,∫
z<−1

exp(z)〈z〉2s
(∫
|t|≤1

g(t) exp(−t) dt

)2

dz <∞,

for any s > 0. Therefore, in the setting of this example, Assumption 1 (iii) holds for any
s,such that an can be chosen of order n−ε for ε arbitrarily small. In this case, the remaining
conditions in (S5) and (S6) become 1/(nanh

5) = o(1) and
√

ln(n)an = o(1), respectively.
Using an = n−ε and h = n−1/(2(m+β)) ≥ n−1/9, we find that Assumption 4 holds for any
ε < 4/9.

A.4 Extensions: Details

Our theoretical developments for the procedure in Section 5 in the main document actually
involve a sample splitting. To this end, let (dn)n∈N be a sequence of natural numbers, dn →∞
and dn = o(n), 1/dn = o(1/ ln(n)2) and let Jn := {−n, . . . , n}\{−n+ k · dn | 1 ≤ k ≤ 2n/dn},
i.e., we remove each dn-th data point from our original sample. Now, set Y1 := {Yj | j ∈ Jn} as
well as Y2 := {Yj | j ∈ {−n, . . . , n}\Jn}. This way, the asymptotic properties of the estimator
based on the main part of the sample, Y1, remain the same. Let further, for j ∈ Jn, Mj denote
the difference of ωj and its left neighbor, that is, Mj= 1/(nan) if j− 1 ∈ Jn and Mj= 2/(nan)
else. Define the estimator g̃n, based on Y1 by

g̃n(x;h) =
1

h

∑
j∈Jn

Yj Mj K

(
wj − x
h

;h

)
.

We now formulate an analog of Theorem 1 under Assumption 5.
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Theorem 3. Let Assumptions 2, 4 (i) and 5 be satisfied. Let further ν̃n be a nonparametric
estimator of the standard deviation in model (4) based on Y2 such that for some sequence of
positive numbers bn → 0 for which an/bn = o(1/ ln(n)) we have that

E

[
sup
|j|≤bnn

|ν̃n(ωj)− ν(ωj)|

]
= o
(
1/(ln(n) ln ln(n))

)
and ν̃n > σ̃ > 0 (S7)

for some constant σ̃ > 0.

(i) There exists a sequence of independent standard normally distributed random variables
(Zn)n∈Z, independent of ν̃n, such that for

D̃n(x) =

√
nanh1+2β

ν̃(x)

(
g̃n(x;h)− E[g̃n(x;h)]

)
,

G̃n(x) =

√
nanh1+2β

h ν̃n(x)

∑
j∈Jn,|j|≤nbn

ν̃n(ωj) Mj ZjK

(
wj − x
h

;h

)
, (S8)

we have that
∀ α ∈ (0, 1) : lim

n→∞
P
(
‖D̃n‖ ≤ q‖G̃n‖(α)

)
= α,

where q‖G̃n‖(α) denotes the α-quantile of ‖G̃n‖.

(ii) If, in addition,
√
nanh2m+2β+

√
na2s+1

n +1/
√
nanh2 = o(1/

√
ln(n)). and if Assumption

1 is satisfied, E[g̃n(x;h)] in (11) can be replaced by g(x).

Proof of Theorem 3. We require that

‖D̃n − G̃n‖ = oP(1/
√

ln(n)), (Step 1)

as well as

E‖G̃n‖ = OP(
√

ln(n)). (Step 2)

Step 1 a: Gaussian Approximation
Lemmas 9 and 10 are in preparation for the Gaussian approximation where the target process
G̃n is first approximated by processes G̃bn

n,0 and G̃n,0.

Lemma 9. We shall show that

‖ν G̃bn
n,0 − ν̃n G̃n‖ = oP(1/

√
ln(n)), (24)

where

G̃bn
n,0 :=

√
nanh1+2β

hν(x)

∑
j∈Jn,|j|≤nbn

ν(ωj) Mj ZjK

(
wj − x
h

;h

)
.
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Proof. Let Z := {Z−n, . . . , Zn} be iid standard Gaussian random variables as in the proof of
Theorem 1, and cn := 1/ ln(n) ln ln(n).

PZ,Y2

(
‖G̃bn

n,0 − G̃n‖ > δ/
√

ln(n)
)
≤ PZ,Y2

(
sup
|j|≤bnn

|ν(wj)− ν̃n(wj)| > cn

)
+ PZ,Y2

(
‖G̃bn

n,0 − G̃n‖ > δ/
√

ln(n) ; sup
|j|≤bnn

|ν(wj)− ν̃n(wj)| ≤ cn
)

= Pn,1 + Pn,2.

By assumption, Pn,1 = o(1).

Pn,2 ≤ PZ,Y2

(
‖G̃bn

n,0 − G̃n‖I{sup|j|≤bnn |ν(wj)−ν̃n(wj)|≤cn} > δ/
√

ln(n)

)
= EY2

[
PZ,Y2

(
‖G̃bn

n,0 − G̃n‖I{sup|j|≤bnn |ν(wj)−ν̃n(wj)|≤cn} > δ/
√

ln(n)

∣∣∣∣Y2

)]
≤ EY2

[
EZ,Y2

(
‖G̃bn

n,0 − G̃n‖I{sup|j|≤bnn |ν(wj)−ν̃n(wj)|≤cn}

∣∣∣∣Y2

)]
·
√

ln(n)

δ
,

by the conditional Markov inequality. Set

Rn(x) :=
(
G̃bn
n,0(x)− G̃n(x)

)
I{sup|j|≤bnn |ν(wj)−ν̃n(wj)|≤cn}

and

R̃n(x) :=
2hβcn√
nanh

∑
|j|≤bnn

ZjK

(
wj − x
h

;h

)
.

Since dRn(s, t) ≤ d
R̃n

(s, t) for all s, t ∈ [0, 1] and for all samples Y2 and E
[
‖R̃n‖ | Y2

]
=

E‖R̃n‖ = O(cn
√

ln(n)) = o(1/
√

ln(n)), it follows by Lemma 7 that EZ,Y2 [‖Rn‖ | Y2] ≤
E[‖R̃n‖] for all samples. Therefore, Pn,2 = o(1/

√
ln(n)) and the claim follows.

Lemma 10. We have that

‖νG̃bn
n,0 − νG̃n,0‖ = oP(1/

√
ln(n)).

where

G̃n,0(x) :=
hβ

ν(x)
√
nanh

∑
j∈Jn

nbn<|j|≤n

ν(wj)∆jZjK

(
wj − x
h

;h

)
. (S9)

Proof. Let

Rn(x) := νG̃bn
n,0 − νG̃n,0 =

√
nanh1+2β

h

∑
j∈Jn

nbn<|j|≤n

ν(wj)∆jZjK

(
wj − x
h

;h

)
.

Then, since ∆2
j ≤ 4/(n2a2

n) and Jn ⊂ {−n, . . . , n},

Var[Rn(x)] ≤ 4h2β

nanh

∑
nbn<|j|≤n

ν2(wj)K
2

(
wj − x
h

;h

)
.
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From the proof of Lemma 5 we deduce

Var[Rn(x)] ≤ C
(
han
bn

+
1

nanh

)
= o

(
1

ln(n)2

)
.

An application of the following Lemma 11 concludes this proof.

Lemma 11. Let (Xn(t), t ∈ T ) be an almost surely bounded Gaussian process on a compact
index set T with σ2

T,n := ‖Var(Xn)‖ = o(1/ ln(n)2) such that N(T, δ, dXn) ≤ (n/δ)a for all
δ ≤ σT,n and some a ∈ (0,∞). Then

‖Xn‖ = oP(1/
√

ln(n)).

Proof. Fix δ > 0. An application of Theorem 4.1.2 in Adler and Taylor (2007) yields, for
large enough n ∈ N and a universal constant K

P
(
‖Xn‖T > δ√

ln(n)

)
≤ 2

(
Knδ

2
√

ln(n)σ2
T,n

)a
· 2
√

ln(n)σT,n√
2πδ

· exp

(
− δ2

8 ln(n)σ2
T,n

)
.

Now

P
(
‖Xn‖T > δ√

ln(n)

)
≤ Cna+1δa−1σ−2a+1

n,T exp
(
−σ−1

T,n

)(
exp

(
−σ−1

T,n

)) δ2

o(1)
−1
.

Since σ−2a+1
n,T exp

(
−σ−1

T,n

)
→ 0 as σn,T → 0 and

(
exp

(
−σ−1

T,n

)) δ2

o(1)
−1

= o(n−b) for any fixed

b ∈ (0,∞), the claim of the lemma now follows.

Lemma 12. We have that

‖G̃n − D̃n‖ = oP(1/
√

ln(n)).

Proof. Since by assumption (S7), ν̃n is bounded away from zero, it suffices to show that

‖ν̃nG̃n − ν̃nD̃n‖ = oP(1/
√

ln(n)).

We estimate

‖ν̃n G̃n − ν̃n D̃n‖ ≤ ‖ν̃n G̃n − νG̃bn
n,0‖+ ‖νG̃bn

n,0 − νG̃n,0‖+ ‖νG̃n,0 − ν̃n D̃n‖

= oP

(
1/
√

ln(n)
)

+ ‖νG̃n,0 − ν̃n D̃n‖

The claim now follows along the lines of the Gaussian approximation in the proof of Theorem
1.

Step 2: Expectation of the maximum

Lemma 13.

E‖G̃n‖ = O(
√

ln(n)).
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Proof. Write E[‖G̃n‖] = E
[
E[‖G̃n‖]

∣∣Y2

]
and define

Xn(t) :=
2Mnh

β−1/2

√
nanσ̃

n∑
j=−n

Zjν(wj)K

(
wj − t
h

;h

)
,

where Mn :=
√

max|j|≤bnn |ν̃2(wj)− ν2(wj)| 1
σ2 + 1. Conditionally on Y2, (G̃n(t), t ∈ [0, 1]) is

a Gaussian process and we find for s, t ∈ [0, 1] and for all possible samples Y2 the following
set of inequalities hold

E
[∣∣G̃n(s)− G̃n(t)

∣∣2 ∣∣Y2] ≤ nanh
2β−1

σ̃2

∑
|j|≤nbn

ν̃2(wj)∆
2
j

∣∣∣∣K (wj − sh
;h

)
−K

(
wj − t
h

;h

)∣∣∣∣2

≤ 4h2β−1

nanσ̃2

∑
|j|≤nbn

[
|ν̃2(wj)− ν2(wj)|

ν2(wj)

σ2
+ ν2(wj)

] ∣∣∣∣K (wj − sh
;h

)
−K

(
wj − t
h

;h

)∣∣∣∣2
≤ E

[∣∣Xn(s)− Xn(t)
∣∣2 ∣∣Y2].

An application of Lemma 7 yields, for all samples, E
[
‖G̃n‖

∣∣Y2

]
≤ E

[
‖Xn‖

∣∣Y2

]
. Therefore,

E[‖G̃n‖] ≤ E
[
E[‖Xn‖]

∣∣Y2

]]
≤ CE‖Gn‖ · EMn.

An application of Jensen’s inequality and (S7) yield EMn ≤ 2 for sufficiently large n ∈ N.

Step 3: Anti-Concentration
Following the arguments given in the proof of Theorem 1 concludes the proof of this theorem.
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