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� Ammonia may be one of the hydrogen carriers of the future.

� The technical and economical feasibility of a single-pass ammonia synthesis process is discussed.

� A single-pass ammonia synthesis process is cost competitive with the Haber-Bosch synthesis loop at small scale.
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a b s t r a c t

Ammonia may be one of the energy carriers in the hydrogen economy. Although research

has mostly focused on electrochemical ammonia synthesis, this however remains a sci-

entific challenge. In the current article, we discuss the feasibility of single-pass thermo-

chemical ammonia synthesis as an alternative to the high-temperature, high-pressure

Haber-Bosch synthesis loop. We provide an overview of recently developed low tempera-

ture ammonia synthesis catalysts, as well as an overview of solid ammonia sorbents. We

show that the low temperature, low pressure single-pass ammonia synthesis process can

produce ammonia at a lower cost than the Haber-Bosch synthesis loop for small-scale

ammonia synthesis (<40 t-NH3 d�1).

© 2021 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications

LLC. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
Introduction

‘It may be that this solution is not the final one,’ Fritz Haber pro-

claimed during his 1918 Nobel Laureate acceptance speech for

the development of thermo-catalytic ammonia synthesis

from hydrogen and nitrogen (Equation (1)). Many have heeded

this as a call for the development of an electrochemical

ammonia synthesis process over the past few decades [1e9].
te.nl (K.H.R. Rouwenhor

vier Ltd on behalf of Hydroge

/).
However, electrochemical ammonia synthesis remains an

unsolved research problem [10e13].

Incremental improvements to the conventional, Haber-

Bosch ammonia synthesis loop and coupling this process

with green hydrogen production technologies (and nitrogen

purification technologies) have proved most feasible so far

[14]. Smith et al. [15] discussed alternatives for a green

Haber-Bosch processes, as well as the potential for a single
st).
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pass ammonia synthesis process. Ammonia may play a role

as an energy vector in the decarbonized energy landscape

[15e20].

3H2 þN2#2NH3 with DHo ¼ �91:8 kJ mol�1; equivalent

� 2:7 GJ t�NH�1
3 (1)

In the current work we aim to show how a single pass,

absorbent-enhanced ammonia synthesis process is cost

competitive with a high-pressure Haber-Bosch synthesis loop

for decentralized applications, due to low capital expenditure

required for the single pass, absorbent-enhanced process [15].

Small-scale power-to-ammonia plants may find applications

for isolated communities in for instance the interior of Africa,

as ammonia may be an energy storage medium that accounts

for the intermittency of renewables such as wind and solar

[18,21]. We aim to shed light on how such a single-pass,

absorbent-enhanced process is conceivable in the near

future with materials reported in literature, allowing for

operation at or even below 200 �C. This potentially allows for

operating the ammonia synthesis reaction and ammonia

separation at nearly the same temperature, thereby mini-

mizing the cost for heat exchange within the ammonia syn-

thesis section. Furthermore, ammonia synthesis and

ammonia separation can be operated in the same vessel,

thereby reducing the investment cost for the ammonia syn-

thesis section [15].

Learning from history: the Claude process

The single pass conversion in the Haber-Bosch process is

typically 10e15% [22,23]. Ammonia synthesis occurs over a

catalyst bed with multiple-promoted iron catalysts at

400e500 �C and 100e300 bar. The ammonia is separated via

condensation at near-ambient temperatures. Due to the low

single-pass conversion of 10e15% under the Haber-Bosch

conditions (400e500 �C and 100e300 bar), a recycle is

required for effective utilization of the feed gas, typically

leading to overall conversions of 97e99% [15]. However, it is

desirable to have a near-complete single-pass conversion, as

this would allow for smaller equipment sizes and would

alleviate the requirement of an expensive recycle

compressor. The single pass conversion can be increased by

(1) increasing the equilibrium conversion in the reactor, and

by (2) separating the ammonia more completely than by

condensation, decreasing the ammonia concentration

entering the reactor again after the separation step. The

separation by condensation at a given temperature is limited

by the vapour pressure of ammonia at that temperature. For

reference, the vapour pressure of ammonia is about 8.5 bar at

room temperature.

The first attempt at a single pass ammonia synthesis pro-

cess was demonstrated by the French engineer Georges

Claude in 1917 [24]. As opposed to operating at the 200 bar of

the first Haber-Bosch plants [25], Claude proposed to increase

operating pressure to 900e1000 bar. Due to the logarithmic

scaling relation between the pressure increase and the work

required, the energy requirement for compression from 1 bar

to 900e1000 bar is only 1.2 times the energy required for
compression to 200 bar [26]. Multi-stage compression is

required to increase the pressure from 1 bar to 900e1000 bar.

At such hyperpressures, the equilibrium conversion is

increased such that single pass conversions of 40% per reactor

can be attained at 500e650 �C [27,28]. The ammonia is sub-

sequently condensed, after which themixture of nitrogen and

hydrogen is fed to a second ammonia synthesis reactor. The

overall conversion can be above 80% after a cascade of three to

four reaction and condensation steps, eliminating the

requirement for a recycle (see Fig. 1). The residual gas is used

for heating purposes for hydrogen production. In industrial

practice, the Claude process did not live up to its promises due

to technical problems caused by the severe operating condi-

tions [24]. For example, the use of hyper-pressures also results

in high partial pressures of catalyst poisons such as O2 and

H2O, thereby decreasing the catalyst activity. Furthermore,

pipe corrosion, hydrogen-embrittlement and pipe bursts are

more likely to occur at higher pressures, implying more

expensive piping material is required. At the end, the Claude

process could not compete with the Haber-Bosch process.
The single pass ammonia synthesis process of
the 21st century

Even though the Claude process has demonstrated that a

single pass ammonia process is conceivable, other strategies

should be employed for increasing the single pass conversion

of ammonia under mild conditions. With the recent trend of

coupling intermittent renewables such as solar, tidal and

wind resources to electrolyzers, there is desire for operation

undermild operating conditions, rather than at hyperpressures,

as this allows for better intermittent operation. Examples of

such developments are increased catalyst activity at low

temperature (<300 �C) [29e31], as well as the use of solid

sorbents for more complete ammonia removal [32e35].

Operation at low temperature improves the equilibrium to

ammonia, which allows for operation undermilder pressures.

In the upcoming sections, we discuss the technological

feasibility of a single-pass system, based on literature. We set

targets for the desirable ammonia synthesis catalyst and

ammonia sorbent. Preferably, the ammonia synthesis reactor

and the ammonia separation operate at the same temperature

[36], as this alleviates the need for expensive equipment for

heat integration [15]. Ideally, the heat of reaction, i.e. 2.7 GJ t-

NH3
�1 (Equation (1)), suffices for the desorption of ammonia

from the sorbent. If the reaction operates at a similar tem-

perature as the absorption, desorption would require a higher

temperature. Therefore, heat integration by using the heat of

reaction to drive the desorption is not feasible and additional

energy is always required. If the NH3 is stored in the sorbent,

the heat of reaction cannot be used to drive desorption in any

case.

In section Solid sorbents for ammonia seperation,

ammonia sorbents are discussed, to identify themost suitable

sorbents for ammonia separation. Subsequently, recent

achievements in catalyst development are discussed in sec-

tion Catalysts. After this, a cost breakdown is provided for a

small-scale single-pass ammonia synthesis process, as

compared to benchmark electrolysis-based Haber-Bosch

https://doi.org/10.1016/j.ijhydene.2021.04.014
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Fig. 1 e Schematic representation of the Claude process. Reproduced from Ref. [28].
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processes, and absorbent-enhanced Haber-Bosch processes.

These processes are elaborated upon in section The single

pass process in perspective. A conventional fossil-based

Haber-Bosch process is not considered here, as this process

cannot be scaled down cost effectively due to the extensive

heat exchange required between the steam methane

reforming (SMR) section and the ammonia synthesis loop [15].

Solid sorbents for ammonia separation

Academic research mostly focused on improving the activity

of ammonia synthesis catalysts to lower the ammonia syn-

thesis temperature and pressure [37]. However, selective and

complete removal of ammonia from the reactor effluent is

another prerequisite for ammonia synthesis under mild con-

ditions. Complete removal of ammonia via condensation from

the gas stream is difficult and operation at low pressures

(<50 bar) is not feasible, due to the significant ammonia

vapour pressure at ambient conditions (8.5 bar at 20 �C) [15,18].
Ammonia can be removed more completely by solid sor-

bents, depending on the sorbent capacity and affinity to bind

ammonia, and sorption kinetics [34,38]. Interestingly, Georges

Claude already patented the capture of ammonia in the solid

form of ammonium chloride as early as 1924 [39]. Over the

past two decades, various research groups have worked on

ammonia separation at Haber-Bosch conditions with solid

sorbents [33,34,40e46].

A wide range of materials has been proposed for ammonia

separation, such as activated carbon [47,48], covalent organic

frameworks [49], deep eutectic solvents [50], ionic liquids [51],

metal organic frameworks [52], metal halides [42], oxides [53],

porous organic polymers [54], and zeolites [47,48]. Among

these, metal halides and zeolites are most feasible, as these

are already applied in other industrial processes and the

technology readiness level (TRL) is higher than that of other

materials. Ammonia is adsorbed on zeolites, while ammonia

is absorbed in metal halides, forming a solid solution. The

ammonia absorption/adsorption and desorptionmechanisms

in metal halides and zeolites are reviewed in Refs. [55e57].
Ammonia separation technologies by condensation, metal

halides and zeolites are listed in Table 1.

The concept to be evaluated is a single vessel, in which the

ammonia synthesis reaction and separation occurs. The

ammonia synthesis reaction and the ammonia separation

occur in different beds within the same vessel. Important

descriptors to evaluate sorbents are (1) the sorbent capacity,

(2) the heat of desorption and the heat required for heating the

sorbent, (3) the operating temperature window, and (4) the

equilibrium ammonia pressure window [60]. The sorbent ca-

pacity determines the size of the separator bed and therefore

the capital investment required. Optimization of the sorbent

material and morphology can increase the rate of absorption/

adsorption and desorption, as well as the total sorbent ca-

pacity [42,61,62]. As listed in Table 1, similar ammonia ca-

pacities are attainable for metal halides and zeolites.

The heat of desorption determines the energy required for

obtaining purified ammonia. For zeolites, typical values for

the heat of adsorption are �155 kJ mol�1 to �100 kJ mol�1

(about 6e9 GJ t-NH3
�1) [59]. As shown Table S1 and in Figure S1,

the heats of absorption for subsequent absorption steps on

metal halides is substantially lower with typical values of

40e90 kJ mol�1 (about 2.4e5.3 GJ t-NH3
�1) [63,64]. Furthermore,

the temperature window of absorption/adsorption and

desorption determines the heat integration required between

the ammonia synthesis reactor and the ammonia separation

within the vessel. Heat exchangers are major cost contribu-

tors to conventional ammonia synthesis loops with about 45%

of the capital expenditure [15].

Ammonia adsorption on zeolites requires low tempera-

tures of 20e100 �C for a reasonable ammonia capacity [48],

which implies the cost of heat exchangers is similar to sepa-

ration with condensation. Thus, low pressure ammonia sep-

aration with zeolites is not expected to provide a substantial

cost benefit over high-pressure separation by condensation.

On the other hand, ammonia absorption in metal halides can

be operated in a wider temperature window and closer to the

reaction temperature [35]. This allows for a substantial

decrease in the heat exchanger surface area and might even

https://doi.org/10.1016/j.ijhydene.2021.04.014
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Table 1 e Comparison of ammonia separation technologies. The energy consumption includes the energy required for
cooling or heating, as well as the energy required for compression and liquefaction. Based on [18,42,58,59].

Condensation Metal halides Zeolites

Separation temperature (�C) �20 to 30 150e250d 20e100

Desorption temperature (�C) e 300e400d 200e250

Pressure (bar) 100e1000 10e30 10e30

Heat of adsorption (kJ mol�1) e �90 to �40 �155 to �100

Energy consumption (GJ tNH3
�1) 3e5c 6e11e 8e13e

NH3 concentration in gas phase after separation step (mol.%) 2e5 0.1e0.3 0.1e0.3

Ammonia storage capacity (wt.%)a 100 5e30 5e15

Ammonia density (kg m�3)b 680 100e600 30e90

Examples e CaCl2, MgCl2 on oxides Mol. sieve 4A, 5A, 13 X

TRL 9 4e5 4e5

a This is defined as the weight fraction of ammonia as part of the weight of the fully loaded adsorbent (tank material excluded).
b This is defined as the ammonia density per volume storage vessel.
c The energy consumption increases to 20e25 GJ t-NH3

�1 at 20 bar [15].
d These are typical values used in literature. However, the separation temperature and desorption temperature vary widely with the metal

halide and the amount of ammonia absorbed.
e The estimated energy consumption is determined by both the heat of desorption and the energy required for heating the sorbent.
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open the possibility for separation of the ammonia during

reaction [36]. Thus, metal halides are the most suitable alter-

native for a potential low pressure, single-pass ammonia

synthesis process. It should be noted that heating the sorbent

also amounts to 3e4 GJ t-NH3
�1 per 100 �C heating [65].

The fundamentals of the ammonia absorption-desorption

mechanism in metal halides are well studied [61], and cur-

rent research efforts should focus on engineering challenges

for stable operation during months to years. The use of pure

metal halides is not feasible, as the particles are not stable

under desorption conditions (300e400 �C) due to particle

agglomeration [34]. Thus, the development of commercial

metal halide-based ammonia sorbents with long-term stabil-

ity requires additional research [42,66]. A pathway to enhance

the sorbent stability is the use of inert supports such as oxides

or carbon supports for metal halide sorbents such as CaCl2
andMgCl2, among others [42,66]. A drawback of this is that the

maximum theoretical sorbent capacity decreases. However,

the reported capacities of supported metal halides is higher

than for unsupported particles, due to the higher attained

external surface area [42].

Catalysts

In the current section, we discuss historical developments, as

well as the state-of-the-art for ammonia synthesis catalysts in

order to answer the question: to what extent can ammonia be

synthesized at temperatures desired for separation (e.g.,

about 150 �C, see Figure S1 in the supplementary

information)?

In industry, multiple promoted iron-based catalysts are

primarily used, operating at 400e500 �C [67]. Following the

development of the multiple promoted iron catalyst by Mit-

tasch and coworkers in the early 1910s [68], the industrial iron

catalyst has remained remarkably similar, apart from minor

changes in catalyst formulation and optimization of catalyst

preparation [23].

Activated carbon supported ruthenium-based catalysts

(Ru/AC) have also been implemented industrially [23]. Even
though some energy efficiency gains were achieved with Ru/

AC as compared to iron-based catalysts due to a higher ac-

tivity, the implementation of such catalysts has been limited,

due to a higher catalyst cost and a shorter catalyst lifetime in

presence of methane [67].

For both the industrial iron-based catalysts and first

generation of Ru-based catalysts (Ru/AC, Ru/Oxide), N2

dissociation is the rate limiting step, which can be

enhanced by the introduction of alkali and alkaline earth

promoters [69], lowering the barrier for N2 dissociation

[70].

In recent years, the groups of Hara and Hosono have

changed the paradigm that N2 dissociation is the rate-

determining step for ammonia synthesis [72]. Over the past

decade, Ru-based catalysts on new support materials, i.e.

electrides (C12A7:e
�), ammines (CaeBa(NH2)2), and fluorides

(CaFH) (see Fig. 2) with substantially enhanced activity have

been developed [29e31,71e78]. The improvement has been

explained based on the electronic properties of the new sup-

port materials. The electride C12A7:e
� consists of a positively

charged framework with the chemical formula [Ca24Al28O64]
4þ

and 4 extra-framework electrons, accommodated in the cages

as counter ions [79] and is stable at ambient temperature. For

this second generation Ru-based catalysts, hydrogenation

over the catalyst is the rate-limiting step, rather than the N2

dissociation step [72]. These substantially more active Ru-

based catalysts show ammonia synthesis activities at

200e250 �C similar to activities of industrial Fe-based catalysts

and the first generation Ru-based catalysts (Ru/AC, Ru/Oxide)

at 350e400 �C (see Fig. 3) [29,30]. Thus, the second-generation

Ru-based catalysts is active at lower temperatures enabling

higher equilibrium ammonia concentrations (see Fig. 3 and

Figure S7), resulting in similar activity like the commercial

catalysts, achieving the same productivity per unit of reactor

volume but at lower temperatures. The long-term thermal

stability as well as resistance against poisons such as H2O and

O2 of the second-generation Ru-based catalysts needs to be

understood for practical operation. So far, a stable activity for

a few days has been reported [30]. For reference, commercial

https://doi.org/10.1016/j.ijhydene.2021.04.014
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Fig. 2 e Examples of 2nd generation Ru-catalysts with substantially enhanced electronic support properties. Left: Ru/

C12A7:e
¡. Middle: Ru/BaeCa(NH2)2. Right: Ru/CaFH. Reproduced from Refs. [29,30,71].

Fig. 3 e Reaction temperatures required for ammonia synthesis rates of 1 mmol g¡1 h¡1 at 1 bar, H2:N2 ¼ 3:1 and

60 mL min¡1, catalyst loading 0.1 g. It should be noted that the operational pressure in a single pass process is typically

higher than 1 bar, as the outlet pressures for hydrogen production and nitrogen production typically have outlet pressures

of at least 10 bar (see supporting information). Inspired by Ref. [5]. Original references Ru [29e31,71,74,78,80e82], and Co &

Ni [75,76,83,84].
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Fe-based and Ru-based catalysts have a lifetime of more than

10 years [23].

The reported cost of Fe-based catalysts is 1.8 V kg-cata-

lyst�1, while the reported cost of Ru/AC is 270e415 V kg-cat-

alyst�1 [67,85]. According to Yoshida et al. [85], Ru-based

catalyst can account to a significant portion of the opera-

tional cost for ammonia production. However, the higher ac-

tivity of Ru-based catalysts results in a lower energy

consumption, and smaller reactor sizes. Thus, the cost for

ammonia loop with a Fe-based catalyst and a Ru-based cata-

lyst is similar for the current Ru price of about 1000 V kg-Ru�1

[85]. It should be noted, however, that the authors did not

consider Ru recovery from utilized Ru-based catalysts, which

is typically over 90% of the catalyst material [86].
Non-noble catalysts with low-temperature activity for

ammonia synthesis are also developed, thereby decreasing

the cost and scarcity of the catalyst materials. In recent

years, various Co-based and Ni-based NH3 synthesis cata-

lysts with low temperature activity have been reported

[87,88]. The current cost of Co and Ni is about 35e40 V kg-

Co�1 and 15 V kg-Ni�1, respectively, i.e. far below the cost of

Ru. As shown in Fig. 3, novel non-noble Co-based and Ni-

based catalysts with significant activity below 400 �C have

been developed [87,89]. However, non-noble catalysts with a

high ammonia synthesis activity below 200 �C have not yet

been reported. Time will tell whether the rapid de-

velopments for Ru-based catalysts in recent years can be

translated to non-noble catalysts.

https://doi.org/10.1016/j.ijhydene.2021.04.014
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Fig. 5 e Installed cost for the ammonia synthesis loop, for

the conventional high-pressure ammonia synthesis loop

(option a, marked in blue), absorbent-enhanced ammonia

synthesis loop (option b, marked in orange), and single

pass ammonia synthesis loop (option c, marked in green).

The cost of a high-pressure ammonia synthesis loop with

a capacity of 1800 t-NH3 d
¡1 (blue triangle) was reported by

Appl [93]. The cost of the 3, 12, and 60 t-NH3 d¡1 high-

pressure ammonia synthesis loops (blue squares) are

based on quotes provided by Proton Ventures, partially

reported in Banares-Alcantara et al. [94], in Rouwenhorst

et al. [56], and in Vrijenhoef [95]. The cost of a 22.5 t-NH3

d¡1 high-pressure synthesis loop (blue diamond) was

previously reported in Rouwenhorst et al. [56]. The cost

breakdown of the installed cost for various ammonia

synthesis loops (option a, b, and c) with a capacity of 2.4 t-

NH3 d¡1 (blue, orange, and green circles) are reproduced

from Smith et al. [15]. A cost breakdown of the data from

Smith et al. [15] can be found in Figure S12. The orange line

represents a cost-scaling relationship for an absorbent-

enhanced Haber-Bosch synthesis loop, as proposed by

Palys et al. [96]. The blue line represents a cost-scaling

relationship for a high-pressure Haber-Bosch synthesis

loop, based on the data points in the Figure (order is 0.64,

R2 ¼ 0.99). (For interpretation of the references to color in

this figure legend, the reader is referred to the Web version

of this article.)
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Process proposal & economics

As discussed in the previous sections, ammonia synthesis at

low temperatures (at or below 200 �C) has recently become

possible with Ru-based catalysts, but not with non-noble

catalysts. Next, we discuss the potential single pass

ammonia synthesis processes of the 21st century.

The electrolysis-based, conventional high-pressure

Haber-Bosch process with condensation (option a), the

electrolysis-based absorbent-enhanced Haber-Bosch pro-

cess (option b), and the absorbent-enhanced single-pass

ammonia synthesis process (option c) are compared. The

process diagrams for the process alternatives are shown in

Fig. 4.

Alternatives for hydrogen production by electrolysis and

alternatives for nitrogen production are discussed in the

supplementary information section S2. For all ammonia pro-

duction processes considered, hydrogen is produced with a

polymer electrolytemembrane (PEM) electrolyzer at 15 bar. An

advantage of PEM electrolysis is the flexibility, allowing for

rapid load changes caused by use of wind and solar [90]. A

small H2 tank is needed to buffer power fluctuations, which

has aminor effect on the total cost of ammonia production (10

V t-NH3
�1) [91]. It should be noted that this results in essen-

tially no CO2 footprint for all NH3 synthesis options, as the H2

produced with an electrolyzer is derived from renewable

electricity. Nitrogen is produced by pressure swing adsorption

(PSA), which is the most feasible alternative at the process

scale proposed (3 t-NH3 d
�1) [18,92]. As hydrogen and nitrogen

are already produced at elevated pressures, little to no

compression is required for the ammonia synthesis loop in

case of sorbent-enhanced ammonia synthesis loops.

Ammonia can be synthesized at 200e250 �C with second-

generation Ru-based catalysts, which is especially required

for option c (the single-pass ammonia synthesis process) due

to the high equilibrium ammonia concentration at low tem-

peratures. These highly active catalysts can also be used for

option a (the high-pressure Haber-Bosch process) and option b

(the absorbent-enhanced Haber-Bosch process) in order to

decrease the requirement for heat integration between the
Fig. 4 e Process diagrams for the conventional high-pressure Haber-Bosch process with condensation (option a), the

absorbent-enhanced Haber-Bosch process (option b), and the single-pass ammonia synthesis process (option c). In case of

option c, ammonia synthesis and ammonia absorption occurs in the same vessel, but in different beds. Schematic diagrams

reproduced from Ref. [15].
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synthesis reactor and the ammonia separation, as elaborated

in supplementary information section S2.1-S2.2.

The capital investment for the various process technolo-

gies, as well as energy requirement for ammonia synthesis are

discussed hereafter. As shown in Fig. 5, the investment cost

for a high-pressure ammonia synthesis loop (option a) is

significantly higher than the installed cost for absorbent-

enhanced processes (option b and c) at low ammonia pro-

duction capacities of below 10 t-NH3 d�1. The high-pressure

Haber-Bosch synthesis loop benefits from large scale appli-

cation, with a cost scaling factor of 0.64. A dominant cost

factor is the feed compressor, which amounts to over 50% of

the CapEx in the ammonia synthesis loop at capacities below

10 t-NH3 d�1 (see Figure S12) [15,85]. Thus, absorbent-

enhanced ammonia synthesis loops operating at the same

pressure as H2 and N2 production benefit from small scale-

operation.

For option b and option c, ammonia can be separated at

150e200 �C with for instance MgCl2/SiO2. In case of option c,

ammonia synthesis and ammonia separation are integrated

in the same vessel with a heat exchanger in between the beds,

or by mixing the catalyst and absorbent, thereby reducing the

investment cost for the ammonia synthesis section [15]. If not

feasible, the steps can also be operated in separate vessels. An

overall conversion of 100% is assumed for the H2 and N2 in

case of option a and option b. On the other hand, the overall

conversion is assumed to be about 89% for option c, with a

total energy consumption of 41 GJ t-NH3
�1, which is due to not

recycling the residual H2 and N2 after the third reaction-

separation step (see supplementary information S2.3 for

additional discussion). For reference, the total energy con-

sumption of option a is 35 GJ t-NH3
�1, while option b consumes

38 GJ t-NH3
�1 (see Fig. 6 and supplementary information S2.2).

These values for the energy consumption are in line with

values reported in literature [18,91,97,98]. The process condi-

tions, the materials used, and the energy required per process

step can be found in the supplementary information section

S2.2, while a discussion and calculations regarding the num-

ber of reaction-separation steps for the single pass ammonia
Fig. 6 e Net energy consumption for the electrolysis-based

conventional Haber-Bosch process (a), the electrolysis-

based absorbent-enhanced Haber-Bosch process (b), and

the single-pass ammonia synthesis process (c). In case of

the single-pass ammonia synthesis process, the overall

conversion is 89% (see supplementary information section

S2.3).
process can be found in the supplementary information

section S2.3.

Fig. 7 compares investment costs for option a, option b, and

option c, as discussed in detail in supplementary information

section S2.4, with a cost breakdown for the capital investment

and operational expenditure. Clearly, ammonia can be syn-

thesized at the lowest capital cost in case of option c. For

option c, the N2 and H2 feeds flow only once through the heat

exchangers, minimizing the heat exchanger area required,

and no recycle compressor is needed. For an ammonia syn-

thesis rate of 3 t-NH3 d�1 (equivalent to about 1 MW input

power), operational for 350 days per year, and with electricity

costs of 20e40 V MWh�1, the ammonia production cost of the

single-pass process (option c) is up to 60 V t-NH3
�1 lower than

option a and option b due to a lower capital expenditure (see

Fig. 7).

The effect of the number of operational days per year on

the cost of ammonia was also assessed for option a and for

option c (see Figure S8). For less operational days per year, the

cost of ammonia increases, due to the higher contribution of

the capital expenditure. Due to the smaller ammonia syn-

thesis section for option c, the cost penalty for less operational

hours is smaller than for option a and option b. At low oper-

ational load (150 days per year), the cost difference between

the option c and option a is more than 150 V t-NH3
�1 (see

Figure S8). Additional discussion can be found in the

supplementary information section S2.4.

Fig. 8 shows the effect of the ammonia production ca-

pacity on the cost of ammonia for option a and for option c.

Upon scale-up, the contribution of the capital investment

decreases, and the contribution of the energy consumption

becomes dominant. The effect of an increased production

capacity favours option a, as a result of a lower energy

consumption for option a than for option c, as shown in

Fig. 8. This is due to the lower overall conversion in case of

option c (89%), as compared to option a (100%). Thus, large

scale ammonia production with capacities above 30 t-NH3

d�1 is probably still by the Haber-Bosch process in the de-

cades to come.

Electrolysis for H2 production, air separation for N2 pro-

duction, and NH3 synthesis with the high-pressure Haber-

Bosch process are already industrially applied (TRL¼ 8e9), so

the cost of these technologies is known from industrial

quotes and no uncertainty analysis was performed for these

steps. To account for the uncertainty of the cost estimates of

the single pass process, a sensitivity analysis can be found in

Figure S10 and Figure S11 in the supplementary information,

from which it follows that the single pass process is only

advantageous at small scale (<10 t-NH3 d�1) when the

maximum energy consumption is 45 GJ t-NH3
�1 and/or the

investment cost for the NH3 synthesis loop does not increase

by more than 50% compared to the base case cost estimate.

From this analysis, it follows that the single pass process is a

promising technology, but a proof-of-concept is required to

assess the competitiveness with the Haber-Bosch process in

terms of energy consumption and capital investment. It

should be noted that the analysis does not include the effects

of uncertainties imposed by the use of wind or solar energy

on optimal design of the technology, as discussed by Ver-

leysen et al. [19].
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Fig. 7 e Top: cost contributions for the investment costs of H2 production, N2 production, and NH3 production, and the

operational expenditures such as the electricity cost and the owner’s costs, at a capacity of 3 t-NH3 d¡1 operational for 350

days per year at an electricity cost of 20 V MWh¡1 in 2030. Bottom: Cost of ammonia synthesis at a capacity of 3 t-NH3 d¡1

operational for 350 days per year at an electricity cost of 20, 30, or 40 V MWh¡1 in 2030. See the supplementary information

section S2.2 and S2.4 for process conditions, assumptions, and calculations. For the conventional high-pressure Haber-

Bosch process, and the absorbent-enhanced Haber-Bosch process, novel catalyst designs are taken into account for

estimating the heat exchanger area in order to provide a fair comparison. A breakdown of the investment cost for the

ammonia synthesis loop is shown in Figure S12 in the supplementary information.
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The single pass process in perspective

In the current work, we highlight an electrolysis-based low

temperature, low pressure single pass ammonia synthesis

process for small scale applications. However, various other

technologies are also researched as an alternative to the

conventional process. In the current section, we briefly

address the state-of-the-art of other novel renewable

ammonia synthesis technologies.

As discussed in the introduction, electrochemical

ammonia synthesis is widely studied [1e9]. A potential benefit

of electrochemical ammonia synthesis is that nitrogen can
directly react with water, instead of an indirect route via H2

and N2. However, electrochemical ammonia synthesis re-

mains an unsolved research problem [10e13]. The reported

electrochemical ammonia synthesis rates are below 10�9 mol-

NH3 s
�1 cm�2 at less than 20% FE (Faradaic efficiency) [9], while

the required performance amounts to 10�6 mol-NH3 s
�1 cm�2

with at least 50% FE [3,99]. False positives for electrochemical

NH3 synthesis have been reported in various studies, due to

NH3 or NOX contamination on the catalyst material, in the

water, or in the N2 gas [10,12,13,100e102]. Unless these sci-

entific challenges are overcome, electrochemical ammonia

synthesis cannot be considered as a feasible alternative for

green ammonia production. Even so, various authors have

https://doi.org/10.1016/j.ijhydene.2021.04.014
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Fig. 8 e Cost of the high-pressure electrolysis-based Haber-Bosch process with condensation (option a), and the low

temperature, low pressure electrolysis-based single pass ammonia synthesis process as a function of the production

capacity (option c). It is assumed that the installation is 350 days per year in operation at an electricity cost of 20 VMWh¡1 in

2030. The low cost estimates for the CapEx in Table S6 and Table S8 are used, which are the estimates with low temperature

catalysts rather than with conventional Fe catalysts. It should be noted that Fig. 8 is the same as Figure S9 in the

supplementary information. A sensitivity analysis for the CapEx and the energy consumption of the single pass process can

be found in Figure S10 and Figure S11.
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performed techno-economic evaluations for a theoretical high

performance catalyst for electrochemical ammonia synthesis

[103e105]. From this it follows that the cost of ammonia from

electrochemical ammonia synthesis is similar to that of the

electrolysis-based Haber-Bosch process, only if the energy

consumption is similar to that of the electrolysis-basedHaber-

Bosch process.

Photocatalytic ammonia synthesis has also gained atten-

tion in recent years [106,107]. The potential benefit for elec-

trochemical ammonia synthesis, e.g. that nitrogen can

directly react with water, also applies to photocatalytic

ammonia synthesis. However, photocatalytic ammonia syn-

thesis is even more complicated than electrochemical

ammonia synthesis. Light is converted into electrons with a

photo catalyst, which in turn should electrochemically

convert N2 and H2O into ammonia. Unsurprisingly, photo-

catalytic ammonia synthesis is still in the fundamental

research phase [108,109].

Plasma-driven ammonia synthesis is also studied via NH3

formation from N2 and H2O, via NH3 formation from N2 and

H2, and via plasma-based NOX synthesis with subsequent

reduction to NH3 [110e114]. A plasma is an ionized gas, in

which highly energetic electrons may activate strong

chemical bonds in gas molecules, such as N2 [115,116]. This

allows for weakening the N^N bond. When coupled with

catalysis, this potentially allows for N2 activation at mild

temperatures [117,118]. In practice, however, too much of

the energy is lost as heat, which means plasma-based NH3

processes cannot compete with the electrolysis-based

Haber-Bosch process [119,120]. Plasma-based ammonia

synthesis does not provide a cost advantage over the

electrolysis-based Haber-Bosch process, even in the best-

case scenario when the plasma would be able to supply
70 kJ mol�1 enhancing N2 dissociation without any addi-

tional heat losses [119].

Other technologies for ammonia synthesis include homo-

geneous catalysis [121,122], enzymatic reactions [123], and

chemical looping [124]. However, these also have not found

practical applications. In case of ammonia synthesis with

homogeneous catalysis and enzymatic reactions, catalyst

robustness is limited, and catalyst separation from the prod-

uct is difficult. Chemical looping approaches suffer from

complex non-steady state operation with large temperature

and/or pressure fluctuations. Lastly, these technologies all

have higher energy consumptions than the benchmark

electrolysis-based Haber-Bosch process [56]. In conclusion,

various novelmethods for ammonia synthesis are researched.

However, none of these technologies have proven to be

feasible so far, implying that improving the thermo-catalytic

process may be important in the upcoming decade(s).
Outlook

The chemical industry of the 20th century and the first de-

cades of the 21st century has been characterized by large-

scale operation to minimize the contribution of the capital

expenditure due to the economy of scale. This is possible

because of availability of huge amounts of localized fossil re-

sources that are easily transported to large-scale facilities. The

net energy consumption for the best fossil-based ammonia

synthesis plants nowadays is about 28 GJ t-NH3
�1 [56]. How-

ever, an extensive network of heat exchangers is required to

accomplish this due to large temperature changes within the

ammonia synthesis process starting frommethane, including

steam-reforming. Thus, ammonia synthesis is currently only

https://doi.org/10.1016/j.ijhydene.2021.04.014
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economical feasible at large scale operation of 1000e6000 t-

NH3 d
�1 with an energy input of 0.4e2.5 GW [125]. Large-scale

electrolysis-based ammonia synthesis plants consume about

30e35 GJ t-NH3
�1 [18,91]. A benefit of electrolysis is that less

heat integration is required as compared to steam methane

reforming. However, the high-pressure Haber-Bosch synthe-

sis loop still requires compression up to 100e300 bar, which is

only economic for large-scale production.

With the availability of local, low-cost renewable electricity

from solar and wind at the MW level, scale-down of such

processes is desirable. Unfortunately, the relatively large

CapEx (per ton product) at such scales often favors importing

chemicals from large-scale plants over local production.

However, the development of low temperature ammonia

synthesis catalysts and ammonia sorbentsmay allow for a shift

in the paradigm. A single-pass process is conceivable due to

higher achievable conversion to ammonia at low temperature

and therefore low pressure (below 200 �C and at 15 bar). This

lowers the ammonia synthesis cost by up to 60 V t-NH3
�1 for

small-scale operation of a fewMW as compared to the conven-

tional condensation-based synthesis loop. This is primarily due

toalowercapitalexpenditurefortheammoniasynthesissection,

and more specifically a lower capital expenditure for heat ex-

change and compression. This allows for more effective scale-

down of ammonia production at low temperature and pressure

with intermittentrenewableelectricity for isolatedcommunities

in for instance the interior of Africa [18,21]. Transport of

ammonia from centralized plants to isolated communities is

typically too expensive [126]. Thus, the low temperature, low

pressure, absorption enhanced, single pass ammonia synthesis

process offers a near-term alternative for the high-pressure,

condensation-based ammonia synthesis loop.

For such a single-pass ammonia synthesis process to be

feasible, adequate absorbents and stable, low temperature

ammonia synthesis catalysts must be developed. The mech-

anism of ammonia absorption-desorption inmetal halides are

well studied [61] and current research efforts should focus on

the structure andmorphology of supported, high-surface area

absorbents in order to optimize the cyclic sorbent capacity,

kinetics of absorption and desorption as well as durability.

With the re-emergence of the field of thermo-catalytic

ammonia synthesis, it is possible that very active catalysts

operating at low temperatures will be developed in the up-

coming years, given the rapid developments in the past few

years with ammonia synthesis activity at temperatures down

to 50 �C [29]. The long-term thermal stability as well as resis-

tance against poisons such as H2O and O2 of the second-

generation Ru-based catalysts needs improvement before in-

dustrial operation becomes feasible. So far, a stable activity for

only a few days has been reported [30]. Alternatively, non-

noble catalysts with low-temperature activity may also be

developed [84], resulting in lowermaterial cost as compared to

Ru-based catalysts.
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