Bed Census Predictions and Nurse
Staffing
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Abstract Workloads in nursing wards depend highly on patient arrivals and lengths
of stay, both of which are inherently variable. Predicting these workloads and
staffing nurses accordingly are essential for guaranteeing quality of care in a cost-
effective manner. This chapter describes a stochastic method that uses hourly
census predictions to derive efficient nurse staffing policies. The generic analytic
approach minimizes staffing levels while satisfying so-called nurse-to-patient ratios.
In particular, we explore the potential of flexible staffing policies that allow hospitals
to dynamically respond to their fluctuating patient population by employing float
nurses. The method is applied to a case study of the surgical inpatient clinic of the
Academic Medical Center Amsterdam (AMC).

1 Introduction

Societal developments and budget constraints demand hospitals to on the one hand
increase quality of care and on the other hand efficiency [41]. This entails a strong
incentive to reconsider the design and operations of inpatient care services that
provide care to hospitalized patients by offering a room, a bed, and board [40].
Since the 1950s, the application of operational research methods yields significant
contributions in accomplishing essential efficiency gains in healthcare delivery [30].
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This chapter, combining the results of [32, 33], presents an exact method to assist
hospital management in adequately organizing their inpatient care services.

The challenge in decision-making for inpatient care delivery is to guarantee care
from appropriately skilled nurses and required equipment to patients with specific
diagnoses while making efficient use of scarce resources [28, 50]. Deploying
adequate nurse staffing levels is one of the prime responsibilities of inpatient care
facility managers. Nursing staff typically accounts for the majority of hospital
budgets [54], which means that every incidence of overstaffing is scrutinized during
times when cost containment efforts are required [34]. Performance measures
are required that reflect efficiency and quality of care to assess the quality of
the logistical layout. Efficiency is often expressed in high bed occupancy. The
drawback of high bed occupancy is that it may cause congestion and a threat
to the provided quality of care [21, 22]: (i) patients may have to be rejected for
admission due to lack of bed capacity, so-called admission refusals or rejections,
and (ii) patients may be placed in less appropriate units, so-called misplacements
[13, 27, 29]. Due to such misplacements, planning decisions regarding a specific
care unit can affect the operations of other units [4, 12, 36]. At the same time,
maintaining appropriate staffing levels is crucial to be able to provide high-quality
care. Planning of the inpatient care facility should not only take into account the
upstream departments, such as the emergency department and the operating rooms,
but also the interrelationship between care units. In this chapter, following [32, 33],
we present an exact method to assist healthcare administrators in ensuring safe
patient care while also maintaining an efficient and cost-effective nursing service.

We first present a generic exact analytical approach to achieve the required
integral and coordinated resource capacity planning decision-making for inpatient
care services, building upon the approach introduced in [49], which determines
the workload placed on hospital departments by describing demand for elective
inpatient care beds on a daily level as a function of the Master Surgical Schedule
(MSS). The MSS is a (cyclic) block schedule that allocates operating time capacity
among patient groups as typically used by hospitals to allocate operating room
capacity [18, 24, 46]. Based on a cyclic arrival pattern of emergency patients and
an MSS block schedule of surgical patients, we present demand predictions on
an hourly level for several inpatient care units simultaneously for both acute and
elective patients. Based on overflow rules, we translate the demand predictions to
bed census predictions, since demand and census may differ due to rejections and
misplacements. The combination of the hourly level perspective and the bed census
conversion enables us to derive several performance measures, along which the
effectiveness of different logistical configurations can be assessed.

Subsequently, following [32], we incorporate the tactical decision that is referred
to as ‘staff-shift scheduling’ in [30] into this integrated modeling framework. For
each working shift, during a given planning horizon, we determine the number
of employees that should be assigned to each inpatient care unit. The predictable
fluctuation in inpatient population due to the operating room schedule and other
predictable variabilities in patient arrivals (e.g., seasonal, day of week, and time
of day effects) can be taken into account when determining the staffing levels for
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‘dedicated nurses’, which are nurses with a fixed assignment to a care unit. When
only dedicated nurses are employed, the buffer capacity required to protect against
random demand fluctuations can lead to regular overstaffing. When two or more
care units cooperate by jointly appointing a flexible nurse pool, the variability of
these random demand fluctuations balances out due to economies of scale, so that
less buffer capacity is required. We explore the potential of flexible staffing policies
that allow hospitals to dynamically respond to their fluctuating patient populations.
This flexibility is achieved by employing a pool of cross-trained nurses, or ‘float
nurses’ [19, 42], for whom assignments to specific care units are decided at the start
of their shifts.

To illustrate its potential, the method is applied to a case study that involves
the care units in the surgical inpatient clinic of the Dutch university hospital,
the Academic Medical Center Amsterdam (AMC), which serve the specialties of
traumatology, orthopedics, plastic surgery, urology, vascular surgery, and general
surgery. Inspired by the quantitative results, the AMC decided that the method will
be fully implemented as part of the global redesign of its inpatient care services.

This chapter is organized as follows: Sect.2 provides a review of relevant
literature; Sect. 3 presents the model to predict bed census; Sect.4 presents the
models for the fixed and the flexible staffing policies; Sect. 5 presents the numerical
results for the case study; and Sect. 6 closes the chapter with a general discussion.

2 Literature

Effectively designing inpatient care services requires simultaneous consideration of
several interrelated strategic and tactical planning issues [30]. The inpatient care
facility is a downstream department. The outflow of the operating theater and the
emergency department are main drivers behind its workload. Therefore, it is highly
desirable to apply coordinated planning: considering the inpatient care facility in
isolation yields suboptimal decision-making [25, 48]. Smoothing patient inflow
prevents large differences between peak and off-peak periods and so realizes a
more efficient use of resources [1, 25, 51]. Although the control on the inflow
of patients from the emergency department is inherently very limited due to its
nature, anticipation for emergency admissions is possible, by statistically predicting
the arrival process of emergency patients that often follows a cyclic pattern [22].
Hospitals typically allocate operating room capacity through a Master Surgical
Schedule (MSS). Anticipation for elective surgical patients is possible as well, by
taking the surgical schedule into account [1, 22, 25, 51]. In this chapter, we address
these various patient flows and take the necessity of integral decision-making into
account.

Several analytical studies have addressed partial resource capacity planning
within the inpatient care chain, for example, by dimensioning care units in isolation
[5, 20, 22], balancing bed utilization across units [3, 12, 36], or improving the MSS
to balance inpatient care demand [1, 6, 8, 46, 49]. More integral approaches can be
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found in simulation studies [25, 27, 44, 47]. The advantage of such approaches is
their flexibility and therefore modeling power. However, the disadvantage is that the
nature of such studies is typically context-specific, which limits the generalizability
of application and findings.

Personnel scheduling in general and capacity planning for nursing staff in spe-
cific have received considerable attention from the operations research community
)see the extensive literature review [45] and the survey and classification articles
[9, 14, 17]). The nurse staffing process involves a set of hierarchical decisions over
different time horizons with different levels of precision. The first strategic level of
decision-making is the workforce dimensioning decision which concerns both the
number of employees that must be employed and is often expressed as the number
of full-time equivalents and the mix in terms of skill categories [26, 35, 37]. The
second tactical level concerns staff-shift scheduling, which deals with the problem
of selecting which shifts are to be worked and how many employees should be
assigned to each shift to meet the patient demand [17, 31]. The third operational
offline decision level concerns the creation of individual nurse timetables, designed
with the objective to meet the required shift staffing levels set on the tactical
level while satisfying a complex set of restrictions involving work regulations and
employee preferences. This planning step is often referred to as ‘nurse rostering’ [9—
11]. The fourth operational online decision level concerns the reconsideration of
the staff schedule at the start of a shift. At this level, float nurses are assigned
to specific care units [9, 42], and, based on the severity of need, on-call nurses,
overtime, and voluntary absenteeism can be used to further align patient care supply
and demand [23, 39]. The interdependence of the decision levels must be recognized
to facilitate systematic improvements in nurse staffing. As expressed in the literature
review by [39], each level is constrained by previous commitments made at higher
levels, as well as by the degrees of flexibility conserved for later correction at lower
levels. For a more elaborate exposition of the relevant decisions and considerations
involved at each decision level and a detailed overview of relevant literature, see
[30].

Tactical workforce decision-making in healthcare has received little attention. A
spreadsheet approach is presented by [16], to retrospectively fit optimal shift staffing
levels to historical census data. Simulation studies have shown to be successful in
taking a more integral approach [23, 26]. Analytic yet deterministic approaches can
be found in [7, 38, 52]. Stochastic approaches to determine shift staffing levels are
available in [15, 54] and [55]. These references do not present an integral care chain
approach, given that the demand distributions underlying the staffing decisions are
not based on patient arrival patterns from the operating theaters and emergency
departments.

Concerning the operational online assignment strategy to place a given number
of available float nurses in care units at the start of their shifts, [43] indicate that
formulating such an assignment strategy requires the consideration of three issues:
(1) a method for measuring of the urgency of need for an additional nurse; (2) a
prediction per care unit of that urgency of need for an upcoming shift; and (3)
development of a technique for the allocation of the available float nurses to care
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units in order to meet this need. Whereas [43] focus on the third issue by developing
a branch-and-bound algorithm, our assignment strategy involves the consideration
of all three steps.

Nurse-to-patient ratios are commonly applied when determining staffing lev-
els [2, 55]. These ratios indicate how many patients a registered nurse can care
for during a shift, taking into account both direct and indirect patient care. Staffing
according to nurse-to-patient ratios has received attention in the operations research
literature [15, 54, 55]. In practice, setting the numerical values of the ratios seems
to be more based on negotiation than on science [15, 54].

In this chapter, following [32, 33], we present an exact stochastic analytic
approach to derive appropriate staffing levels, including the flexibility of float
nurses, using nurse-to-patient ratios while taking an integrated care chain perspec-
tive.

3 Hourly Bed Census Predictions

This section presents a general model to predict the workload at several care
units due to patients arriving and departing according to a statistically predicted
inflow and outflow pattern. Following [33], we will focus on the workload at an
inpatient care facility on a timescale of hours, due to patients originating from
the operating theater and emergency department. The basis for the operating room
outflow prediction is the Master Surgical Schedule (MSS). The basis for the
emergency department outflow prediction is a cyclic random arrival process, the
Acute Admission Cycle (AAC). The cycles are combined into the Inpatient Facility
Cycle (IFC), with length the least common multiple of the lengths of the MSS
and the AAC. For the demand predictions, for both elective and acute patients, the
impact of a single patient type in a single cycle (MSS or AAC) is determined, by
which in the second step the impact of all patient types within a single cycle can
be calculated. Since the IFC is cyclical, the predictions from the second step are
combined to find the probability distributions of the number of recovering patients
at the inpatient care facility on each time interval in the IFC. The resulting demand
distributions are translated to bed census distributions, and performance measures
are formulated based on the demand and census distributions.

The operation of the inpatient care facility is as follows. Each day is divided in
time intervals (hours). Patient admissions are assumed to take place independently
at the start of a time interval. Elective patients are admitted to a care unit either
on the day before or on the day of surgery. For acute patients we assume a
cyclic (e.g., weekly) non-homogeneous Poisson arrival process corresponding to the
unpredictable nature of emergency arrivals (see, e.g., [53]). Discharges take place
independently at the end of a time interval. For elective patients we assume the
length of stay to depend only on the type of patient and to be independent of the day
of admission and the day of discharge. For acute patients the length of stay and time
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of discharge are dependent on the day and time of arrival, in particular to account
for possible disruptions in diagnostics and treatment during nights and weekends.

Patient admission requests may have to be rejected due to a shortage of beds, or
patients may (temporarily) be placed in less appropriate units. As a consequence,
demand predictions and bed census predictions do not coincide. Therefore, an addi-
tional step is required to translate the demand distributions into census distributions.
This translation is performed by assuming that after a misplacement the patient
is transferred to his preferred care unit when a bed becomes available, where we
assume a fixed patient-to-ward allocation policy, which prescribes the prioritization
of such transfers.

3.1 Demand Predictions for Elective Patients

Model input

Time. An MSS is a repeating blueprint for the surgical schedule of S days. Each
day is divided in T time intervals. Therefore, we have time points r =0, ..., T,
in which t = T corresponds to r = 0 of the next day. For each single patient, day
n counts the number of days before or after surgery, i.e., n = 0 indicates the day

of surgery.
MSS utilization. For each day s € {1, ..., S}, a (sub)specialty j can be assigned to
an available operating room i, i € {1,..., I}. The OR block at operating room

i on day s is denoted by b; s and is possibly divided in a morning block b;"
and an afternoon block b?, ¢» if an OR day is shared. The discrete distributions cl
represent how specialty j utilizes an OR block, i.e.,'cf (k) is the probability of k
surgeries performed in one block, k € {0, 1, ..., C/}. If an OR block is divided
in a morning OR block and an afternoon OR block, cjj;,, and ci represent the
utilization probability distributions, respectively. For brevity, we do not include
shared OR blocks in our formulation, since these can be modeled as two separate
(fictitious) operating rooms.

Admissions. With probability e,{, n € {—1, 0}, apatient of type j is admitted on day
n. Given that a patient is admitted on day r, the time of admission is described
by the probability distribution w,];, ;- We assume that a patient who is admitted on
the day of surgery is always admitted before or at time #;; therefore, we have
w), =0fort=0;+1,....T — L

Discharges. P/ (n) is the probability that a type j patient stays n days after surgery,
n € {0, ..., L’}. Given that a patient is discharged on day n, the probability of
being discharged in time interval [z, f 4 1) is given by m,]” We assume that a
patient who is discharged on the day of surgery is discharged after time %, i.e.,
mj,=0forr=0,....09;
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Single surgery block In this first step, we consider a single specialty j operating
in a single OR block. Note that admissions can take place during day n = —1 and
during day n = 0 until time r = ;. Discharges can take place during day n = 0
from time t = ¢; + 1 and during daysn =1, ..., L/ . Therefore, the probability

hi’ ;(x) that n days after carrying out a block of specialty j, at time #, x patients of
the block are still in recovery is

a,{’t(x) ,n=—landn =0,t <9,

hf, (x) = i .
dy,(x) ,n=0,t>v;andn=1,...,L/,

where a,{’, (x) represents the probability that x patients are admitted until time ¢ on
day n and d,{’ ,(x) is the probability that x patients are still in recovery at time ¢ on

day n. The derivation of aé, ; 1s presented below and that of d,{ ; 1s by analogy and is
presented in [33].
Observe that

cl/
ay, (x) =Y ay, (x1y)e! (),

y=x

where a,{, ;(x]y) is the probability that x patients are admitted until time ¢ on day n,
given that y admissions take place in total:

()yc>(vi,f>*<1—vf;,,)ﬁ cn=—1,1= -0,
X
y—g\ ;i . S
> (x ~ )(v,i,»" S(U=vp )" Yay_y poy(8ly)  n=0,1=0,
j =0 ¢

an,r(XU): x _ . . .
3 (y g)(u,ﬁ,,)”—g(lfv,{,,)y""a,-ﬁ i(gly)  n=—1r=1,....T—1and
g=0 —é& ,

n=0,1=1,...,9; — 1,

0 ,n=0,1 > ﬁj,

where v,]l" ; 1s the probability for a type j patient to be admitted at time ¢, given that
he/she will be admitted at day n and is not yet admitted before ¢:

J J
vj _ wn’te
J o= : : .

> J T-1 J J
en D ke Wyt e Li=—1)

Single MSS cycle Now, we consider a single MSS in isolation. From the distribu-
tions h,i ;» we can determine the distributions H,, ;, the discrete distributions for the
total number of recovering patients at time ¢ on day m (m € {0,1,2,...,5,S +
1,S + 2,...}) resulting from a single MSS cycle. We determine the overall
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probability distribution of the number of patients in recovery resulting from a single
MSS, using discrete convolutions. If specialty j is assigned to OR block b; s, then
the distribution fzﬁ,ﬁ, for the number of recovering patients of block b; ¢ present at
timef ondaym (m € {0,1,2,...,S5,S+ 1,54 2,...})is given by

jiss {0 ,m<s—1,

m,t — Jj
hm—s,t ,m>s—1,

where 0 means A.;’,(0) = 1 and all other probabilities /.’ (x), x > 0 are 0. Then,
H,, ; is computed by

=11 o 71,2 =1,8 o 72,1 ~1.8
Hpi=hy; Q@hy7:Q®...Qh, 1 Qhpy  ®...0 hy,75, (1)
where ® denotes the discrete convolution.

Steady state In this step, the complete impact of the repeating MSS is considered.
The distributions H,, ; are used to determine the distributions Hf 5, the steady-state
probability distributions of the number of recovering patients at time ¢ on day s of
the cycle (s € {1, ..., S}).

Since the cyclic structure of the MSS implies that the recovery of patients
receiving surgery during one cycle may overlap with patients from the next cycle,
the distributions H,, ; have to be overlapped in the correct manner. Hf,s can be
computed as follows:

Hyy @ Hyy5:® ... Q Hyyrmysis,e »s=1,...,85—1,

HYS =
s,
Ho; @ Hs; ® ... ® Hipmys1s,6 .5 =3,

where M = max{m | 3¢, x with H,, ;(x) > 0}.

3.2 Demand Predictions for Acute Patients

Model input

Time. The AAC is the repeating cyclic arrival pattern of acute patients with a length
of R days. For each single patient, day n counts the number of days after arrival.

Admissions. An acute patient type is characterized by patient group p, p =
1,..., P, arrival day r, and arrival time 6, which is for notational convenience
denoted by type j = (p, r, 8). The Poisson arrival process of patient type j has
arrival rate A/.
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Discharges. _Pj (n) is the probability that a type j patient stays n days, n €
{0, ..., L/}. Given that a patient is discharged at day n, the probability of being
discharged in time interval [z, f 4 1) is given by 7, ;. By definition, m{ , = 0 for
t<86.

Single patient type In this first step we consider a single patient type j. We compute
the probability g,{’t(x) that on day n at time ¢, x patients are still in recovery.
Admissions can take place during time interval [6,6 + 1) on day n = 0 and
discharges during day n = O after time 6 and during daysn = 1, ..., L/. Therefore,
we calculate g,]l", (x) as follows:

ax) . n=01=0,

J
X) = ~ .
81 (X) d,{’,(x) n=0,t>0andn=1,...,L/,

where &,j (x) represents the probability that x patients are admitted in time interval
[t,t + 1) onday n = 0 and c?,{,t(x) is the probability that x patients are still in

recovery at time ¢ on day n. The derivations of El;/ and J,{’, are by analogy with
those probabilities for elective patients and may be found in [33].

Single cycle Now, we consider a single AAC in isolation. From the distributions
g,{’,(x), we can determine the distributions G, ;, the distributions for the total
number of recovering patients at time  onday w (w € {I,..., R, R+1, R+2,...})
resulting from a single AAC by analogy with those probabilities for elective patients
(see [33)).

Steady state In this step, the complete impact of the repeating AAC is considered.
The distributions G, ; are used to determine the distributions G,Sf , the steady-state
probability distributions of the number of recovering patients at time ¢ on day r of
the cycle (r € {1, ..., R}) by analogy with those probabilities for elective patients

(see [33]).

3.3 Demand Predictions Per Care Unit

To determine the complete demand distribution of both elective and acute patients,
we need to combine the steady-state distributions H;?,S and G,Sf . In general, the
MSS cycle and AAC are not equal in length, i.e., S % R. This has to be taken into
account when combining the two steady-state distributions. Therefore, we define
the new IFC length Q = LCM(S, R), where the function LC M stands for least
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common multiple. Let Z, , be the probability distribution of the total number of
patients recovering at time ¢ on day g during a time cycle of length Q:

® GSS

_ pSsS
Z,:=H q mod R+R-1(4 mod R=0)-t *

q mod S+S-1 (5 mod 5=0)t

Let W¥ be the set of specialties j whose operated patients are (preferably) admitted

tounitk (k € {1, ..., K})and V¥ the set of acute patient types j that are (preferably)
admitted to unit k. Then, the demand distribution for unit k, Z’;’t, can be calculated

by only considering the patients in W* in equation (1), and V¥ may be obtained by
analogy (see [33]).

3.4 Bed Census Predictions

We translate the demand distributions Z¥ ., k = 1,..., K, into bed census

q.t
distributions 2%, , the distributions of the number of patients present in each unit k at
time ¢ on day ¢. To this end, we require an allocation policy ¢ that uniquely specifies
from a demand vector X = (x,...,Xxg) a bed census vector X = (X1, ..., Xk),
in which x; and x; denote the demand for unit k and the bed census at unit k,
respectively. Let ¢(-) be the function that executes allocation policy ¢. Let 2’;,,

denote the marginal distribution of the census at unit k£ given by distribution Zq,[.
With M}, the capacity of unit k in number of beds, we obtain:

K
Zq,,(ﬁ)z(Q;J()el),...,égf,()e,())= 3 {HZ’;,,(xk)}.

{xlk=¢x)) k=1

We do not impose restrictions on the allocation policy ¢ other than specifying
a unique relation between demand x and census configuration X. Recall that the
underlying assumption is that a patient is transferred to his preferred unit when a
bed becomes available. The policy ¢ also reflects the priority rules that are applied
for such transfers. As an illustration, we present an example for an inpatient care
facility with two care units of capacity M and M>, respectively:

(x1, x2) , X1 S My, x2 < M,
(My, min{x; + (x1 — My), M2}) ., x1 > My, x2 < M>,
P (x) = ) 2
(min{x; + (x2 — M2), M1}, M) ,x1 < My, x2 > My,
(M1, M>) , X1 > My, x2 > M>.

Under this policy patients are assigned to their bed of preference if available and are
otherwise misplaced to the other unit if beds are available there.
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3.5 Performance Indicators

Based on the demand distributions Z’;J and the census distributions 2{;,1 we are
able to formulate a variety of performance indicators. We present a selection of
such performance indicators, which will be used in Sect. 5 to evaluate the impact of
different scenarios and interventions.

Demand and bed census percentiles Let D’;’,(a) and lA)'t;’l(a) be the «-th per-
centile of, respectively, demand and bed census at time ¢ on day ¢:

X X
Dg,,(a) = arg min {Z Z]{;’t(i) > a} , ﬁ];’t((x) = arg min {Z ig’t(i) > a} .
X X

i=0 i=0

(Off-)Peak demand Reducing peaks and drops in demand will balance bed occu-
pancy and therefore allows more efficient use of available staff and beds. Define
?]; (o) (ﬂz () and ?k (@) (£k (a)) to be the maximum (minimum) «-th demand
percentile per day and over the complete cycle, respectively:

Py@ =max Dk @},  P= max [Py}
Pie) =min {Df @], P'@) =min|{P@)].

Admission rate Patient admissions may increase the nursing workload. Let Az’ ; be
the distribution of the number of arriving patients during time interval [z, 4+ 1) on

day g who are preferably admitted to care unit k. To obtain A’;’ ;» we first determine

d,ﬁy,, the distribution of the number of elective type j arrivals during time interval
[t,t+ 1) ondayn (n € {—1,0}):

el
iy PR : _j YN i J iy
a, (x)=Y_c/(y)ay,(xly) . with a,i,,<x|y>=(x><e£w,£,f)xa—e£w£,,)y x
y=0

A’;J is then determined by taking the discrete convolution over all relevant arrival
distributions of both elective and acute patient types:

Ak, = ® R e QR a, el X alt.

1
i=1 | jeWk:jeb; o JjeWk:jeb; o jevkr=r
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where s’ = 1+ ¢gmod S, s” = gmod S+ S - 1 mods=0)," =¢gmodR+R-
1(4 mod R=0), and ®x <2 fx denotes the discrete convolution over the probability
distributions f,, x € Z . The first term in the right-hand side of (3) represents the
elective patients who claim a bed at unit &k (j € W*), who are operated in any OR,
and who are admitted on the day s” — 1 before surgery or on the day s” of surgery.
The second term in the right-hand side of (3) represents the acute patients who claim
abed at unit k (j € V*) and who arrive on the corresponding day 7’ in the AAC.

Average bed occupancy Let ,o’(;’t, pfj‘ , and p* be the average bed utilization rate at
care unit k respectively at time ¢ on day ¢, on day ¢, and over the complete cycle:

Mk 1 T—1 1 0

5k k k k k

= i 2% 20, Pq:72pqm p :Ezpq-
x=0 t=0 g=1

Rejection probability Let R?* denote the probability that under allocation policy
¢ an admission request of an arriving patient for unit £ has to be rejected, because
all beds at unit k are already occupied and none of the alternative beds (prescribed
by ¢) are available. To determine R?, we first determine Rf;tk : the probability of
such an admission rejection at time # on day g. R?"* is then calculated as follows:

ROk = E[A, 1RVY.
quE[A Z

Let n indicate the number of arriving patients who are preferably admitted to unit
k and x = (x1,...,xg) the demand for each unit (in which these arrivals are
already incorporated). Introduce %%:* (x, n), the number of rejected patients under
allocation policy ¢ of the n arriving patients to unit k, and Z’; ¢ (xk|n) the probability
that at time ¢ on day ¢ in total x; patients demand a bed at unit k£ and n of them have
just arrived. Then, thk is calculated by

R¢’k . ET# rejections at unit k£ on time (g, t)]
q’t -

E [# arrivals to unit k on time (q, t)]

“)

: ,(mZ%M(X n AL (MZY  (eln).
X (#k

For the derivation of Z’; .+(xk|n), let us first introduce the concept cohort. A cohort
is a group of patients originating from a single instance of an OR block (electives)
or admission time interval (acute patients). Then
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Z§  (oeln) =

P[Demand xj, patients for unit k£ on time ¢ on day ¢ of which n are arriving in [z, # + 1)]

P[n arrivals for unit k on day ¢ in [#, t + 1)]

2
1 o (i)
= ) Z l_[ fa.i Oo(i))
g.t\" Yo(1)s-s Yo (2)» i=w+1
nn‘(l),...,no'(a)>:
D yi=xi, )y nj=n

{Hf}’:l a;,(zj)(ya(j))ég,(zl)(ﬂa(j)Iya(j))} ,

where £2 is the total number of cohorts, @ the number of cohorts that do generate
arrivals during time interval [¢, 41) on day g, and the permutation o is such that the
patient types o (1), ..., o (w) are the types that can generate those arrivals. Further,
for notational convenience we introduce the function f; , as f}, = hi,, for the

elective patients and f, q’" ;= g;, , for acute patient types. Also, we introduce aé, ; as

i 1 . . i ~(p,g mod R+R-1 —0,t
), = a , for the elective patient types and o) , = a,(p 1 amod k=01 o

the acute patient types. It remains to define Zz;, (njly;), the probability that for an
arriving cohort, from the y; patients present in total, n; arrivals occur during time
interval [z, t + 1):

v YiNe,d J \yj—n;
aq’t(nj|yj) = <n.)(\}n’t)”1 (1— Vn’t)yj nj
J
. . j w‘j ,e;{ .
where for elective patient types v, , = = and for acute patient

e Yo w;{,k+e£l “Lu=0)
types v,{,, =1

%% (x, n) is uniquely determined by allocation policy ¢. For example, for the
case with K = 2 presented in (2), we have for unit k = 1:

min{n, x;—M;} , X1 = My, x2 = My,

%1 (x, n) max{0, (x; —M)—(Mp—x3)} VX1 Z Myxp < Ma.on = (x1—My),

X" (x,n)=
n —max {0, min{n, (My—x2—[x;—M—nD}} ,x; = My, xp < Mp,n < (x] — My),

0 , otherwise.

)

In (5), the first case reflects the situation in which all beds at care unit 2 are occupied
so that all arriving patients who do not fit in unit 1 have to be rejected. The second
and third cases reflect the situation that (some of) the arriving patients can be
misplaced to unit 2 so that only a part of the arriving patients have to be rejected.
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In the second case, the (x; — M) patients that do not fit at unit 1 are all arriving
patients. In the third case, some of the (x; — M) patients were already present so
that not all (M> — x») beds at unit 2 can be used to misplace arriving patients.

Misplacement probability Let M%* denote the probability that under allocation
policy ¢ a patient who is preferably admitted to care unit & is admitted to another
unit. The derivation of M?¥ is equivalent to that of R?K. In (4), % (x, n) has
to be replaced by .# % (x, n), which gives the number of misplaced patients under
allocation policy ¢ of the n arriving patients to unit £ and which is again uniquely
determined by ¢. Observe that for the two unit example presented in (2), we have:

min{x;—M;, Mp—x3} ,X1 > My, xp < My, n > (x1 — My),
A (x, n)={ max {0, min{n, (My—x2—[x1—M1—n)}} , x1 > My, x2 < Ma,n < (x1 — My),
0 , otherwise.

Productivity Let ¢ be a set of cooperating care units, i.e., units that mutually
allow misplacements. Let P reflect the productivity of the available capacity at
care units k € %, defined as the number of patients that is treated per bed per year:

) 365
7 =0T %/Mk > Y (= RTDHELAL,] (©)
< ket q.t

Remark 1 (Approximation) Observe that the misplacement and rejection probabil-
ities are an abstract approximation of complex reality. In our model, we count each
time interval how many of the arriving patients have to be misplaced or rejected.
Since we do not remove rejected patients from the demand distribution, it is likely
that we overestimate the rejection and misplacement probabilities. However, also
in reality strict rejections are often avoided: by postponing elective admissions,
predischarging another patient, or letting acute patients wait at the emergency
department. These are all undesired degradations of provided quality of care.
Therefore, our method provides a secure way of organizing inpatient care services. It
is applicable to evaluate performance for care unit capacities that give low rejection
probabilities, thus when high service levels are desired, which is typically the case
in healthcare.

4 Flexible Nurse Staffing

This section reviews two staffing models based on the bed census predictions
described above as introduced in [32]. First, we discuss the requirements that need to
be satisfied in setting appropriate staffing levels. Then we present the fixed staffing
model and subsequently a model to find optimal staffing levels when float nurse
pools are applied: the flexible staffing model.
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4.1 Staffing Requirements

Recall that we consider a planning horizon of Q days (¢ = 1, ..., Q), during which
each day is divided in T time intervals (+ = 0, 1,..., T — 1). The set of working
shifts is denoted by .7, where a shift 7 is characterized by its start time b, and
its length £,. Within the time horizon, (g, ¢) is a unique time interval and (g, 7) a
unique shift. For notational convenience, t > T indicates a time interval on a later
day, e.g., (¢, T +5) = (g + 1,5). For each of K inpatient care units, with the
capacity of unit k being M* beds, staffing levels have to be determined for each
shift (g, 7).

We consider two types of staffing policies: ‘fixed” and ‘flexible’ staffing. Under

fixed staffing, the number of nurses working in unit k during shift (¢, 7), denoted by

f; .- i1s completely determined in advance. In the flexible case, ‘dedicated’ staffing
levels dk .z per unit are determined, together with the number of nurses f;  available
ina ﬂex pool The decision regarding the particular units to which the float nurses
are assigned is delayed until the start of the execution of a shift. We assign float
nurses to one and the same care unit for a complete working shift, to avoid frequent
handovers which increase the risk of medical errors. Thus, we obtain staffing levels

q = dk + fq ok =1..,K, where f . k _denotes the number of float nurses
assigned to unit k£ from the avallable VIRT Takmg into account the current bed census
and the predictions on patient admissions and discharges, the allocation of the float
nurses to care units at the start of a shift is decided according to a predetermined
assignment procedure. We denote such an assignment procedure by m. For both
staffing policies, we assume shifts to be non-overlapping, and for the flexible policy,
we assume shifts to be equivalent for each care unit.

Our goal is to determine the most cost-efficient staffing levels such that certain
quality-of-care constraints are satisfied. Because float nurses are required to be
cross-trained, it is likely that these staff members are more expensive to employ. To
be able to differentiate such costs, we therefore consider staffing costs w; for each
dedicated nurse who is staffed for one shift and w s for each ﬂexible nurse. Next, the
nurse-to-patient ratio targets during shift (g, t) are reflected by rq .- indicating the
number of patients a nurse can be responsible for at any point in time. To keep track
of the compliance to these targets, we define the concept ‘nurse-to-patient coverage’,
or shortly ‘coverage’. With xtk the number of patients present at unit k at a certain
time (g, t), by <t < by + £, the coverage at that time is given by ré‘,,o slq‘yr/xf.
Thus, a coverage of one or higher corresponds to a preferred situation.

Starting from the following quality-of-care requirements as prerequisites, we will
formulate the fixed and flexible staffing models by which the most cost-effective
staffing levels can be found:

(i) Staffing minimum. For safety reasons, at least S¥ nurses have to be present at
care unit k at any time.
(ii) Coverage minimum. The coverage at care unit k may never drop below gX.
(iii) Coverage compliance. The long-run fraction of time that the coverage at care
unit k is one or higher is at least . We denote the expectation of the coverage
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compliance at care unit k during shift (g, t) by c’q"r(~); the arguments of this
function depend on which staffing policy is considered. (Note that ‘coverage
compliance’ is a measure defined for a shift, based on the measure ‘coverage’
that is defined for the time periods within that shift).

Flexibility ratio. To ensure continuity of care, at any time, the fraction of
nurses at care unit k that are dedicated nurses has to be at least y¥.

Fair float nurse assignment. The policy 7, according to which the allocation
of the available float nurses to care units at the start of a shift is done, has
to be ‘fair’. Fairness is defined as assigning each next float nurse to the care
unit where the expected coverage compliance during the upcoming shift is the
lowest.

Fixed Staffing

When only dedicated staffing is allowed, there is no interaction between care units.
Therefore, the staffing problem decomposes in the following separate decision
problems for each care unit k and each shift (g, 7):

min zp = a)dsg’r @)
s.t. s]q‘,r > sk (8)
Seo = {,Bk . Mk/r(li"t_l 9)
g (5.0 74.0) Z o (10)

The constraints (8), (9), and (10) reflect requirements (i), (ii), and (iii), respectively.
Let Xk be the random variable with bed census distribution Zk . counting the
number of patients present on care unit k at time (q,?). Then the coverage
compliance in (10) can be calculated as follows:

betlr—1
Kk o(k k| L k ko ok
cq,r(sq,r’rq,r)_E[eT Z H(Xq»tfsq,r rq,r):|
t=b;

| brite- 15Tk e

Z Z Zk ().

b t=b;  x=0

Observe that Z a ’ "o Zk ,(x) reflects the probability that with staffing level s
and under ratio r the nurse -to-patient ratio target is satisfied during time 1nterva1



Bed Census Predictions and Nurse Staffing 167

[,¢ 4 1). The optimum of (7) is found by choosing the minimum sq
constraints (8) and (9) and increasing it until constraint (10) is satisfied.

. satisfying

4.3 Flexible Staffing

The next step is to formulate the flexible staffing model. Note that for requirements
(i) and (ii), the constraints are similar to those for fixed staffing. Under the
assumption wy < wy, we can replace sq . by d q . in (8) and (9). Due to the
presence of a flex pool, the care units cannot be considered in isolation anymore.
Hence, constraint (10) has to be replaced. An assignment procedure has to be
formulated that fulfills requirement (v), and this assignment procedure influences
the formulation of the constraint for requirement (iii). In addition, a constraint needs
to be added for requirement (iv).

For an assignment procedure 7 that allocates the float nurses to care units at
the start of a shift (¢, 7), let g7 . (d, f, y) = (g;jjrr d, £y,..., gf,’f” , f,y)) be
the vector denoting the number of float nurses assigned to each care unit, when f
flex nurses are available to allocate, the number of staffed dedicated nurses equals
d = (d',...,d¥X), and the census at the different care units at time (g, br) equals
y = ! ..., y%). A vector of the type y reflects what we will call a census
conﬁguration.

Let 7* denote the assignment procedure that ensures constraint (v). The assign-
ment procedure 7* depends on d -, f4 ¢, and rq -k =1,..., K and therefore
the coverage as well. Hence, requirement (v) gives a constraint of the form
c](;’f(d,”, S0 r(’]"r) > ok, However, assignment procedure 7* depends on the
census configuration y at time (g, b;), so calculation of the coverage compliance
first requires the computation of c’;,r(dq,t, Jq.os rﬂlj"r; y), which describes the
coverage compliance, given that at the start of shift (¢, 7) census configuration y
is observed. Then, the coverage compliance is given by

K
C];,t(dq,tv fq,r, rg,‘[) = Z[C]q(’r( q,7> fq T q, ray 1_[ qbf(yw)}'

y

Using c’;,t dy,zs fo,0s ”z];,r? ¥), the assignment policy 7 * satisfying requirement (v)
is the one that satisfies

g;’;(dq,r, fo.0.y) = arg max min clq"r(dq,r, fa.t r(’;r; y).
I ST S Sy
(11)
Applying policy * provides S(];,r (¥), the number of nurses staffed at care unit k
if census configuration y is observed at the start of shift (¢, t). Hence, the flexible
model for each shift (g, 7) is the following, where constraints (13)—(17) reflect (i)—
(v), respectively: :
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min zg = wf fy + o4 de(];’r (12)
st dy > S, for all k, (13)
dt, = ’7}3" . Mk/rg’r-‘, for all k, (14)
Cg,r(dq,t’ WIRT ré‘,r) > of, for all k, (15)
dy .= y" sk (9. forall k, y, (16)
sk =dl 48T (dgr. fren ) for all k, y. 17

Finding the optimum for (12) requires the computation of cs’r(d, S5 rZ]"T; y)
by considering every sample path of census configurations during a shift. For
realistic instances, it is computationally expensive to find the optimal solution for
dl .....dX ., f,; (see[32]).

q,T° ’7g,T

5 Quantitative Results

This section presents the experimental results. We present a selection of results taken
from [32, 33].

5.1 Case Study Description

The case study entails six surgical specialties of the university hospital AMC, which
together have 104 beds in operation. The entire hospital has 20 operating rooms and
30 inpatient departments, with a total of 1000 beds. The following specialties are
taken into account: traumatology (TRA), orthopedics (ORT), plastic surgery (PLA),
urology (URO), vascular surgery (VAS), and general surgery (GEN). In the present
setting, the patients of the abovementioned specialties are admitted to four different
inpatient care departments. On Floor I, care unit A houses GEN and URO and unit
B VAS and PLA. On Floor II, care unit C houses TRA and unit D ORT.

The physical building is such that units A and B are physically adjacent (Floor I),
as are units C and D (Floor II). For these specialties, we have historical data available
over 2009-2010 on 3498 (5025) elective (acute) admissions, with an average length
of stay (LOS) of 4.85 days (see Table 1). At the time of the original study, no cyclic
MSS was applied. Each time, roughly 6 weeks in advance the MSS was determined
for a period of 4 weeks. The capacities of units A, B, C, and D are 32, 24, 24, and
24 beds, respectively. The utilizations over 2009-2010 were 53.2%, 55.6%, 54.4%,
and 60.6%, respectively (which includes some patients from other specialties that
were placed in these care units). These utilizations reflect administrative bed census,
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Table 1 Overview of historical data 2009-2010

Care | Elective Acute Average LOS | Load?
Specialty Acronym |unit |admissions |admissions | (in days) (# patients)
General surgery | GEN A 611 901 3.31 6.88
Urology URO A 818 1157 3.68 9.99
Vascular surgery | VAS B 257 634 8.30 10.16
Plastic surgery PLA B 639 288 2.29 291
Traumatology TRA C 337 1200 5.88 12.41
Orthopedics ORT D 836 845 6.23 14.38

2Load = Expected number of patient arrivals per day * Average LOS

which means the percentage of time that a patient physically occupies a bed or keeps
it reserved during the time the patient is at the operating theater or at the intensive
care department. Unfortunately, no confident data was available on rejections and
misplacements.

Working days are divided in three shifts: the day shift (8:00-15:00), the evening
shift (15:00-23:00), and the night shift (23:00-8:00). These time intervals indicate
the times that nurses are responsible for direct patient care. Around these time
intervals, the working shifts also incorporate time for patient handovers, indirect
patient care, and professional development. At all times, there should be at least two
nurses present at each care unit. According to agreements on working conditions
for nurses in all university hospitals in the Netherlands, the contractual number
of annual working hours per full-time equivalent (FTE) is 1872. The number of
hours that one FTE can be employed for direct nursing care, after deduction of time
reserved for professional development, holiday hours, and sick leave, is 1525.7 on
average (also see [16]). The yearly cost per FTE, including all costs and bonuses, is
roughly €53,000.

The nurse-to-patient ratio targets prescribed by the board of the AMC for the care
units of interest are 1:4 during the day shifts, 1:6 during the evening shifts, and 1:10
during the night shifts. At the time of the original study, the current staffing practice
was based on the number of beds in service, independent of whether they were
occupied, and no float nurse pools were employed. Thus, for example, for a care
unit size of 24 beds and staffing ratio of 1:4, the number of dedicated nurses to staff
was always 6. A scarcity of nursing capacity frequently leads to the expensive hiring
of temporary nurses from external agencies, as well as to undesirable ad hoc bed
closings. Also, the prescribed staffing levels cannot always be realized in practice.
As aresult, the inpatient care units experienced a lack of consistency in the delivered
quality of nursing care.

We have estimated the input parameters for our model based on historical
data of 2009-2010 from the hospital’s electronic databases. The event logs of
the operating room and inpatient care databases had to be matched. Since the
data contained many errors, extensive cleaning was required. Patients of other
specialties who stayed at departments A to D have been deleted. No cyclical MSS
was applied in practice; therefore, in our model we set the MSS length at 2 years,
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following the surgery blocks as occurred in practice during 2009-2010. Elective
surgery blocks are only executed on weekdays. For the elective patient types, the
distributions for the number of surgeries and for the admission/discharge processes
are estimated per specialty. We set the length of the AAC at 1 week. For the acute
patients, the discharge distributions are estimated per specialty, and to have enough
measurements, via the following clustering: admission time intervals 0-8, 8—18, and
18-24. Furthermore, for all patient types, the discharge distributions during a day
are assumed to be equal for the days n > 2.

5.2 Case Study Results: Bed Census

To illustrate the potential of the presented staffing methodology for the case study,
we present a selection of the interventions presented in [33]. For the interventions
that are based on the current MSS, we run the model for the estimated 2-year MSS,
and we calculate the performance measures only over the second year, to account
for warm-up effects. To assess the effects of the interventions, we first evaluate the
performance of the base case scenario. In all experiments, no ad hoc closings are
allowed, as decided by the hospital board to be the near-future policy. Note that
the calculated rejection and misplacement percentages are therefore most likely an
underestimation of current practice (of which no reliable data is available). The
productivity measure is calculated per floor, since the misplacement policy implies
that capacity is ‘shared’ per floor. The following interventions are considered, of
which the results are displayed in Tables 2 and 3:

(0) Base case. To assess the effects of the interventions, we first evaluated the
performance of a base case scenario, which is the situation that most closely
resembles current practice. The base case involved the current bed capacities
and misplacements between care units A and B (Floor I) and between units C
and D (Floor II).

(1) Rationalize bed requirements. The numbers of beds in the base case are a result
of historical development. Given particular service requirements, we determine
whether the number of beds can be reduced to achieve a higher bed utilization
while a certain quality level is guaranteed. We consider rejection probabilities
not exceeding 5%, 2.5%, and 1%. Often, there are different bed configurations
with the same total number of beds per floor, satisfying a given maximum
rejection probability. Per floor, from the available configurations, the one is
chosen that gives the lowest maximum misplacement probability.

It can be seen that a significant reduction in the number of beds is possible.
However, the overall bed utilizations are still modest, because demand drops
during weekend days when no elective surgeries take place. In addition, there
is a correlation between moments of higher census and moments that patients
arrive, which leads to higher rejection probabilities compared to, for instance, a
stationary Poisson arrival process.
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Table 2 The numerical results for the base case, intervention 1, and intervention 2 (with the
productivity-A% relative to the base case)

Capacity| Rejection| Misplace| Utilization Capacity| Productivity

Intervention Unit| (#beds) | (%) (%) (%) Floor| (#beds) | (eq.(6)) (A%)

Base case A 32 0.14 1.85 56.9 } AB |56 500 |-
B |24 0.08 1.22 56.5
C |24 0.03 0.45 55.6} CD | 48 350 -
D |24 0.10 3.68 61.5

1. Rationalize bed requirements

Rejection <5% | A |27 4.92 6.07 67.7} AB | 45 503 | 4186
B |18 4.59 14.35 74.3
Cc |18 3.42 8.90 74.0} cD |38 05 4211
D |20 4.92 11.72 73.3

Rejection <2.5% A |28 2.31 5.86 65.0} AB | 48 579 | 4144
B |20 1.67 7.30 67.7
Cc |18 2.02 10.30 73.3 } cD |40 413 4175
D |22 2.27 6.14 67.5

Rejection <1% | A |29 0.94 5.00 62.6} AB |51 545 491
B |22 0.52 3.15 61.8
Cc |20 0.54 4.39 66.5 } CD 43 390 | +11.0
D |23 0.79 4.93 64.3

2. Change operational process

Rejection <5% |A |24 4.51 9.24 66.4} AB | 43 625 | 4252
B |19 3.03 6.53 66.1
c |17 3.65 11.21 74.3 } cD |37 436 | 4242
D |20 5.00 9.12 69.7

Rejection <2.5% A |26 2.31 5.22 61.7 } AB | 45 609 | 4218
B |19 2.03 7.54 65.7
c |17 2.11 12.74 73.8 } cD |39 03 |05
D |22 2.28 4.62 64.0

Rejection <1% |A |27 0.94 4.44 59.3 } AB | 48 570 | 4158
B 21 0.64 3.26 59.7
Cc |19 0.58 5.59 66.8} D |4 399 4136
D |23 0.83 3.78 60.7

(2) Change operational process. Hospital management proposes to admit all elec-
tive patients on the day of surgery, since admitting patients the day before
surgery is often induced by logistical reasons and not by medical necessity.
Second, to reduce census peaks during the middle of the day, management
proposes to aim for discharges to happen before noon. To predict the potential
impact of these changes in the operational process, we mimic the changes
as follows: we adjust the admission distributions of elective patients, so that
admissions on the day before surgery are postponed to time t+ = 8 on the
day of surgery (which impacts 81.9% of the elective patients), and we adjust
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Table 3 The numerical results for interventions 3 and 4 (with the productivity-A% relative to the
base case)

Capacity| Rejection| Misplace| Utilization Capacity| Productivity

Intervention Unit (#beds) | (%) (%) (%) Floor| (#beds) | (eq.(6)) (A%)

3. Balance MSS

Rejection <5% |A |25 4.85 8.43 74.5 } AB |44 625 | 4250
B |19 3.93 8.73 74.4
Cc |18 3.24 8.84 74.6} cD | 38 435 | 4237
D |20 3.99 10.03 75.6

Rejection <2.5% A |27 2.25 4.29 69.5 } AB | 46 611 4223
B |19 2.41 10.25 73.9
Cc |19 1.46 6.21 70.8} cD | 40 21 4199
D |21 1.86 7.50 72.2

Rejection <1% |A |28 0.83 3.57 66.7} AB | 49 583 | 416.6
B |21 0.66 4.32 67.4
C |20 0.60 4.05 67.3 } cD |4 405 | +153
D |22 0.79 5.21 69.0

4. Combination (1), (2), and (3)

Rejection <5% | A |23 4.92 9.17 70.9} AB |42 655 | 4311
B |19 3.47 5.56 68.9
Cc |17 3.77 11.04 74.9} cD | 37 445 | 4265
D |20 4.21 7.34 71.7

Rejection <2.5% A |25 2.28 4.72 65.7} AB |44 640 | +28.0
B |19 2.18 6.85 68.4
Cc |18 1.74 7.87 71.0} cD |39 31 4227
D |21 2.02 5.54 68.2

Rejection <1% | A |26 0.82 3.90 63.1 } AB | 47 608 | 4217
B |21 0.57 2.75 62.2
Cc |19 0.74 5.21 67.5 } cD |41 414 +180
D |22 0.89 3.87 65.1

the discharge distributions of days n > 1, so that discharges later than time
t = 11 are moved forward to + = 11 (which impacts 51.8% of the total patient
population).

Compared to intervention 1, the number of beds can be further decreased.
Also, the results indicate that the care unit managers of these departments
should not only focus on achieving high bed utilizations: although somewhat
lower utilization is achieved, productivity is significantly increased.

(3) Balance MSS. The outcomes of the previous experiments showed that the
MSS that was realized in practice created artificial demand variability. This
intervention estimates the potential of a cyclical MSS that is designed with the
purpose to balance bed census. We created a cyclical MSS with a length of 4
weeks. First, for each specialty, an integer number of OR blocks is chosen so
that an output is achieved similar to the original MSS; due to this integrality
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average demand is slightly increased. Second, these blocks have been manually
divided over the days in the MSS, and by trial and error, a more balanced
outflow was realized.

(4) Combination (1), (2), and (3). This intervention combines interventions (1), (2),
and (3). Hospital management agreed upon a service level norm of rejection
probabilities <2.5%. Under this requirement, it is possible to reduce the number
of beds by 20% (from 104 to 83) and increase productivity by roughly 25%.
Considering that the AMC has 30 inpatient departments, the savings potential
for the entire hospital seems substantial.

5.3 Case Study Results: Nurse Staffing

In this section, we present the results for the case study on the interventions
described in Sect. 5.2. We investigate both the value of aligning staffing levels with
bed census predictions and of employing float nurses, by comparing the results of
the fixed and flexible staffing models with the current staffing policy, which we refer
to as “full staffing’. With a care unit capacity of M* beds at unit k, under the full
staffing policy, [M*/ ";’;,J nurses are required at all times.

The intended AMC practice will be that registered nurses will alternately be
rostered as a dedicated or float nurse. Therefore, we consider the case in which
dedicated and float nurses are equally expensive, i.e., w; = wy. In addition to the
fixed input Sk = 2, and staffing cost dedicated nurse = 1, board of the AMC has
chosen to deploy the following quality of care requirements: nurse-to-patient ratios

r(]; 1 =4, r 2= =0, r 3 =10, minimum coverage 8¢ = 0.70, coverage compliance
ak 0. 90 and at least two out of three nurses should be dedicated nurses, i.e.,
= 0.67.

The detailed results are displayed in Tables 4 and 5. Table 6 provides an overview
of the results for the various interventions and includes the calculation of the

Table 4 The numerical results for the base case (Floor I: 56 beds, 56.7% utilization; Floor II: 48
beds, 58.6% utilization; with the FTE-A% relative to full staffing)

Full staffing| Fixed staffing Flexible staffing
FTE Average | FTE Error Average | FTE (float)
Intervention| Floor| (#) coverage| (#) | (A%) | bound (%)| coverage| (#) (A%)
Base case
a=085 |1 57.7 0.96 448/ —22.2/0.4 0.96 447 (1.7)| =224
1T 48.3 0.96 38.9| —19.5/0.0 0.95 38.8 (2.0), —19.7
a=090 |1 57.7 0.98 46.0 —20.3/ 0.8 0.97 45.7 (2.7)| —20.8
I 48.3 0.97 40.0 —17.3/ 0.1 0.97 39.6 (2.8), —18.0
a=095 |1 57.7 0.99 479 —169 14 0.99 474 (4.6) —17.8

II 48.3 0.99 42,5/ -12.1/0.4 0.99 41.1 (4.3) —14.9
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Table 5 The numerical results for the various interventions (with the FTE-A% relative to full

Full staffing| Fixed staffing
Average | FTE
coverage| (#)

staffing)
Capacity| Utilization| FTE
Intervention| (# beds) | (%) #)
1. Rationalize bed requirements
Floor I 48 66.1 48.1
Floor IT 40 70.1 42.6
2. Change operational process
Floor I 45 63.4 48.1
Floor IT 39 68.3 42.6
3. Balance MSS
Floor I 46 71.3 48.1
Floor II 40 71.5 44.5
4. Combination (1), (2), and (3)
Floor I 44 66.9 48.1
Floor I 39 69.5 42.6

0.99
0.99

0.98
0.98

0.99
0.98

0.98
0.98

Flexible staffing
Average | FTE (float)

(A%) coverage| (#) (A%)
43.8/ —8.9 0.98 43.3(6.2)] —9.9
39.3) —7.8/0.98 38.7 (5.2) —9.1
41.8/—13.0 0.98 41.6 (4.4)|—13.5
38.4) —9.9/0.98 37.2(6.9)—12.7
45.7 —5.0/ 0.99 449 (7.8)] —6.7
40.9, —8.2/0.98 39.6 (6.1)—11.0
42.4/—11.7/ 0.98 41.8 (6.4)|—13.1
38.8/ —8.8/0.98 38.1 (4.6) —10.6

Table 6 FTE and productivity results for all interventions (with both the FTE-A% and the

productivity- A% relative to full staffing in the base case)

Full staffing Fixed staffing Flexible staffing

FTE Productivity | FTE Productivity | FTE Productivity
Intervention| (#) | (A%)| (#yr)| (A%)| (#) | (A%)| (#lyr)| (A%) | #) | (A%) | (#yr)| (A%)
Base case | 106.0| — 423 |- 85.9|—18.9/52.2 |423.3/85.3|-19.5/52.6 |4+24.2
(€)) 90.7|—14.4  48.5 +14.5|83.1|—21.6|52.9 |+25.0/82.1|-22.6|53.5 +26.5
2) 90.7|—14.4 1 48.4 |+14.4/80.2|—24.3|54.7 |+29.4|78.7|-25.7|55.8 +31.8
3) 92.6|—12.6 48.6 |+14.8|86.5|—18.4|52.0 |+22.8|84.5|-20.3/53.2 +25.8
(€)) 90.7|—14.4149.6 +17.2|81.3|—23.3|55.3 |+30.7|79.8|—24.7/56.3 |+33.0

Productivity: number of patients treated per employed FTE per year

productivity measure of the number of patients treated per employed FTE per

year.

(0) Base case. First, we evaluate the performance of the base case scenario (see
Table 4). In the flexible staffing policy, two flex pools are installed, one on each
floor; we therefore present the results per floor. For the base case, we show
three values for the coverage compliance threshold (¥ = {0.85,0.90, 0.95})
to illustrate the effect of this quality-of-care constraint on required nursing

capacity.

The number of FTEs required is calculated by summing the total number
of staffed nurse hours and dividing by the 1525.7 direct nursing hours that one
FTE has available. Note that in this calculation we do not include scheduling
restrictions that might be involved when assigning individual nurses to working
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shifts. Therefore, at a particular inpatient clinic, the number of FTEs to hire
might need to be larger than the displayed number of FTEs required, depending
on the local labor regulations and nurse rostering practice.

For both the fixed and the flexible staffing models, it turns out that the
realized coverage compliance is, on average, much higher than the minimum
requirement. This result occurs because when the coverage compliance con-
straint is slightly violated, an additional nurse needs to be staffed, which
significantly increases the coverage compliance because this nurse can care for
n’,‘,f patients. Although full staffing ensures a coverage compliance of 100%, it
frequently overstaffs care units. It is clear that the acceptance of slight coverage
reductions (still realizing average coverage compliances higher than 95%)
allows managers to better match care supply and demand, thereby realizing
efficiency gains of 12-22%. The largest gain is achieved by the staffing based
on census predictions (see results of the fixed model). The additional value
of employing float nurses is case dependent, and in most cases, the value is
higher with increasing o* due to the increasing gap with the minimum coverage
requirement set by 8.

Rationalize bed requirements. Intervention (1) rationalizes the care unit dimen-
sions. Table 5 shows that fixed staffing with & = 0.90 reduces nursing capacity
requirements by 8-9% compared to full staffing and flexible staffing yields an
additional 1% reduction. Table 6 indicates the gain against current practice:
22.6% reduction in FTE requirements, with a simultaneous increase of staff
productivity by 26.5%.

Change operational process. Intervention (2) focuses on changes in the oper-
ational process that shorten the average lengths of stay. The reduction of
demand and its variability lowered the number of beds required. Here, we see
that our staffing methodology also translates this into significantly lower staff
requirements, as well as higher productivity.

Balance MSS. Intervention (3) intends to decrease the artificial demand vari-
ability by designing a balanced cyclic MSS. Note that due to the integrality of
the number of scheduled operating room blocks, the resulting MSS has slightly
increased patient demand. Therefore, its impact on staffing requirements is not
directly evident.

Combination (1), (2), and (3). Intervention (4) outperforms all previous con-
figurations on the productivity measure. As an illustration, the effect of staffing
levels following bed census demand patterns, including the differences between
fixed and flexible staffing therein, is visualized in Fig. 1. Also, in this figure,
average demand is displayed for day shifts in a 4-week period as the average
bed census divided by the applied nurse-to-patient ratios. It signals that
the high variability in bed census implies that the number of nurses to be
staffed, to guarantee the coverage compliance on the nurse-to-patient ratios,
is considerably higher than average demand. It is a clear indication of the
savings potential of increasing the predictability of demand for nursing staff
by balancing bed census.
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Fig. 1 Total staffing levels for day shifts during the 4-week period starting on Monday January 25
(the average demand pattern shows the average census divided by ratios r;‘, D

Finally, let us state two general insights. First, note that under the old (full)
staffing policy, a reduction in the number of beds not always translates into a
reduction in staffing requirements. This is the case when the number of beds does
not decrease to a capacity level such that it crosses a level that is a multiple of one of
the nurse-to-patient ratios. Second, based on our results, we cannot deduce general
rules of thumb for the potential of float nurses. The outcomes for each particular
care unit are a complex interplay between care unit sizes, nurse-to-patient ratios,
and the shapes of the bed census distributions.

6 Discussion

Rising healthcare costs and increasing nurse shortages make cost-effective nurse
staffing of utmost importance. In many hospitals, staffing levels are a result of
historical development, given that hospital managers lack the tools to base current
staffing decisions on information about future patient demand. In this chapter,
combining the results of [32, 33], we have presented a generic analytical method
that can quantitatively support decision-making about required staffing levels in
inpatient care facilities. We have demonstrated its potential with a case study
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of the AMC, for which we have shown that, by achieving coherence between
patient demand and staffing supply, simultaneous cost reductions and quality of care
improvements are possible.

The combined application of the bed census prediction model and the staffing
models from the present chapter enables hospital administrators to gain insight into
the value of integrated decision-making. The interrelation between decisions, such
as case mix, care unit partitioning, care unit size, and admission/discharge times,
is made explicit. Because the demand prediction model incorporates the operating
room block schedule and the patient arrival pattern from the emergency department,
the presented methodology also facilitates alignment between the design and
operations of the inpatient care facility and its surrounding departments. With this
integrated framework, staffing effectiveness can be attained in three steps. First, the
method can help to reduce artificial variability of bed occupancies, for example,
by adjusting the operating room schedule. Second, by predicting the bed census
distributions and determining staffing levels for dedicated nurses accordingly, the
predictive part of the remaining variability can be anticipated. Third, to be able to
effectively respond to random variability, adequately sized float nurse pools can be
created.

The case study of the AMC provides an example of how the methodology can
be applied in practice. Nurse staffing is high on the agenda because staffing costs
account for 66% of the total expenses in the AMC. We have applied our staffing
models to data from several care units, and we presented results from four of them
in this chapter. The formulations of all interventions and the eventual parameter
settings are the results of close cooperation between operations researchers and
hospital managers from different levels within the organization. This collaboration
resulted in the joint conclusion that substantial efficiency gains are possible while
improving upon the adherence to nurse-to-patient ratio targets.

To fully exploit the potential of the forecasting and staffing method, based
on the bed census prediction and staffing models presented in this chapter, in
cooperation with Rhythm, we developed a user-friendly decision support tool
(DSS). The prediction model, and thus the software tool, relies on data which
is easily extractable from typical hospital management information systems. This
makes it possible to automate the process of collecting the required input parameters
to run the model. The DSS allows for visualization of the results and the possibility
to run what-if scenarios. Building on these preconditions, the example of the AMC
has been taken forward by various Dutch hospitals. Each hospital has its own
configuration and its own application of the tool. As a consequence, the methods
presented in this chapter have shown to be powerful in different hospital settings.
Some hospitals have been able to achieve more balanced bed occupancies, thereby
reducing admission rejections, misplacements, and costs. Others also improved their
nurse staffing, thereby significantly reducing under- and overstaffing. Integration
with hospital management systems and integration with nurse rostering software
will be the next development steps. In addition, pilots to implement our DSS outside
the Netherlands have started.
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