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Abstract Variability of surgical times heavily affects efficiency and utilisation
of the operating room. This chapter develops a data-driven mathematical model
that characterises the actions of the surgical process and their contribution to the
total surgical time, including variability. The model gives insight into the surgical
process, without the need to analyse a large number of surgeries for application
of statistical methods. A surgical flow chart of cataract surgery is constructed by
observing 85 cataract surgeries performed at Leiden University Medical Center
(LUMC), combined with expert opinion. Markov chain analysis, based on this flow
chart, is used to analyse the surgical process. The model identifies the sources
of delay and variability in the surgical process and provides a structured way
of analysing surgeries. The obtained surgical time distribution approximates the
empirical surgical time distribution of cataract surgeries performed in 2009 and
2010 at LUMC. The model developed in this chapter may be used to study the
influence of modifications in the surgical process and to predict the resulting surgical
times. It can easily be adapted to analyse future surgical processes or to represent
different surgical procedures.
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1 Introduction

Operating room (OR) scheduling is an important challenge for most hospitals
and has received considerable attention in the healthcare logistics literature. OR
scheduling based on mean values of surgery durations omitting variability results in
high expected OR overtime and surgeon idle time [2]. Deterministic and stochastic
mathematical programming models, queueing models, simulation models and
heuristic approaches have been widely used to study and improve OR scheduling
[1, 5]. An important aspect of OR scheduling is an adequate prediction of the
surgical times, based on patient and surgeon characteristics that involve uncertainty
[16]. Prediction of the total surgical time may be obtained from historical data
recorded in the hospital information system [4].

A surgical process is defined as a succession of surgical actions performed
between the first incision and closure of the wound(s). The surgical path is a
realisation of this process, with total surgical time being the sum of the duration
of the surgical actions. The surgeon decides which surgical actions are performed;
the so-called decision points may have major influence on the surgical time [16].
Prior to surgery, it is uncertain which actions will be performed, in which order
and how much time each action will consume. A surgical plan based on, among
others, the patient’s physical status gives an indication of the surgical time. However,
this estimation is subject to variation due to complications and other, usually
uncontrollable, factors. These uncertainties may lead to multiple possible surgical
paths, with different durations and likelihoods of occurrence [9, 19]. Adequate
prediction of these surgical times is of utmost importance for OR scheduling.

This chapter develops a data-driven Markov modelling approach to characterise
the distribution of the surgical times based on observations of the surgical actions
in the surgical process. In addition, our Markov modelling approach may be used
to predict the distribution of surgical times for future, novel surgical processes.
The model decomposes the surgical process into well-defined surgical actions
and possible subsequent actions, where its parameters may be obtained from
observation, expert opinion or a combination thereof. The model is validated
using observed cataract surgeries performed at Leiden University Medical Center
(LUMC). Cataract surgery is selected to validate the Markov modelling approach,
since its surgical time is relatively short, its surgical process involves a well-defined
set of surgical actions, and cataract surgeries are carried out in sufficient numbers to
obtain a large set of observations, which can readily be obtained from the operating
microscope. Numerical results indicate a good fit of the surgical times predicted by
our Markov model with realised surgical times.

This chapter is organised as follows. Section 2 provides a brief literature
overview of surgical time variability and Markov models for surgical times.
Section 3 provides a description of the cataract surgical process and our data
collection approach resulting in the surgical flow chart that is the basis of our
Markov modelling approach in Sect. 4. A detailed description of the surgical time
distribution is included in Sect. 5, followed by our conclusions in Sect. 6.
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2 Literature

The degree as well as the source of variability in surgical processes is a widely
studied topic in literature since its first description in [14]. Since then, several
statistical models have been proposed for modelling surgical procedure times,
based on log-normal and normal distributions of the total surgical time or surgical
actions [15]. Surgeons working at constant but different rates due to, for example,
experience and the surgeon’s natural speed introduce another source of variability as
shown in [16] via the analysis of 46,322 surgical processes. Variability may also be
the result of surgical process disruptions, i.e. deviations from the natural progression
of a surgical path [18]. Surgical process disruptions affect the mental readiness of
the surgeon, which is regarded as an important factor affecting patient outcomes,
probably even more than technical skills or physical readiness. The number of
these (usually) uncontrollable factors depends on the type of procedure [9]. The
effects of disruptions on surgical time are categorised into one of six groups in
[19]: instrument change, surgeon position change, nurse duty shift, conversation,
phone/pager answering and extraneous interruption. The frequency and duration of
each type of disruptive event were recorded and analysed; focus is on disruptions of
the surgical process and their effect on variability in surgical time, but the surgical
process itself is not studied in detail.

A few modelling approaches to analyse surgical processes were developed in
literature. Hidden Markov models are developed in [6, 11, 12] to evaluate surgical
skills in minimal invasive surgery. This is done by comparing the Markov model
of experienced surgeons to that of residents at various levels of training [10]. The
state space of the Markov model represents the possible different combinations of
instruments used by each hand of the surgeon. The surgical actions are not specified;
focus is on the combination of instruments used by residents, compared to staff
surgeons. The resulting skill level is based on four equally weighted criteria: overall
performance, economy of movement, tissue handling and the number of errors such
as dropped needles. An approach based on sensor data for instrument use to predict
the (remaining) surgical time is developed in [3], where the prediction uses data
mining and process mining techniques to obtain the surgical flow chart.

This chapter develops a data-driven Markov model that enables a statistical
evaluation of surgical processes, based on the flow chart of surgeries taking into
account all possible surgical actions and paths. This model can be used to estimate
surgical times of existing surgical processes, as well as surgical times for novel
surgeries.

3 Cataract Surgery and Data Collection Approach

Age-related cataract is a very common cause of visual impairment in older adults.
As the lens ages, it increases in weight and thickness. The centre of the lens
(nucleus) undergoes compression and hardening, and the lens takes on a yellow
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or brownish hue with advancing age. This is a cataract, and over time, it may grow
larger, resulting in poor vision. The lens may be replaced to restore vision.

The exact surgical paths for cataract surgeries is of utmost importance for a
complete description of the process. Therefore, for the cataract surgeries incorpo-
rated in the present paper, we provide a detailed description of these paths (see
Fig. 1 for the flow chart). To remove the lens, a standard extracapsular cataract
extraction is performed through a 3.0 mm beveled corneal or limbal incision with
a disposable phaco knife. The anterior chamber is then filled with an Ophthalmic
Viscosurgical Device (Healon OVD, Abbott Medical Optics, inc.), which can be
done in multiple steps, and capsulorhexis is performed. The capsule of the lens is a
layer of approximately 14 micrometres thick, which is very fragile. It is important
that the remainder of the capsular bag is undamaged. If it tears, the lens will fall
into the inner part of the eye. This is a major complication that delays the surgical
process considerably. For the removal of the cataracteous lens, the Millennium
Phacoemulsification equipment (Bausch&Lomb) is used. This technique uses an
ultrasonically driven tip (phaco tip) to fragment the centre of the cataract. The lens
fragments are removed by irrigation and aspiration. Here, it is even more important
to leave the lens capsule undamaged since it is very sensitive in this stadium of the
process, being unsupported due to the removed nucleus. Depending on the surgeon’s
preferences and patient characteristics, such as lens hardness, a divide-and-conquer
or stop-and-chop technique can be used. During phacoemulsification relatively high
amounts of energy are delivered which can potentially damage the eye. It is therefore
important to use as little phaco energy as possible. Nevertheless, smaller particles –
in general resulting from more sculpting – are easier to remove, decreasing the risk
of damaging the capsular bag. Finally, cortex remnants are removed with a bimanual
irrigation and aspiration instrument. The OVD is used to implant the new intraocular
lens and is removed thereafter with irrigation and aspiration of the canula. Suturing
of the corneal wound is not necessary as a rule.

A prospective case-series study was performed at the Department of Ophthalmol-
ogy of the Leiden University Medical Center, Leiden, the Netherlands (LUMC).
The study was performed in accordance with the principles of the Declaration
of Helsinki. The medical ethical committee of LUMC (full name: Commissie
Medische Ethiek Leids Universitair Medisch Centrum) approved this study (CME
decision #CME09/028) and waived the requirement for written informed consent.

All surgeries were performed by four experienced surgeons and three residents
from the LUMC and were performed in 2009 and 2010. A total of 44 male and 41
female patients were included, with average age 71. Due to the last resort function
of the LUMC, a high level of co-morbidity was present. Therefore, these patients
might not represent the average cataract surgery population. Two cameras were set
up in the OR, the first in the microscope of the surgeon and the second in a corner
of the OR, giving a good overview of the surgical team and their interactions. Prior
to surgery, patients were informed about the recordings, which were anonymised
afterwards. Informed consent was given, and recordings started when the eye was
draped and the eyelid speculum was placed. Solely the patient’s eye is visible on the
video registration.
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Surgical ac�on

Surgical ac�on, decision point (>1 possible transi�ons)

State Surgical ac�on
1 Start of surgery
2 Corneal incision, two side ports
3 Healon in anterior chamber
4 S�cky iris, loosen with spatula
5 Iris retrac�on
6 Healon in anterior chamber, iris retrac�on/stricky iris
7 Capsulorexis
8 Hydrodissec�on
9 Enlarge main port in cornea for alterna�ve lens

10 Sculpt lens, 4 parts
11 Sculpt lens, 2 parts
12 Remove lens, without sculpt/crack
13 Mixed sculpt/crack
14 Remove lens surplusses, without sculpt/crack
15 Crack lens, 2 parts
16 Remove lens, 2 parts
17 Remove lens surplusses, 2 parts
18 Healon in capsular bag
19 Crack lens, 4 parts
20 Remove lens, 4 parts
21 Remove lens surplusses, 4 parts
22 Push out lens as a whole, without sculpt/crack
23 Remove lens surplusses for whole lens
24 Insert alterna�ve lens
25 Enlarge main port in cornea
26 Remove surplusses a�er Healon in capsular bag
27 Fold lens prior to injec�on
28 Error lens injec�on
29 Prepare second a�empt lens inser�on
30 Insert folded ar�ficial lens
31 Second a�empt lens injec�on
32 Posi�on second lens 
33 Unfold and posi�oning of folded ar�ficial lens
34 Remove surplusses a�er lens inser�on
35 Posi�on and flush with Irriga�on/Aspira�on
36 Irriga�on and aspira�on
37 Finish surgery, corneal incision WITHOUT s�tches
38 Finish surgery, corneal incision WITH s�tches
39 Finish surgery with enlarged main port WITH s�tches
40 End of surgery

Fig. 1 Graphical representation of the cataract surgery flow chart, where arrows indicate possible
transitions, and the table gives the corresponding surgical actions. The grey states indicate decision
points, with more than one outgoing arrow

The process of cataract surgery in terms of surgical actions and their order of
appearance is visualised by a surgical flow chart. Surgical actions are represented
by circles and their order of appearance by arrows between actions. The time-action
technique described in [7] is employed. Surgical actions that are performed by the
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surgeon are registered in chronological order, with the start and end times of each
action determined by analysis of the video registrations. After each surgery, the
surgical process is discussed with the surgeon. The flow chart was constructed from
video observations and expert opinion. Discussions with surgeons declared well-
defined surgical actions with start and end point indications such as usage of a
different instrument. Each observation defines a surgical path, and a combination
of these paths may result in unobserved, but possible surgical paths. The resulting
surgical flow chart of cataract surgery is given in Fig. 1. The legend specifies the
corresponding surgical actions as defined from discussions with the staff surgeons.

4 Markov Model

Markov models are frequently used to analyse processes in which uncertainty plays
an important role. For a comprehensive overview of Markov models, see [13, 17].
Our assumptions underlying the Markov modelling approach for surgical processes
are the following:

(i) Each surgical process consists of a number of well-defined actions with start
and end points.

(ii) Upon completion of a surgical action, the next action is selected from a well-
defined set of possible actions, where selection of the next action is determined
only by the current action.

(iii) The sojourn times of surgical actions are independent random variables with a
normally distributed duration.

The surgical flow chart is used to develop a Markov model to analyse the surgical
process. States represent surgical actions, and for each state the successive state is
determined by transition probabilities. A possible sequence of states forms a surgical
path. Each surgical action has a random duration with a corresponding probability
distribution, for which we assume a normal distribution. The normal distribution
is commonly used to characterise variables that tend to cluster around a mean
with variability caused by small effects [13]. This assumption includes a positive
probability of negative length. Nonetheless, the resulting errors may be negligible
or within acceptable limits, allowing us to obtain a statistical estimation of surgical
times with sufficient accuracy. Upon completion of a surgical action, there may be
several possible subsequent actions from which the surgeon selects. Their fraction
is modeled by transition probabilities. A more frequently selected action results in a
higher value of the transition probability. Summarising, the Markov model has the
following characteristics:

S State space of the Markov model containing all possible states of the process,
representing the surgical actions of the surgical process.
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pi,j Transition probabilities of the Markov process moving from state i to state j ,
representing the fraction of surgeries where surgical action j follows action
i. This fraction may equal zero, which means that the two surgical actions
cannot be in direct succession.

τi Random variable representing the time spent in state i (sojourn time) before
the process progresses to the next state. The duration of a surgical action is
described by this parameter. The normal probability distribution is used to
model the variability in this parameter.

Assumption (ii) might seem unrealistic as decisions in decision points may differ
due to previous surgical actions. If that is the case, then decision states will be
separated into multiple states with their separate surgical actions and transition
probabilities. As an illustration, consider state 18 in Fig. 1. If selection of the next
states 25, 26, 27, 28 and 30 depends on the surgical path leading to state 18, then
state 18 would be separated into states 18a, b and so on, with their own set of
transition probabilities.

The surgical time equals the summation of the individual surgical action
durations on a surgical path. For each (observed) surgical process, k the sequence of
actions is registered in terms of the corresponding surgical flow chart. A sequence xk

defines the surgical path sequence. The associated durations of each action are also
registered as a sequence: the surgical time sequence tk . Let mk define the number of
actions in surgical process k, and denote:

Surgical path sequence of surgical process k : xk = {xk1 , . . . , xkj
, . . . , xkmk

}, (1)

Surgical time sequence of surgical process k : tk = {tk1 , . . . , tkj
, . . . , tkmk

}, (2)

i.e. xkj
and tkj

are the j th action and time in surgical process k. Due to the
assumption of normally distributed sojourn times for each surgical action, the
surgical time for each surgical path is a summation of normally distributed sojourn
times and therefore also has a normal distribution [13]. If the sojourn time of surgical
action i has a normal distribution with mean μi and variance σ 2

i , then the surgical
time Nxk

of surgical path xk has a normal distribution with mean μxk
and variance

σ 2
xk

, given by

μxk
=
∑
i∈xk

μi, (3)

σ 2
xk

=
∑
i∈xk

σ 2
i . (4)

The transition probabilities between surgical actions represent the fraction of times a
surgeon selects a certain subsequent action. For example, if the transition probability
from state i to state j equals 0.1, then surgeons select surgical action j following
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action i in 10% of the surgeries. The probability of occurrence oxk
of a particular

surgical path xk is obtained by multiplying the transition probabilities associated
with the transitions in the surgical path. The probability of occurrence oxk

of surgical
path xk with mk surgical actions is given by

oxk
=

mk−1∏
j=1

pxkj
,xkj+1

. (5)

The total surgical time distribution T is a weighted combination of the surgical times
of all possible surgical paths. Note that these paths include but are not restricted to
the paths observed to determine the surgical flow chart. The weight of path xk is its
probability of occurrence oxk

. Let X denote the set of all surgical paths (observed
and unobserved). We thus obtain

T =
∑
x∈X

ox · Nx. (6)

5 Data Analysis and Results

From the observations of 85 cataract surgeries at the Department of Ophthalmology
of the LUMC in 2009 and 2010, a total of 38 different surgical actions plus a
start and end state are identified. Figure 1 gives all surgical actions and transitions
between surgical actions that were observed. We identify 15 decision points
indicated by the grey states, where multiple subsequent actions may be selected
by the surgeon. To determine the characteristics of the Markov chain model for the
surgical flow chart, from the observed data, we determine for each action i the mean
μi and variance σ 2

i using the standard estimator for the sample mean and sample
variance for the normal distribution. Table 1 gives for each action the number of
times the action was observed and the estimated mean and variance of the sojourn
times. For some states the standard deviation is large with respect to the mean due
to a relatively small number of observations. States 26, 31 and 32 are observed only
once, so for these states the standard deviation cannot be estimated and is set to
0. The transition probabilities pi,j between action i and action j are determined
for the decision points using the standard estimator for transition probabilities as
the fraction of times action i was followed by action j . Table 2 gives the transition
probabilities.

The number of possible paths in the flow chart of Fig. 1 is much larger than
the observed number of 85 surgeries. Table 3 lists the number of possible paths
from each decision state to the end of surgery in state 40. The total number of
paths that may be identified from our observations is 7590, which clearly illustrates
the complexity and the large number of possible surgical paths even for a surgical
process with a small number of decision points such as cataract surgery.
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Table 1 Mean, standard deviation of sojourn times and number of observations for the states in
the cataract surgery model

State Description x̄ SD N

1 Start of surgery 0.0 0.0 85

2 Corneal incision, two side ports 38.0 29.0 85

3 Healon in anterior chamber 19.7 9.2 84

4 Sticky iris, loosen with spatula 78.0 23.3 3

5 Iris retraction 307.7 179.1 3

6 Healon in anterior chamber, iris retraction/sticky iris 42.0 44.0 5

7 Capsulorhexis 98.3 82.2 85

8 Hydrodissection 42.3 41.6 83

9 Enlarge main port in the cornea for alternative lens 265.5 71.5 2

10 Sculpt lens, 4 parts 168.0 103.3 59

11 Sculpt lens, 2 parts 59.0 17.7 13

12 Remove lens, without sculpt/crack 85.4 32.6 7

13 Mixed sculpt/crack 351.0 260.8 4

14 Remove lens surpluses, without sculpt/crack 205.7 66.8 7

15 Crack lens, 2 parts 29.3 14.3 13

16 Remove lens, 2 parts 151.2 73.4 13

17 Remove lens surpluses, 2 parts 176.7 75.8 13

18 Healon in capsular bag 24.0 12.5 81

19 Crack lens, 4 parts 56.2 56.9 57

20 Remove lens, 4 parts 141.3 97.1 63

21 Remove lens surpluses, 4 parts 251.3 144.8 62

22 Push out lens as a whole, without sculpt/crack 65.0 39.0 2

23 Remove lens surpluses for whole lens 665.0 102.0 2

24 Insert alternative lens 328.8 97.1 4

25 Enlarge main port in cornea 34.5 4.5 2

26 Remove surpluses after Healon in capsular bag 59.0 0.0 1

27 Fold lens prior to injection 87.6 16.0 7

28 Error lens injection 32.3 17.4 3

29 Prepare second attempt lens insertion 156.0 55.5 3

30 Insert folded artificial lens 34.3 30.6 80

31 Second attempt lens injection 142.0 0.0 1

32 Position second lens 19.0 0.0 1

33 Unfold and positioning of folded artificial lens 36.7 70.4 45

34 Remove surpluses after lens insertion 88.1 53.2 7

35 Position and flush with irrigation/aspiration 65.0 29.3 46

36 Irrigation and aspiration 63.9 32.1 28

37 Finish surgery, corneal incision WITHOUT stitches 72.8 60.8 60

38 Finish surgery, corneal incision WITH stitches 191.7 107.9 14

39 Finish surgery with enlarged main port WITH stitches 580.8 318.5 4

40 End of surgery 0.0 0.0 85
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Table 2 Transition probabilities pi,j for the cataract surgery model

State pi,j pi,j pi,j pi,j pi,j pi,j

1 p(1,2)=1.0000

2 p(2,3)=0.9882 p(2,4)=0.0118

3 p(3,4)=0.0238 p(3,5)=0.0357 p(3,7)=0.9405

4 p(4,6)=1.0000

5 p(5,6)=0.6667 p(5,7)=0.3333

6 p(6,7)=1.0000

7 p(7,8)=0.9765 p(7,9)=0.0118 p(7,10)=0.0118

8 p(8,9)=0.0120 p(8,10)=0.6988 p(8,11)=0.1566 p(8,12)=0.0843 p(8,13)=0.0482

9 p(9,22)=1.0000

10 p(10,19)=0.9661 p(10,20)=0.0339

11 p(11,15)=1.0000

12 p(12,14)=1.0000

13 p(13,20)=1.0000

14 p(14,18)=1.0000

15 p(15,16)=1.0000

16 p(16,17)=1.0000

17 p(17,18)=1.0000

18 p(18,25)=0.0123 p(18,26)=0.0123 p(18,27)=0.0741 p(18,28)=0.0247 p(18,30)=0.8642 p(18,31)=0.0123

19 p(19,20)=1.0000

20 p(20,18)=0.0159 p(20,21)=0.9841

21 p(21,18)=0.9677 p(21,25)=0.0161 p(21,30)=0.0161

22 p(22,23)=1.0000

23 p(23,24)=1.0000

24 p(24,39)=1.0000

25 p(25,24)=1.0000

26 p(26,27)=1.0000

27 p(27,28)=0.1429 p(27,30)=0.8571

28 p(28,29)=1.0000

29 p(29,30)=1.0000

30 p(30,33)=0.5625 p(30,34)=0.0250 p(30,35)=0.4000 p(30,37)=0.0125

31 p(31,32)=1.0000

32 p(32,36)=1.0000

33 p(33,34)=0.1111 p(33,35)=0.2667 p(33,36)=0.6000 p(33,37)=0.0222

34 p(34,35)=0.2857 p(34,37)=0.7143

35 p(35,37)=0.7609 p(35,38)=0.1522 p(35,40)= 0.0870

36 p(36,37)=0.6429 p(36,38)=0.2500 p(36,40)=0.1071

37 p(37,40)=1.0000

38 p(38,40)=1.0000

39 p(39,40)=1.0000

40

In 2009 and 2010 a total of 2041 cataract surgeries was carried out in the
LUMC. A histogram of the realised surgical times as well as the best-fit surgical
time distribution is depicted in Fig. 2a, c, where in Fig. 2c the solid line represents
surgeries carried out by all surgeons and the dashed line surgeries carried out by
staff surgeons only. Figure 2b shows a histogram of the realised surgical times of
the 85 observed cataract surgeries.

To validate our Markov modelling approach, we compare our estimate of the
surgical time distribution with that distribution for the realised surgeries in 2009
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Table 3 Number of paths from decision states to end state 40

State # of paths State # of paths State # of paths State # of paths State # of paths

1 7590 9 1 17 118 25 1 33 11

2 7590 10 512 18 118 26 38 34 4

3 6072 11 118 19 256 27 38 35 3

4 1518 12 118 20 256 28 19 36 3

5 3036 13 256 21 138 29 19 37 1

6 1518 14 118 22 1 30 19 38 1

7 1518 15 118 23 1 31 3 39 1

8 1005 16 118 24 1 32 3 40

Table 4 Recorded length of cataract surgeries for different surgeons

Surgeon Type Observations (N) Surgeries in 2009–2010 (N) x̄ surgical time (s) SD surgical time (s)

1 Staff 12 251 805 496

2 Staff 14 541 1384 643

3 Staff 20 231 939 299

4 Staff 28 382 900 428

5 Residents 11 144 1536 432

Total 85 1549 1058 515

Not all surgeons that carry out cataract surgeries of LUMC were included, so the total number of surgeries (1549) is
smaller than the 2041 surgeries that were used for the histogram of Fig. 2a

and 2010. As surgeons perform a varying number of surgeries per year, the fraction
of the number of observations per surgeon in our sample set of logged data do not
fully match the fractions of surgeries carried out by each surgeon in 2009 and 2010.
Comparison of the surgical time distribution from our 85 observations with that from
the 2041 realised surgeries should take into account the differences between surgical
processes over surgeons and residents as the decisions made during surgery and the
speed of actions may vary over surgeons. Therefore, to compare with the logged data
from 2009 and 2010, the registered surgeries are weighted, such that the weight of
the fraction of surgeries carried out by each surgeon in the 85 observed surgeries
represents the weight of the total number of surgeries carried out by each surgeon in
the observed period. Table 4 gives the number of surgeries carried out by four staff
surgeons and residents, where we do not discriminate between residents. Observe
the large differences both in mean and standard deviation of the surgical times. Not
all surgeons who perform cataract surgeries of LUMC were included in Table 4, so
the total number of surgeries (1549) is smaller than the 2041 surgeries that were used
for the histogram of Fig. 2a. Figure 2d shows the surgical time distribution for the
2041 cataract surgeries carried out in LUMC in 2009 and 2010 (solid line) and the
surgical time distribution from our Markov modelling approach taking into account
the differences in handling speed and preferences between surgeons, as well as the
influence of number of surgeries carried out by different surgeons (dashed line).
These graphs show a striking match which illustrates the validity of our Markov
modelling approach.
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Fig. 2 Overview of realised and modeled surgical times. (a) Histogram of 2041 surgical time
realisations in LUMC in 2009 and 2010. (b) Histogram of 85 surgical time realisations used
to fit the model parameters. (c) Comparison of surgical time distributions of modeled surgical
times for all surgeons (solid line) and staff surgeons only (dashed line). (d) Comparison of the
observed surgical time distribution for the 2041 cataract surgeries in 2009 and 2010 (solid line)
and the surgical time distributions from observations of 85 cataract surgeries taking into account
the weighted fraction of surgeries carried out by different surgeons (dashed line)

The main characteristics of the surgical time distribution are captured by the
Markov model. First, observe that each surgical path has a normally distributed
surgical time. The surgical time distribution is a mixture of these surgical times. The
mixture of random variables with a normal distribution is, in general, not normally
distributed. Our model captures the skewness of the surgical time distribution (part
(c) of Fig. 2). Second, the graphs of the predicted and observed surgical times
(parts (a)–(c) of Fig. 2) do show a great level of similarity. The surgical time
distribution obtained by the Markov model (part (c) of Fig. 2) and the histogram
of realised surgical times (part (a) of Fig. 2), however, also show some discrepancy.
There are two main explanations of this discrepancy. First, note that the number of
observations used in this study is limited, so that estimates of times per surgical
action and transition probabilities show considerable variance. Second, disruptions
as categorised in [19] are only partly taken into account in the mathematical model.
Most notably, interruptions of the surgical process are ignored; the recording was
paused during interruptions. Such interruptions occur at random times with highly
unpredictable duration. Incorporating these interruptions, which usually result in
considerable delay, would likely have resulted in a more skewed surgical time
distribution. Since the steps in the surgical process were used to obtain a model
that allows for prediction of surgery times of (future) surgeries, it is legitimate to
not take into account these interruptions.
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6 Conclusions

The Markov model presented in this chapter reveals the structure of the surgical
process for cataract treatment in terms of the possible sequences of surgical actions
and their estimated durations. It provides a detailed description of the surgical
process and predicts the total surgical time. The data- and knowledge-driven
approach leads to a structured way of analysing surgeries in terms of process
characteristics. The Markov model can be adapted to analyse future surgeries of
different types. These models will give insight into the surgical process, without the
need to analyse a large number of surgeries for application of statistical methods.
Further analysis of the Markov model could enable the development of methods
to decrease variability and skewness by standardising surgical paths, searching for
optimal surgical paths and optimal solutions for complications during surgery. The
Markov model appears to capture the total surgical time well. It requires detailed
data about the surgical process, which is currently not often available. Healthcare
data is exploding, and it is reasonable to assume that also data required for detailed
Markov models for surgical processes will become available in the near future.

If prior to a surgery it is known which paths are likely to be chosen by the
surgeon, the expected surgical time can be estimated by analysing these paths.
Differences in preferences and speed between surgeons can be analysed as well
and could serve as a model for benchmarking and learning. Residents are able to
compare their surgical skills and working pace with those of staff surgeons. Part
(c) of Fig. 2 shows such an application of the model. Here the surgical times for
all surgeons and only staff surgeons are compared. A more detailed comparison for
different groups or individual surgeons may be undertaken using the model. This
was beyond the scope of the present study. Categorising patients pre-surgically, for
example, on gender or age, can be used to estimate their surgical time based on
the patient characteristics and might lead to improved OR scheduling. In addition,
during surgery the remaining duration of the surgical process might be estimated
from the analysis of the Markov chain from the current action to end of surgery. By
doing so, this structured approach suits the need of modern healthcare facilities by
increasing both operating room efficiency and patient comfort, through increased
insight in the surgical process.

Measurement errors in the realised surgical time data were observed, due to
unclear starting time indicators for the time registrations. Additional observations,
to complete coverage of all possible surgical paths, would lead to a better validation
of the model. Automation of the observation process would be interesting for
further research, where recordings matched to the instruments that are used during
the surgeries can be related to specific surgical actions. This can be used to
automatically construct a state space and the definition of model parameters,
as described in [8]. In particular, when analysing new surgical techniques, this
approach may substantially reduce the efforts in obtaining logged data to construct
a suitable Markov model.
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