
Arab J Sci Eng (2018) 43:509–524
https://doi.org/10.1007/s13369-017-2646-4

RESEARCH ARTICLE - COMPUTER ENGINEERING AND COMPUTER SCIENCE

Automated Fiducial Points Detection Using Human Body
Segmentation

Fozia Rajbdad1 · Murtaza Aslam1 · Shoaib Azmat1 ·
Tauseef Ali2 · Shahid Khattak1

Received: 6 August 2016 / Accepted: 7 June 2017 / Published online: 17 June 2017
© King Fahd University of Petroleum & Minerals 2017

Abstract Accurately detected human body fiducial points
provide an easy and efficient method for human body posture
analysis and the extraction of anthropometric parameters. In
the proposed work, an efficient algorithm for automated and
accurate detection of fiducial points is developed for both the
frontal and the lateral images. An algorithm for automatic
human body segmentation of the frontal image is also devel-
oped using automatically detected set of primary fiducial
points. Additional fiducial points are obtained by applying
peak and valley algorithm on the silhouettes of each segment.
The detection accuracy of the automatically detected fiducial
points is calculated by comparing their locations with the
manually marked fiducial points. The proposed algorithm is
tested on 45 subjects including bothmale and female genders
and variableBodyMass Indexes. Inmost cases, the algorithm
successfully detects seventyfiducial points for each subject in
the testing set. A quantitative analysis of the error in the posi-
tion of the detected fiducial points shows that the algorithm
performs better than the state-of-the-art algorithms found in
the existing literature. In the evaluation of the algorithm, the
percentage accuracy of the detected fiducial points is calcu-
lated and it is observed that the proposed algorithm performs
better for the majority of the fiducial points.
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1 Introduction

In the past few years, many ubiquitous healthcare applica-
tions have been developed that employ the anthropometric
parameters of a human body using body fiducial points (FPs).
A fiducial point (FP) is defined as a significant point on
the silhouette of a human body that is useful for automatic
measurement of human body parameters like anthropometric
measurements, postural disorders, etc. These anthropometric
parameters play a significant role in the design of applications
in the area of security, medicine, sports and clothing industry.
The conventional methods employed for collecting anthro-
pometric data involve manual measurements. This, however,
relies heavily on the expertise of the operators, the cooper-
ation of the subject, and requires examiner’s time and effort
[1].An automatic anthropometry system is, therefore, needed
to accelerate and standardize the process. The FPs from a
human body can be used to determine the anthropometric
parameters which can, in turn, be used in the construction of
3D human models [2,3] and in recognizing human actions
[4–6]. Additionally, it can be used for non-contact body size
measurements [7] in the apparel industry, where it can, for
example, automatically determine the clothing sizes fit for a
consumer [8–11].

Due to the complexity of the problem of human anthro-
pometry, some semi-automated approaches are also pro-
posed. For example, manually marked FPs are used by Dunk
et al. [12] for measuring three spinal angles cervical, tho-
racic and lumbar to evaluate posture disorders in the torso
and pelvic regions. Such systems can be made efficient by
using automatically detected FPs.

Advanced 3D human body scanning has been employed
for the automatic detection of FPs and the measurement
of anthropometric parameters [10,13–16]. Although these
scanners are quite accurate, they require multiple cameras
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and radar sensors and are therefore limited by cost, main-
tenance, and mobility [2,17]. Additionally, extracting the
useful information from the raw 3D scanner data requires
extra post-processing and results in an increased processing
time [18]. In [19], contour-based and silhouette-based fea-
tures have been investigated for automatic detection of the
FPs. In this method, the detected FPs are marked sequen-
tially on a single segment making it difficult to associate the
detected FPs with a particular body part. Moreover, it has a
tendency to detect extra FPs which are then difficult to filter.
In [20–22], Scale Invarent Feature Transform (SIFT), Harris-
Laplacian, and Speeded-Up Robust Features (SURF) have
been used to detect significant points within images. These
algorithms can also be used for human body FPs detection,
but suffer from the similar error propagation and segment
association effects as mentioned for [19].

In [12], the FPs are detected from 2D camera images, by
physically placing markers on the body. In [23,24], the FPs
are marked manually on the image, while in [25] the system
is automatic only for the upper body part. In [26], Lin et al.
propose a method for the automatic detection of FPs from
2D images using the silhouette of the human body. In their
work, Canny edge detector [27] is applied to trace the contour
of the human body, and the Freeman eight-directional chain
code [28] is used to represent the human body shape. The FPs
are finally detected using the difference between the adjacent
codes from the shape contour.

In this paper, a novel method for automatic detection of
FPs using 2D images through segmentation is proposed. The
input frontal view image of a subject is segmented into six
simpler regions in order to improve the detection accuracy.
The FPs within each segment are detected using the bound-
ary information. The extracted boundary of each segment is
then processed as a single dimensional signal and the local
minima and the maxima are detected as the FPs. The lat-
eral view image is considered as a single segment, and FPs
are detected using the boundary information. The proposed
method not only detects a larger number of FPs but also intel-
ligently identifies the position of detected FPs, and associates
them with the body parts automatically using segmentation.
All the FPs are detected independently, whereas, in the state-
of-the-art work of Lin et al. [26], the chance of incorrect
detection is high because the detection of every FP depended
on the correct detection of the previous one. Furthermore,
the segmentation of the human body helps in an easy and
accurate extraction of anthropometric parameters. The FPs
detection accuracy is evaluated by calculating the Euclidean
distance in centimeters between automatically detected FPs
andmanually marked FPs. It is found that our proposed algo-
rithm reduces the detection error significantly as compared
to Lin’s work [26]. Additionally, the percentage accuracy of
the proposed algorithm is calculated for all the test subjects
and it is also found to be better than Lin’s method [26].

Ourmain contributions and findings in this paper are listed
as below:

• We propose a novel method for automatic detection of
FPs using 2D images of frontal and lateral views of the
human body through segmentation.

• The proposedmethod automatically detects greater num-
ber of FPs compare to state-of-the-art algorithms found
in the existing literature and also intelligently associates
them with the body parts automatically using segmenta-
tion

• The detection accuracy of automatically detected FPs is
verified by comparing with manually marked FPs for
a range of allowable errors. The proposed algorithm
reduces the detection error significantly for the major-
ity of FPs as compared to the state-of-the-art method.

Rest of the paper is organized as follows. Section 2
presents the experimental setup. Section 3 describes in detail
our proposed algorithm for automatic FPs detection. Sec-
tion 4 presents results and discussion showing how our
proposed technique performs in comparison with the exist-
ing techniques in the literature. We conclude the paper in
Sect. 5.

2 Experimental Setup for Body Fiducial Points
Detection

Figure 1a shows the setup of the data collection for experi-
ments and analysis. It includes a blue background screen, a
dedicated processing unit, and two web-cameras. The blue
background screen as shown in Fig. 1b is used for efficient
identification of a subject from the background. Eight mark-
ers on the screen are used for restoring the dimensions of the
image and converting image coordinates to real-world mea-
surements. The distance between the screen and the camera is
250 cm and height of the screen base from the floor is 10 cm.
Twoweb-cameras of 4600×3450 resolution are mounted on
a single stand at different levels in order to capture the images
of the subjects with different heights. Open computer vision
(OpenCV) library [29] is used for interfacing web-cameras
and the computer.

2.1 Test Protocol and Dataset

Two photographs—one from frontal view and one from lat-
eral view—are taken. For the frontal view, the subjects are
required to keep their limbs straight and arms apart from
the torso. It is ensured that the armpit and crotch points of
each subject are visible, as these points are later used by
the body segmentation algorithm. For the lateral view, the
body is kept straight with arms pressed along the torso. Spe-
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Fig. 1 a Overall view of the experimental setup, b marker screen

cial measurement attires are used while taking photographs
so that most of the curves of the body are clearly visible
which are helpful for the detection of body FPs. Similarly,
specialized caps are also worn by the subjects in order to
reduce the influence of hairs on the test results. The dataset
from 45 subjects including 28 females and 17 males aged
from 20 to 45 are used for testing the proposed algorithm.
Table 1 shows the details of different parameters of the
subjects.

2.2 Screen Calibration

The set of eight markers on the screen are used for calibration
as shown in Fig. 2. The captured screen imagewith no subject
standing in front of the screen is processed for the detection of
screen markers, and the calibrated values of the markers are
determined. The screen calibration process is performed only
once, and the calibrated values are subsequently used for all
the subjects. Figure 2 shows the different steps involved in the
screen marker detection process. The RGB image obtained
from the camera is converted to YCbCr color space where
global thresholding is performed on theChroma (Cb) compo-
nent in order to identify the screen outline from the complex
background. Four corner points of the background screen
are detected, and bilinear transformation [30] is applied to
the image to remove optical distortions introduced by the
position of the camera. The binary image is then divided into
eight sub-images of equal sizes, each including one marker
and the corner point of eachmarker is detected. Since the dis-
tance between markers is known, these values can be used
for transforming image dimensions to the screen’s real-world
dimensions in centimeters. The ratio of the distance between
two corresponding corner points of markers (in pixels) and
actualmeasurement between the samepoints (in centimeters)

Table 1 Dataset parameters
Number of subjects Sex Age Height (cm) Weight (Kg) Body Mass Index (BMI)

28 Female 20–45 155–175 55–80 18–35

17 Male 20–45 160–180 60–80 18–35

Fig. 2 Overview of the proposed method for calibration
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Fig. 3 Overview of the proposed algorithm for body fiducial points
detection

is defined as the calibration value. The calibration values for
horizontal and vertical dimensions are calculated and saved.

3 Fiducial Points Detection

The proposed algorithm for detection of FPs from frontal and
lateral images is summarized in Fig. 3. The acquired image is
converted to YCbCr color space to separate the subject from
the background. The human body segmentation algorithm is
applied to divide the body into six segments from the frontal
view. Inner andouter boundaries of the segment are extracted.
Finally, the FPs of each segment are detected by Peak and
Valley algorithm [31]. Note that there is no segmentation

involved in the case of lateral view and it is considered a
single segment.

3.1 Pre-processing

The input image of 4600 × 3450 pixels is resized to a lower
resolution of 460 × 345 pixels in order to speed up the FPs
detection process. Bilinear transformation is applied to the
subject image using the screen corner points that are detected
earlier in the screen calibration process, thereby restoring
the dimensions throughout the image. Global thresholding is
applied to the restored image in order to find crisp boundaries
between the subject and the background screen. The blob
detection algorithm described in [32] is finally applied to
detect the largest blob, which is the subject.

3.2 Body Segmentation

A human body has a complex structure. The detection of all
the FPs at the same time using the entire body frontal image
is less accurate due to the sequential nature of the detection
algorithms.Abody segmentation algorithm is, therefore, pro-
posed which increases the detection accuracy by dividing a
human body into smaller segments. Such algorithms can be
used for associating the detected FPs with a corresponding
body segment and for its localization. Since the search space
is restricted to individual segments, the unnecessary detec-
tion of FPs in other body parts is avoided and the system
becomes more efficient. Also the error propagation effects
are restricted to a single segment, as the effect of false detec-
tion/omission of FPs does not effect the localization of FPs
in the other body segments.

In Fig. 4, the human body segmentation method for the
frontal view is illustrated using the red colored primary FPs
(PFPs) and green colored secondary FPs (SFPs). The three
PFPs are detected using the areas between legs and arms and

Fig. 4 Overview of the
proposed method for body
segmentation
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Fig. 5 Primary and secondary fiducial points detection method

are labeled in Fig. 5c as PS1, PS2, PS3. These are then used
to detect the SFPs.

To detect the PS1, the binary image is scanned from left
to right starting from the bottom. RT XHL is the transition
of pixel value from high to low (white to black) along the
x-axis and indicates the outer boundary of the right leg. The
next transition from low to high (black to white) along the
x-axis is RT XLH , which indicates the inner boundary of the
right leg. Similarly, LT XHL and LT XLH indicate the left
leg’s inner and outer boundaries, respectively. The image
is scanned horizontally one row at a time, starting from the
bottom of the image. The scanning stops when the difference
between RT XLH and LT XHL becomes less than α = 5
pixels, i.e.,

di = LT XHL(i) − RT XLH(i) < α. (3.1)

where RT XLH(i) and LT XHL(i) corresponds to the left and
right transitions at i th row of the image.
The crotch point (PS1) as shown in Fig. 5d is calculated as,

PS1(x, y) =
(
RT XLH(i) + di

2
, i + β

)
, (3.2)

where β in Eq. (3.2) is the number of pixels in the vertical
direction between i th row where Eq. (3.1) is satisfied and
the first transition from high to low, as shown in Fig. 5d.
Similarly, the right and left armpit points PS2 and PS3 are
detected as shown in Fig. 5a, b. The three PFPs are not suf-
ficient to segment the frontal view of the human body and
additional FPs, i.e., SFPs are determined as shown in Fig. 5c.
The image is scanned vertically from PS1, PS2, and PS3,
the number of pixels TYLH(K ) to the first transition from low
to high is determined. The kth secondary FP SSK is given
as

SSK (x, y) = (
PSK (x) , PSK (y) ± TYLH(K )

)
,

where K = 1, 4, 5. (3.3)

Here, SS1 is the head top, SS4 is the right clavicle, SS5 is the
left clavicle, and PSK is the kth PFP. Similarly, two more
SFPs, i.e., SS2 and SS3 are detected by the first transition

123



514 Arab J Sci Eng (2018) 43:509–524

Fig. 6 Overview of the segment’s FPs detection

from low to high along x-axis T XLH toward right and left
of PS1, respectively, i.e.,

SSK (x, y) = (PS1 (x) + T XLH , PS1(y)) ,

where K = 2, 3. (3.4)

Here, the value of T XLH is subtracted for SS2 (right greater
Trochanter) and is added for SS3 (left greater Trochanter)
in the x-coordinate of PS1. The lines joining the PFPs and
SFPs divide the human body into six segments, i.e., head,
torso, right arm, left arm, right leg, and left leg as shown in
Fig. 5c.

3.3 FPs Detection within a Segment

Once the human body is segmented, each segment is inde-
pendently processed for the detection of additional FPs.
An overview of the FPs detection within each segment is
shown in Fig. 6. The process involves the extraction of the
right and the left boundaries, followed by pre-processing
for smoothing. Peak and Valley algorithm is then applied
to the smoothed boundaries for detection of the segment‘s
FPs. Finally, the FPs are remapped on the segment image.

3.3.1 Segment’s Boundary Extraction

To detect the FPs of a segment, the right and left bound-
aries of the segment are separated. The segment image is
scanned from top to bottom, one row at a time. For the i th
row, the right and left boundaries are indicated by transitions
along the x-axis from high to low (T XHL(i)) and low to high
(T XLH(i)), respectively. The set of right boundaries (RB)
and left boundaries (LB) of a body segment are denoted as,

RB = {rb1, rb2, rb3 . . . rbm} , (3.5a)

LB = {lb1, lb2, lb3 . . . lbn} , (3.5b)

where m and n represents the number of pixels in RB and
LB respectively.

3.3.2 Pre-processing

The segment boundaries may contain many false peaks and
valleys and needs to be smoothened by a low-pass filter. To

this end, Sagolay filter [33] is applied to the RB and LB of
each segment. This filter works by choosing a set of filter
coefficients that are equivalent to fitting the data to a poly-
nomial around a single input point, i.e., it performs a local
polynomial regression. Since the contours of different seg-
ments vary in the humanbody, a low-pass filter of single order
cannot be used for smoothing the whole body contour. Filters
of different orders are, therefore, required for each segment
to remove the false peaks and valleys and to improve the
detection accuracy of FPs.

3.3.3 Peak and Valley Detection

The peaks and valleys of the smoothed boundaries of the seg-
ments are detected by using the first-order derivatives as the
local maxima and minima respectively. A maxima is asso-
ciated with a change in the slope from positive to negative,
while a minima is associated with a change in the slope from
negative to positive [31]. First-order derivatives of RB and
LB are

drbi = rbi+1 − rbi and dlb j = lb j+1 − lb j , (3.6)

where i = 1 . . .m − 1 and j = 1 . . . n − 1. The derivative
vectors for the left and the right boundaries are given as

dRB = {drb1, drb2, drb3 . . . drbm−1} , (3.7a)

dLB = {dlb1, dlb2, dlb3 . . . dlbn−1} . (3.7b)

The peaks Pr and valleys Vr of the right boundaries (RBs)
are detected from dRB as

Pr = {rbi |drbi ≥ 0 ∩ drbi+1 < 0} ,∀i = 1, 2 . . .m − 1,

(3.8)

Vr = {rbi |drbi ≤ 0 ∩ drbi+1〉 0} ,∀l = 1, 2 . . .m − 1.

(3.9)

Pl andVl of the left boundaries (LBs) are similarly calculated.
The problem of consecutive zeros is handled by taking the
median index of the consecutive zero points.
A series of FPs from six segments of a human body frontal
image are detected. The FPs of ears and neck are detected
from RB and LB of head as illustrated in Fig. 7a. These
include the left ear (FP1), the left side of the neck (FP2), the
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Fig. 7 Mapping of segment FPs on segment images

right side of the neck (FP3) and the right ear (FP4). Addi-
tional FPs are detected by processing the LB and RB of the
torso, i.e., the right side of thewaist (FP8), the left side of the

waist (FP5), the right iliac crest (FP7) and the left iliac crest
(FP6) as illustrated in Fig. 7b. For the detection of the FPs
from the leg segments, the exterior boundaries are similarly
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Fig. 8 RB and LB of right arm connected with line AB

processed as illustrated in Fig. 7c. The right-left knee exterior
(FP14, FP9), the right-left shank exterior (FP13, FP10),
and the right-left lateral malleolus (FP12, FP11) are the
important FPs detected. The horizontal projection of the
PFPs on the opposite segment boundaries results in detec-
tion of eight secondary FPs, i.e., the right-left knee interior
(FS5, FS1), the right-left shank interior (FS7, FS3), the
right-left mid shank-knee interior(FS6, FS2), and the right-
left medial malleolus (FS8, FS4) as shown in Fig. 7c.

3.4 Arms FPs Detection

The FPs of arms cannot be detected directly by applying peak
and valley algorithm due to the slanting orientation of arms
in the frontal view. Therefore, additional pre-processing is
required in order to reorient the RB and LB so that the arm
axis can be considered horizontal. The two end points of RB
and LB are connected with the help of a straight lineAB as
shown in Fig. 8a, c.

The perpendicular distance di from the lineAB (ax+by+
c = 0) to the i th point (rbi , i) on RB is calculated as [34],

di (ax+by+c = 0, (rbi , i)) = |a (rbi ) + bi + c|√
a2 + b2

, (3.10)

where a, b and c are the coefficients of the straight line AB.
The distance D is defined as

Di = {d1, d2, d3 . . . dn} . (3.11)

The peak and valley detection algorithm explained in
Sect. 3.3.3 is now applied on Di as shown in Fig. 9a, b. The
detected FPs of Di are mapped on RB and LB as shown in
Fig. 9c, d. Finally, the FPs (FP15–FP22) of RB and LB are
remapped on the segment arm image as shown in Fig. 9e.

The FPs (FP23–FP30) are detected from the left arm using
the same procedure.

3.5 Lateral View FPs Detection

For detection of FPs from the lateral view, the input image is
preprocessed as described in Sect. 3.1. In the lateral image,
the arms are pressed along the body; therefore, it is treated
as a single segment and body segmentation is not required
for the FPs detection. The LB and RB extraction and the FPs
detection is done using the procedure explained earlier in
Sects. 3.3.1–3.3.3. From lateral view 24 FPs (LP1–LP24)
are detected as shown in Fig. 10.

4 Results and Discussion

The performance of the proposed algorithm is tested by using
45 test subjects, both males and females, of different age
groupswith theBMIvaryingbetween18 and35 asmentioned
in Table 1. All the images are taken under the controlled
ambient conditions and the special clothes are used which
helped tomake the body contours more visible. Additionally,
caps are used for the subjects with longer hair so that the
neck and shoulder region silhouette are clearly visible. These
images are then processed using algorithms implemented in
MATLAB.

The proposed method automatically detects a total of 70
FPs, which includes 46 FPs from frontal (excluding feet and
open hands) and 24 FPs from lateral image views as shown
in Tables 2 and 3, respectively. These FPs are detected in two
phases. In the first phase, the FPs are detected using the areas
between arms and legs which resulted in the segmentation
of human body into six regions. In the second phase, the
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Fig. 9 Mapping of detected FPs on Arm image

Fig. 10 FPs LP1–LP24
detected from the lateral view
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Fig. 11 Average error and average computation time with different values of α

remaining FPs are detected from each of these regions by
extracting their boundaries and then marking all the maxima
and minima of each boundary as FPs.

The value of α for detection of PFPs and segmentation
is validated by testing on 45 subjects. Figure 11 shows the
average error and computation time for different target values
of α for the armpit region. The Euclidean distance between a
detected FP to the manually marked FP is defined as the error
measure. The detected FP approaches the manually marked
FP as the value of α decreases, but at the cost of increase
in the computational time. A value of α = 5 is adopted
which provides the acceptable average error of 2 pixels and
is marked by a vertical dashed line as shown in Fig. 11.

Tables 2 and 3 also shows the comparison of detected
FPs with earlier methods in the literature [23–26]. The
proposed algorithm accurately detects a greater number
of FPs in the head, arm and leg regions as shown in
Tables 2 and 3. Also, additional FPs from the head region
(LP3, LP4, LP5) are detected from the lateral view. Sim-
ilarly, (FS6, FS2, FP3, FP7) in the legs are detected
successfully, whereas the state-of-the-art method Lin’s tech-
nique [26] failed to detect these FPs because of a fixed
directional change of 900 or 450 used from code value of pre-
viously detected FPs. Besides, a separate algorithm for the
detection of (FP15, FP16, FP17, FP18, FP20, FP21,
FP22) in the elbow region of the arms is proposed. Some
of these FPs (FP16, FP22) are not detected in all the ear-
lier methods listed in Table 2. It should be pointed out that
one of the main advantages of the proposed approach is that
the FPs in each body part is detected separately, independent
of the other FPs. This is not the case in some of the earlier

works such as [26] where the detection of a FP depends on
the previous FP and may result in error propagation, i.e., if
any FP is detected incorrectly, it also affects the subsequent
detection of other FPs.

The proposed method not only identifies the positions of
the detected FPs but also associated them with the body
parts automatically through segmentation. The segmenta-
tion of a human body into six regions helps in extraction
of anthropometric parameters like area, length, breadth,
ratios of each body segment. Moreover, the detected FPs are
also useful in the human body posture evaluation. FPs like
LP6, LP7, LP10, LP20, LP21, LP23, LP24are used for
measuring three spinal angles cervical, thoracic and lum-
bar in order to evaluate posture disorders in the torso region
[9,35–37].

The accuracy of a detected FP is calculated as the
Euclidean distance of the manually marked FP from the
automatically detected FP. The detection accuracy of the
proposed algorithm is compared with Lin’s algorithm [26]
using the box plot as shown in Fig. 12. Initially, all FPs of
each subject are marked manually. The Euclidean distances
of themanuallymarked FPs from automatically detected FPs
are then calculated to find the detection error of all the test
subjects. Finally, the screen calibration values are used to
convert detection error to real values in centimeters. The FP
results for the right and left human body halves have been
merged due to its symmetry. In Fig. 12a, b, the ends of each
box represent the first (25th percentile) and third (75th per-
centile) quartiles, whereas the median (50th percentile) is
marked by a horizontal line inside the box. The whiskers are
the two lines outside the box that extend to the highest and
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Fig. 12 Comparing accuracy of the FPs detected by the proposed method with the Lin’s method. a Boxplot of the detection accuracy for the frontal
view. b Boxplot of the detection accuracy for the lateral view

lowest observations. Outliers are the data points with values
beyond the ends of the whiskers and are displayed with a
+ sign. It is found that the detection error of the proposed
algorithm is much lower for the majority of the FPs (20 out
of 26 in the frontal view). However, in a few regions like the
shoulder, buttock, and wrist (6 FPs), the accuracy of Lin’s
algorithm is better. Similarly, the detection accuracy of lat-
eral view is compared in Fig. 12b. The proposed algorithm
also reduces the detection error significantly for the majority
of the FPs (15 out of 18 in the lateral view), whereas Lin’s

algorithm is more accurate in nose, neck and hip regions.
This accurate detection of FPs leads to an accurate detection
of anthropometric measurements and evaluation of postural
disorders.

The percentage accuracy (PA) of the FPs compared in
Fig. 12a, b is also calculated. The PA of kth FP (PAk) is
evaluated as

PAk =
(
M

N

)
× 100, (4.1)
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Table 4 Comparison of performance accuracy (%) for different values of allowable error

View: Frontal view Lateral view

Methods: Proposed method (PA) Lin et al. [26] (PA) Proposed method (PA) Lin et al. [26] (PA)

AE

3 cm 91 86 94 87

2 cm 79 65 80 62

1 cm 60 32 54 32

Fig. 13 Percentage accuracy (PA) of the FPs detected by the proposed method and Lin’s method for AE threshold value of 3 cm. a Frontal view,
b lateral view
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where N = 45, is the total number of subjects and M is
the number of subjects with detection error less than the
threshold set for allowable error (AE). Table 4 compares the
average PA of proposed algorithm and Lin’s algorithm for
different threshold values of AE. For each value of AE, the
average value of PA is calculated for all the frontal view FPs,
shown in Fig. 12a, and for all the lateral view FPs, shown
in Fig. 12b. The proposed method has performed better for
all values of AE when compared to Lin’s method. Moreover,
if AE is decreased from 3 to 1 cm, the average PA for pro-
posed method and Lin’s method has degraded 1.6 and 2.7
times respectively. These results show that the performance
of Lin’s method is more susceptible to AE. Finally, Fig. 13a,
b shows the PA of each FP detected by the proposed algo-
rithm and Lin’s algorithm for the AE value of 3 cm. The
proposed algorithm performs better for 20 out of 26 FPs, and
15 out of 18 FPs for the frontal and lateral views, respectively.
Although the complexity of the proposed algorithm is com-
parable to that ofLin’smethod, the PAanddetection accuracy
for more than 80% of the detected FPs has improved. Hence,
the statistical analysis indicates that the proposed method is
more accurate and consistent as compared to Lin’s method.

The proposed system has some limitations, which in fact
are the limitations of all such systems [23–26] where the
objective is to detect the significant points on the human
body using 2D imaging system. For the accurate detection of
FPs and the extraction of the human body from the image, a
blue background screen is used. Since the blue color is not
a part of any skin color tone, this results in a more accu-
rate segmentation of human body. Additionally, markers on
the screen are used for measurement of real coordinates of
FPs. Specialmeasurement attires havebeenusedwhile taking
photographs so that most of the curves of the body are clearly
visible which are helpful for the detection of body FPs. The
tight dress is also helpful in avoiding false peaks and valleys
which appear if the subject is under more apparel. For the
accurate detection of FPs, specific postures are maintained
for frontal and lateral views while taking the photographs,
which are standard postures for all such applications [23–
26].

5 Conclusions and Future Work

In this paper, automated human body FPs detection and
segmentation method using 2D images is proposed. The pro-
posed method divides the 2D image of a human body into
six segments and associates the FPs with the corresponding
body parts accurately. All the FPs are detected and evaluated
separately, thereby avoiding error propagation. The proposed
work is tested on a dataset from 45 subjects including both
male and female genders. A total of 70 FPs including addi-
tional FPs in the arm, head and leg regions are detected. The

detection accuracy of the proposed method is compared with
the existing work in the literature and verified against the
manual readings. The detection error is very small for the
majority of the FPs. The percentage accuracy of the detected
FPs is calculated and compared with existing work, and it is
observed that the proposed algorithm performs better for the
majority of the FPs.

The presented work of detecting the FPs can be extended
in future for the automatic measurement of anthropomet-
ric dimensions, constructing 3D digital human models, for
gender recognition, and for automatic detection of postural
disorders. Furthermore, the existing algorithms can be made
more robust for detecting and approximating the FPs of the
subjects under different (more loose) apparels.
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