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Twenty-five years after the approval of the first anticancer nanodrug, we have to start re(de)fining tumor-

targeted drug delivery alongside advances in immuno-oncology. Given that cancer is characterized by

an immunological imbalance that goes beyond the primary tumor, we should focus on targeting,

engaging, and modulating cancer-associated immune cells in the tumor microenvironment (TME),

circulation, and immune cell-enriched tissues. When designed and applied rationally, nanomedicines

will assist in restoring the immunological equilibrium at the whole-body level, which holds potential

not only for cancer therapy, but also for the treatment of a range of other disorders.
Introduction
Cancer nanomedicine still focuses primarily on delivering chemo-

therapeutic drugs directly to cancer cells (Table 1). Here, we aim to

contribute to a paradigm shift in which nanoparticles (NPs) are no

longer packed with chemotherapeutics for the direct eradication

of cancer cells, but instead loaded with immunomodulatory

agents and targeted to cancer-associated immune cells. We de-

scribe various possibilities for in vivo immune cell targeting (in

contrast to their ex vivo manipulation), and propose to target

immune cell populations inside and outside the TME. Preclinical

as well as clinically already translated NPs can be repurposed for

such an endeavor because they can prolong the circulation half-

life of therapeutic agents and shift their biodistribution profile

toward target tissues and/or cells [1–4].
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Traditional tumor targeting in nanomedicine
As mentioned earlier, the cancer nanomedicine field has historically

invested heavily in directly killing cancer cells. The hope behind this

traditional approach is that nanomedicines improve the accumulation

of chemotherapeutic agents in tumor tissue and limit their off-target

localization, which ultimately increases the efficacy:toxicity ratio [5].

The common consideration in this regard is that nanomedicine for-

mulations preferentially accumulate in cancerous lesions based on

enhanced vascular leakiness and defective lymphatic drainage associ-

ated with solid malignancies [6,7]. In such cases, a high degree of

intratumor accumulation is the desired outcome. In many situations,

however,theinjectednanomedicinedosethatreachesthetumorislow,

averaging between 0.1 and 10% of the injected dose, both in animal

models and patients [8]. This implies that 90–99.9% of the injected

nanodrug doseendsup in organs and tissues other than the tumor (e.g.,

liver and spleen), or is rapidly cleared. In addition, significant hetero-

geneity in tumor accumulation is observed, both within a tumor in an
m traditional tumor targeting to leveraging the immune system, Drug Discov Today (2021),
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TABLE 1

Nanomedicine publication trends

Scopus search (January 8, 2021) Number of studies per year

Terms in ‘title, abstract, keywords’ 2016 2017 2018 2019 2020

‘nanomedicine’ AND ‘chemotherapy’ 276 295 370 416 470
‘nanomedicine’ AND ‘immunotherapy’ 67 74 128 177 247
‘nanomedicine’ AND ‘immunomodulation’ 27 37 27 38 42
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individual patient as well as between different tumors in different

patients. This complicates clinical translation [9,10].

Targeting the immune system with nanomedicines
Even with targeting capabilities increased beyond 10%, nanome-

dicine treatment cannot guarantee improved therapeutic

responses in patients with cancer. This is particularly true when

nanodrugs are used as monotherapies. Remission is often tempo-

rary and typically followed by relapse resulting from the re-estab-

lishment of pro-tumorigenic conditions, such as by progenitor

immune cells [11] or reactivation of cancer stem cells [12]. In such

situations, we consequently often end up in a continuous vicious

circle of ‘detection, treatment, response, and relapse’. This implies

that truly curative anticancer therapy requires more holistic treat-

ment concepts, which include not only direct eradication of

cancer cells by chemotherapeutic agents, but also modulation

of cancer growth-promoting phenomena that occur inside and

outside of tumor tissue, involving, most importantly, the immune
Please cite this article in press as: Sofias, A.M. et al. A paradigm shift in cancer nanomedicine: fro
https://doi.org/10.1016/j.drudis.2021.02.017

(a)

(b)

FIGURE 1

Nanoparticle (NP) targeting of the immune system in tumor and blood. Nanotherap
to inhibit regulatory T cells, elicit a strong CD8+ T cell infiltration and, conseque
microenvironment (TME). (b) NPs can exploit the inherent tumor-homing capabi
hitchhiking. (c) NPs can be used to directly inhibit the activity of M2-like macropha
like macrophages toward M1-like macrophages. (d) NPs can be specifically modifie
Please see main text for abbreviation definitions.
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system. In this context, it is crucial to understand that the long

circulation properties that various nanomedicines have upon

systemic administration will benefit their accumulation in antici-

pated target organs by avoiding rapid clearance by phagocytes in

liver and spleen [13]. Therefore, nanomedicine formulations used

for immune cell targeting must be able to evade clearance from the

blood stream, be easily functionalizable with targeting moieties,

and be loadable with different types of payload. These features

benefit from the notion that nanomedicines are a versatile and

readily available toolbox compared with other (bio)technological

tools; for instance, conventional antibodies can only be directed

against one therapeutic target, and microscale drug delivery sys-

tems do not have long-circulation properties.

Targeting immune cells in the tumor
microenvironment
The immune system strongly affects tumorigenesis and malignant

disease progression. This notion has resulted in the development
m traditional tumor targeting to leveraging the immune system, Drug Discov Today (2021),

(c)

(d)
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ies can aim for holistic manipulation of the immune system. (a) NPs can help
ntly, restore cytotoxic T lymphocyte (CTL) populations in the tumor
lities of myeloid immune cells and be delivered to tumors via immune cell
ges in the TME, and deliver immunomodulatory cargo that can polarize M2-
d to target or inhibit specific immune cell subpopulations in the circulation.
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TABLE 2

Nanomedicines targeting immune cells in tumor, blood, and immune cell-enriched organsa

Nanoparticles Targeting
decoration

Payload Payload function Tissue target Cell target Major outcome Refs

PLGA-based
polymeric micelles

CD8a, PD-1 R848 TLR7/8 agonist Tumor, blood, spleen,
LN

CD8+ T cell, PD-1+ T cell " Survival
" Tumor-infiltrating CD8+ T cells
Sensitized tumors to anti-PD-1
therapy

[18]
SD-208 TGF-b inhibitor

PLGA-lipid hybrid
NPs

tLyp1 Imatinib Tyrosine kinase inhibitor Tumor FoxP3+ Treg cell " Survival
" Tumor inhibition
# FoxP3+ Treg cells
" CD8+ T cells
Potentiated anti-CTLA-4 therapy

[19]

b-cyclodextrin NPs – R848 TLR7/8 agonist Tumor M2 macrophage Polarized M2!M1 macrophages
Controlled tumor growth
Protected against tumor
rechallenge
Potentiated anti-PD-1 therapy

[20]

Liposomes,
nanoemulsions

cRGD (For imaging purposes) Blood Neutrophils, Ly6C�

monocytes
NP hitchhiking with phagocytes in
breast cancer

[24]

Liposomes CD206 BLZ945 CSF1R inhibitor Tumor M2 macrophages Polarized M2!M1 macrophages
" Phagocytic capabilities
" Antitumor efficacy

[21]
SHP099 SHP2 inhibitor

cRGD Edaravone Neuroprotective Blood Neutrophils, monocytes NP hitchhiking with phagocytes in
cerebral ischemia
# Infarct volume

[26]

CD3, CD4, CD25, Ly6C CD45 siRNA (For testing CD45 silencing) Blood, LN CD3+ T cells, CD4+ T cells,
CD25+ Treg cells, Ly6C+

monocytes

Cell-specific siRNA delivery
# Colitis by targeting Ly6C+

proinflammatory monocytes in IBD
model

[28]
TNF siRNA To inhibit expression of

proinflammatory mediator
TNFa

Ly6C IL10-modified mRNA Expressing anti-
inflammatory cytokine IL10

Spleen Ly6C+ monocytes " IL10 in liver, spleen, and colon
# Colitis by targeting Ly6C+

monocytes in IBD model

[29]

– gp70 RNA Encoding endogenous
antigen of Moloney murine
leukemia virus

LN, BM, spleen, lung DCs Activation of NK, T, and B cells
" Survival
# Tumor growth
Induction of systemic INFa in
patients
Priming and amplification of T cells
against antigens in patients

[46]

OVA RNA Encoding ovalbumin
epitope expressed in B16F10
cell line

Hemagglutinin RNA Encoding influenza virus
hemagglutinin

NY-ESO-1 RNA, MAGE-A3
RNA, tyrosinase RNA, TPTE
RNA

Encoding tumor antigens for
clinical use

HDL
nanoformulation

– (For imaging purposes) Spleen, BM, blood Neutrophils, Ly6C+

monocytes, Ly6C�

monocytes

" Infiltration of Ly6C+ monocytes in
intermediate atherosclerosis
" Infiltration of neutrophils in
advanced-stage atherosclerosis
Recruitment of myeloid cells in
myocardial infarction

[33]
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TABLE 2 (Continued )

Nanoparticles Targeting
decoration

Payload Payload function Tissue target Cell target Major outcome Refs

Lipid NPs SORT molecules hEPO mRNA or IL-10 mRNA To verify expression of hEPO
and IL-10

Spleen, liver, lung Macrophages, B cells, T
cells, others

Organ-specific targeting
EffectivemRNA expression in organ-
specific manner
Effective gene editing in organ-
specific manner

[34]

Cre mRNA To activate tdTom
expression

Cas9 protein/sgTom1 To improve delivery of Cas9
RNPs

Cas9 mRNA/sgPTEN To edit PTEN for anticancer
purposes

Cas9 mRNA/sgPCSK9 To edit PCSK9 for
antiatherosclerotic purposes

– gp100 mRNA, TRP2 mRNA Encoding tumor-associated
antigens

LN DCs, neutrophils,
macrophages, B cells

Successful anticancer vaccination
" Cytotoxic CD8+ T cell response
" Survival
# Tumor growth

[43]

Polymeric NPs CD206 IRF5 mRNA, IKKb mRNA Encoding M1 macrophage
polarization factors

Tumor M2 macrophages Polarized M2!M1 macrophages
" Survival
" T cell infiltration
Control tumor metastases
Potential to reprogram human
macrophages

[23]

Polymeric micelles – Adpgk Peptide neoantigen LN DCs, macrophages Successful anticancer vaccination
" Cytotoxic CD8+ T cell response
" Survival
# Tumor growth
Potentiating anti-PD-1 therapy

[45]
R848 TLR7/8 agonist
CpG TLR9 agonist

Polymeric NPs, gold
nanorods

CD11b Pyropheophorbide-a (not
loaded)

Photosensitizer Blood Neutrophils " Neutrophil tumor infiltration upon
photosensitization
" Survival
# Tumor growth

[27]

Polymer/lipid TransIT
reagent

– CD3 � CLDN6 mRNA,
CLDN18.2 � CD3 mRNA,
EpCAM � CD3 mRNA, CD3
� (CLDN6)2 mRNA

In vitro-transcribed mRNA
encoding bispecific
antibodies against T cells,
cancer cells, epithelial cells

Liver T cells " Plasma levels of bifunctional
proteins
Elimination of advanced xenograft
tumors
Activated T cells in cell target-
specific manner
" Cytotoxic T cells in tumors

[47]

a Selected representative publications demonstrate the use of NPs for immunomodulatory, NP-mediated transportation, and immune cell-tracking purposes in cancer and inflammatory diseases.
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of ‘nano’ concepts aimed at targeting and modulating the tumor

immune micro-environment (TIME [14]) to promote immune cell-

mediated anticancer responses (Fig. 1 and Table 2) [15–17]. First

results have been encouraging. For example, polymeric NPs loaded

with a Toll-like receptor (TLR)-7/8 agonist and transforming

growth factor (TGF)-b inhibitor, were functionalized with CD8a

and programmed cell death protein 1 (PD-1) to target intratumoral

PD-1+ or CD8+ cytotoxic T cells. Specific delivery of immunomod-

ulatory cargo to these cells primed the cytotoxic activity of CD8+ T

cells in the tumor, allowed for enhanced infiltration of these cells,

and sensitized the TIME for better response to subsequent anti-

body-based anti-PD-1 immunotherapy [18]. Another interesting

example is targeting forkhead box P3 (FoxP3+) regulatory T cells

with hybrid polymeric-lipid NPs surface functionalized with the

peptide tLyp1. These NPs were loaded with the kinase inhibitor

imatinib to inhibit regulatory T cells in the TIME. Combining

them with anti-cytotoxic T lymphocyte-associated protein 4

(CTLA-4) antibodies reduced the numbers of intratumoral regula-

tory T cells and elevated the number of cytotoxic CD8+ T cells [19].

Similar conceptual approaches have been conceived for modulat-

ing myeloid cells inside the TIME. These have included the design

of b-cyclodextrin NPs containing TLR7/8 agonists [20], as well as

liposomes functionalized with a CD206-targeting ligand loaded

with Colony stimulating factor 1 receptor (CSF1R) and Src homol-

ogy 2 (SH2) domain-containing phosphatase 2 (SHP2) inhibitors

[21], with the aim of exploiting the phenotypic plasticity of

macrophages [22] and inducing their polarization from a

immuno-suppressive M2-like toward a tumor-suppressive M1-like

phenotype. This phenotypic change enhances the phagocytic

capability of macrophages, helps to control tumor growth, and

protects against tumor rechallenge. Macrophage polarization and

TIME modulation can also be achieved through NP-mediated

genetic reprogramming. Loading polymeric NPs with mRNA

encoding the M1-inducing proteins interferon regulatory factor

5 (IRF5) and IKKb and targeting of these NPs to M2-like macro-

phages induced their repolarization toward an antitumor pheno-

type in three different tumor models [23]. In animal models, this

approach showed an efficacy against not only primary tumors, but

also metastasis, and the NPs further proved to be active in repro-

gramming human macrophages.

Targeting circulating immune cells
Circulating immune cells can recognize and interact with nano-

medicine formulations in the bloodstream before homing to

diseased areas (Fig. 1 and Table 2). For example, investigation of

avb3-integrin-specific cRGD liposomes and nanoemulsions

revealed that, in addition to targeting integrins on the tumor

endothelium, circulating phagocytes (predominantly neutro-

phils) take up these NPs and transport them into tumor tissue

[24]. This observation rationalizes the use of immune cells as drug

delivery vehicles [25]. The interaction of cRGD liposomes with

circulating phagocytes also resulted in co-migration into ischemic

brain tissue [26], a tissue that is difficult to reach using conven-

tional drug targeting strategies. Although the cRGD liposomes in

this study were loaded with edaravone (i.e., a neuroprotective

agent, aiming to lower infarct volumes), similar approaches can

be envisaged for increasing anticancer and/or immunomodulatory

drug deposition in the brain. Besides cRGD, circulating neutro-
Please cite this article in press as: Sofias, A.M. et al. A paradigm shift in cancer nanomedicine: fro
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phils have also been targeted by decorating polymeric NPs and

gold nanorods with anti-CD11b. Subsequent TIME priming via

photosensitization, with the photosensitizer pyropheophorbide-a,

resulted in enhanced infiltration of the NP-loaded neutrophils in

tumor tissue upon illumination with laser light [27]. Analogously,

surface decoration of lipid NPs with monoclonal antibodies

resulted in a modular liposome platform suitable for immune

cell-specific small interfering (si)RNA delivery [28]. This platform

showed impressive versatility in specifically targeting different

immune cell populations when functionalized with CD3, CD4,

CD25, and Ly6C antibodies. Therapeutically, anti-Ly6C-decorated

liposomes loaded with siRNA successfully inhibited the expression

of the proinflammatory mediator tumor necrosis factor (TNF)-a in

Ly6C+ monocytes in a colitis model. The same modular platform

was also applied for mRNA delivery in an inflammatory bowel

disease (IBD) model, targeting Ly6C+ monocytes and inducing the

expression of the anti-inflammatory interleukin (IL)-10 [29]. These

examples support the exploration of cancer nanomedicine engi-

neering toward targeting immunomodulatory cargo to circulating

immune cells [30]. Furthermore, by determining the composition

of tumor-infiltrating immune cells and by exploiting immune

cell–NP interactions [24,31,32], immune cells can function as

chariots for delivering therapeutic cargo to tumors and metastases.

Targeting myeloid and lymphoid immune cell-enriched
tissues
Targeting immune cells entails delivery to tissues enriched in

immune cells, such as bone marrow (BM), liver, lymph nodes

(LNs), and spleen (Fig. 2 and Table 2) [33–36]. Research to achieve

organ-specific targeting has enabled the development of a lipid NP

platform that allowed for the targeted delivery of mRNA or gene

editing in a tissue-specific manner [34,37]. By capitalizing on the

biophysical properties of different lipid components, three major

categories of lipid NPs achieved specific targeting to spleen, liver,

or lungs and a direct association of the NPs with residual macro-

phages, B cells, and T cells. Loading these NPs with various

therapeutic RNAs (i.e., hEPO mRNA and IL-10 mRNA) or Cas9

mRNA/single -guide (sg)RNA combinations (i.e., Cas9 mRNA plus

sgPTEN, and Cas9 mRNA plus sgPCSK9) demonstrated organ-

specific action for applications in inflammatory disease, cancer,

and atherosclerosis. Such a redirection could benefit therapeutic

approaches focusing on eliminating malignant cells responsible

for blood disorders [38], or on reversing the aftermath of such

conditions, such as BM fibrosis [39], splenomegaly [40], and

splenic lymphomas [37].

NPs developed for delivering mRNA vaccines also target im-

mune cells [41,42]. A subcutaneously injected lipid NP mRNA

vaccine loaded with gp100 mRNA or tyrosinase-related protein

2 (TRP2) mRNA led to improved mRNA translation in antigen-

presenting cells [i.e. dendritic cells (DCs), neutrophils, macro-

phages, and B cells]. The resulting increased transfection rate in

regional LNs elicited a strong CD8+ T cell-mediated response

against melanoma [43]. Along the same line of thinking, nano-

medicine has also been strongly integrated in neoantigen vaccine

approaches [44]. A subcutaneously administered micellar nano-

vaccine delivered a peptide neoantigen (Adpgk) together with a

TLR7/8 agonist (R848) and a TLR9 receptor agonist (CpG) to

immature DCs residing in LNs [45]. Combining this nanovaccine
m traditional tumor targeting to leveraging the immune system, Drug Discov Today (2021),
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(g)
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FIGURE 2

Nanoparticle (NP) targeting of the immune system in immune cell-enriched organs. (a) Subcutaneous administration of NPs can lead to lymph node targeting.
Surface decoration of such NPs can allow for the specific targeting of lymph node-resident monocytes and stimulate cytokine inhibition. (b) NPs can deliver
neoantigen RNA cargo in specific cells in lymph nodes and spleen to elicit a personalized anticancer response. (c) Surface decoration of NPs with various motifs
can enable the targeting of spleen-resident monocytes and the stimulation of cytokine production. (d) NPs functionalized with contrast agents can be used for
targeting myeloid cells in various tissues (e.g., bone marrow and spleen) to visualize their transportation to a cancerous or inflammatory lesion. (e) Similarly to
the delivery of neoantigen vaccines in lymph node and spleen, targeting of NPs in dendritic cells in the bone marrow can also be used to elicit anticancer
responses. (f) NPs can deliver specific antibody-encoding mRNAs in the liver for targeting T cells, cancer, and epithelial cells and eventually stimulating
anticancer T cell responses. (g) By synthesizing NPs with desired biophysical characteristics, organ-specific targeting can be achieved and used for delivering
RNA therapeutics or applying gene editing. Please see main text for abbreviation definitions.
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with anti-PD-1 treatment resulted in regression of Adpgk-positive

colorectal cancer. Lymphoid tissues can also be targeted for neoan-

tigen mRNA expression after systemically injecting lipoplexes [46].

Indeed, an intravenously injected lipoplex delivered cancer-spe-

cific antigen-encoding RNA (i.e., gp70 RNA, OVA RNA, and hem-

agglutinin RNA) to DCs in spleen, BM, LNs, and lungs, and elicited

strong antigen-specific responses against melanoma and colon

carcinoma via activation of NK cells, B cells, and T cells. Of note,

this lipid NP platform constitutes the first nanomedicine-based

neoantigen vaccination in clinical evaluation, displaying promis-

ing targeting of lymphoid DCs in the spleen, LNs, and BM with

various RNAs encoding tumor-specific antigens. Additionally,

mRNA-encoding bispecific antibodies can be directed to the liver

by using T cell-specific NPs [47]. These therapeutic NPs were based

on a single mRNA strand that produced a combination of anti-

bodies against T cells, cancer cells, and epithelial cells [via CD3 x

CLDN6 mRNA, CLDN18.2 � CD3 mRNA, EpCAM � CD3 mRNA,

and CD3 � (CLDN6)2 mRNA], enabling stable and prolonged
Please cite this article in press as: Sofias, A.M. et al. A paradigm shift in cancer nanomedicine: fro
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production of high plasma levels of bifunctional proteins targeting

T cells and activating them in a cell-specific manner [47].

Finally, NPs have been used as tools for imaging-assisted im-

mune cell tracking. High density lipid (HDL) nanobiologics can be

taken up by myeloid cells in the spleen and BM, enabling the

visualization of myeloid cell dynamics in atherosclerosis and

myocardial infarction [33]. The functionalization of these NPs

with different contrast agents allowed for the utilization of com-

plementary imaging modalities, which together illustrated dis-

tinct immune cell migration patterns at different disease stages.

For instance, it was found that the infiltration of Ly6C+monocytes

was dominant in intermediate-stage atherosclerosis, whereas neu-

trophil infiltration was dominant in advanced-stage atherosclero-

sis [33].

Benefits of in vivo immune cell targeting
Targeting strategies involving immune cells typically rely on ex

vivo methodologies. For example, ex vivo decoration of monocytic
m traditional tumor targeting to leveraging the immune system, Drug Discov Today (2021),
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myeloid cells with IFNg immunomodulatory ‘backpacks’ polar-

ized these cells toward an M1-like antitumor phenotype [48]. Their

subsequent intratumoral injection not only preserved this pheno-

type, but remarkably also polarized neighboring tumor-associated

macrophages toward an M1-like antitumor phenotype. Further-

more, ex vivo methodologies were developed for conjugating NPs

to the cell surface of T cells. This led to the development of an IL-

15-loaded nanogel backpack attached to the surface of T cells [49].

This technology had multiple therapeutic benefits, including in-

creased delivery of IL-15, intratumoral increase of CD8+ T cells,

and, consequently, an improved chimeric antigen receptor (CAR)-

T cell response [50]. Given that immune cell isolation, ex vivo

manipulation, and subsequent systemic re-infusion can lead to the

rapid recognition of the injected cells by the mononuclear phago-

cyte system via, for example, efferocytosis [51,52], we speculate

that such ex vivo approaches can be refined and improved by

performing direct in vivo targeting of immune cells. In vivo

immune cell targeting also provides the possibility of inhibiting

(or even killing) immune cells in the circulation, thereby modu-

lating the number and type of immune cells infiltrating tumors

and metastases. The utilization of NPs for such concepts bypasses a

key drawback of NP design and traditional tumor targeting, that is,

the sometimes very rapid recognition of nanoformulations by the

immune system. Last but not least, at the patient level, direct in

vivo targeting approaches circumvent labor-intensive immune

cell isolation, ex vivo manipulation, and re-injection into the

patient.

Nanomedicine-assisted immune cell imaging
Immunomodulatory strategies require profound knowledge of

immune cell count and composition in disease conditions. This

knowledge can be obtained by developing NP-assisted methodol-

ogies that can accurately visualize through multiscale and multi-

modal imaging techniques the presence of a specific immune cell

subset in the target tissue [53,54]. The target tissue can be the

pathological site (e.g., a tumor), as well as immunoregulating

organs (e.g., BM and spleen). NP libraries can be constructed based

on well-known manufacturing procedures, which allow for tuning

of NP accumulation in different tissues and cell types by control-

ling parameters such as composition, size, surface decoration, and

ligand density [31,55]. This engineering versatility is important

because each cancer case bears its own immunological signature

[56,57]. Given that this immunological signature can change over

time, such alternations could be assessed via multiple rounds of
Please cite this article in press as: Sofias, A.M. et al. A paradigm shift in cancer nanomedicine: fro
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NP-assisted imaging. In this regard, NPs will act as a supportive tool

to biopsies that are typically not performed multiple times. A

major application, in which this approach can be extended, is

to decipher between hot and cold tumors, a process that typically

is evaluated via biopsy and ex vivo histological analysis [58].

Therefore, such a strategy will allow improved monitoring patients

in terms of disease progression and response to therapy, and will

assist in (re)allocating patients to treatment groups. In the long

run, we foresee that the systematic visualization of NP–immune

cell engagement will benefit not only cancer applications, but

various pathologies strongly characterized by immune cell abnor-

malities.

Concluding remarks
We anticipate that immune system modulation by means of

targeted nanomedicines will have a prominent role in future

oncological interventions. Classification of patients and disease

stage based on their immunological signature [59] is already

established as an important prognostic marker for achieving good

treatment outcomes. In this regard, expanding our toolbox with

nanomedicines that selectively target certain immune cell popula-

tions can help (re)direct the immune system against tumor pro-

gression and recurrence. Shifting our experimental attention from

traditional tumor targeting toward more extensive engagement of

the immune system will open a new era in nanomedical cancer

therapy.
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