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Abstract As with many hospitals, NKI-AVL is eager to improve patient access
through intelligent capacity investments. To this end, the hospital expanded its
operating capacity from five to six operating rooms (ORs) and redesigned their
master surgical schedule (MSS) in an effort to improve utilization and decrease
hospital-wide congestion; an MSS is a cyclical schedule specifying when surgical
specialties operate. Designing an efficient MSS is a complex task, requiring
commitment and concessions on the part of competing stakeholders. There are many
restrictions which need to be adhered to, including limited specialized equipment
and physician availability. These restrictions are, for the most part, known in
advance. The relationship between the MSS and the ward, however, is not known
in advance and is plagued with uncertainties. For example, it may be known which
patient type will be admitted to the ward after surgery; however, the number of
patients changes from week to week, and it is not known with certainty how long
each patient will stay in the hospital. Inpatient wards, furthermore, are one of the
most expensive hospital resources and can be a major source of hospital congestion,
as many departments rely on inpatient wards to receive and treat their patients prior
to discharge from the hospital (e.g., the emergency department). This congestion
leads to long waiting times for patients, patients receiving the wrong level of
care, and extended lengths of stay for patients. Well-designed surgical schedules
which take into account inpatient ward resources lead to reduced cancellations and
higher and balanced utilization. We observed that peaks in the ward occupancy
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are particularly dependent on the MSS, and, as a result, ward occupancies can be
leveled through careful MSS design. Avoiding peaks and leveling ward occupancy
across weekdays makes staff scheduling easier and limits the risk of exceeding
capacity, which causes congestion and perpetuates inefficiencies throughout the
hospital. Working with NKI-AVL we developed an operations research model to
support the redesign of their MSS. The redesignedMSS improved the use of existing
ward resources, thereby allowing an additional operating room to be built without
additional investments in ward capacity. A post implementation review of bed-
use statistics validated our model’s projections. The success of the project served
as proof-of-concept for our model, which has since been applied in several other
hospitals.

1 Introduction

Driven by an aging population, public opinion, increased health expenditures, and
long waiting lists, a flood of changes in the health-care system have been set into
motion. Health care constitutes the largest industry in many developed countries
[9], and managing it is a complex task due to its importance to society and the often
politically charged atmosphere within which it exists. Furthermore, the nature of
health-care delivery does not allow the direct copying of success stories from the
manufacturing industry, where logistical optimization has a long history. Health-
care processes and supply chains show considerable differences, such as a high
degree of uncertainty, the medical autonomy of clinicians, and the fact that patients
cannot be treated as products.

As this research began in the Netherlands, we begin by discussing the state of
the Dutch health-care system. Like most countries, the Dutch health-care system
has struggled with poor quality and wasteful expenditures. This came to a head
in 2006, when the country passed a new Health Insurance Act. The Act reformed
the structure of health-care delivery with the intent of using competition to breed
efficiencies and improve value for money. To ensure that all Dutch citizens have
the same basic level of health insurance regardless of ability to pay, a number of
regulatory elements were introduced. Significant competition was created at two
different levels. Competition exists between health insurance companies, which
vie for enrollees, and also health-care providers (new and existing), which vie for
contracts with health insurance companies. Insurance companies compete mainly by
offering extended coverage packages (e.g., additional dentistry, eyewear, cosmetic
surgery, alternative medicine, etc.) at lower prices. Health-care providers compete
mainly on the remuneration amounts (paid by insurers to providers) and quality of
care (e.g., access times, treatment options) [35].

The crucial underpinning of this system is to use competitive markets and
insurance companies to increase performance and create a more cost-effective
health-care system. The extent to which this has worked can be debated; however,
the concept has been generally lauded [26]. It has been our experience that this new
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competition has applied significant pressure on health-care providers, which has,
as a result, significantly increased the use of (and demand for) operations research.
Financial reforms are just one example of the many efforts by developed nations
to eliminate poor quality and wasteful expenditures in health care. Perhaps not
surprising, given that value for money was a guiding mandate in the reforms, they
have acted as a catalyst for making operations research commonplace in many Dutch
hospitals. This has led to an enormous increase in research questions motivated by
health-care providers. Research results are influencing national health-care policies
and changing the way health care is delivered across the country. Although the
financial reforms are unique to the Netherlands, the operations research it has
motivated has broader appeal and can support improvement efforts around the
world.

In this chapter we discuss a project motivated by a Dutch hospital which has
broad applicability. The challenges and opportunities related to surgical scheduling
are discussed below, but for now it is sufficient to say that it is a topic of significant
academic study (see reviews [5] from 1997 and [8] from 2009) and is a challenge
faced by health-care providers in many parts of the world. There has been limited
reported success in terms of implementation and impact on health-care operations
[8], and hence there is a need to develop solutions which can be readily applied and
generalized for applicability in various hospital settings.

The reported research project evolved from an operations research model to an
application at the Netherlands Cancer Institute-Antoni van Leeuwenhoek (NKI-
AVL) to a standard practice. The structure of the chapter reflects this. The formal
model is discussed in Sect. 2, immediately following the problem description
(Sect. 1.1). The application is discussed in Sect. 3 and includes the post imple-
mentation analysis (Sect. 3.1.1) used to validate the model. Finally Sect. 3.2
provides concluding remarks and briefly discusses applications of the model at
other hospitals. Much of this research has been reported before in [14, 30, 32–34].
Accordingly, the intent of this chapter is to summarize this research with a specific
focus on how it has impacted NKI-AVL and generally how it has impacted other
hospitals.

1.1 Problem Description

No other single hospital department influences the workload of the hospital more
than the Department of Surgery, in particular the activities in the operating room
(OR) [20]. As such, its activities (or lack thereof) cause a ripple effect throughout
the hospital. Upstream processes are less sensitive to changes, as there is often a
waiting list for surgical operations which acts as a buffer, dampening the effect. For
downstream processes, this is different as a buffer of post-surgery patients waiting to
be admitted to a ward cannot exist. Since post-surgical activities are sensitive to the
activities in the OR, it is important to derive one in terms of the other. As described
in this section, the workload for downstream departments can be modelled as a
function of the master surgical schedule (MSS).
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For a hospital, the OR accounts for more than 40% of its revenues and a similarly
large portion of its costs [14]. An efficient OR thus significantly contributes to an
efficient health-care delivery system as a whole. The planning and scheduling of
OR time is discussed by many authors [2, 5, 6, 8, 17, 36] and is often described as a
multiple stage process.

The multiple stage process used by many hospitals starts with the long-term
allocation of OR time to surgical specialties, e.g., the number of surgery hours
per year. This allocation, referred to as Stage 1, is a strategic decision that reflects
patient demand patterns and the priorities defined by hospital management. From
this strategic decision, an MSS is developed for a shorter time horizon which divides
OR time (aggregated into blocks) among the specialties, known as Stage 2. The
specific assignment of patients to OR blocks within the MSS is commonly referred
to as Stage 3. A fourth stage “addresses the monitoring and control of the OR
activities” [23] on the day of surgery. In this chapter, we focus on the development
of an MSS in Stage 2.

The MSS is often specialty specific [2], meaning OR time is dedicated to a
surgical specialty. In these MSSs, the decision of which patients (and consequently
which surgeries) to schedule within each OR block is determined by the surgical
specialty through consultation with the OR manager. Other MSSs are more specific
with OR blocks being allotted to specific surgical procedures [18, 24]. Instead of
using the term MSS, other authors refer to the distribution of OR time among
surgical specialties as a surgical block schedule [25] and a timetable of operations
[16].

The development of an MSS is often a complex balancing act. Since the OR
is one of the hospital’s most expensive resources, hospitals wish to maximize
its performance through high resource utilization, minimal overtime, minimal
cancellations, and the elimination of conflicting equipment needs between rooms.
Many authors describe methods for developing the MSS that take into account
various resources within the OR such as staff, equipment, and instrument trays.
For a review see [8]. Furthermore, the OR is often described as the engine that
drives the hospital [20], implying many other departments are impacted by the MSS.
The effect of the MSS on ward occupancy [1–4, 10, 11, 16, 18, 19, 24, 28, 29, 31],
critical care resources [3, 10, 12, 18, 22, 24], and waiting lists [25, 31] has notably
been studied. Three of these papers represent the relationship with deterministic
models, while the remaining consider at least one variable as stochastic. The
stochastic models are either simulation models, mathematical programming models,
or queueing theory models.

The analytical model presented in this chapter most closely resembles a queueing
model. The model quantifies the effect of an MSS on admission/discharge rates,
ward occupancy rates, and the workload of all departments treating inpatients. The
robustness of this model and, as illustrated later, its ease of implementation are the
main contributions of the model to surgical scheduling literature.

Using our model, downstream workload distributions can be computed as a
function of the MSS for all departments that provide care for recovering surgical
patients. Specifically, the model computes the ward occupancy distributions, the



Implementing Algorithms to Reduce Ward Occupancy Fluctuation Through. . . 133

patient admission/discharge distributions, and the distributions for the ongoing
interventions/treatments required by recovering patients. Furthermore, the cumu-
lative influence of multiple MSS cycles is considered. Since the MSS is identical
from cycle to cycle, the overlapping of patients from one cycle to the next can be
anticipated. A single MSS design is expected to remain in place for a long period of
time leading to “steady-state” workload distributions for each day of the MSS cycle.

2 Methodology

This section describes a model to determine the workload placed on hospital
departments by recovering surgical patients. In the same way an MSS describes
resource demands within the OR, we show how the resources of other departments
can be seen as a function of the MSS. The method relies only on data which are
easily extractable from typical patient management systems.

The model is most easily described from a queueing theory perspective. The
basic component of the model is a single OR block and its expected impact on the
arrival rate to the hospital wards. The number of cases scheduled in such a block
varies per specialty and is modelled as a specialty-specific random variable. This
variable also represents the number of patients arriving to the ward (batch size). At
the ward, each patient directly occupies a bed for a certain period of time. In the
queueing model, the ward is seen as an infinite server system in which the patients
occupy a server (ward bed) without delay. The time spent occupying a bed (length
of stay, LOS) is the service time, which is modelled as a random variable. Again,
this random variable is specific to the surgical specialty. Since patients occupying a
server do not interfere with each other during their recovery, the aggregate number
of patients for all OR blocks can be computed by adding the individual effects of
all OR blocks. Finally, since the MSS is cyclical, the cumulative number of patients
from recurring MSS cycles can be computed.

The main output of the model is the distribution for the number of patients antic-
ipated in the system on each day of the MSS. The model used for these calculations
is explained in the following subsection. The three subsequent subsections explain
how the model can be modified to obtain the distributions for (1) ward occupancies,
(2) admissions/discharges, and (3) the number of patients in a specific day of their
recovery. The time scale in the model is days; therefore, all metrics are considered
on a daily basis.

2.1 Model Inputs

An MSS represents a repetitive pattern over a certain number of days (say Q).
For each day q ∈ {1, 2, . . . , Q} in the MSS, each of the I available ORs can be
assigned to one of the available surgical specialties. More precisely, the MSS is
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described by the assignment of a surgical specialty j to each OR block bi,q where
i ∈ {1, 2, . . . , I }. Using this notation, an empty MSS (i.e., before specialties have
been assigned to OR blocks) is shown in Fig. 1 where each cell represents an OR
block. It is possible for multiple blocks to be assigned to a single specialty on the
same day.

The way specialty j fills in an OR block is described by two parameters, cj and
d

j
n . Parameter cj is a discrete distribution for the number of surgeries carried out
in one block, i.e., P(cj = k) is the probability of k surgeries, k ∈ {0, 1, . . . , Cj },
where Cj is the maximum number of surgeries of specialty j that can be completed
in one block. Specialties independently decide which patients to schedule during
each block, meaning that the number of surgeries completed in one block does not
influence the number of surgeries completed in another. The second parameter d

j
n is

the probability that a patient, who is still in the ward on day n, is to be discharged
that day (n ∈ {0, 1, . . . , Lj }, where Lj is the maximum LOS for specialty j ; a finite
LOS is used for numerical purposes). Note that dj

0 is the probability that the patient
is discharged on the same day as surgery (i.e., an outpatient surgery or day-case
surgery) and d

j

Lj = 1. The parameter d
j
n is computed by dividing the probability

that a patient’s total stay is exactly n days by the probability that the patient was not
yet discharged before day n. Let P j (n) be the probability that the LOS of a patient
from specialty j is exactly n days long; then formally d

j
n is computed as follows:

d
j
n = P j (n)

Lj∑

k=n

P j (k)

. (1)
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Fig. 1 Empty MSS illustrating model notation
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2.2 Recovering Patients in the Hospital

Using cj and d
j
n as model inputs, for a given MSS, the probability distribution for

the number of recovering patients on each day q is computed in three steps. Step
1 computes the distribution of recovering patients from a single OR block of a
specialty j , i.e., we essentially pre-calculate the distribution of recovering patients
expected from an OR block of a specialty. In Step 2, we consider a given MSS and
use the result from Step 1 to compute the distribution of recovering patients given
a single cycle of the MSS. Finally, in Step 3, we incorporate recurring MSSs and
compute the probability distribution of recovering patients on each day of the MSS.

Step 1: Distribution of recovering patients from specialty j following from a single
OR block In Step 1 we ignore the MSS and consider a single specialty j operating
in a single OR block. The patient flow process is as follows: During the OR block
patients receive surgery. The number of patients who undergo surgery in one OR
block is given by the random variable cj . After surgery each patient still on the ward
on day n has the probability d

j
n of being discharged that day. In the following, we

compute the probability P(h
j
n = x) that n days after scheduling a block of specialty

j , x patients of the block are still in recovery. Note that n ∈ {0, 1, ..., Lj } and
x ∈ {0, 1, ..., Cj } and that, for example, P(h

j

3 = 5) = 0.25 means that 3 days after
surgery, there is a 25% chance that five patients are still recovering in the hospital.

Day n = 0 is defined as the day of surgery, and it is assumed that patients occupy
a bed all day on the day of surgery even though they may physically be in the OR.
This is consistent with practice where patients have a recovery bed reserved for them
before surgery. As such, the number of patients in recovery from specialty j on day
n = 0 is by definition the number of surgeries performed that day by specialty j . It
follows that the distribution for the number of recovering patients on day n = 0 is
h

j

0 = cj .

Note that on day n, each patient still in the hospital has a probability d
j
n of being

discharged that day and (1 − d
j
n ) of staying. If there are k patients in recovery on

day n, then the probability of s patients in recovery (where s ≤ k) on day n + 1 is
computed using the binomial distribution,

(
k
s

)
(d

j
n )k−s(1 − d

j
n )s . Since we know the

probability distribution for the number of patients at the end of day n = 0, we can
iteratively use this formula to compute the probability of k patients at the end of all
days n > 0. Summarizing, the distribution for the number of recovering patients on
day n is recursively computed by

P(h
j
n = x) =

⎧
⎪⎪⎨

⎪⎪⎩

P(cj = x) when n = 0
Cj∑

k=x

(
k

x

)
(d

j

n−1)
k−x(1 − d

j

n−1)
x
P(h

j

n−1 = k) otherwise.
(2)
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Step 2: Aggregate distribution of recovering patients following from a single MSS
cycle In this step we consider the previously computed probability distribution h

j
n

and a given MSS as input. Although the MSS is cyclical and repeats after Q days, in
this subsection, we consider only a single MSS cycle in isolation. The MSS defines
when each specialty is assigned an OR block and thus the days on which patients
of specialty j arrive to the ward. Based on these, we compute the total number of
patients in recovery by means of discrete convolutions.

To calculate the overall distribution of recovering patients, we first identify for
each block bi,q the impact that this block has on the number of recovering patients
in the hospital on days (q, q +1, ...). If z denotes the specialty assigned to block bi,q

which follows from the MSS, then the distribution h̄
i,q
m for the number of recovering

patients of block bi,q on day m (m ∈ {1, 2, ...,Q,Q + 1,Q + 2, . . .}) is given by

h̄
i,q
m =

{
hz

m−q if q ≤ m < Lz + q,

0 otherwise
(3)

where 0 means P(h̄
i,q
m > 0) = 0. Note that specialties index j is no longer needed

as specialties are accounted for by their designated OR block(s).
Let Hm be a discrete distribution for the total number of recovering patients on

day m resulting from a single MSS cycle. Since recovering patients do not interfere
with each other, we can simply iteratively add the distributions of all the blocks
impacting day m to get Hm. Adding two independent discrete distributions is done
by discrete convolutions which we indicate by ∗. Let A and B be two independent
discrete distributions. Then C = A ∗ B is computed by

P(C = x) =
τ∑

k=0

P(A = k)P(B = x − k)

where τ is equal to the largest x value with a positive probability that can result
from A ∗ B. Using this notation, Hm is computed by

Hm = h̄1,1m ∗ h̄1,2m ∗ . . . ∗ h̄1,Qm ∗ h̄2,1m ∗ . . . ∗ h̄I,Q
m . (4)

Step 3: Steady-state distribution of recovering patients In Step 3 we consider a
series of MSSs to compute the steady-state probability distribution of recovering
patients. The cyclic structure of the MSS implies that patients receiving surgery
during one cycle may overlap with patients from the next cycle. In the case of a
small Q, for example, patients from many different cycles can overlap.

In Step 2 we have computed Hm for a single cycle of the MSS in isolation.
Let M be the last day where there is still a positive probability that a recovering
patient is present as computed by Hm. Thus M = maxj {Lj + xj } (where xj is the
latest day q of a block assigned to specialty j ) indicates the range of the MSS. To
calculate the overall distribution of recovering patients when the MSS is repeatedly
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q= 1,2,… Q,Q+1,… M

q= 1,2,… Q,Q+1,… M

q= 1,2,… Q,Q+1,… M

q= 1,2,… Q,Q+1,… M

Overlapping MSS Ranges

Fig. 2 Consecutive MSS cycles illustrating overlapping recovering patients

executed, we must take into account �M/Q� consecutive cycles of the MSS (see
Fig. 2). Let HSS

q denote the probability distribution of recovering patients on day q

of the MSS cycle, resulting from �M/Q� consecutive MSS cycles. Since the MSS
does not change from cycle to cycle, HSS

q is the same for all MSS cycles. Using
discrete convolutions, HSS

q is computed by

HSS
q = Hq ∗ Hq+Q ∗ Hq+2Q ∗ ... ∗ Hq+�M/Q�Q. (5)

The relationship between the distribution HSS
q and the workload associated with

recovering patients is discussed in detail in the following three subsections.

2.3 Ward Occupancy

Perhaps the most common measure of inpatient workload is ward occupancy.
Ward occupancy, the distribution of the number of inpatients on a ward, follows
easily from the basic model where we compute the distribution of all recovering
patients. In practice patients tend to be segregated into different wards depending
on the type of surgery they receive. To incorporate this segregation into the model
and to consequently have recovering patient distributions for each ward, a minor
modification needs to be made to the model. Let Wk be the set of specialties j

whose patients are admitted to Ward k. Then in Step 2 we only have to consider
those OR blocks assigned to a specialty in Wk .

2.4 Admission Rate/Discharge Rate

Bed occupancy alone does not fully account for the workload associated with caring
for recovering patients. During patient admissions and discharges, the nursing
workload can increase. As such, in this subsection, we explain how to derive the
probability distribution for daily admissions and discharges.
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The admission rate is the rate of arriving patients which we previously defined
as the number of surgeries completed on day n = 0. For this metric we are only
interested in a patient on the day of admission and wish to ignore them afterward.
To modify the model to reflect this new purpose replace (3) with

h
j
n =

{
cj when n = 0
0 otherwise.

(6)

With this modification, the resulting Hm represents the distribution for daily
admission for each day q of the MSS. To have ward-specific results, we again can
restrict this to blocks belonging to specialties of the specific ward.

The discharge rate is the rate at which patients leave the ward and can be
computed by adding an additional calculation in Step 1. The number of patients in
recovery on day n is distributed according to h

j
n; see (3). On day n, each patient has

the probability d
j
n of being discharged and the probability (1 − d

j
n ) of staying. Let

D
j
n be a discrete distribution for the number of discharges from specialty j on day

n. Given h
j
n and d

j
n , D

j
n can be computed with a binomial distribution as follows:

P(D
j
n = x) =

Cj∑

k=x

(
k

x

)
(d

j
n )x(1 − d

j
n )k−x

P(h
j
n = k). (7)

Finally, after computing D
j
n , one can set h

j
n = D

j
n and continue with Step 2. By

doing so, the resulting HSS
q represents the distribution for daily discharges for each

day q of the MSS. As with admissions, ward-specific results can also be obtained.

2.5 Patients in Day n of Their Recovery

The final workload metric we consider is the distribution of patients in day n of their
recovery. This is relevant for predicting workload for the many hospital departments
who treat recovering patients. For example, a patient recovering from hip surgery
may need to see a physiotherapist every other day during their recovery. This metric
states the frequency of such visits. The analogy holds true for all types of services
that take place on specific intervals during a patient’s recovery (e.g., chemotherapy,
diagnostics, social work, discharge planning). In particular, this metric can help
dimension capacity for clinical pathways patients whose recovery is intended to
follow a strict regime.

The metric requires substantial modifications to the original model, since we
now must carry an index (n) for the “day of recovery” throughout the three steps.
Let h̄i,q

m,n be a discrete distribution for the number of recovering patients from block

bi,q on day m in day n of their recovery. To compute h̄
i,q
m,n, replace (3) with the

following:
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Table 1 Example results for the frequency of inpatient chemotherapy treatments

Example results Interpretation

P(HSS
1,3 = 2) = 0.3 n = 3, q = 1 30% probability that exactly two treatments are required

on the first day of the MSS cycle

P(HSS
1,3 = 3) = 0.5 n = 3, q = 1 50% probability that exactly three treatments are

required on the first day of the MSS cycle

P(HSS
1,3 = 4) = 0.2 n = 3, q = 1 20% probability that exactly four treatments are required

on the first day of the MSS cycle

P(HSS
2,3 = 2) = 0.4 n = 3, q = 2 40% probability that exactly two treatments are required

on the second day of the MSS cycle

P(HSS
2,3 = 3) = 0.4 n = 3, q = 2 40% probability that exactly three treatments are

required on the second day of the MSS cycle

P(HSS
2,3 = 4) = 0.2 n = 3, q = 2 20% probability that exactly four treatments are required

on the second day of the MSS cycle

h̄
i,q
m,n =

{
0 if m − q �= n

hz
m−q otherwise,

(8)

and we replace (4) with the following:

Hm,n = h̄1,1m,n ∗ h̄1,2m,n ∗ ... ∗ h̄1,Qm,n ∗ h̄2,1m,n ∗ ... ∗ h̄I,Q
m,n (9)

where Hm,n now denotes the number of patients from a single MSS on day m in day
n of their recovery.

This alteration to the model eliminates the need for convolutions in Step 3. Since
patients are indexed by their recovery day, patients from one MSS cycle are not
aggregated with patients from the next. As such we need to replace (5) with

HSS
q,n = Hq+Q�n/(Q+1)	,n. (10)

To help to interpret this metric, consider the following fictitious example for
patients who require chemotherapy treatment on day three of their recovery. The
Chemotherapy Department would like to know how frequently they need to provide
this service. Example results for HSS

q,n are illustrated in Table 1.

2.6 Assumptions

Inherent to the model are a number of assumptions which are discussed in this
subsection. One assumption resulting from the use of the infinite server system is
that there is always a bed available for a patient after surgery. This implies that
surgeries are never cancelled due to bed shortages. In practice this means that there is
not a physical bed restriction and that additional staff can be called in when demand
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is higher than expected. The frequency of this occurring follows from the model. For
example, if a hospital staffs 50 beds, then the probability of an additional staffed bed
being needed on day q is P(HSS

q = 51).
In the current formulation, the model ignores seasonality. Of course, at certain

times of the year, surgical blocks are cancelled to accommodate vacations and
slowdowns, representing a change in supply. In this case, a modified MSS is
temporarily used in breaking down the assumption that the same MSS repeats
every Q days. However, given that the modifications to the MSS are typically
cancellations of certain OR blocks, then the original result can act as an upper
bound.

Only elective surgeries are considered. To incorporate non-elective surgeries, it is
possible to convolute a historic bed occupancy distribution for non-elective patients.
Alternatively, it is possible to incorporate a virtual OR block into the model that
represents emergency admissions.

The inherent assumption of using the binomial distribution in this model is that
all patients (experiments) have equal probability of each outcome and that the
outcome is independent of other patients, i.e., it is assumed that the patients are
independent and identically distributed. The independence assumption is natural as
it implies that the amount of time one patient is in the hospital does not influence
the amount of time another patient is in the hospital. The identically distributed
requirement means that we must compute the number of beds needed tomorrow
(and the number of case completed in one OR block), for all identically distributed
cohorts of patients separately. In other words, the parameters of the binomial
distribution must reflect all of the patients in a given cohort (for a discussion on
defining statistically equivalent patient cohorts, see [15]). In our model we aggregate
patient such that each surgical specialty is a patient cohort. It follows then that
patients within each surgical specialty should be identically distributed.

If a heterogeneous population is grouped together, this causes the ward census
distribution to have longer tails (although the mean remains the same) and will
overestimate the bed requirements when staffing for a certain percentile of demand.
On the other hand, however, less aggregation (such as dividing a specialty by
short- and long-stay patients) decreases the sample size from which to derive
the parameters which in turn reduces the statistical confidence of the estimated
parameters. In our case study that follows, we aggregate the data by specialty which
allows for enough data to have a sufficient sample size and results in relatively
homogeneous patient cohorts.

In cases where patients of a surgical specialty are not identically distributed and
cannot be aggregated into a single cohort, the model can still be used. First the
heterogeneous specialty has to be divided into multiple homogeneous cohorts, and
then these cohorts can be treated as if they were assigned their own OR block.
Using this, the binomial distribution is applied as described above to determine
the bed requirements of each cohort. Again, using the independence assumptions,
these cohorts can be added (with discrete convolutions) to determine the total bed
requirements for the complete surgical specialty.
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3 Application

The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AVL) is
a comprehensive cancer center, which provides hospital care and research and is
located in Amsterdam, The Netherlands. The hospital has 150 inpatient beds and
sees about 24,000 new patients every year, making it approximately the size of a
mid-sized general hospital. As with many Dutch hospitals, NKI-AVL is eager to
improve access and increase capacity. To this end, the hospital has expanded its
operating capacity from five to six operating rooms (ORs). The hospital welcomed
this expansion as an opportunity to develop a new MSS.

NKI-AVL distributes its surgical capacity to its six surgical specialties in the
typical manner described previously. The yearly amount of operating time is
first allotted to each specialty reflecting patient demand and hospital priorities.
To implement this allotment, and to make the surgical department manageable,
NKI-AVL divides OR time into OR blocks over a 1-week planning horizon. One
OR block represents a full day of operating room time. The assignment of the
surgical specialties to each OR block represents the MSS. An example MSS for
five operating rooms is shown in Fig. 3.

As previously discussed, the use of operations research in surgical scheduling is
not new; however, the rate of implementation for this type of study is low [8]. To
overcome this, Cardoen et al. [8] “encourage the provision of additional information
on the behavioral factors that coincide with the actual implementation. Identifying
the causes of failure or the reasons that lead to success, may be of great value to the
research community.” In this section we describe the process of developing a new
MSS for NKI-AVL and results observed after its implementation. The development
process, which combined an operational research model and staff input, led to an
MSS which was agreeable to staff from both the wards and the OR. Staff selected
and implemented an MSS which the model predicted would result in a balanced
ward occupancy.

The development of the new MSS was completed over 3 months in an itera-
tive manner. A team was formed consisting of a team leader from the surgical
department, a team leader from the inpatient wards, the manager of both groups,
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Fig. 3 Sample MSS for five operating rooms
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and two of this chapter’s authors. The team members from the surgical department
ensuredMSS proposals did not cause conflicts within the OR, such as with physician
schedules and available equipment. The projected impact that each MSS proposal
would have on the wards was evaluated with the model described previously. Each
new MSS proposal represented a new scenario to be evaluated by the model. From
the model output, staff decided whether the MSS was acceptable or if further
modifications to the MSS were necessary.

The original MSS was roughly developed as follows. Based on production
targets, the number of OR blocks to be assigned to each specialty during the 1-
week MSS cycle was determined. Next, the physicians’ commitments elsewhere in
the hospital were determined, and their preferred operating days were considered.
Potential equipment and resources conflicts were addressed, for example, it would
be problematic to assign two specialties to the same operating day when both
routinely require the same specialized OR. Considering these restrictions, OR staff
proposed the original MSS.

To determine how the original MSS impacted the wards, the model was used. As
illustrated in the “Results” section, the original MSS results in an unbalanced ward
occupancy (the motivation for this metric is also provided in the “Results” section).
As such, the team decided the original MSS was not acceptable.

Next, modifications to the original MSSwere made, and a newMSS proposal was
put forth. Given that in this project we were not asking surgical specialties to change
how they operate (i.e., the number of surgeries they perform in an OR block and/or
the invasiveness of their surgeries which can dictate length of stay), modifications
to the MSS were limited to changes in the assignment of surgery specialties to OR
blocks. Essentially, modifications consisted of swapping a specialty operating on
one day with a specialty operating on a different day. Deciding which blocks to swap
followed, first, from OR staff knowledge of what was possible within the constraints
of the OR and, second, by intuition gained from seeing results from several MSS
proposals. See Fig. 4 for an illustration of the type of modifications made.

A number of MSSs were proposed, and the impact that each would have on the
ward was evaluated by the model. This process of modifying and evaluating MSSs
continued for several weeks until an MSS was found that satisfied staff from both
the OR and the wards. A schematic overview for this process is displayed in Fig. 5.

The MSS chosen by the team was implemented concurrently with the opening of
the new OR in March of 2009. The new OR was phased in over several months, and
once it became fully utilized, ward occupancy statistics were collected. The data,
observed over a 33-week period when all six ORs were being regularly scheduled,
was compared with what was projected from the model. The purpose, to ensure a
more balanced ward occupancy, was indeed being achieved with the implemented
MSS. In this way we could validate the model output and confirm the implemented
MSS is resulting in the desired ward occupancy.
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3.1 Results

This section is dived into two subsections. The first subsection discusses ward
occupancy projected by the model during the MSS development process. We show
ward occupancy projections from the original MSS proposal and from the MSS
proposal that staff chose to implement (which we refer to as the implemented
MSS). In the second subsection, we compare the ward occupancy projected by the
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Fig. 6 90th percentile of demand projected by the model for each day of the MSS cycle (original
MSS proposal)

model for the implemented MSS with the ward occupancy observed after it was
implemented.

3.1.1 Projected Results

NKI-AVL has two wards for treating surgical patients, Ward A and Ward B, with a
combined physical capacity of 100 beds. Management strives to staff enough beds
such that for 90% of the days, there is sufficient coverage. In other words, they
staff for the 90th percentile of demand; their accepted risk for needing to call in
additional staff is thus 10%. Figure 6 illustrates the 90th percentile demand for
staffed beds on each of the wards, resulting from the original MSS proposal. As
is clear from the figure, the staffing requirements are relatively balanced across the
weekdays (Monday to Friday) for Ward B. This is not the case for Ward A. OnWard
A the occupancy is relatively low on Monday and Tuesday and relatively high on
Thursday, Friday, and Saturday.

This projected demand for staffed beds concerned the ward manager, as such an
unbalanced demand profile makes staff scheduling, and ward operations, difficult.
Early in the week, beds would be underutilized, whereas later in the week, beds
would become highly utilized leading to significant problems, particularly as the
wards approach peak capacity. For example, when inpatient wards reach their peak
capacity and a patient admission is pending, staff often scramble to try and make a
bed available. If one cannot be made available, additional staff are called in (or in
rare cases, when additional staff cannot be found, the elective surgery is cancelled),
which causes extra work for OR planners, wasted time for surgeons, and anxiety
for patients. When a bed is made available, it often means a patient was transferred
from one ward to another (often to a ward capable of caring for the patient but
not the preferred one) or discharged. Either way, extra work is required by ward
staff, and there is a disruption in patient care. Although completely eliminating such
problems is not possible without an exorbitant amount of resources, sound planning
ahead of time may help to minimize occurrences.

After discussing the model output, all participating staff agreed that the original
MSS, although appropriate for the OR, was not ideal for the wards. The discussion
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Fig. 7 90th percentile of demand projected by the model for each day of the MSS cycle
(implemented MSS)

then moved to how to correct the imbalance across the weekdays by changing the
assignment of OR blocks to specialties. Modifications to the original MSS were
made by considering what changes were possible within the restrictions of the OR
(e.g., physician schedules and equipment availability).

Eventually, after considering several MSS proposals, the process led to an
MSS (the implemented MSS) which was acceptable to all staff members. The
implemented MSS fit within the restrictions of the OR and, as illustrated in Fig. 7,
resulted in a more balanced ward occupancy. Comparing the implemented MSS
with the original MSS, the implemented MSS dampened the fluctuation on Ward
A by lowering occupancy on Thursday, Friday, and Saturday and increasing it on
Monday and Tuesday. With the implemented MSS, the model predicted that no
days would require more than 47 staffed beds, which reduced the maximum from
49 (predicted for the original MSS). Furthermore, the implemented MSS ensured
the staffing requirements remained relatively balanced across the working days for
both wards.

3.1.2 Observed Results

The ward occupancy was observed over a 33-week period after the new OR was
fully operational. From these data, probability distributions of beds used for each
day of the MSS cycle were derived. Using chi-square goodness-of-fit tests [21],
these observed distributions were compared to those projected by the model. For
Ward B, six of the seven distributions (one for each day of the MSS cycle) were
found to be statistically equivalent at a level α = 0.05, while the seventh day was
statistically equivalent at a level α = 0.2. For Ward A, the tests revealed statistical
equivalence at levels α = 0.15 (for three days), 0.25 (for two days), and 0.35 (for
two days). At these alpha levels, we conclude that the observed ward occupancy
is well predicted by the model. Explanations for the poorer fit of Ward A data are
discussed in the following paragraphs where the 90th percentiles (desired staffing
level) are compared for the observed and projected results.
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Figures 8 and 9 compare the projected ward occupancy with the observed ward
occupancy during the 33-week period. Figure 8 displays results for Ward A and
Fig. 9 for Ward B.

As is observable in Figs. 8 and 9, the data indicates that both wards have balanced
ward occupancies across the week days. However, it is also observable that our
model overestimated the number of beds required in Ward A by approximately
16%. The overestimate is due to an unexpected increase in short-stay patients during
the period of measurement. Had this change in patient mix been expected at the
time the projections were made (and model input altered to reflect it), such an
overestimate would likely not have been observed, and we would expect to have
similarly accurate results as those for Ward B.

As a final note on the model results, consider if hospital management decided to
staff only for the average number of beds projected to be needed for six ORs. In this
case, 32 beds would be assigned to Ward A and 29 beds to Ward B. This would have
led to a bed shortage on 51% of the days, illustrating the importance of considering
probability distributions in hospital planning.

3.2 Discussion

With the approach discussed in this section, a new MSS was developed for NKI-
AVL which reduced the fluctuations in the daily ward census, creating a more
balanced workload on the wards. The roll out of the new MSS corresponded with
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the opening of an additional OR which was expected to overwhelm the wards. By
using the described process to develop an MSS that accounted for the inpatient
wards, peaks in ward occupancy were reduced. As such capacity is used more
efficiently, and the hospital has the means to support the additional OR without a
major expansion in the wards.

The main benefit of the model was the ability to quantify the concerns of ward
staff, thereby providing a platform which they could begin to negotiate a solution.
Staff was quick to embrace the model output, particularly after seeing several
modifications to the original MSS, at which point they were able to roughly predict
the model output intuitively. For example, on Thursdays and Fridays, the wards
tended to be crowded with patients. To remedy this, specialties that completed
many cases per OR block were removed from Thursday and Friday OR blocks
and assigned to OR blocks earlier in the week. To accommodate these changes,
specialties which complete a relatively small number of cases per OR block were
moved to Thursday and Friday. Once staff could foresee the impact of swapping
one surgical OR block assignment with another, the MSS which was eventually
implemented came quickly.

In the NKI-AVL application, we treated the equipment and physician schedule
restrictions as unchangeable. It is possible that further improvements in the ward
occupancy could have been achieved if these restrictions were relaxed. In this way
the model can be used to illustrate the benefits of buying an extra piece of equipment
or of changing physicians’ schedules. An additional restriction, which if relaxed
may have allowed further improvements, is the assignment of wards to surgical
specialties. In other words, in addition to changing when a specialty operates, it
may prove advantageous to change which ward the patients are admitted to after
surgery.

At NKI-AVL, our model was used to solve the tactical surgical scheduling
problem – a medium-term planning horizon with patients aggregated by surgical
specialty. Alternatively, the same model can support decisions at an operational
level – a shorter-term planning horizon without patient aggregation (for a discussion
on levels of planning and control in health care, see [13]). Instead of computing the
expected patients in recovery, the actual patients in recovery can be used as input.
By combining this with the expected new arrivals from the OR, real-time workload
projections can be used to identify upcoming staffing needs.

4 Conclusion

Many good research projects conclude after the implementation of results with team
members satisfied that anticipated improvements have been realized. This project, in
some ways, merely began at this point. Variants of this model have been developed
(and applied) at the request of three other Dutch hospitals, and the model forms the
basis of a similar application at a German hospital. Below we discuss these other
applications of our model.
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Leiden University Medical Center (LUMC), the Netherlands LUMC is one of eight
University Medical Centers in the Netherlands and employs approximately 7000
professionals. Highly variable ward occupancy was proving problematic for staffing
the inpatient wards at LUMC. Utilizing our model, staff proposed and evaluated a
number of MSS proposals in order to reduce occupancy fluctuations. They found
that with very little disruption to the current MSS (only four swaps of OR blocks),
the maximum bed occupancy would reduce from 74 to 71. Additional reductions in
the maximum bed occupancy were found only to be possible when additional OR
time was made available [27].

Haga Hospital, The Hague, the Netherlands Haga Hospital is a top clinical
teaching hospital in the Netherlands with 245 specialists, 729 beds, and 35,571
admissions in 2010. At Haga Hospital, management wanted to develop a new
structured scheduling procedure in order to increase OR utilization and balance
ward occupancy. To achieve this, the scheduling procedure was redesigned, and
a formal process was put into practice supported by a decision support system. To
model stochastic length of stays and to integrate bed leveling into this software, the
model described in this chapter was used [7].

Technical University of Munich, Germany To make the model appropriate for a
German hospital, modifications were made in collaboration with researchers at
the Technical University of Munich. The first modification involved increasing
the scope to include the Intensive Care Unit (ICU), a unit in which most acute
surgical patients are admitted to receive one-on-one nursing care. This modification
essentially amounted to changing the model from a single queue to a network of two
queues, one for the ICU and one for the Ward. The second modification involves
developing heuristics for determining good MSS proposals. A number of objectives
are considered, including minimizing costs and determining the best improvement
with the smallest change (disruption) of the existing MSS.

The buy-in of other hospitals and the dissemination of our approach can be
credited to the way in which the model was incorporated into the decision-making
process and does not replace it. Supporting and not replacing the process allows for
a less complex model and more staff engagement. This approach to problem-solving
proved crucial for implementation and for making a meaningful impact.
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