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Abstract
Cardiac modeling entails the epistemic uncertainty of the input parameters, such as bundles and chambers geometry, electrical
conductivities and cell parameters, thus calling for an uncertainty quantification (UQ) analysis. Since the cardiac activation and
the subsequent muscular contraction is provided by a complex electrophysiology system made of interconnected conductive
media, we focus here on the fast conductivity structures of the atria (internodal pathways) with the aim of identifying which
of the uncertain inputs mostly influence the propagation of the depolarization front. Firstly, the distributions of the input
parameters are calibrated using data available from the literature taking into account gender differences. The output quantities
of interest (QoIs) of medical relevance are defined and a set of metamodels (one for each QoI) is then trained according
to a polynomial chaos expansion (PCE) in order to run a global sensitivity analysis with non-linear variance-based Sobol’
indices with confidence intervals evaluated through the bootstrap method. The most sensitive parameters on each QoI are then
identified for both genders showing the same order of importance of the model inputs on the electrical activation. Lastly, the
probability distributions of the QoIs are obtained through a forward sensitivity analysis using the same trained metamodels. It
results that several input parameters—including the position of the internodal pathways and the electrical impulse applied at
the sinoatrial node—have a little influence on the QoIs studied. Vice-versa the electrical activation of the atrial fast conduction
system is sensitive on the bundles geometry and electrical conductivities that need to be carefully measured or calibrated in
order for the electrophysiology model to be accurate and predictive.

Keywords Uncertainty quantification · Global sensitivity analysis · Forward analysis · Atrial modelling · Electrophysiology ·
Monodomain model

1 Introduction

At each heartbeat the synchronized contraction of the cardiac
chambers is originated by the timely electrical activation of
the myocytes that are integrated in a sophisticated and robust
electrical network. As sketched in Fig. 1a, the local myocytes
depolarization starts from the sinoatrial node (SA-node here-
after), which is located in the right atrium at the junction
of the crista terminalis close to the entrance of the supe-
rior vena cava, and then propagates across the atria. When
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a myocyte is reached by the electrical propagation front, the
local transmembrane potential rapidly changes from the neg-
ative potential (of about−85mV) to a positive value (of about
20mV) before returning to the resting negative potential after
about 300 ms, see Fig. 1b. The propagation of the electrical
depolarization front is affected by the strong heterogeneity
of the cardiac tissue, with an average conduction velocity of
about 0.3–0.5 m/s in the atrial fibers that reaches 1.5–2m/s in
specialized high conductivity structures, the so-called intern-
odal pathways [1,2]. These (i) anterior internodal, (ii) middle
(Wenckbach) and (iii) posterior (Thorel) bundles connect the
SA-node to the left atrium (through the Bachmann’s bundle)
and to the atrioventricular node (AV-node hereafter), thus
ensuring a rapid and smooth conduction across the whole
heart. The AV-node connects the atrial to the ventricular
electrical network and is made by specialized cardiac cells
designed to slow down the electrical propagation by an AV-
delay of about 90 ms [1], which plays a crucial role for the
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Fig. 1 a Sketch of the electrical network of the heart adapted from Ref. [1], with highlighted the atrial components. b Sketch of a typical
depolarization/polarization cycle (action potential) of an atrial myocyte [1]

cardiac dynamics as it ensures a timely atrial contraction
before the ventricular one. The AV-node is thus the electri-
cal connection between the atrial and the ventricular bundle
network: the propagation front travelling across the AV-node
to the bundle of His further propagates through the Purkinje
network at a higher conduction speed of about 4 m/s [1],
thus allowing for an almost simultaneous activation of the
ventricular muscle.

The state-of-the-art model for simulate and study the elec-
trical activation within the heart chambers in healthy and
pathological conditions is the bidomain model [3,4], which
is called in this way because the conductive myocardium is
modeled as an intracellular and an extracellular overlapping
continuum media separated by the myocytes membranes
[5]. The resulting system of reaction–diffusion partial dif-
ferential equations governs the electrical propagation across
the myocytes and is coupled with the cellular ionic model
(given by a set of ordinary differential equations) describ-
ing the current flows through the ion channels. In the case
the extracellular and intracellular conductivity tensors are
parallel to each other, as is always the case in monodimen-
sional domains, the bidomain equations can be simplified as
a single governing equation for the transmembrane poten-
tial, the monodomain system. The latter is computationally
cheaper not only because the number of degrees-of-freedom
is reduced but also because the equations are more stable
numerically [3]. In contrast with computationally cheaper
electrophysiology models such as the eikonal [6] method
that correctly solve the electrical propagation through the
medium, the monodomain/bidomain model is also seen to
accurately reproduce cardiac phenomena including ischemic
events and defibrillation.

Cardiac modelling, however, entails a high epistemic
uncertainty for the geometrical and electrical input param-
eters entering in the governing equations as only some of
these quantities can be measured in-vivo. The calibration of
electrical input parameters for monodomain equations based

on available medical data is typically solved in the frame-
work of monodomain inverse conductivity problem (MICP).
Multiple techniques, including variational data assimila-
tion procedure [7] and proper generalized decomposition
(PGD) [8], were used to derive space-dependent conductiv-
ity for 2D and 3D media. The input parameters variability
among individuals can be rigorously accounted for through
an uncertainty quantification (UQ) approach, where the input
parameters are treated as aleatory variables with an uncer-
tainty probability distribution function (PDF). Consequently,
not a single simulation but a set of simulations is run in
order to determine the sensitivity of some quantities of inter-
est (QoIs) on the input parameters (and their PDFs) as well
as the PDFs of the QoIs. This statistical approach has been
recently used by the authors to investigate the propagation of
uncertainties in an electrophysiology model for the electrical
activation of the left ventricular myocardium [9].

In this work we study the global sensitivity of the electri-
cal activation within the atrial fast conduction network on
the geometry and on the electrical properties of the sys-
tem. The aim is to isolate which of the model parameters,
either geometrical or electrical, have a greater impact on the
atrial depolarization dynamics and, through the atrioventric-
ular node, on the ventricular one. The identification of the
most sensitive parameters would not only increase our com-
prehension of the electrophysiology phenomena, but it would
also allow to improve existing computational models. Fur-
thermore, determining what parameters influence the initial
cardiac activation through sensitive analysis, as done here, is
a first step towards reduced order models and the design of
effective inverse calibration for patient-specific applications.

The paper is organized as follows. The computational
model for the fast conduction atrial bundles based on the
monodomain equations coupled with the ten Tusscher–
Panfilov cellular model is detailed in (Sect. 2.1). The
uncertainty PDFs of the input parameter space owing to
the variability among individuals is calibrated in Sect. 2.2
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Fig. 2 Computational domain of the atrial fast conduction network
(yellow) and the surrounding myocardium (red)

using available experimental data from the literature, while
the QoIs of the study are defined in Sect. 2.3. The UQ analy-
sis is based on ametamodelling technique (polynomial chaos
expansion [10,11]) with a quasi Monte Carlo Sobol’ low dis-
crepancy sampling strategy so that to minimize the size of
the dataset. The metamodel performance in reproducing the
QoIs as obtained by the full electrophysiology model is ver-
ified through a cross validation strategy and the confidence
intervals of the sensitivity indices are calculated using the
bootstrap method as detailed in Sect. 3. Section Sect. 4.1
reports the sensitivity analysis of the selected QoIs on the
input parameter space using the Sobol’ sensitivity index,
whereas the corresponding forward analysis, still obtained
by the PCE, is reported in Sect. 4.2. A final discussion of the
UQ results and future developments of thework are proposed
in Sect. 5.

2 Electrophysiology problem, input
parameter and quantities of interest

2.1 Bidomain/monodomain equations for the fast
conductive bundles

The computational domain consists of four bundles, with
three of them (the posterior internodal pathway, the mid-
dle internodal pathway, the anterior internodal pathway)
originating from theSA-node,while the fourth one, theBach-
mann’s bundle, connects the right and left atriumamong them
and bifurcated into three small bundles within the left atrium,
see Fig. 2.

The bundles are immersed in the atrial endocardium
through some control points and, consequently, any modi-
fication of the atrial geometry studied in the UQ analysis
(e.g. owing to a different volume of the cardiac chambers)
directly affects the bundles geometry, which move so that to
follow the location of the atrial control points. For any con-

figuration of the atrial network, the bundles are automatically
re-meshed in order to have the same spatial discretization for
all UQ samples, see Appendix 1 for more details about the
convergence of the numerical method.

The propagation of the electrical front through the
myocardium is governed by the bidomain equations where
the conductive tissue is modelled as an interior and exterior
media [3]. Owing to the slenderness of the fast conduction
bundles they can be considered as a network of one dimen-
sional fibers that bifurcate and intersect at the network nodes
and, as a consequence, the bidomain equations are equivalent
to the monodomain equations as the intracellular and extra-
cellular electrical conductivities reduce to scalar quantities
necessarily proportional one each other:

Cm
∂v

∂t
+ Iion(v, ξ) + Is = χ−1 ∂

∂s

(
M

∂v

∂s

)
,

∂ξ

∂t
= F(v, ξ).

(1)

Here v is the unknown transmembrane potential, χ =
140 mm−1 and Cm = 0.01μF mm−2 are the surface-to-
volume ratio and the membrane capacitance of the cells
[12]. The effective conductivity M is assumed to be uni-
form over the computational domain and is equal to half the
harmonic mean of the intracellular and extracellular conduc-
tivities M = Mint Mext

Mint+Mext
. The quantity Iion is the net ionic

current across the cell membrane and it is determined using
the the ten Tusscher–Panfilov cellular model [13], which is
indicated in compact form in the second Eq. (1). The solver
imposes homogeneousNeumann boundary conditions on the
transmembrane potential, whereas the network nodes are
automatically handled by the FEM library as internal dofs
and branching conditions do not need to be imposed. For
each tissue location, the cellular model is given by a set of
nonlinear ordinary differential equations (19 in our case that
are not reported here for the sake of brevity) that is two-way
coupled to the monodomain equation through the cell model
state vector ξ and the transmembrane potential v. The current
Is corresponds to the electrical stimulus applied at SA-node
location (see Fig. 3) where the electrical propagation origi-
nates:

Is = Sa(H[t] − H[t − Sd ]), (2)

with Sa and Sd being the stimulus amplitude and duration, t
the time within a heart beat andH[·] the Heaviside function.

ThegoverningEq. (1) are discretizedonaone-dimensional
domain immersed in the atrial endocardium using the elec-
trophysiology library cbcbeat [14], which is based on the
finite element library FEniCS [15]. The monodomain Eq. (1)
is integrated in time using a fractional step method based on
the Crank-Nicholson scheme and the cellular model is solved
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Fig. 3 a Atrial electrical pathways with sketched the angle parame-
ters θA, θM , and θP along with the size of the sinoatrial node SAL .
b Stimulus current as a function of time, the parameters Sa and Sd
indicate the amplitude and duration of the stimulus

in each mesh cell using a Rush-Larsen integration scheme,
see Refs. [9,16]. The resulting average CPU time cost to
solve a complete activation of the fast conduction bundles
until reaching the AV-node on a reference grid of 2397 lin-
ear elements (corresponding to 47940 degrees of freedom
including the ones of the cell model) and using a time step
of dt = 5 × 10−3 ms is of about 30 CPU-minutes (defined
as the time it takes to run the program on a 1 GHz refer-
ence processor). The computational resources used for the
analysis comprise an Intel Xeon Processors with 16 cores
(E5-2620 v3 - 15M Cache, 2.40 GHz) that allow to run the
same number of simulations simultaneously.

2.2 Input parameters

In order to run a global sensitivity analysis of the fast bun-
dles electrical activation on the model input parameters, their
uncertainty PDFs have to be determined from the in-vitro an
in-vivo data reported in the literature. Unfortunately, these
input PDFs are usually not available and even when system-
aticmeasurements of clinical quantities on a large population
are carried out (e.g. the volume of the heart chambers) only
the first (the mean μ) or the first and second (the mean μ

and standard deviation σ ) statistical moments of the PDF are
reported in the literature. In such cases, in information theory,
the PDF shape matching the statistical moments available is
typically selected as the onemaximizing theShannon entropy
(or its continuous extension) [17] as done here. In particular,
in the case the PDF is known to be bounded in the inter-
val [a, b], the corresponding PDF maximizing the entropy is
the uniform random variable U[a, b]. On the other hand, if
also the experimental mean valueμ and standard deviation σ

are available, a truncated normal distributionN[a,b](μT , σT )

should be considered. With formalism N[a,b](μT , σT ) we
indicate the truncated normal distributionwithmeanμT = μ

and variance σT = σ , which is the maximum entropy distri-
bution for fixed mean, variance and support.

The left atrium volume can be measured using several
non-invasive techniques such echocardiography and mag-
netic resonance imaging (MRI) and a significant statistical
difference between male and female atrial size is observed
whereas the patient age weakly influences the atrial volume
change for healthy subjects [18].

The mean and standard deviation of the left atrial volume
measured on a population of 45 females and 63males is equal
to (41, 11) ml and (46, 14) ml, respectively. These results
were obtained throughout a CMR (cardiovascular magnetic
resonance imaging) procedure [19], with lower and upper
bounds of (20, 120)mlmeasured on a larger population using
MRI (including both genders) [20]. It should be noted that
although both CMR and echocardiography can provide high
resolution data, the volume chamber is typically evaluated by
a human operator that necessarily introduces an additional
source of uncertainty [19]. It is not possible, however, to
distinguish the impact of the human operator on the measure
of the volume chamber and the variability of this geometrical
parameter is here ascribed to the individual variability only.

According to the principle of maximum entropy men-
tioned above, the left ventricle volume for males (Vm) and
females (V f ) is modelled as two random variables dis-
tributed according to the truncated Gaussian distributions
N[20ml,120ml](μT = 46 ml, σT = 14 ml) and N[20ml,120ml]
(μT = 41 ml, σT = 11 ml).

In theUQanalysis, left and right atrial volumeare assumed
to be correlated and the same random variable (Vm for male
and V f for female population) is used to vary the volume
of both chambers. The one-dimensional bundle geometry
lies within the atrial myocardium with a nominal orienta-
tion of bundles as reported in Fig. 3a. The internodal angles
are varied over their nominal orientation by an angular rota-
tion around the vertical axis passing by the SA-node (dashed
line) of size θA for the anterior, θM for the middle (Wencke-
bach) and θP for the posterior (Thorel) bundle, which are
modeled as uniform distributions with amplitude ±π /7 so
that to vary significantly the bundles orientation but avoiding
to overlaps and cross intersections among them.

Regarding the electrical properties of the fast conduction
network, the input parameter space includes the electrical
conductivity M influencing the conduction velocity of the
fibers (see the monodomain Eq. (1)). The uncertainty PDF
of the electrical conductivity is obtained in a reversed engi-
neering fashion from the conduction velocity that is indicated
to be of about 1–1.1 m/s [1,21] and in general below 2 m/s
[2]. Hence, we have considered the conduction velocity to
be bounded within the interval 1–2 m/s (in agreement with
the velocity range measured in the canine atrial pathways,
0.88–1.66 m/s [22]), which corresponds to an electrical con-
ductivity range of M = 0.33 − 1.41 S/mm according to the
deterministic relation between the conduction velocity and
electrical conductivity reported in Appendix 1. As only the
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Table 1 Input parameters for the sensitivity analysis

Variable Symbol Nominal value Distribution

Volume males Vm 46 ml N[20,120](μT = 46, σT = 14)

Volume females V f 41 ml N[20,120](μT = 41, σT = 11)

Anterior internodal θA 0 U[− π /7,π /7]
Middle internodal θM 0 U[− π /7,π /7]
Posterior internodal θP 0 U[− π /7,π /7]
Electrical conduction M 0.87 mS/mm U[0.33, 1.41]
SA stimulus duration Sd 2.5 ms U[0.5, 5.5]
SA stimulus amplitude Sa 1 mA/mm2 U[0.5, 1.5]
SA size SAl 6.85 mm U[5.2, 8.5]
Extra AV time AVd 90 ms U[80, 100]
Maximal INa Conductance GNa 14.838 nS/pF U[11.870, 17.805]
Extracellular Na Concentration NaO 140 mM U[112, 168]
Extracellular K Concentration KO 5.4 mM U[4.32, 6.48]
The bounds, mean and standard deviation of the PDFs reported in the last column have the same physical dimensions of the corresponding nominal
value

mean value and the bounds for the electrical conductivity are
known, a uniform distribution is considered as reported in
Table 1.

Furthermore, the sensitivity of the bundles electrical acti-
vation on the duration Sd and amplitude Sa of the stimulus in
the SA-node, along with extension of the SA is studied. The
input current stimulus, see Fig. 3a, is modelled as a rectan-
gular function with duration and amplitude equal to Sd and
Sa whose uncertainty is modeled as uniform distributions
containing the values used in the literature to activate the
wavefront propagation [23]. On the other hand, the length
of the SA is known to vary between 5.2 and 8.5 mm [24],
and these values have been used as bounds for the spatial
extension of the stimulus applied in the SA-node. Addition-
ally, the variability of the time delay in the propagation of the
electrical signal occurring the AV-node, AVd , is considered
as a uniform PDF with mean value 90 ms and bounds equal
to ±10 the mean value [1].

The effect of the input parameters of the ten Tusscher–
Panfilov cellular model on the electrical activation is studied
by accounting for variability of the maximal INa conduc-
tance,GNa , of the extracellular Na concentration, NaO , and
of the extracellular K concentration, KO , that were seen to
be the most relevant parameters in previous analyses [9,25].
A uniform uncertainty of ±20% the nominal value around
the nominal value itself is considered.

Thedimensionof the input parameter space is thus equal to
d = 12 and the corresponding PDFs are reported in Table 1.
As the relationships between these input random variables
are unknown, they are modeled as independent random vari-
ables.

2.3 Quantities of interest

As the main objective of the analysis is to investigate the
effect of the model input parameters introduced above on
the propagation of the electrical wavefront through the atrial
pathways, the quantities of interest (QoIs) of the UQ analy-
sis are defined as the activation times of the network nodes.
Referring to Fig. 4, theUQ analysismonitors the time needed
to reach the two junctions of the AV-node (t1, t2), along with
the activation times of the tips of the Bachmann’s bundle
(t3, t4, t5). Additionally, two further QoIs are defined as the
activation time of the upstream t∗ = min(t1, t2) and down-
stream tAV tip of the AV.We recall that the downstream tip of
the AV-node transmits the electrical propagation front to the
ventricular fast conduction system (not included in this UQ
analysis). A last QoI is given by the conduction velocity vc
of the propagation of the depolarization front, which is uni-
form across the bundles since the electrical conductivity and
the cell model properties are uniform in the domain. Without
loss of generality the conduction velocity is thus measured
at the middle internodal pathway.

3 UQmethods

3.1 Polynomial chaos expansion

The sensitivity of the QoIs on the input parameters is inves-
tigated through a variance-based global sensitivity analysis
using first (also called importance measures) and total order
Sobol’ indices [26]. These quantities are defined as the influ-
ence of input parameters on the variance of the QoIs and
are able to describe the combined effects of multiple input
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Fig. 4 Activation time at the AV bundle (t1, t2), at the end of the Bach-
mann’s bundle (t3, t4, t5) and at the downstream tip of the AV-node tAV

variables, thus providing a deeper understanding of the phys-
ical system at study. Computing the Sobol’ indices using a
direct approach can be computationally expensive because
the QoIs dependence on the input variables is obtained by
solving the full system (the monodomain model here). As an
example, given d input parameters, the computational cost
for evaluating the first order Sobol’ indices isO(dN 2) using
a a standard Monte Carlo (MC) approach or O((d + 2)N )

applying theSaltelli’s algorithm,with N ≈ 103 the size of the
samples needed to approximate one of the input variables. In
order to reduce the computational cost of the UQ analysis, a
polynomial chaos expansion (PCE) approach is adopted [11],
which belongs to the family of themetamodelling techniques
where the sensitivity indices are evaluated using a simplified
model rather than the whole physical system as done in the
direct methods. The adaptive procedure for the PCE calibra-
tion used here has been previously validated in the case of
the electrical depolarization of the ventricular myocardium
[9]. All of the details of the algorithms, the validations and
the convergence checks can be found in the above reference;
only the main features are summarized here. The metamodel
is built so that to reproduce/approximate the input–output
relation of the governing equations using a training and a
testing dataset.

In particular, given a computational model, G : DX ⊂
R
d → R, the uncertainty of the input parameters is mod-

eled by a random vector X prescribed by joint probability
density function fX (x) [27] and the QoI Y = G(X) is
obtained by propagating the uncertainty on X through G.
Assuming that the input variables are statistically inde-
pendent, the joint PDF is the product of the d marginal
distributions fX (x) = ∏d

i=1 fXi (xi ) for each DXi and
we can define the inner product for each single variable
Xi and for any two functions φ1, φ2 : DXi → R as:
〈φ1, φ2〉 := ∫

DXi
φ1(x)φ2(x) fXi (x)dx and use it to define

an orthonormal family of polynomials {P(i)
k , k ∈ N}. This

set of univariate orthonormal polynomials can be used to

define a family of multivariate ones. In fact, given a multi-
index α = (α1, · · · , αd), αi ∈ N, the associated multivariate
polynomial can be defined as 	α(x) := ∏d

i=1 P
(i)
αi (xi ). The

set of all multivariate polynomials in the input random vector
X forms a basis of the Hilbert space , in which Y = G(X) is
given by the so called polynomial chaos expansion:

Y =
∑
α∈Nd

yα	α(X). (3)

This infinite series has to be truncated in order to get a
finite one approximating Y = G(X) and different truncation
strategies are possible depending (i) on how to enumerate
the element of the multivariate basis and (ii) on how many
terms of the basis have to be retained. The standard (lin-
ear) enumeration strategy is based on the total degree of a
multivariate polynomial 	α (with ‖	α‖ := ∑d

i=1 αi ) and
is defined as the lexicographical order with a constraint of
increasing total degree (e.g. for a two dimensional multi-
index (0, 0) < (0, 1) < (1, 0) < (2, 0) < (1, 1, ) < · · · ).
The chosen selection strategy is a fixed one, inwhich the total
degree p is fixed and all the coefficients with total degree
smaller or equal to p are retained. It should be noted that a
linear enumeration coupled with a fixed truncation rule cor-
responds to a dimension of the basis with cardinality

(d+p
p

)
,

with p the polynomial degree and d the size of the input space
[27]. The optimal hyper-parameter for each metamodel (i.e.
the total degree) is calculated using an adaptive strategy [9].

The PCE coefficients are chosen using a least squares
strategy (LQS hereafter), which minimizes the least squares
error of themetamodel response on the training set. Themain
advantage of using an LQS is the fact that the training dataset
can be extended if needed, whereas the use of integration
rules based on Gaussian point can not. A training dataset
of 2000 samples is here built using a quasi Monte Carlo
method (QMC) with low discrepancy Sobol’ sequence in
order to maximize the information contained and avoid clus-
tering phenomena within the dataset [26]. The QMC has,
indeed, a faster asymptotic converge rate for low number

of parameters, O
(
log(N )d

N

)
where d is the input dimension,

compared to the standard MC, O
(

1√
N

)
[28].

3.2 Metamodel validation and confidence intervals

Metamodelling techniques require a validation protocol to
verify their ability to reproduce the results of the original
physical system. In this analysis the risk of underfitting and
overfitting is measured by evaluating the coefficients R2 and
Q2. Given the training (testing) dataset of size n, described
by the couples (xi , yi )ni=1 with yi the QoIs corresponding to
the set of input xi , and the prediction of the metamodel f for
the same input dataset (xi , ŷi := f (xi ))ni=1, the coefficient
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of determination is defined as R2(Q2) := 1 − SSr
SSt

, where

SSr := ∑n
i=1(yi − ŷi )2 is the residual sum square normal-

ized for the total sum of squares SSt := ∑n
i=1(yi − y)2

with y = 1
n

∑n
i=1 yi . The R2 index is commonly used in

regression analysis to measure the metamodel performance
in reproducing the variability within the training dataset with
values close to one implying that the metamodel is well-
trained, whereas low Q2 and a high R2 would correspond to
an overfitting condition [29].

In contrast with a direct approach such as Saltelli’s algo-
rithm , the confidence intervals for Sobol’ indices can not
be derived from the asymptotic distribution of the estimators
of the indices, but they can still be assessed without per-
forming further simulations through a resampling method,
the bootstrap [30]. The main idea is to create a few artificial
datasets of different sizes by sampling with replacements the
individual elements of the original training one. These arti-
ficial datasets are then used to calculate the Sobol’ indices
(using the PCE method introduced above), thus obtaining
an empirical distribution of the indices quantifying the sta-
bility of the results with respect to a variation of the input
dataset. The α-percentile bootstrap interval is defined as:
[Si[α/2], Si[1−α/2]] where Si[α/2] and Si[1−α/2] are the α/2
and the 1 − α/2 empirical quantiles of the i th Sobol’ index
distribution [31]. This interval does not require hypotheses
about the Si distributions (compared to standard intervals
which assume normality [31]) but it needs many resamplings
to estimate them accurately.

4 Results

4.1 Sensitivity analysis

Anoptimal PCE is trained and validated as detailed in the pre-
vious section for eachQoI and the resulting hyper-parameters
are summarized in Table 2. Although the resulting total poly-
nomial degree is relatively low (equal to to 3) for each QoI
themetamodels are able to describe over 99% the output vari-
ance, as visible by the R2 coefficients reported in Table 2.
Furthermore, the non-zero coefficients of the PCEs, are
related to the interactions of single variables, which implies
that the PCEs neglect high order interactions (i.e. associated
with a polynomial with high degree in more than one vari-
able [32]) and that the Sobol’ total order are expected to be
similar to the corresponding importance measure. The cost
of producing the entire dataset for the metamodel approach
is approximately 42 CPU-days, where a CPU-day is defined
as a compute day run on a 1 GHz reference processor, while
the metamodel is trained in about 1 CPU-minute.

As the input uncertainty of the atrial volume is different
for male and female population, see (Sect. 2.2), two differ-
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Fig. 5 Importance measures (e.g. female/male importance) and Sobol’
total order indices (female/male total) for a t4, b t∗, c tAV and d vc.
Females (males) population is indicated by the pink (blue) histograms,
whereas the errorbars indicate the confidence intervals of the metamod-
els

ent sensitivity analyses are carried out for each QoI that are
depicted by the blue and pink histograms in Fig. 5. The small
error bars on top of the histograms (corresponding the 95%-
confidence interval computed using the bootstrap method
with 500 resamplings) indicate that the training dataset is suf-
ficiently large to accurately evaluate the Sobol’ indices, see
Appendix 1 for a convergence analysis of the PCE method.
We anticipate that, as the sensitivity results of t1, t2 (t3, t5)
are similar to the ones of t∗ (t4) their Sobol’ indices are not
reported in the figure.

As visible in Fig. 5a, b both t∗ and t4 are sensitive on the
electrical conductivity (with an importance of about 80%)
and on the size of the atrial chambers (with a lower impor-
tance of about 20%). The sensitivities presented in Fig. 5 are
described in terms of both first order Sobol’ indices (impor-
tance measure, defined for females and males as female
importance and male importance) and total order (defined
for females and males as female total and male total). Addi-
tionally, the cell model parameter GNa has a minor effect
(with about 5%) importance, whereas the rest of the input
parameter space, including the duration and amplitude of the
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Table 2 Optimal metamodels selected by the adaptive PCE methodology

QoI enumeration
strategy

truncation strat-
egy

p PCE cardinality R2/Q2

Female t4 Linear Fixed degree 3 364 0.991/0.986

Female t4 Linear Fixed degree 3 364 0.999/0.998

Male t∗ Linear Fixed degree 3 364 0.992/0.987

Male t∗ Linear Fixed degree 3 364 0.999/0.999

Female tAV Linear Fixed degree 3 455 0.995/0.990

Male tAV Linear Fixed degree 3 455 0.995/0.990

vc Linear Fixed degree 2 78 0.999/0.999

electrical stimulus alongwith the length of the SA-node, have
a negligible effect on the QoI. A similar weak influence on
the QoIs is observed for the angle perturbation of the bun-
dles with the only exception of θA that slightly influences t∗
because the anterior internodal pathway is the shortest path
connecting the SA-node to the AV-node and a variation of its
length owing to the angular variation (we recall that the bun-
dle is constraint on the atrial endocardium) affect the time at
which the AV-node is reached by the electrical propagation
front. Importantly, males and females population manifest
similar sensitivities of t4 and t∗ on the input parameters with
a relatively larger sensitivity of the female population on the
electrical conductivity and a relatively smaller one on the
atrial volume.

Conversely, the activation time of the lower tip of the AV-
node (the one towards the ventricular network), tAV , is not
only sensitive to the electrical conductivity (importance of
about 45%) but is also affected by the time delay occurring in
the AV-node AVd (importance of about 35%–45%). It should
be noted that even the small percentage variation of the AVd
considered here (about±11% of themean value, see Table 1)
has a relevant effect on tAV and a larger variation of AVd
would further increase the time needed to fully activate the
AV-node. Furthermore, the AVd is slightly more important
in female hearts with respect to the male population (one
tailed t-test with N = 500 refusing the hypothesis that male
AVd is lower the female AVd at a level α = 10−3 for both
importance measure and total order) as the volume variation
for females has a lower standard variation (11 ml against 14
ml for males), thus naturally increasing the sensitivity of the
other parameters. Regarding the other parameters, the tAV
is seen to also depend on the atrial volume, on GNa and on
θA, whereas the other angular perturbations and the current
stimulus parameters (Sa, Sd and Sl ) have a negligible effect
on the QoI.

As expected in diffusion dominated problems, the con-
duction velocity vc is greatly sensitive on the electrical
conductivity M with an importance exceeding 90%, see Fig.
5d. The complementary part of the importance indices is

shared among the three input parameters of the cell model
with a major influence of GNa . This result differs from what
observed in the two-dimensional solution of the bidomain
equations where the NaO and KO were seen to influence the
ventricular activation time more than GNa [9].

4.2 Forward analysis

Let now turn to evaluate the PDFs of the QoIs through a
direct UQ strategy using the trainedmetamodel (see Table 2),
rather than the full monodomain system. The metamodels,
one for eachQoI, are appliedon avery large input dataset (106

samples) sampled using a Latin hypercube strategy to avoid
clustering phenomena, and the corresponding output dataset
is used to approximate the PDFs of the QoIs that are reported
in Fig. 6. The computational cost of this forward analysis
using the metamodel trained for the sensitivity analysis is
negligible (of the order of CPU-minutes), whereas the same
forward direct analysis would have required 57 CPU-years
using the initial electrophysiology Eq. (1).

The PDFs of the activation times t∗ and t4 have a similar
skewness and kurtosis for both, male and female popula-
tion but with a larger mean value, respectively of 6.4% and
5.8%, for the former, see Table 3. On average, t∗ corre-
sponds to what observed in-vivo (about 30 ms [1]), even
if the high standard deviations resulting from our forward
analysis implies that it is not uncommon to have longer acti-
vation times. According to the PDFs, the probability of a
normal/physiological activation time of the AV-node corre-
sponding to a t∗ comprises between 20 and 50 ms is equal to
97.6% for females and 96.3% for males, where in both cases
the positive skewness of the PDFs favors longer activation
time with respect to the mean t∗ rather than shorter ones.
Specifically, the probability of experiencing an AV activa-
tion time shorter than 10 ms is about 0, whereas a t∗ shorter
than 20 ms has a probability to occur of 0.7% and 0.5% for
females and males, respectively. On the other hand, the prob-
ability of having an AV activation time greater than 50 ms is
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Fig. 6 PDF of the QoIs obtained using 106 samples evaluated through the optimal metamodel: a t4, b t∗, c tAV and d vc

Table 3 Statistical moments for t∗, t4, tAV and vc

Female t∗ Female t4 Female tAV Male t∗ Male t4 Male tAV vc

Mean 32.19 41.2 122.19 33.55 43.62 123.54 1.62

Std 7.13 9.12 9.15 7.62 9.72 9.54 0.31

Skewness 0.74 0.73 0.34 0.73 0.73 0.37 −0.14

Kurtosis 3.13 3.00 2.85 3.16 3.05 2.90 1.96

The means and standard deviations of the times are expressed in ms, the velocity in m/s

larger for the males population (3.2% probability) than for
females (1.6% probability).

The PDF of the activation time at the downstream tip of
the AV-node tAV , is shown in Fig. 6c, while the statistical
moments are reported in Table 3. As could be inferred from
the Sobol’ indices, the sensitivity of tAV on the time delay
in the AV, AVd , reduces the differences between the PDFs of
males and femaleswith relative difference of themean values
of about 1.1%. Furthermore, the statistical dispersion for tAV
(evaluated by variation coefficient σ/μ), is also reduced (−
7.4% for females and −7.7% for males) with respect to the
one observed in t∗ (−22.1% and −22.7 %) The PDF for
the tAV results in line with the medical knowledge, with an
about null probability of activation time higher than 150 ms
that would compromise a timely ventricular contraction. [1].

As it could have been anticipated by noting that the Sobol’
index corresponding to the volume parameter is about null,
no differences are present among the PDFs of the vc for the
males and females population shown in Fig. 6d. Moreover,
the PDF skewness is a consequence of the nonlinear relation
between the conduction velocity and the electrical conductiv-
ity documented in Appendix 1. Specifically, as a symmetric
PDF around itsmean has been considered tomodel the uncer-
tainty of the electrical conduction, the probability of vc to be
slower (faster) than the physiological lower (upper) bound of
1 m/s (2 m/s) is below 0.5% (13%).

123



G. Del Corso, et al.

5 Discussion and future developments

In this work, we have investigated the global sensitivity anal-
ysis of the electrical activation of the atrial fast conduction
network on the geometrical and electrical input parameters
of the electrophysiology model. The network has been mod-
elled as four mono-dimensional bundles, with three of them
connecting the SA-node to the AV-node whereas the last one
joins the right with the left atrium. The propagation of the
electrical depolarization front through the myocardium is
governed by the bidomain equations, which, in the case of a
one-dimensional domain, are equivalent to the monodomain
model. The uncertainty PDFs of these input parameters have
been taken from the experimental data available and the gen-
der difference has been accounted for in the UQ analysis
by considering two different PDFs for the atrial volume of
the females and males population. Moreover, the PDF of the
electrical conduction has been obtained through an inverse
calibration of the conduction velocity data from the literature.
The UQ analysis is based on the PCE method with a differ-
ent metamodel trained for each QoI on a training dataset,
which is built running the full monodomain model. The risk
of overfitting has been assessed by testing the metamodels
performances against a testing dataset, which is independent
of the training one, whereas the confidence intervals of the
Sobol’ indices, computed using the bootstrap technique, indi-
cate that the sensitivity results are converged with respect to
the size of the dataset used to train the metamodel.

For both the female and male population, the activation
times of the atrial fast conduction network, t4, t∗ and tAV , are
seen to be sensitive to the electrical conductivityM , the atrial
volume V and the temporal delay in the AV AVd with a total
effect on their variance exceeding 95 %. Importantly, the rel-
ative positions of the internodal pathways that, to the authors’
knowledge, can be hardly measured in-vivo and are not suffi-
ciently documented in the literature only play amarginal role
in the activation of the atrioventricular node according to the
Sobol’ indices (total effect on the QoI variance below 5%).
According to our results, these geometrical input parame-
ters could be disregarded in future UQ analyses. The smaller
atrial volume (on average) of the female population leads
to a reduced effect of this input parameter on the variance
of the QoIs compared to the males population, in particu-
lar the Sobol’ total order of V reduces from 0.21 to 0.17
for t∗ and from 0.20 to 0.16 for t4 . Consequently, the other
inputs have a larger effects on the QoIs in the female popula-
tion, as an example, the sensitivity of t∗ (t4) on M and GNa

increases from 0.71 and 0.034 (0.75 and 0.0351) in the male
population to 0.74 and 0.035 (0.78 and 0.0354) in female
one.

On the other hand, the conduction velocity is only sensi-
tive to the electrical conduction (with an effect of about 95%)
and to the maximal INa conductance (GNa , with an effect of

about 5%)while the other ten input parameters, including the
extracellular Na concentration, NaO , and the extracellular K
concentration, KO , have a negligible effect on the QoIs vari-
ance. This result differs fromwhat observed in the solution of
the bidomain equations in amulti-dimensional domainwhere
both the extracellular Na concentration, NaO , and the extra-
cellular K concentration, KO , were seen to have a greater
effect on vc with respect to GNa [9,33]. As a consequence,
isolating the internodal pathways from the surrounding three-
dimensional myocardium yields to a smaller input parameter
space and, consequently, to a reduced computational cost for
future UQ studies.

It should be noted that both the electrical activation of the
network and the conduction velocity are insensitive to the
parameters of the electrical stimulation (stimulus intensity
Sd , stimulus amplitude Sa and size of the SA-node SAl ) and
any simulation protocol able to originate the depolarization
front is suitable in such electrophysiology models. Further
studies, however, could assess the possible differences in the
electrical activation of the electrical pathways if the SA-node
is modeled using a three-dimensional geometry integrated in
the electrical network rather than as a localized in put current
as done in this work [34,35].

The samemetamodels used in the sensitivity analysis have
been then used to determine the uncertainty PDF of the QoIs
(forward UQ analysis) by producing a large dataset of 106

elements. The PDFs of the activation times are character-
ized by a positive skewness (i.e. with a longer right tail with
respect to the left one) while the conduction velocity has a
negative one. The PDFs of t4 and t∗ have a high statistical
dispersion equal to σ/μ ≈ 20%, while tAV has a smaller
dispersion (about 7.5%) owing to the higher sensitivity on
the AV-delay, AVd . The PDF of the activation times well
agrees with the medical knowledge [1] with a probability for
the AV-node to be reached by the electrical stimulus (t∗) in
less than 20 ms or more than 50 ms below 0.7% and 3.2%,
respectively (for both males and females population), while
tAV has an almost zero probability of being higher than 150
ms. We recall that the activation time of the ventricular tip
of the AV-node tAV plays a major role in the synchronization
of atrial–ventricular contraction and if tAV is not sufficiently
long the ventricles would start contracting before the end of
atrial systole, thus yielding to an inefficient blood pumping.
Although the activation time of the whole atrial myocardium
is known from the clinical evidence to have an average depo-
larization time of 148.8 ms with a standard deviation of 18.9
ms [36], these data can only be considered as an upper bound
with respect to the activation time of the fast conduction
bundles that is studied here. Indeed, the high conductivity
structures should be fully activated before the surrounding
myocardium depolarizes, which is in line with our UQ anal-
ysis where the average time needed for the electrical signal to
reach the AV-node, t∗, results equal to 32.19 ms (33.55 ms)
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for the females (males) population. Moreover, for both gen-
ders t∗ is less than the lower bound of the activation time of
the three–dimensional myocardium reported in the literature
(defined as the mean value minus three times the standard
deviation 148.8 ms − 3 × 18.9 ms = 92.1 ms) with a prob-
ability exceeding 99%.

The uncertainty PDFs of the conduction velocity vc is
seen to be skewed towards the high velocity range as it has
been previously observed in the case of electrical conduction
within the atrial myocardium by randomly perturbing both
fibers orientation and local conductivities [37]. This result
can be probably explained by the non-linear relationship
between the electrical conductivity and the conduction veloc-
ity reported in Appendix 1, which means that considering a
symmetric PDF of the electrical conductivity automatically
introduces a skewness in the conduction velocity distribution
and, eventually, in the PDFs of the other QoIs. Alternatively,
considering a symmetric uncertainty PDF for the conduc-
tion velocity, it would greatly reduce the marked skewness
phenomenon in the forward analysis, thus suggesting to use
the conduction velocity as input parameter rather than the
electric conduction. Nevertheless, proper calibration of the
electric conduction could solve the problem of considering
uniformly varied inputs with the consequent output asymme-
try, and the model reduction carried out here offers a starting
point for a Bayesian inverse calibration of the electrical
conduction–conduction velocity from the available exper-
imental measurements of the AV-activation time t∗. The
sensitivity analysis, indeed, shows that the time needed for
the depolarization front to reach the AV, t∗, basically only
depends on M and V (with a reduced influence of GNa)
and all these quantities but M can be measured through
non-invasive medical procedures such as MRI for the atrial
volume [20] and ECG for t∗ [36]). This is the optimal con-
text for Bayesian inverse calibration where only an input
parameter is unknown, which can be retrieved knowing the
PDFs of the other physical quantities at play [38,39]. Similar
techniques used in the framework of MICP (monodomain
inverse conductivity problem) to calibrate space-dependent
conductivity for two-dimensional [7] and three-dimensional
[8] models can be adapted to the one-dimensional problem
proposed here. Even the presence of local perturbations of
conductivity can be taken into account both in the direct and
inverse problem, possibly exploiting a multi-fidelity method
applied using the monodomain as a high fidelity model and
a simplified alternative (e.g. eikonal) as a low fidelity one
[37].

A natural extension of the present UQ analysis would
be to include the effect of the fast conduction bundles on
the three-dimensional myocardial tissue surrounding them,
thus allowing to investigate further QoIs commonly used in
the medical field, such as the atrial activation time (that is
expected to depend on the stimulus location [40]), the unifor-

mity of the depolarization front propagation and the action
potential duration [33,41], which are known to be relevant
for the patient’s health as they influence the efficiency of the
atrial systole [1]. Given the proposed decomposition between
the fast structures and the underlying three-dimensional
fiber, the model to be used. The anisotropic and heteroge-
neous myocardium could also be modelled using the new
fractional models [42,43], which show promising results
in cardiac dynamics and can naturally integrate techniques
for the calibration of the model parameters [44]. Further-
more, in addition to the healthy myocardium [45–48] the
effect of pathologies can be included in the UQ analysis by
accounting for modified electrical properties of the conduc-
tivemedium [49–51]. As the electrical signal travels from the
atria to the ventricles passing through the AV, this analysis
could be also extended by adding the ventricular fast conduc-
tion bundles (including the Purkinje network) to investigate
how sensitive is the ventricular activation to atrial dysfunc-
tions such as atrial fibrillation [52]. A further open question
calling for dedicated UQ studies, is the effect of the stim-
ulation frequency on the action potential duration and the
depolarization front propagation and, interestingly, the most
relevant input parameters of the cellular model are expected
to strongly depend on the stimulation frequency itself [53–
55].
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AppendixA: Convergenceof the electrophys-
iologymodel

The transmembrane potential averaged over the ventricu-
lar domain as a function of time is shown in Fig. 7. Each
solid curve corresponds to a different simulation of the mon-
odomain equations with the ten Tusscher–Panfilov model on
a different grid with elements number varying from 600 to
4000 and different time step sizes [12]. The averaged trans-
membrane potential becomes basically grid independent for
mesh resolution exceeding 2000 elements and, based on
this result, a mesh with 2397 elements (corresponding to a

X = 0.25mm) and
t = 0.005ms is used for theUQanal-
ysis. The corresponding computational cost to run a single
simulation is of about 30 CPU-minutes and, consequently,
the cost to build the UQ datasets is of about 42 CPU-days.
The numerical simulation have been run on an Intel Xeon
Processors (E5-2620 v3 - 15M Cache, 2.40 GHz), with 16
CPUs.

123



G. Del Corso, et al.

a

b

Fig. 7 Time behaviour of the average transmembrane potential in the atrial fast conduction network by refining a the spatial and b the temporal
resolution. The insets show the same quantity within the initial fast depolarization phase

B: Convergence of the PCE analysis

Figure 8a shows the coefficient R2 and Q2 introduced in
Sect. 2 for the case of tAV in the female population as a
function of the training dataset size. The optimal metamodel
(see Table 2) is trained each time using a different train-
ing dataset with size ranging from 500 to 2000 and tested
against the same testing dataset made of 200 samples. The
R2 index is stable with respect to the training data set size
as the number of samples is larger than 500, which means
that the variety of the metamodel is sufficient to describe the
physical phenomenon at study. Conversely, lower size of the
training dataset lead to a suboptimal value of the index Q2,
which corresponds to a reduced ability of the metamodel to
predict values outside the training sample. Hence, the conver-
gence of the difference R2–Q2 indicates that the metamodel

can be considered stable when the size of the training meta-
model exceeds 1000 cases. Similar results are obtained for
the other QoIs and the males population (not reported here
for the sake of brevity).

Another approach for testing the metamodel performance
consists of evaluating its stability to a perturbation of the
training dataset. Specifically, the results of the UQ analysis
are shown as a function of the dataset size thus determining
for what size they become stable, as shown in Fig. 8b where
the Sobol’ indices are seen to be stable for dataset size larger
than 1000. The figure also reports the 5-percentile confidence
intervals calculated using a bootstrap method on the training
dataset.
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Fig. 9 Conduction velocity as a function of the electrical conductivity
(black dots) with superimposed a square root interpolation function
(blue line). The straight red lines indicate the ranges of the electrical
conductivity and of the conduction velocity studied in the UQ analysis

C: Electrical conductivity vs conduction velocity

The electrical conductivityM is an important input parameter
of the electrophysiology model. However, most of the avail-
able measurements in the literature refer to the conduction
velocity rather than to the electrical conductivity [1,21,22].
For this reason, an inverse calibration has to be preformed to
determine the electrical conductivities corresponding to the
conduction velocities measured experimentally. In order to
determine such relation between the electrical conductivity

and the conduction velocity, themonodomain equations have
been solved over a one-dimensional straight domain of length
100 mm for several electrical conductivity values. The corre-
sponding conduction velocity is measured by selecting two
points 50 mm apart each other inside the domain and mon-
itoring their activation time (defined as the instant when the
transmembrane potential exceeds−70 mV). The conduction
velocity is thus measured as the ratio between the distance
between the monitoring points and the time interval among
their activation and is reported in Fig. 9 for spatial and tem-
poral discretization of
x = 0.25 mm and
t = 1 ·10−3 ms
and current stimulus applied at one tip of the domain as
defined in equation (2) with Sd =2.5 ms, Sa =1 mA/mm2

and SAl = 6.85 mm.
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