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Andreja Radović . Stefan Schindler . David Rossiter . Toni Nikolić
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Abstract Very frequently biological databases are

used for analysing distribution of different taxa. These

databases are usually the result of variable sampling

effort and location uncertainty. The aim of this study

was to test the influence of geographically biased

sampling effort and spatial uncertainty of locations on

models of species richness. For this purpose, we

assessed the pattern of invasive alien plants in Croatia

using the Flora Croatica Database. The procedure

applied in testing of the sensitivity of models consisted

of sample area sectioning into coherent ecological

classes (hereinafter Gower classes). The quadrants

were then ranked based on sampling effort per class.

This resulted in creation of models using varying

numbers of quadrants whose performance was tested

with independent validation points. From this the best

fitting model was determined, as well as a threshold of

sampling effort. The data from quadrants with sam-

pling effort below the threshold were considered too

unreliable for modelling. Further, spatial uncertainty

was simulated by adding a random term to each

location and re-running the models using the simu-

lated locations. Biased sampling effort and spatial

uncertainty of locations had similar effects on model

performance in terms of the magnitude of the affected

area, as in both cases 7% of the quadrants showed

statistically significant deviations in alien plant

species richness. The model using only on the

A. Radović (&)
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quandrants with the highest 35% quantile sampling

effort best balanced the sampling effort per quadrant

and overall geographical coverage. It predicted a mean

number of 3.2 invasive alien plant species per

quadrant for the Alpine region, 5.2 for the Continental,

6.1 for the Mediterranean and 5.3 for the Pannonian

region of Croatia. Thus, the observational databases

can be considered as a reliable source for species

richness models and, most likely, for other types of

species distribution models, given that their limita-

tions are accounted for in the data selection process. In

order to obtain precise estimates of species richness it

is required to sample the whole range of ecological

conditions of the study area.

Keywords Biodiversity databases � Balkans � Data
quality � Regression kriging � Spatial analysis

Introduction

Reliability and precision of predictions by species

distribution modelling depend on three main groups of

factors: (1) the nature and quality of the original input

data for model specification (e.g., models of presence,

presence/absence, or density); (2) the predictive power

of the environmental variables; and (3) the modelling

techniques used (Araújo and Guisan 2006; Ferrier

et al. 2002; Guisan and Zimmermann 2000; Lobo

2008b). Biological databases are often used in

analysing distribution of different taxa. However,

usually they are characterised by gaps in both,

taxonomic and geographic spaces, the so-called

‘‘Wallacean shortfall’’ (Chefaoui et al. 2005; Bini

et al. 2006; Hortal and Lobo 2006; Rocchini et al.

2011). They suffer from oversampling of biologically

interesting areas and other extraordinarily attractive

areas (Dennis and Thomas 2000; Zaniewski et al.

2002; Fourcade et al. 2014). Problems in using

information from such biological databases in prepar-

ing spatial ecological models are numerous. The use of

all available distributional information on species in a

given area, such as the incorporation of species records

from unsystematic samplings and data observations

with uncertain coordinates of location, e.g., toponyms

(Rocchini et al. 2011), frequently results in a biased

picture of species distribution and biodiversity. For

instance, this may be the case due to the uneven

distribution of sampling effort (Lobo 2008a; Philips

et al. 2009; Fourcade et al. 2014). Several solutions

have been proposed to overcome the problem of data

deficiency (Hortal and Lobo 2006). These solutions

range from models predicting single species distribu-

tion (Guisan and Zimmermann 2000; Fourcade et al.

2014) via synecological models predicting assem-

blages of species (Hortal and Lobo 2006; Guisan and

Rahbek 2011) to models predicting entire communi-

ties (Ferrier and Guisan 2006). To account for uneven

sampling effort some authors suggest the use of

species accumulation curves (Hortal and Lobo 2005),

while others suggest nonparametric techniques such as

the Chao index (Chao and Tsung-Jen 2004). However,

since maps of any biodiversity surrogate can be

interpolated from even a few well-characterized sites

(Hortal and Lobo 2005), biological databases can be a

valuable source of information, if their reliability is

carefully assessed (Robertson et al. 2010; Santos et al.

2010). A comprehensive sampling effort assessment is

required in order to reveal areas that are sufficiently

covered and to treat their inventories as reliable

information on biodiversity (Garcillán et al. 2003;

Hortal and Lobo 2005; Fourcade et al. 2014). In those

cases when direct information on sampling effort is

missing, an indirect measure, such as the total number

of records, may be used as a sampling-effort surrogate

for distinguishing localities that are likely well-

surveyed and that should therefore be used for

modelling (Lobo 2008a; Philips et al. 2009).

Invasive alien species, both purposively and acci-

dentally introduced, are recognized as one of the major

drivers of global biodiversity change (Sala et al. 2000;

Genovesi and Shine 2003; Bellard et al. 2013;

Tittensor et al. 2014). They present new challenges

in managing natural ecosystems (Thuiller et al. 2007)

since they have the potential to establish viable

populations with high growth rates. Such populations

eliminate parts of the native biota (Rejmanek 1999).

Further, they modify the disturbance regime (Brooks

et al. 2004), and transform ecosystem structures and

functioning (Dukes and Money 1999). As a conse-

quence, they adversely affect local diversity, econ-

omy, ecosystem services (Pimentel et al. 2005) and the

health of humans and wildlife (Mack et al. 2000;

Taramarcaz et al. 2005; Scalera et al. 2012; Simberloff

2013; Schindler et al. 2015; Roy et al. 2016). For these

reasons, knowledge of spatial occurrence patterns of

invasive alien species, often obtained by predictions
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based on distribution modelling, is essential for

decision-making. However, for invasive alien species,

due to the dynamics of their invasion it is particularly

difficult to differentiate poorly sampled areas from

truly absent areas (Crall et al. 2013; Philips et al.

2009). As the initial conditions strongly affect the

performance of methods for correcting sampling bias

there is a need to develop systematic (step-by-step)

guidelines (Fourcade et al. 2014). A process of

iterative modelling is suggested in particular for

invasive alien species (Stohlgren and Schnase 2006).

In this study, we have modelled the species richness

of invasive alien plants in Croatia. The study primarily

aims to test the sensitivity of model performance and

outcome while accounting for two major constraints in

observational data: geographically biased sampling

efforts and spatial uncertainty of locations. Thus, our

study delivers new insights because it differs from

similar studies by (1) dealing with sampling bias and

spatial uncertainty, (2) focusing on invasive alien plant

species (but see e.g. Crall et al. 2013), and by (3)

modelling species richness instead of distributions of

single species. A novelty of the approach is the use of

several nested datasets along a gradient from weak

comprehensive spatial coverage but low sampling bias

to good spatial coverage but strongly biased sampling

effort per location. This approach includes the assess-

ment of a threshold for input data that represent the

optimal trade-off between these two constraints.

Further, our objectives included testing the perfor-

mance of our approach by assessing the error in

modelling results caused by biased sampling efforts,

by comparing models based on the input data set of the

optimal trade-off with those based on the full original

data sets. We also tested the effects of spatial

uncertainty of locations by comparing model alterna-

tives that do and do not account for this limitation of

the input data. Secondary aims of this study were to

present, for applied purposes, a model of the invasive

alien plant species richness of Croatia at 25 km2

quadrants, provide certain insight about the robustness

of this model, and the from the model an assessment of

the biogeography of Croatian invasive alien plant

species richness. These three secondary aims are all

crucial for effective control and management

measures.

Materials and methods

The study area: Croatia

Croatia is at the intersection of Central Europe,

Southern Europe and the Mediterranean. Despite its

relatively small surface, four out of eleven European

biogeographic regions are found there: Alpine, Con-

tinental, Mediterranean and Pannonian. As a refuge

for diverse plant species during the last glacial period,

today, Croatia is extraordinarily rich in vascular flora

(Nikolić et al. 2013) and, as such, it has been

recognised as a regional biodiversity hotspot (Griffiths

2004; Fady and Cyrille 2010; Hewitt 2011; Zachos

and Habel 2011). The invasive alien flora in Croatia

has a similar taxonomical composition to that reported

in other European countries (Nikolić et al. 2014).

Recently, a checklist of invasive alien plant species

was prepared (Boršić et al. 2008), including their

potential impact on native flora (Mitić et al. 2008).

Their spatial distribution has been assessed (Nikolić

et al. 2013). However, some Croatian botanists have

observed inadequate/poor knowledge of flora in some

parts of Croatia (Nikolic et al. 1998, 2014).

The Croatian flora database

For this study and the methodological approach

developed within (Fig. 1), we used the Flora Croatica

Database (hereinafter: FCD, http://hirc.botanic.hr/fcd/)

that contains the most currently-available information

on Croatian flora. The FCD was compiled from

diverse studies and research projects with diverse

objectives, sampling intensities, spatial extents, and

temporal coverages. Further, it contains the informa-

tion extracted from published literature, as well as

from herbarium collections. For this study, we

extracted all 11,823 occurrences of alien plant species

from the FCD (Fig. 2). The biogeographic regions

were clearly subjected to different sampling efforts.

The mean number of observation records per 25 km2

quadrant was the greatest in the Alpine (n = 400) and

Mediterranean (n = 377) region, yet significantly

lower in the Continental (n = 230) and Pannonian

(n = 104) region of Croatia. These numbers, scaled by

the total number of taxons ever recorded in each

region, as a proxy for vegetation diversity of the zones,

show similar disproportion (Alpine region 3.3; Con-

tinental 2.8, Mediterranean 2.5 and Pannonian 1.5).
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Fig. 1 Detailed scheme of the methodological steps conducted in this study
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The oldest data records in the database were

obtained from herbarium collections. In total, such

records make\ 6% of total data. Amongst those, the

oldest recorded data (before 1900) account for less

than 1% of the overall occurence data in FCD. The

most data (52%) are gathered through field observa-

tions; these were collected over the past 20 years. The

information on occurrences from the literature (42%)

originate mainly from the period after 1950. There-

fore, approximately 94% of the data used in this study

were collected after the appearance of most invasive

alien plant species in Croatia. Each FCD data record

has information on the spatial uncertainty of the

location (Table 1). A portion of these observations

were georeferenced only by toponyms (e.g. nearby

settlements) or by a Central European MTB grid

coordinate (German ‘‘Messtischblätter’’, i.e., 60 9 100

map sheets) (Nikolic et al. 1998), or their divisions by

4 (30 9 50), 16 (1.50 9 2.50) or 64 (0.750 9 1.250). The
spatial uncertainty of each FCD location was coded,

with the code ranging from 0 (present somewhere in

Croatia) to 11 (the observation was geo-referenced

using a GPS receiver to the spatial precision of the

device). Thus, the reported spatial uncertainty ranged

from 5 m to 500 km (Table 1). The point shapefile of

invasive alien species records used in this modelling

exercise had variable spatial uncertainty ranging from

category 2–11, with 93.8%, having greater spatial

precision than our mapping resolution of 5 km. For

this reason, we conducted the work with 5 km 9 5

km (i.e., 25 km2) quadrants, after transferring the

original species data and predictor variables (see

below for details on predictors) to this spatial resolu-

tion. Point information on the presence of invasive

alien plant species was, therefore, used to compute the

variable ‘‘invasive alien plant species richness‘‘, i.e.,

the number of alien plant species detected per 25 km2

quadrant. In order to test the effect of the spatial

uncertainty of positions, we used regression kriging

(see below) to interpolate over the mapping grid, each

of the ten interpolations after preparing a separate set

of x–y simulated coordinates with associated uncer-

tainties as specified in Table 1. Transformation of

point data to grid data of the desired resolution was

done by assigning the unique species IDs to quadrants

by the overlap method from ‘‘sp’’ package in R

Fig. 2 Point locations of

invasive alien plant species

extracted from the Flora

Croatica Database
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(function ‘over’) and then aggregating the number of

unique invasive alien species IDs with the function

‘aggregate’ in R.

Predictor variables for modelling

As a surrogate for sampling effort, we used the total

number of records in the FCD per spatial unit as

variable ‘‘effort’’. We assume that this variable is an

appropriate surrogate, because it is likely that an entire

target group of species, observed by similar methods,

will share similar bias (Philips et al. 2009).

Habitat, climate, landscape heterogeneity and

human disturbance mainly affect plant invasions

(Woodward 1987; Hunter and Yonzon 1993; McKin-

ney 2001; Araújo 2003; Pino et al. 2005; Chytry et al.

2008). Thus, to describe Croatia by its main ecological

characteristics, we used information on habitats and

climate. Croatian State Institute for Nature Protection

provided the spatial database of habitat types (SINP

2009). For each 10 km2 we extracted information on

its three main habitat classes. We downloaded nine-

teen bioclimatic variables from the Worldclim data-

base (http://www.worldclim.org) (Hijmans et al.

2005). Since they were highly correlated, we sum-

marised them by using principal component analysis

to obtain uncorrelated variables suitable for ordinary

least squares (OLS) regression. Based on the eigen-

value criterion, we used the first three standardized

principal components for further analyses. Since the

resulting set of variables was mixed (three continuous

numerical principal components and three categorical

variables describing three main habitat classes), we

used the Gower algorithm (Gower 1971; Kaufman and

Rousseeuw 1990), the only classification algorithm

that can deal with such mixed variable structure, to

calculate the similarity of quadrants. We decided to

divide Croatia into 15 classes (hereinafter called

‘‘Gower classes’’; ‘‘Appendix B-a’’) because this

number of classes was obtained with the Gower

algorithm dendrogram at the third level of separation.

This classification resulted in coherent geographic

clusters (see ‘‘Appendix A-b’’).

As a surrogate for human disturbance for each

quadrant, we used the area of settlements, obtained

from Oikon Ltd, Institute of Applied Ecology in the

form of a GIS-shapefile, which was then gridded and

up-scaled to fit the model resolution.

The biogeographic classification of Croatia into

Mediterranean, Alpine, Continental, and Pannonian

(‘‘Appendix A’’), was prepared by the Croatian State

Institute for Nature Protection (EEA 1998). Recently,

a new classification of the Croatian territory into only

3 biogeographic regions was proposed by the Euro-

pean Environment Agency (EEA, http://www.eea.

europa.eu/data-and-maps/data/biogeographical-regions-

europe) by merging the Continental and the Pannonian

area. However, it was our preference to keep the old

Table 1 Spatial uncertainty of locations (in radius distance [m]) of records from Flora Croatica Database (FCD)

Spatial uncertainty code

FCD

Spatial uncertainty

[m]

Data references by MTB or

UTM

Numbers of observations in point data

set

0 500,000 0

1 200,000 73

2 5643.3 MTB, UTM 10 9 10 664

3 2821.7 MTB1/4 533

4 1784.6 MTB1/16 547

5 1261.9 2931

6 564.4 2113

7 100 1705

8 50 2

9 25 259

10 5 30

11 \ 5 2964

Uncertainties in FCD that were given in terms of areas (km2) were transformed to linear measures (m)
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classification due to the particularities of the Pannonian

part in terms of climate, biogeography and sampling

effort.

All environmental variables were first prepared as

gridded data with a high resolution of 50 m and then

aggregated to 25 km2 resolution for final modelling by

summing for the total area of settlements, by calcu-

lating mean values for the climatological variables.

Analysing a threshold in sampling effort to derive

an optimal set for modelling

Since the sampling effort was extremely unevenly

distributed, particularly in large areas of East and

Central Croatia, certain ecological conditions were not

well covered. This was the reason for using the Gower

classes as a tool and ranking all quadrants per Gower

class according to their respective sampling effort. The

first step in the following analysis was to identify the

best-sampled quadrants (5%, arbitrary threshold) from

all over Croatia. These quadrants were not used for

modelling. They were kept apart for validation.

Moreover, we assumed that we have knowledge of

the total pool of invasive alien plant species for these

quadrants. Then we prepared for each Gower class six

nested sets of quadrants corresponding to six quantile

ranges of sampling effort (85–100, 65–100, 50–100,

35–100, 15–100 and 0–100) of the total number of

records in the quadrant and Gower class (Table 2,

‘‘Appendix C’’). These datasets are referred to here-

inafter as D85, D65, D50, D35, D15, D0, respectively,

and constitute a gradient related to different intensities

of the sampling bias ranging from ‘‘huge gaps not

considered for model calibration’’ (i.e. D85) to ‘‘the

majority of considered quadrants are very poorly

sampled’’ (i.e. D0).

Model preparation and validation

To predict the number of invasive alien plant species

we used Regression Kriging technique (RK) (Hengl

et al. 2007), i.e. a regression on environmental

predictors and interpolation of the model residuals

by simple kriging (Pebesma 2006). We chose RK

because it has proven to be useful in ecological

applications (e.g. Liebhold 1993; Hengl 2009) and

also because RK performed well in the methods

comparison studies (Wang et al. 2012; Meng 2014).

We used ordinary least squares regression (OLS)

rather than generalized least squares (GLS) for the

regression portion of RK. The regression coefficients

found by OLS are unbiased estimates of those found

by GLS (Draper 1998, p. 223–4). The variance of the

coefficients differs, but this is no problem, because we

do not use the variance in the model to compute the

regression residuals in the kriging portion of RK but

only the coefficients.

We used the Gower class and the area of settle-

ments of each quadrant as an overall description of

habitat and climate for the regression part of the

models, because previous studies described connec-

tions between habitat composition, climate and human

presence on the invasion level (Hunter and Yonzon

1993; McKinney 2001; Araújo 2003; Chytry et al.

2008).

We compared the six prepared datasets (i.e. D85,

D65, D50, etc.) according to their predictive accuracy

as evaluated by the root mean squared error of

prediction (RMSE) (Hengl 2009). RMSE is the square

root of the average squared difference between

observed and predicted values at the independent

validation points. We selected the dataset that pro-

vided the most accurate model (hereinafter: ‘‘the best

dataset’’) and computed the linear model and its

residuals. These we interpolated using the ‘krige’

function in the ‘gstat’ R package using fitted vari-

ogram models of estimates from empirical variograms

of the regression residuals fitted with the ‘fit.vari-

ogram’ function of the ‘gstat’ R package (Pebesma

2004). We then summed the interpolated residuals and

regression predictions at each cell to give a final model

prediction (hereafter ‘‘best model’’). This method has

Table 2 Root mean squared error (RMSE) at validation points

for different data subsets (Do–D85)

Dataset Quadrants used (Percentiles) RMSE

D85 85–100 1425.01

D65 65–100 652.65

D50 50–100 660.36

D35 35–100 708.64

D15 15–100 707.67

D0 0–100 705.87

Best model at validation points is D65, i.e. the model based on

the quadrants with sampling effort greater than the 65

percentile per Gower class
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already proved its usefulness in creating models from

incomplete inventories (Hortal and Lobo 2011).

Finally, we merged the best dataset and validation

quadrants and then repeated the regression kriging

procedure for calibration of a new model. We did this

since, for the applied purpose of our model, it is of

advantage to include the best-sampled areas of the

country. The resulting, ‘‘final model’’ could not be

validated because we included our independent vali-

dation quadrants for its fitting. However, we examined

this model to identify areas with large per-grid cell

difference between this model and the full model D0.

To understand underlying data constraints and bio-

geographic patterns, we aggregated by summing them

for Gower classes, sampling effort zones and biogeo-

graphic regions in SAGA GIS and using ‘RSAGA’ R

package (Brenning 2008). We calculated the signifi-

cance of the obtained differences in predictions using

the ‘SigDiff’ function of the ‘SDMTools’ R package

(VanDerWal et al. 2012) on the zonal statistics for

biogeographic regions, sampling effort zones and

Gower classes. Significant differences were calculated

first at Gower class level to account for the different

inherent plant diversity in the class. Then they were

merged together in one resulting grid. For the purpose

of multiple general linear hypotheses testing we used

the ‘glht’ function of the ‘multcomp’ R package

(Hothorn et al. 2008) to detect the effects of, and

interactions between, our predictors.

Analysing how spatial uncertainty of locations

influences the modelling results

To assess the influence of spatial uncertainty for the

locations of the input data records, we simulated

possible coordinates of each observation of our dataset

‘‘D65 plus validation points’’ by using the ‘sample’ R

function. We added independent uniformly distributed

random values, ranging from minus to plus one unit of

reported uncertainty for each observation (Table 1),

on the values of each pair of X, Y coordinates. We

repeated the regression kriging procedure as explained

in the previous section on all ten realizations of

simulated coordinates.We applied this modification of

our final model from the previous section to predict the

number of invasive alien plant species, and averaged

the ten obtained maps for each 25 km2 quadrant. The

modelling results were compared with the final model

from the previous section by assessing the magnitude

of prediction differences of the models, again using

the ‘SigDiff’ function of the ‘SDMTools’ R package

(VanDerWal et al. 2012). Finally, we tested how

significant differences were distributed biogeograph-

ically and across the sampling effort zones using

analysis of variance, ‘aov’ function of the ‘stats’ R

package. The research effort zone grid was split

according to the quantile statistics into 4 zones of

research intensity giving code 1 to the zone of lowest

research intensity, up to 1st quartile effort, code 2 for

1st quantile to median, code 3 for mean to 3rd quantile

and finaly code 4 for those quadrants having effort

above 3rd quartile.

The script for the analysis was carried out in the R

environment for statistical computing (R Core Team

2012) using diverse packages (‘rgdal’, ‘rxlsx’, ‘sp’,

and ‘maptools’) for data manipulation and aggrega-

tion, and also in the SAGA ‘‘System for Automated

Geoscientific Analyses’’ GIS version 2.0.8 (http://

www.saga-gis.org/en/index.html). R functions and

scripts were executed within SAGA by means of the

‘rsaga’ package connecting SAGA and R.

Results

Geographically biased sampling effort and trade

off with data coverage

Model predictions at validation points were quite

inaccurate if models were built using only the top 15%

quantile sampling effort quadrants (D85) per Gower

class (Table 2). The best dataset was the one built with

the top 35% quantile sampling effort (D65; Table 2).

That dataset provided best-balanced sampling effort

per quadrant and overall geographic coverage. Adding

quadrants with lower sampling effort (i.e., D50 to D0)

gradually lowered the accuracy. The best model, i.e.

the one derived from D65, predicted zero to 38

invasive alien species per quadrant.

The mean predicted number of alien plant species

differed across biogeographic regions with the Alpine

having 1.5 (range 0–15) species, the Continental 4.2

(range 0–38) species, the Mediterranean 4.6 (range

0–36) species and the Pannonian 4.8 (range 0–26)

species. In the process of regression kriging we

detected autocorrelation in residuals of the regression

model and fitted a pentaspheric variogram model. The

semivariance reached a definite sill at approximately
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26 km separation, with a nugget parameter of 17.6

species and structural sill of 8.1 species. Thus, the

nugget is a large proportion (68%) of the total sill,

showing moderate spatial dependence of the model

residuals.

Comparison of final model versus full model

Differences in predictions of the ‘final model’ (D65?

validation points) and the ‘full model’ (D0) ranged

between - 15 and ? 16 invasive alien plant species

(Fig. 3a) and were clustered throughout the country

(Fig. 3a). Significant differences were detected in

6.9% of quadrants (Fig. 3b) after scaling the number

of predicted invasive alien plant species with mean

species richness per Gower class per quadrant. The

scaling was necessary due to extreme differences of

species richness per Gower class. On average, the final

model predicted higher levels of invasive alien plant

species richness than the full model.

The model performance varied across regions

(p\ 0.0001) and sampling effort zones

(p\ 0.0001), also, the interaction between these two

factors was statistically significant (p = 0.012). We

obtained greater differences in model predictions for

the zone sampled with lowest intensity (Table 3). The

greatest absolute differences in predicted species

richness between final and full model were found in

the Continental region, while in the Alpine region the

absolute differences were the lowest (‘‘Appendix D-

a’’). In all bio-geographical regions, final and full

model had the greatest discrepancy at areas with low

richness of invasive alien plant species; while they

provided similar results when the invasive alien plant

species richness was high (see ‘‘Appendix D-b’’). In

all biogeographic regions, except the Mediterranean,

there were more quadrants with significantly higher

than significantly lower values in the final model when

compared to the full model (‘‘Appendix D-c’’).

Moreover, differences per Gower class showed that

the final model by default produced higher values.

Differences that are more significant were observed in

the cases where the final model had higher values than

where values were lower (‘‘Appendix E’’). The same

pattern emerged when pooling quadrants across sam-

pling effort zones (‘‘Appendix E’’).

Impact of spatial uncertainty of locations

We detected significantly different predictions of

invasive alien plant species richness in 7% of the

quadrants when comparing our ‘final dataset’ of the

last section to the one that included random error in

coordinates according to the reported spatial uncer-

tainty. The residual variogram from regression on

environmental predictors revealed similar ranges than

those from the final model (19.9 vs. 26.2 km) (‘‘Ap-

pendix B-b’’). When incorporating spatial uncertainty

into the modelling procedure, the significance of

detected differences did not differ across biogeo-

graphic regions (p = 0.209), while the effect of

sampling effort was strong (p\ 0.001). The highest

Fig. 3 a Differences in predictions of alien plant species

richness between final model (D65 plus validation points) and

full model D0; b significance of differences in predictions after

scaling with mean number of overall species per Gower class; all

grid cells with p value greater or equal 0.05 are plotted white
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sampling effort zone had a significantly lower amount

of detected differences between the final model

considering uncertainty and the final model ignoring

uncertainty of locations than any other sampling effort

class (Table 3).

The final model, considering spatial uncertainty of

locations, gave slightly higher predictions of alien

plant species richness across bio-geographical

regions, compared to the final model ignoring spatial

uncertainty. The Alpine region had a mean of 3.2

(range 0–18); the Continental a mean of 5.2 (range

0–42), the Mediterranean a mean of 6.1 (range 0–29),

and the Pannonian a mean of 5.3 (range 0–18) species.

The overall pattern among regions remained the same.

This model (Fig. 4) we consider as the best possible

prediction of invasive alien flora given the available

information and, as such, it should be a valuable tool

for decision-making.

Discussion

Impact of geographically biased sampling effort

and spatial uncertainty of locations

We assessed the threshold representing the optimal

trade-off between data coverage and unbiased sam-

pling effort and tested the influence of geographically

biased sampling effort and spatial uncertainty of

locations on models of invasive alien plant species

richness for Croatia. Our results show that these two

types of data limitations significantly affected the

modelling predictions, with surprisingly similar

effects on model performance. Statistically significant

differences in predictions of ‘final’ (D65 plus valida-

tion points) versus ‘full’ (D0) models were detected in

7% of the country. Similarly, the significant differ-

ences in predictions of the ‘final model’ and the model

incorporating the spatial uncertainty of locations

occurred in 7% of the country. Adding more quadrants

of lower sampling effort into models made them less

precise. The model based on the 15% best sampled

quadrants only was the one with worst performance.

This is most likely due to large, poorly-sampled

Table 3 Results of testing effect of sampling effort on

statistical significance of detected differences in (a) final model

(D65 ? validation points) versus full model (D0) and (b) final

model with consideration of spatial uncertainty of the locations

versus final model without consideration of spatial uncertainty

(a) Final model versus full model (b) Final model plus precision uncertainty versus final model

Sampling effort zones Estimate t-value Significance (p value) Estimate t-value Significance (p value)

2 versus 1 - 0.02 - 1.89 ns 0.01 0.68 ns

3 versus 1 - 0.05 - 4.15 \ 0.001 - 0.01 - 0.45 ns

4 versus 1 - 0.04 - 3.25 \ 0.01 - 0.09 - 5.38 \ 0.001

3 versus 2 - 0.03 - 2.25 ns - 0.02 - 1.12 ns

4 versus 2 - 0.02 - 1.35 ns - 0.10 - 6.03 \ 0.001

4 versus 3 0.01 0.90 ns - 0.08 - 4.92 \ 0.001

Significance testing was performed by using the ‘SigDiff’ function of the ‘SDMTools’ R package (VanDerWal et al. 2012). Coding

for sampling effort zones: lowest sampling effort—code 1; highest sampling effort—code 4
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Fig. 4 Invasive alien plant species predictions using model

Final model plus precision uncertainty obtained controlling

both, geographically biased sampling bias and spatial uncer-

tainty source of error
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regions of the country, which were not covered at all in

this set, as well as too low number of the quadrants

included for modelling purposes, e.g. for reliable

variogram fitting to detect spatial autocorrelation. Due

to differences in approaches and outcome measures, it

is difficult to compare these results with those obtained

by other researchers. However, our results match those

of Fourcade et al. (2014) who assessed in their

comprehensive study on different sampling biases

and correction methods that in the aspect of the

differences between unbiased and biased models often

remained moderate, despite significant deviations

depending on target species and bias type. Our results

also match those of Crall et al. (2013), who showed

that stratifying the sampling area yields in better

results of habitat suitability models for invasive alien

species.

The pattern of statistically significant differences in

predictions of final’ versus ‘full’ model (cf. Appen-

dices A, B, E) differed across sampling effort zones,

showing statistically the largest discrepancy on pre-

dictions at the least-sampled areas (e.g. Gower class

6). In the Alpine region, a comparably high proportion

of quadrants showed statistically significant differ-

ences despite small differences in absolute invasive

alien plant species richness between the two models

(‘‘Appendix E-a’’). However, high absolute differ-

ences without statistically significance were frequent

for the quadrants with high average invasive alien

plant species richness, rather poor sampling effort and

over-predictions by the full model (Gower class 8, 11,

13). There were no significant differences observed

between the final and full model in the areas of highest

sampling efforts (e.g. Gower classes 1, 3, 4).

Taking into account spatial uncertainty resulting in,

on average, higher estimates for species richness than

when ignoring it. This implies, vice versa, that

ignoring spatial uncertainty can lead to underestima-

tions of the numbers of invasive alien plants and the

size of their distributional ranges. The spatial uncer-

tainty of the locations also implied limitations on the

spatial resolution of the models. At 25 km2 resolution,

6.3% of our point information of presence of invasive

alien species had greater uncertainty than our predic-

tion resolution. For making predictions at 1 km2, this

value would increase to 40% (Radović, unpublised).

The pattern of differences among the final model

considering and ignoring spatial uncertainty of loca-

tions, again, reveal that most significant differences

occur in the least sampled areas of the country (cf.

Table 3).

Invasion pattern in Croatia

Although based on observational data with several

limitations, our models revealed clear patterns of

invasive alien plant invasion for Croatia. The level of

invasion significantly differs across the four biogeo-

graphic regions. The highest mean and maximum

species richness was predicted for Pannonia, followed

by the Mediterranean. The Mediterranean is consid-

ered particularly endangered by alien invasive species,

due to its sensitivity to most drivers of global change,

with biotic exchange indicated as one of the main

threatening factors (Sala et al. 2000). For the Croatian

Alpine region, our results show a low level of invasion

by invasive alien plant species. Likely, the reason for

this is relatively low human impact on the region

(Pauchard et al. 2009). These major biogeographic

patterns remained stable across the different kind of

data sets and modelling approaches applied in this

study.

Methodological solutions applied in this study

We are suggesting the described procedure as a

solution when modelling species richness or species

distribution based on observational databases with

biased sampling effort and relevant spatial uncertainty

of locations. The thresholds representing optimal

trade-offs between data coverage and homogenous

sampling effort can be obtained according to the

model performances at the validation points. After

selecting the optimum threshold, the validation points

can be added back to the prediction set in order to

produce a final model, which we consider an optimal

output for applied purposes. Testing the performance

of the final model should be conducted by sampling

across different ecological conditions, but this

approach is time consuming and expensive. Our

approach was to use the RMSE of model residuals at

the validation points, i.e. the 5% best sampled

quadrants in Croatia, assuming that species lists at

these quadrants are complete.

The environmental predictors used in our regres-

sion model were Gower classes based on habitat and

climate and the area of settlements in each quadrant.

These variables have shown to be linked with the level
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of invasion and are probably the most relevant in this

context. However, additionally, other variables could

be used in such modelling efforts, for instance,

landscape heterogeneity and other landscape patterns

having strong relations to species richness (Allouche

et al. 2012; Tschantke et al. 2012; Schindler et al.

2013; Stein et al. 2014). Further, we could improve the

sectioning by using more than three dominant habitats

for the classification for better incorporation of habitat

complexity. Incorporating imperfect detection of the

species in the field could also strongly improve the

final modelling outcome (Kery and Schmid 2004;

Kéry et al. 2010). We are aware that our approach is

mainly applicable in dealing with sampling bias and

spatial uncertainty in the areas with rich data, because

the statistical procedures used in this approach are

hardly possible with small sample sizes. In particular,

variogram estimation becomes increasingly unreliable

as the number of points becomes smaller and their

density lower. However, given the current trends in

biodiversity data availability (e.g. Tittensor et al.

2014), we are confident that data availability will

further increase for many areas, leaving data hetero-

geneity as principal challenge.

Conclusions and recommendations

We developed and assessed a new approach for

modelling species richness using observational data

collected with different sampling efforts due to a focus

on areas attractive to naturalists and researchers. A

clear-cut threshold for sampling effort per quadrant

would leave large areas of specific habitat and climate

conditions completely unrepresented in the dataset

used for model preparation. Thus, we developed an

approach where thresholds in sampling effort were

applied for each of 15 homogenised parts defined

according to three dominant habitat classes and

climate conditions.

Our results clearly show that observational data-

bases are a valuable source for ecological models that

can lead to robust results (cf. Hortal and Lobo 2005).

However, our approach also demonstrates that the

usefulness of observational databases would strongly

benefit from standardized sampling effort in a whole

range of ecological conditions. Ignoring biased sam-

pling efforts and uncertainty of locations could lead to

significantly different predictions and to

underestimations of numbers and distributions of

invasive alien plant species. The threshold obtained

according to the model performance at the validation

points certainly depend on the input data, the predic-

tive power of the environmental variables and the

modelling techniques used and may well vary in other

studies and regions. Furthermore, we are suggesting

that the procedure described in this study be used

whenever using the data from observational databases

in model preparation. Such results can be comple-

mented by the level of uncertainty of the predictions

by testing the sensitivity of the results for different

methodological options. The spatial uncertainty of the

locations caused limitations for the model resolution.

The data with higher spatial uncertainty of locations

than grid resolution should be excluded. However, we

expect that the problem of spatial uncertainty will

improve, because more and more observers mean-

while report precisely georeferenced data.

Furthermore, our results lead to conclusion that that

differential sampling effort is strongly related to

ecological conditions, which, again, is a constraint

for obtaining data qualities that serve the modelling

purposes. It is, therefore, crucial to set up sampling

and monitoring schemes that are stratified across

ecological conditions. Croatian botanists have already

observed the inadequate knowledge of flora in some

parts of the country (Nikolić et al. 2014). This should

change in a way that at least species checklists should

become available for MTB, or even better, MTB64

quadrants (approximately 1 km2). The use of mod-

elling techniques can give the probability of species

occurrence according to the known relationship

among species and environmental variables. This

information should be used to assess potential species

assemblages across Croatia. As such, it should fill the

gap in knowledge that exists now due to lack of

records for some parts of Croatia’s vegetation/floristic

composition (Nikolić et al. 2014). This situation is not

specific for vegetation data: databases for other taxa,

like birds, suffer from even more extreme biases.
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Appendix A

Raster data sets used to model alien plant species

richness: (a) total number of floristic records in Flora

Croatica Database (FCD)—transferred to 4 zones

according to summary statistics; (b) Gower classes

determined by means of clustering on similarity

matrix obtained via Gower algorithm using informa-

tion on three dominant habitat classes and climate

variables; (c) biogeographic regions of Croatia

according to State Institute of Nature Protection

(EEA 1998).
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Appendix B

(a) Distribution of grids across sampling effort zones

(1-white: lowest effort; 4-black: highest effort) per

Gower class.

(b) Residual variograms from regressions on envi-

ronmental predictors from the model that includes

random errors in coordinates according to the reported

spatial uncertainty (left panel) and the final model

prepared with D65 plus validation points (right panel).
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Appendix C

Invasive alien plant species richness predictions of

final and full model: (a) differences of predictions

across biogeographic regions; figure shows how final

and full model predict differently regarding biogeo-

graphic regions—parallel box plots of differences in

predicted invasive alien plant species richness;

(b) number of quadrants with significantly different

predictions of invasive alien plant species richness per

biogeographic region (significantly higher (BH) and

significantly lower (BL) at 0.05 level of significance).
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Appendix D

Invasive alien plant species richness predictions of

final and full model: (a) absolute differences of

predictions across Gower classes; (b) Number of

quadrants with significantly lower (BL) and signifi-

cantly higher (BH) predictions of final model per

region at 0.05 level per Gower classes (only Gower

classes with detected significant differences are pre-

sented in plot); (c) Distribution of grids across

sampling effort zones (1-white: lowest effort; 4-black:

highest effort) per Gower class; number of quadrants

per biogeographic region used in each dataset. For the

datasets D85, D65, D50, D35, D15, and D0, quantile

sampling effort was referring to each Gower class, not

to the entire biogeographic region.

In these figures we presented how our models (final

and full model) predicts differently regarding Gower

classes (a) revealing those habitat/climate classes

where differences are most pronounced as Gower

classes 2, 3, 6, 11 and 14. Figure b present the direction

of significant differences in predictions. Only in

Gower class 6 the final model predicted more often

significantly lower than significantly higher species

richness than the full model.
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(c)

Dataset Alpine Conti

-nental

Mediter

-ranean

Pannonian

D85 34 89 67 25

D65 (= best model) 95 265 194 92

D50 143 412 290 128

D35 193 540 381 179

D15 266 728 501 229

D0 310 920 636 278

Validation (best 5%

across Country)

33 35 45 0

TOTAL 343 955 681 278

D65 ? validation

points (= final

model)

147 349 291 104

Appendix E

Invasive alien plant species richness predictions of

final and full model across research effort classes:

(a) absolute differences of predictions across sampling

effort zones revealing that final models predicted

higher numbers and that the range of prediction

differences stayed constant over all four research

effort zones; (b) species richness predicted by final vs

full model; (c) Number of quadrants with significantly

lower (BL) and significantly higher (BH) predictions

of final model at 0.05 level per sampling effort zones

(coding for sampling effort zones: Highest sampling

effort ([ 3rd quartile)—zone 4 up to lowest sampling

effort (\ 1st quartile)—zone 1.
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