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Abstract
Large scale phosphate mining in the Huangbaihe River Basin, China has reduced the self-purification capacity of the basin’s 
fresh water. Three years (2014–2016) of monitoring data and chemometric analysis were used to identify the dominant 
pollutants and define their spatial distribution in the basin. Principal component analysis was applied to determine the con-
tribution of the individual pollutants. Total phosphorus (TP) 53%, water temperature (TEMP) 27%, and total nitrogen (TN) 
20% proved to be the dominant problems. A discriminant functions (DF) model was developed to classify the study area into 
high, moderate, and low pollution zones. The DF coefficients were applied to analyze the correlation between DF and the 
measured parameters and it was found that TP, TN, and TEMP were positively correlated with the DF, indicating that these 
parameters were the most important. Finally, the results were compared with the locations of the mining activities, which 
revealed that TP is higher in the upper sub-basins, Xuanmiaoguan and Tianfumiao, where most of the high pollution zones 
are located and more than 78% of the areas are affected by the phosphate mines. It is concluded that the phosphate mining 
is the major source of pollution and TP is the dominant pollutant responsible for the total water quality variation in the river 
basin. More effective management measures have to be taken to reduce phosphorus runoff into the reservoir watersheds.

Keywords Chemometrics · Discriminant analysis · Principal component analysis

Introduction

As with all mining activities, the extraction and beneficiation 
of phosphate rock to produce mineral fertilizer has the poten-
tial to cause negative environmental impacts (Association 

2001). There are two primary concerns regarding the effects 
of phosphate mining on water resources (Lewelling and 
Wylie 1993): (1) its hydrological impact due to water usage, 
landscape, and ecological changes, and (2) its impacts on 
water quality due to discharges of polluted water, including 
effluent process water (Chraiti et al. 2016; Jiries et al. 2004), 
radionuclides (Uyanik et al. 1999), and phosphate runoff 
(Das 1999). Such discharges can temporarily or permanently 
change the use of water resources for a particular purpose 
(Fakayode 2005).

The Huangbaihe River Basin (HRB) and its four reser-
voirs, Xuanmiaoguan, Tianfumiao, Xibeikou, and Shangji-
ahe, are the first-class drinking water source protection zone 
of Yichang City, China (Qu et al. 2016). There are a total of 
28 water sources, providing 775,000 tons of water per day 
to a population of 2.269 million. Recently, due to large scale 
phosphate mining in the region, eutrophication has affected 
the self-purification capacity of the basin’s fresh water. Fre-
quent occurrences of algae blooms in reservoirs and along 
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the rivers have produced serious drinking water crises, such 
as in Yichang City in 2013 (Bao et al. 2018).

Long term water quality monitoring programs have 
proven to be the best approach to understand watershed 
hydrochemistry and river water quality (Dixon and Chiswell 
1996). However, because monitoring usually involves mul-
tiple measurements collected at different times and different 
locations, monitoring programs can generate large volumes 
of data that cannot be managed by traditional data analysis 
(Gazzaz et al. 2012). Chemometric (also known as multi-
variate) statistical techniques have been tested for manag-
ing and analyzing large databases composed of multiple 
variables, and frequently used for water quality parameter 
reduction (Lopes et al. 2014), water pollution assessment 
(Boyacioglu 2007), and water quality classification (Kow-
alkowski et al. 2006). Chemometric techniques can also be 
used to explore for hidden patterns in a wide range of data 
to allow us to relate physical information to our chemical 
knowledge (Brereton 2003). Three chemometric statisti-
cal techniques, cluster analysis (CA), discriminant analysis 
(DA), and principal component analysis (PCA), were used 
to analyze 3 years (2014–2016) of water quality monitoring 
data, identify the dominant pollutants, and define the spatial 
distribution of pollution zones in the river basin.

Materials and Methods

Study Area

The HRB is a tributary of the Yangtze River, China, located 
between latitudes 31°00′18″N and 31°29′06″N and longi-
tudes 111°03′54″E and 111°27′34″E (Fig. 1). The HRB 
has four cascaded reservoirs Xuanmiaoguan, Tianfumiao, 
Xibeikou, and Shangjiahe located upstream, in the upper and 
lower sections, and downstream of the river. Their respective 
total storage capacities are: Xuanmiaoguan 40.54 × 106 m3, 
Tianfumiao 64.2 × 106  m3, Xibeikou 210 × 106  m3, and 
Shangjiahe 16.46 × 106 m3.

Phosphate mining covers 28% of the study area. includ-
ing the four reservoirs (Wang et al. 2016) (Fig. 1). Since 
2003, the scale of mining has been rising: 4.74 billion kg 
in 2004, 6.05 billion kg in 2005, 8.76 billion kg in 2008, 
and 14.1 billion kg in 2014. The activities include exploita-
tion, exploration, and pre-beneficiation of phosphate ore. 
Mining effluent and reused process water have been directly 
discharged into the nearby streams and reservoirs (Bao et al. 
2018; Wang et al. 2016).

Water Quality Sampling and Analytical Procedures

Water samples were collected from 26 stations (Fig. 1) once 
a month between 2014 and 2015. After 2015, some of the 
stations were equipped with remote, automatic, real-time, 
24 h water quality monitoring systems that monitored water 
temperature (TEMP), pH, dissolved oxygen (DO), electri-
cal conductivity, turbidity, ammonia nitrogen  (NH4

+), per-
manganate, fluoride (F), total phosphorus (TP), and total 
nitrogen (TN), using a telemetry terminal and a WEB release 
system. This allowed the frequency of water quality data 
collection to be increased to three times a month between 
2015 and 2016. The use of such an online system for data 
collection has been previously validated (Zhu et al. 2010). 
Water transparency (WT) and chlorophyll-a (Chl.a) were 
measured manually, when and where possible. Water sample 
preservation, transportation, and analysis followed the meth-
ods stipulated in State Environmental Protection Administra-
tion, China (SEPA 2002). The analytical methods are given 
in Table 1.

Chemometrics Data Analysis

Chemometrics is a subdivision of environmental science that 
uses environmental measurements as well as multivariate 
techniques for analysis and interpretation of data (Boyacio-
glu 2007; Simeonov et al. 2000). This section gives a brief 
description of the application of the three standard chemo-
metric methods.

Cluster Analysis

CA is an unsupervised classification and is the most widely 
used technique for classification of cases into unique clus-
ters. CA classifies members based on the similarity between 
them and gradually links each member until they are joined 
together to form a complete cluster. It defines the interval 
between groups based on Euclidean distance functions EDF; 
(Kannel et al. 2007). The algorithm that exists between anal-
ogous groups is referred to as hierarchical agglomerative 
clustering HAC; (Ward 1963). The end result of HAC can 
be displayed as a dendrogram. Due to problems of different 
measurement units, the original input variables for CA were 
standardized into a zero mean and unit standard deviation 
before analysis. The EDF applied in the CA has the form of 
eq. (1) (Kannel et al. 2007)

(1)p(x, y) =

n∑

i=1

|
|xi − yi

|
|,
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Fig. 1  Location map of the water quality monitoring stations and 
mining infrastructures in the Huangbaihe River Basin. Stations 
1–10 are located in the Xuanmiaoguan sub-basin, stations 11–17 are 
located in the Tianfumiao sub-basin, stations 18–22 are located in the 

Xibeikou sub-basin, and stations 23–26 are located in the Shangjiahe 
sub-basin. Monitoring stations 10, 17, 22, and 26 are reservoir water 
quality monitoring stations located at the outlets of the Xuanmiao-
guan, Tianfumiao, Xibeikou, and Shangjiahe reservoirs, respectively

Table 1  Measured parameters 
and analytical methods

Parameters Abbreviation Unit Analytical method Detection limit

Water temperature TEMP °C Thermometer –
pH pH mg/L pH meter –
Dissolved oxygen DO mg/L Winkler method 0.2
Permanganate index CODmn mg/L Acidic potassium permanganate method 0.5
Ammonium nitrogen NH4

+ mg/L Auto discrete analyzer 0.025
Total phosphorus TP mg/L Molybdenum blue method 0.01
Total nitrogen TN mg/L Ultraviolet spectrophotometer method 0.05
Fluoride F mg/L Fluoride selective electrode method 0.02
Water transparency WT m Manual, using Secchi disk –
Chlorophyll-a Chl.a mg/L Spectrophotometer method 0.00011
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where p (x, y) is EDF defined by  xi and  yi, and p is the vector 
space of the parameters.

Discriminant Analysis

DA is a supervised classification technique where known 
classifications of some observations are used to discriminate 
them from others in the dataset (Brereton 2003). It forms 
one or more weighted linear combinations of discrimina-
tor variables called discriminant functions DFs; (Tinsley 
and Brown 2000). There are two main applications of DA 
for chemometric analysis; (1) classification or discrimina-
tion of observation samples between previously identified 
dependent groups, and (2) determination of the relative 
contribution of independent parameters to the classification 
of the dependent groups (Fisher 1936; Tinsley and Brown 
2000). The effectiveness of the DF in differentiating between 
groups is determined by the size of the eigenvalues. The 
higher the percentage of the eigenvalue, the more effective 
the DF is in differentiating between groups and vice versa 
(Aguilera et al. 2001). The Wilks’ Lambda test measures the 
significance of DA, and is an indication of the degree of var-
iance of dependent variables not explained by the DA (Paul 
et al. 2006). The linear combination for DA, also known as 
DF, is derived from an equation that takes the form of eq. 
(2) (Papaioannou et al. 2010):

where:  ki is a constant; i is the number of groups; n is the 
number of variables; and  wij is the weight contribution of 
variable  pij.

Principal Components Analysis

PCA is an advanced data analysis method used to identify 
the various relationships and interconnections existing 
among target constituents in multidimensional datasets. It 
usually serves as a data reduction technique (Lopes et al. 
2014) and transforms the original dataset into smaller sets 
of uncorrelated principal components (PCs) (Gu et al. 2016). 
The number of significant PCs is ideally equal to the num-
ber of significant groups in the dataset (Brereton 2003). In 
PCA, each principal component (PC) is represented by the 
scores and factor loadings. The size of the factor loadings of 
each PC is indicative of the power of the PC to differentiate 
among the variables. Rotation of the PCs axis generates new 
sets of factors referred to as varifactors (VFs), which can be 
used by PCA to extract hidden information that were not 
identified by PCA (Helena et al. 2000). The general form of 
PCA has the form of eq. (3) (Singh et al. 2005).

(2)f
(
Gi

)
= Ki +

n∑

j=1

WijPij,

where: Z is the PC score; a is PC loading; X represents the 
monitored value of the parameters; i represent PC number; 
j represents observation number; and m represents the total 
number of measured parameters.

Results and Discussion

Water Quality Results Evaluation

The descriptive statistics of the 3-year (2014–2016) of 
experimental parameters from the 26 monitoring stations 
was separately analyzed for each sub basin (Table 2). For 
comparison, the recommended environmental quality stand-
ard for surface water (China 2002), also known as (GB 
3838-2002) is included in each table. The (GB 3838-2002) 
standards classifies surface water bodies into five classes 
(Table 2a), analogous to clean to seriously polluted water 
source. The standards Class I, Class II, and Class III are 
mainly applicable for drinking water sources, Class IV for 
industrial use, and Class V for agricultural use.

Considering the toxicity of the pollutants and the location 
of the station, the numbers of monitored parameters var-
ied among the different stations. WT was measured manu-
ally and accessibility was a problem at some of the stations 
(especially during the deep winter season). Similarly, Chl.a 
was mainly monitored along the main rivers and inside the 
reservoir. For this reason, only the 18 stations with common 
data records were used for chemometric analysis (Fig. 2). 
Due to problems of no commensurate units, the initial input 
variables had to be standardized into a zero mean and unit 
standard deviation before analysis (Kannel et al. 2007). In 
this study, CA and PCA was applied to the standardized 
samples and DA was applied to the original, unstandardized 
samples (Vega et al. 1998). Data analysis was done using 
SPSS V20 (Norušis 1986).

The basic statistical results showed that there was 
a higher degree of variation in the nutrient pollutants 
than in the others. The maximum values for TP, TN, and 
Chl.a were 286, 72, and 2454 times their minimum val-
ues, respectively. The TP measured in the streams  (TPS) 
also showed greater variation than the TP measured in the 
reservoir water  (TPR). The maximum  TPS value was 286 
times its minimum value, but the maximum values for  TPR 
was ten times the minimum  TPR. Such large variations in 
the measured values are likely controlled by the source 
and location of the pollutant in the basin. Comparison of 
the mean values of the measured parameters in the HRB 
with the GB 3838-2002 criteria (Table 2) indicate that the 
pollution level of DO, pH, F,  CODmn and  NH4

+ correlated 
with Class I,  TPS with Class II,  TPR with Class III, and 

(3)Zij = bi1X1j + bi2X2j +⋯ + bimXmj,
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Table 2  Descriptive statistics 
of water quality monitoring 
samples

TP
S
 TP concentrations in streams, TPR TP concentrations in reservoirs and lakes

a WT
b Chl.a do not affect classification in GB 3838-2002

Statistics of measured results Surface water class limits (GB 3838-2002) Classification

Min Max Mean StD Class I Class II Class III Class IV Class V

(a) (Xuanmiaoguan sub-basin)
 TEMP 2.00 30.00 14.66 6.21 – – – – – –
 DO 1.92 12.70 9.07 1.48 ≥ 7.5 ≥ 6.0 ≥ 5.0 ≥ 3.0 ≥ 2.0 Class I
 pH 7.20 8.93 8.40 0.26 6.5–8.5 6.5–8.5 6.5–8.5 6.5–8.5 6.0–9.0 Class I
 F 0.03 1.09 0.34 0.18 ≤ 1.0 ≤ 1.0 ≤ 1.0 ≤ 1.5 ≤ 1.5 Class I
 CODmn 0.50 12.00 1.35 1.02 ≤ 2.0 ≤ 4.0 ≤ 6.0 ≤ 10 ≤ 15 Class I
 NH4

+ 0.03 2.69 0.13 0.18 ≤ 0.15 ≤ 0.5 ≤ 1.0 ≤ 1.5 ≤ 2.0 Class I
 TPS 0.01 1.37 0.085 0.08 ≤ 0.02 ≤ 0.1 ≤ 0.2 ≤ 0.3 ≤ 0.4 Class II
 TPR 0.01 0.10 0.036 0.02 ≤ 0.01 ≤ 0.025 ≤ 0.05 ≤ 0.1 ≤ 0.2 Class III
 TN 0.13 5.98 1.45 0.83 ≤ 0.2 ≤ 0.5 ≤ 1.0 ≤ 1.5 ≤ 2.0 Class IV
 WTa 0.10 4.00 1.65 0.81 – – – – – –
 Chl.aa 0.00011 0.27 0.03 0.05 – – – – – –

(b) Tianfumiao sub-basin
 TEMP 3.00 30.00 15.62 6.57 – – – – – –
 DO 4.00 12.80 9.08 1.43 ≥ 7.5 ≥ 6.0 ≥ 5.0 ≥ 3.0 ≥ 2.0 Class I
 pH 7.60 8.98 8.46 0.19 6.5–8.5 6.5–8.5 6.5–8.5 6.5–8.5 6.0–9.0 Class I
 F 0.03 0.97 0.38 0.17 ≤ 1.0 ≤ 1.0 ≤ 1.0 ≤ 1.5 ≤ 1.5 Class I
 CODmn 0.50 6.19 1.40 0.87 ≤ 2.0 ≤ 4.0 ≤ 6.0 ≤ 10 ≤ 15 Class I
 NH4

+ 0.03 1.89 0.13 0.16 ≤ 0.15 ≤ 0.5 ≤ 1.0 ≤ 1.5 ≤ 2.0 Class I
 TPS 0.01 2.86 0.073 0.15 ≤ 0.02 ≤ 0.1 ≤ 0.2 ≤ 0.3 ≤ 0.4 Class II
 TPR 0.01 0.1 0.040 0.02 ≤ 0.01 ≤ 0.025 ≤ 0.05 ≤ 0.1 ≤ 0.2 Class III
 TN 0.07 5.07 1.48 0.71 ≤ 0.2 ≤ 0.5 ≤ 1.0 ≤ 1.5 ≤ 2.0 Class IV
 WT 0.10 4.20 1.78 0.78 – – – – – –
 Chl.a 0.00011 0.14 0.02 0.02 – – – – – –

(c) Xibeikou sub-basin
 TEMP 3.00 30.00 16.04 6.58 – – – – – –
 DO 6.69 12.80 9.14 1.33 ≥ 7.5 ≥ 6.0 ≥ 5.0 ≥ 3.0 ≥ 2.0 Class I
 pH 7.10 8.98 8.47 0.20 6.5–8.5 6.5–8.5 6.5–8.5 6.5–8.5 6.0–9.0 Class I
 F 0.03 0.97 0.40 0.21 ≤ 1.0 ≤ 1.0 ≤ 1.0 ≤ 1.5 ≤ 1.5 Class I
 CODmn 0.50 6.02 1.40 0.82 ≤ 2.0 ≤ 4.0 ≤ 6.0 ≤ 10 ≤ 15 Class I
 NH4

+ 0.03 0.63 0.11 0.09 ≤ 0.15 ≤ 0.5 ≤ 1.0 ≤ 1.5 ≤ 2.0 Class I
 TPS 0.01 0.18 0.053 0.03 ≤ 0.02 ≤ 0.1 ≤ 0.2 ≤ 0.3 ≤ 0.4 Class II
 TPR 0.01 0.050 0.030 0.012 ≤ 0.01 ≤ 0.025 ≤ 0.05 ≤ 0.1 ≤ 0.2 Class III
 TN 0.24 12.19 1.52 0.99 ≤ 0.2 ≤ 0.5 ≤ 1.0 ≤ 1.5 ≤ 2.0 Class V
 WT 0.50 5.20 2.53 0.78 – – – – – –
 Chl.a 0.00011 0.10 0.01 0.02 – – – – – –

(d) Shangjiahe sub-basin
 TEMP 3.00 30.00 16.76 6.79 – – – – – –
 DO 4.60 12.72 9.06 1.43 ≥ 7.5 ≥ 6.0 ≥ 5.0 ≥ 3.0 ≥ 2.0 Class I
 pH 7.60 8.90 8.35 0.22 6.5–8.5 6.5–8.5 6.5–8.5 6.5–8.5 6.0–9.0 Class I
 F 0.02 0.58 0.28 0.11 ≤ 1.0 ≤ 1.0 ≤ 1.0 ≤ 1.5 ≤ 1.5 Class I
 CODmn 0.57 6.00 1.93 1.09 ≤ 2.0 ≤ 4.0 ≤ 6.0 ≤ 10 ≤ 15 Class I
 NH4

+ 0.03 7.51 0.14 0.53 ≤ 0.15 ≤ 0.5 ≤ 1.0 ≤ 1.5 ≤ 2.0 Class I
 TPS 0.01 0.45 0.052 0.04 ≤ 0.02 ≤ 0.1 ≤ 0.2 ≤ 0.3 ≤ 0.4 Class II
 TPR 0.01 0.05 0.029 0.01 ≤ 0.01 ≤ 0.025 ≤ 0.05 ≤ 0.1 ≤ 0.2 Class III
 TN 0.22 4.73 1.65 0.77 ≤ 0.2 ≤ 0.5 ≤ 1.0 ≤ 1.5 ≤ 2.0 Class V
 WT 0.50 4.60 2.30 0.83 – – – – – –
 Chl.a 0.00011 0.10 0.01 0.02 – – – – – –
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TN with Class IV–Class V, the worst water quality grade 
in China’s surface water quality standard (China 2002).

Dominant Pollutants and Contribution

PCA was used to identify the dominant pollutants and to 
determine their contribution to the total pollution in the river 
basin. The Kaiser–Meyer–Olkin (KMO) test measure was 
calculated for each parameter to test the sampling adequacy. 
KOM values ranges from 0 to 1, where 1 indicates that the 

dataset is applicable for PCA, 0 implies the dataset is not 
applicable for PCA, and a value greater than 0.6 is accept-
able (Nalini et al. 2010). The KMO result in this study was 
0.66 (Table 3), which may indicate acceptable. A similar test 
was used by Lopes et al. (2014) when they found a KMO 
value of 0.6 was acceptable.

According to the Kaiser criterion (Kaiser 1960), only 
eigenvalues greater than one should be used because subse-
quent smaller eigenvalues are less able to explain variation 
among the samples. The best result of the PCA model was 
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Fig. 2  Classification of pollution zones: a classification of observation samples into three pollution zones, and b classification of monitoring sta-
tions (spatial locations in the river basin) into three pollution zones
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therefore made up of three PCs (Table 4); PCA reduced ten 
variables into three PCs that explained 60% of the total vari-
ance. It can be seen that the first two PCs (PC-1 and PC-2) 
alone accounted for 48% of the total variations in the river 
basin.

The values of the factor loadings in each PC indicate the 
relationship of the PC with that parameter. For the first fac-
tor, PC-1 (Table 5), the highest load is for the parameter TP, 
0.783, indicating its significance in explaining the variation 
in PC-1. The second, PC-2, is largely explained by TEMP, 
0.797. The third factor, PC-3, is largely explained by TN, 
0.705.

The final step is to show how the application of a matrix 
transformation by the varimax rotation, simplifies the inter-
pretation of the results. The method is accomplished by 
factor analysis of the PCA results (Horel 1981); the results 
are called varifactors (VFs) (Table 6). This analysis is very 
important because it maximizes the gap between the highest 

and lowest factor loadings, which can help distinguish the 
most important pollutants in the water pollution analysis. 
Three VFs were generated (Table 6), VF-1, VF-2, and 
VF-3, which explained 31.6%, 16%, and 12% of the total 
water quality variation, respectively. Successive VFs were 
very small and their contribution is insignificant (Kaiser 
1960); therefore, the percentage score of the three identi-
fied contributing VFs can be scaled up to 53%, 27%, and 
20%, respectively. The variables with the highest loading in 
each of the VFs the hallmark variables; (Kothai et al. 2008) 
were TP (0.793) on VF1, TEMP (− 0.943) on VF2, and TN 
(− 0.754) on VF3.

Pollution Zones Discrimination Analysis

Combined application of CA, DA, and water quality vari-
ables can be used to discriminate between significant pol-
lution zones. CA classified monitoring stations into three 
significant pollutions zones (Fig. 2): high pollution (HP), 
represented by stations 2, 3, 5, 7, 12, 13, 15, 19, 20, and 23, 
moderate pollution (MP), represented by stations 8, 14, and 
16, and low pollution (LP), represented by stations 10, 17, 
21, 22, and 26.

The clustering of monitoring stations into three distinct 
pollution zones indicates that water quality in the river 
basin varied distinctively and this variation was mainly 
due to the anthropogenic activities in the river basin. The 
results (Fig. 2b) can be interpreted with the location of 
the monitoring stations (Fig. 1), which showed that most 
of the HP stations are located in the more upstream sub-
basins, Xuanmiaoguan and Tianfumiao, and that most of 
the LP stations are located in the more downstream sub-
basins, Xibeikou and Shangjiahe. Figure 2b also shows 

Table 3  Principal component 
analysis: Kaiser–Meyer–Olkin 
(KMO) test result

Parameters TEMP pH DO CODmn NH4
+ TP TN F WT Chl.a Average

KMO 0.474 0.471 0.588 0.819 0.733 0.801 0.604 0.447 0.753 0.730 0.663

Table 4  Principal component 
analysis: total variance 
explained

PCs Extracted eigenvalues Eigenvalues greater than one

Eigenvalues Variability (%) Cumulative (%) Eigenvalues Variability (%) Cumulative (%)

PC-1 3.166 31.661 31.661 3.166 31.661 31.661
PC-2 1.605 16.054 47.715 1.605 16.054 47.715
PC-3 1.217 12.173 59.888 1.217 12.173 59.888
PC-4 0.966 9.661 69.549
PC-5 0.861 8.612 78.161
PC-6 0.780 7.805 85.965
PC-7 0.548 5.481 91.446
PC-8 0.420 4.201 95.647
PC-9 0.315 3.149 98.796
PC-10 0.120 1.204 100.000

Table 5  Principal component analysis: principal component matrix

Parameters PC-1 PC-2 PC-3

TEMP 0.460 − 0.797 0.205
pH − 0.343 − 0.087 0.597
DO − 0.725 0.594 − 0.101
CODmn 0.770 0.237 − 0.107
NH4

+ 0.750 0.252 − 0.034
TP 0.783 0.227 0.113
TN 0.265 − 0.106 − 0.705
F 0.082 0.280 0.439
WT − 0.569 0.002 − 0.267
Chl.a 0.380 0.591 0.147
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that the stream monitoring stations are more polluted 
than the reservoir monitoring stations (10, 17, 22, and 26; 
Fig. 1). Generally the findings from the CA analysis indi-
cate that the upstream sub-basins are more mineralized 
(more polluted) than the downstream sub-basins and that 
pollution is worse in the tributary streams than in the main 
river and reservoirs.

DA was used to develop discriminate functions (DFs) 
that can be used to discriminate the pollution heteroge-
neity of monitored samples for the monitoring stations. 
For number dependent groups (K), the number of DFs is 
k − 1. There are three pollution zones (dependent groups); 
therefore, the developed DA-model has two DFs (Table 7). 

Un-standardized discriminate function coefficients (UDFCs) 
were used to construct the actual prediction equation, which 
was used to classify new observations. The eigenvalues 
(Table 7) were used to give the discriminate criterion. The 
higher the eigenvalues, the more effective the DF is in dif-
ferentiating between the groups (Aguilera et al. 2001). 74% 
of the variance was explained by the first DF  (DF1), which 
was more effective in differentiating between the groups than 
 DF2. Therefore, it is statistically valid to develop the DF for 
the river basin based on  DF1. The DF, developed based on 
the UDFCs (Table 7) and (Eq. 2) is given in Eq. (4). This is 
the classical method of classification, used in different stud-
ies e.g. Gazzaz et al. (2012).

(4)DF1 =

[
−13.679 + 0.099 × TEMP + 1.861 × pH − 0.513 × DO + 0.201 × CODmn + 2.851 × NH4

+

+20.797 × TP + 0.321 × TN − 4.371 × F − 0.061 ×WT − 6.026 × Chla

]

.

Table 6  Principal component 
analysis: rotated component 
matrix and the contribution of 
parameters (%)

Parameters Rotated component matrix (%) of Contribution

VF-1 VF-2 VF-3 VF-1 VF-2 VF-3

TEMP − 0.005 − 0.943 − 0.012 0.106 29.931 0.449
pH − 0.260 − 0.044 0.642 5.910 1.383 23.667
DO − 0.312 0.877 0.146 7.094 27.861 5.371
CODmn 0.759 − 0.152 − 0.246 17.271 4.817 9.067
NH4+ 0.759 − 0.147 − 0.169 17.264 4.660 6.241
TP 0.793 − 0.218 − 0.038 18.031 6.927 1.386
TN 0.079 − 0.056 − 0.754 1.806 1.777 27.795
F 0.270 0.094 0.443 6.148 2.991 16.311
WT − 0.512 0.342 − 0.128 11.634 10.850 4.735
Chl.a 0.648 0.277 0.135 14.737 8.802 4.978
(%) of Variance 31.661 16.054 12.173
Cumulative (%) 31.661 47.715 59.888
The main pollutants in the river basin TP TEMP TN
Percentage of contribution 53% 27% 20%

Table 7  Discriminate analysis: 
un-standardized discriminate 
function coefficients and 
eigenvalues

Eigenvalue Un-standardized discriminate function coef-
ficients

DF1 DF2 Parameters DF1 DF2

Eigenvalue 3.006 1.040 TEMP 0.099 0.077
(%) of Variance 74.3 25.7 pH 1.861 2.358
Cumulative (%) 74.3 100 DO − 0.513 0.851

CODmn 0.201 − 0.285
NH4

+ 2.851 3.950
TP 20.797 23.573
TN 0.321 − 0.408
F − 4.371 − 1.293
WT − 0.061 − 0.250
Chl.a − 6.026 8.798
Intercept − 13.679 − 28.510
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The next step was to assess the level of significance of the 
developed DF. The Wilk’s lambda test evaluates the signifi-
cance of the discriminatory power of the DF. It indicates the 
amount of the variance of the dependent variable that is not 
explained by the DA. Wilk’s lambda value ranges between 0 
and 1, where 0 indicates total discrimination and 1 indicates 
no discrimination. The Wilks’ Lambda test result was 0.119 
(Table 8), which is considered significant.

The last step was to use the developed DF to classify the 
monitored samples for the monitoring stations. Figure 2a 
shows that the monitored samples can be also classified into 
three distinct pollution group analogues to HP, MP, and LP. 
In Fig. 2a, the HP samples display the highest percentage of 
variance on the  DF1 vs.  DF2 axis and the LP samples dis-
play the lowest percentage of variance. The efficiency of the 
classification can be assessed by the percentage of correctly 
classified samples (Table 9). In this analysis, the efficiency 
obtained was high, with 93% of the total correctly classified, 
and 88% cross-validated (Table 9). The correct assignment 

for each pollution zone was HP 96%, MP 91%, and LP 94%. 
The cross-validation provides the percent correctly predicted 
for any samples left unclassified. The correct assignment for 
cross-validation among the pollution zones was HP 88%, 
MP 86%, and LP 91%, which indicates that the DF model 
may be accurate enough for river water quality management 
in the HRB.

The UDFCs (Table 7) were used to examine the devel-
oped DF to determine the relative importance of the moni-
tored parameters in discriminating between the pollution 
zones (Fig. 2a, b). The parameters with relatively larger 
weights contribute more to the discriminate power of the 
DF than parameters with smaller weights. The parameters 
TP (20.797),  NH4

+ (2.851), pH (1.861), TN (0.321),  CODmn 
(0.201), and TEMP (0.099), were positively correlated with 
DF and were important parameters in the discriminating pro-
cess (Table 7). However, the contribution of TP is greater 
than the contributions from all of the other selected param-
eters, indicating that TP was the most important parameter 
for classifying the observations using DF.

Spatial Correlation of Dominant Pollutants 
and the Mining Area

The objective of this analysis was to investigate the spa-
tial relationship of dominant pollutants, TP and TN, and 
the mining activities by comparing concentrations of the 
pollutants and the proportion of mining area in the mining 
sub-basins (Figs. 1, Fig. 3a1, a2, b).

More than 260  km2 or 28% of the study area is 
affected by phosphate mining and associated activities. 
The mining sub-basins are Xuanmiaoguan, Tianfumiao, 
and Xibeikou. The Shangjiahe sub-basin has no mining 
activity. The proportion of mining area in the mining 
sub-basins calculated from (Fig. 1); is Xuanmiaoguan 
(45%), Tianfumiao (33%), and Xibeikou (11%). The  TPS 
in each sub-basin (upstream–downstream) were: Xuan-
miaoguan 0.085 mg/L, Tianfumiao 0.073 mg/L, Xibei-
kou 0.053 mg/L, and Shangjiahe 0.052 mg/L (Fig. 3a1). 
The  TPR in each sub-basin had the same trend: Xuan-
miaoguan 0.036 mg/L, Tianfumiao 0.040 mg/L, Xibei-
kou 0.030 mg/L, and Shangjiahe 0.029 mg/L (Fig. 3a2). 
The result indicated that TP concentration (TPs and  TPR) 
of the mining sub-basins varied among sub-basins and 
decreased sharply from upstream to downstream sub-
basin, which corresponded with the areal extent and prox-
imity of the mining area within each sub-basin. The rela-
tionship was stronger between  TPS and mining extent than 
between  TPR and mining extent, which may be because 
 TPR is affected by dilution due to mixing of the reservoir 
water with stream water. Even so, TP decreased down-
stream in both cases, away from the mining sub basins 
(Fig. 3a1, a2). This result is consistent with the results 

Table 8  Discriminate analysis: 
test of equality of covariance 
matrices

Wilks’ Lambda test Value

Lambda 0.119
F (observed value) 43.588
F (critical value) 1.593
DF1 20
DF2 460
p value < 0.0001
Alpha 0.05

Table 9  Discriminate analysis: original sample classification results 
and cross-validation result

Group Predicted-group-member-
ship

Total-sample

HP MP LP

Original-classification
 Count HP 70 3 0 73

MP 8 94 1 103
LP 0 4 63 67

 (%) Cor-
rectly 
classified 
93.42%

HP 95.89 4.1 0.0 100
MP 7.7 91.26 0.97 100
LP 0 5.9 94.03 100

Cross-validated
 Count HP 63 8 2 73

MP 8 91 4 103
LP 1 5 61 67

 (%) Cor-
rectly 
classified 
88.48%

HP 86.3 10.9 2.7 100
MP 7.7 88.35 3.8 100
LP 1.5 7.5 91.00 100
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from PCA and DA: TP is higher in Xuanmiaoguan and 
Tianfumiao, where most of the high pollution zones are 
located, and more than 78% of the areas are affected by 
the phosphate mines.

Similar analysis of the TN concentrations in the sub-
basins (Fig. 3b) and proximity to mining indicated a weak 
correlation; TN slightly increased downstream, away from 
the mining areas. The TN concentrations (Fig. 3b) were: 
Xuanmiaoguan 1.453  mg/L, Tianfumiao 1.483  mg/L, 
Xibeikou 1.520 mg/L and Shangjiahe 1.647 mg/L.

Comparison of Surface Water Class Limits Among 
Sub‑basins and Between Streams and Reservoirs

The descriptive water quality statistics are is presented in 
Table 2a–d. All of the parameters listed in Table 1, except 
for WT and Chl.a, are used to assess surface water quality in 
China (China 2002). China’s surface water quality standard 

has separate limits for TP from streams  (TPS) and reservoirs 
 (TPR). Comparison of surface water class limits among the 
sub-basins and between the streams and reservoirs (Table 2), 
indicated that the parameters DO, pH, F,  CODmn, and  NH4

+ 
classified stream and reservoir water in all of the sub basins 
into Class I; TPS classified stream water in all sub basins 
into Class II; TPR classified reservoir water in all sub basins 
into Class III; TN classified stream and reservoir water in the 
Xuanmiaoguan and Tianfumiao sub-basins into Class IV and 
stream and reservoir water in the Xibeikou and Shangjiahe 
sub-basins into Class V. According to this analysis, the water 
quality in the upper two sub-basins (Xuanmiaoguan and 
Tianfumiao) is between Class I and Class IV and water qual-
ity in the lower two sub-basins (Xibeikou and Shangjiahe) is 
between Class I and Class V. Of the seven water quality indi-
cators considered for water quality classification (Table 2), 
the most important pollutants are TN and TP.

Mining area (%) 170 km2 (45%) 60 km2 (33%) 30 km2 (11%) (0%)

Mining area (%) 170 km2 (45%) 60 km2 (33%) 30 km2 (11%) (0%)

Mining area (%) 170 km2 (45%) 60 km2 (33%) 30 km2 (11%) (0%)

Fig. 3  Box plots that show the spatial correlation of dominant pol-
lutants and proportion of mining area in the Huangbaihe River’s four 
sub-basins: a1 total phosphorus from streams and proportion of the 
mining area, a2 total phosphorus from reservoirs and proportion of 

the mining area, b total nitrogen from streams and reservoirs and pro-
portion of the mining area. In the plots, a “+” marks the location of 
the mean; a line across the box represents the median, and the bottom 
and top of the box show the locations of the first and third quartiles
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The Impact of Phosphate Mining on Water Quality

To investigate the impact of phosphate mining in each sub-
basin, the concentrations of TP transported into the reser-
voirs,  TPS, were compared to the TP concentrations in the 
reservoirs,  TPR (Table 10). The TP-ratio computed for each 
reservoir was: Xuanmiaoguan (2.34), Tianfumiao (1.80), 
Xibeikou (1.77), and Shangjiahe (1.76) (Table 10). The 
size of the ratio indicates the relative amount of TP being 
discharged in each reservoir. Xuanmiaoguan had the highest 
ratio, indicating that phosphate mining has increased the  TPS 
in the Xuanmiaoguan sub-basin relative to the other sub-
basins. A similar analysis compared the TN concentrations 
transported into the reservoirs  (TNS) and in the reservoirs 
 (TNR). The TN-ratio  (TNS/TNR) computed for each reser-
voir was: Xuanmiaoguan (1.2), Tianfumiao (0.8), Xibeikou 
(0.93), and Shangjiahe (0.86) (Table 10). Similar to the TP-
ratio, the TN-ratio was higher for the Xuanmiaoguan reser-
voir than the other three downstream reservoirs, indicating 
the phosphate mining has increased TN in the Xuanmiao-
guan sub-basin relative to the other sub-basins.

The TP-ratio was greater than one  (TPS/TPR > 1) in all 
of the sub-basins, which indicates that the sub-basin water-
sheds are more mineralized with TP than the reservoirs. 
Therefore, the watershed activities may be the main cause 
of the increased TP in the reservoirs. However, the TN-ratio, 
especially in three sub-basins (Tianfumiao, Xibeikou, and 
Shangjiahe) was less than one  (TNS/TNR < 1), indicating 
that the watershed is less contaminated by TN than the res-
ervoirs. Therefore, the reservoir hydrochemistry may be the 
main reason for the increased TN in the reservoirs. There are 
several studies (e.g. Quirós 2003) that show that lakes and 
reservoirs can increase TN in the water by self denitrifica-
tion, ammonium emission from sediment, and  N2 fixation.

The general outcome of this analysis is that the Xuan-
miaoguan subbasin is more mineralized by nutrient runoff, 
especially TP, which is released from the phosphate mines. 
This finding is consistent with the results from previous 

work conducted in the same area. For example, Bao et al. 
(2018) measured the TP in the sediments of the reservoirs 
and found that TP concentration in the sediments of Xuan-
miaoguan reservoir is much higher than that of almost all 
typical eutrophic lakes or reservoirs in China. However, the 
TP diffusion fluxes in the sediments of Xuanmiaoguan reser-
voir are lower than that in Lake Dianchi. Lake Dianchi is one 
of the most hypertrophic lakes in China (Xiangcan 2003) 
affected by phosphate mining activities (Yang et al. 2018).

Conclusions

Phosphate mining activities in the area has increased TP in 
HRB’s upstream reservoir watersheds. Water quality data 
was collected between 2014 and 2016 to provide a synopsis 
analysis of ten experimentally determined parameters. Fac-
tor analysis of the PCA results indicated that TP, TEMP, and 
TN are the hallmark pollutants, responsible for 53%, 27%, 
and 20% of the total water pollution variations in the HRB. 
A DF model was developed to classify observations into 
high, moderate, and low pollution zones. The DF coefficients 
were usied to analyze the correlation between DF and the 
measured parameters and it was found that TP,  NH4

+, pH, 
TN,  CODmn, and TEMP had good positive correlations with 
DF, indicating that these parameters were the most important 
for classifying the observations. A spatial comparison of the 
analytical results and mining activities in the study area was 
done by comparing the sub-basin average  TPS,  TPR, and TN 
concentrations and proportion of mining area in the mining 
sub-basins. The result indicated that TP concentration (TPs 
and  TPR) of the mining sub-basins varied among sub-basins 
and decreased sharply from upstream to downstream sub-
basin, which corresponded with the areal extent and proxim-
ity of the mining area within each sub-basin. The TP concen-
trations were higher in the upper sub-basins: Xuanmiaoguan 
and Tianfumiao, where most of the high pollution zones are 
located and more than 78% of the areas are affected by the 
phosphate mines. As a general outcome, this study indicated 
that these two upstream sub-basins are more mineralized 
with nutrient runoff, especially TP, which is being released 
by phosphate mines in these upstream. These results dem-
onstrate the need to reduce phosphorus discharges into the 
upstream tributaries.
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Table 10  Comparison of TP and TN concentrations among sub-
basins and between streams and reservoirs

TN
S
 total nitrogen from streams, TNS total nitrogen from reservoirs

a TP-ratio
b TN-ratio

Parameter Xuanmiaoguan Tianfumiao Xibeikou Shangjiahe

TPS 0.085 0.073 0.053 0.051
TPR 0.036 0.04 0.03 0.029
TNS 1.554 1.366 1.475 1.528
TNR 1.318 1.694 1.579 1.767
(TPS/TPR)a 2.343 1.805 1.777 1.767
(TNS/TNR)b 1.179 0.806 0.934 0.864
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