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Abstract. Accurate hepatic vessel segmentation and registration using
ultrasound (US) can contribute to beneficial navigation during hepatic
surgery. However, it is challenging due to noise and speckle in US imaging
and liver deformation. Therefore, a workflow is developed using a reduced
3D U-Net for segmentation, followed by non-rigid coherent point drift
(CPD) registration. By means of electromagnetically tracked US, 61 3D
volumes were acquired during surgery. Dice scores of 0.77, 0.65 and 0.66
were achieved for segmentation of all vasculature, hepatic vein and portal
vein respectively. This compares to inter-observer variabilities of 0.85,
0.88 and 0.74 respectively. Target registration error at a tumor lesion of
interest was lower (7.1 mm) when registration is performed either on the
hepatic or the portal vein, compared to using all vasculature (8.9 mm).
Using clinical data, we developed a workflow consisting of multi-class
segmentation combined with selective non-rigid registration that leads
to sufficient accuracy for integration in computer assisted liver surgery.

Keywords: Computer assisted intervention * Liver surgery - Non-rigid
registration

1 Introduction

Computer assisted intervention (i.e. CAI) aims to equip the surgeon with a
“surgical cockpit”, where the live position of surgical instruments, preopera-
tive imaging and intraoperative organ position are represented within the same

B. R. Thomson and J. N. Smit—Equal contribution.

© Springer Nature Switzerland AG 2020
A. L. Martel et al. (Eds.): MICCAI 2020, LNCS 12263, pp. 275-284, 2020.
https://doi.org/10.1007/978-3-030-59716-0_27


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59716-0_27&domain=pdf
http://orcid.org/0000-0002-3073-9821
http://orcid.org/0000-0003-3971-7722
http://orcid.org/0000-0001-8675-8987
http://orcid.org/0000-0002-9968-3723
http://orcid.org/0000-0001-8384-8485
https://doi.org/10.1007/978-3-030-59716-0_27

276 B. R. Thomson et al.

coordinate system. The core process of CAl is the registration, which aims to find
a geometrical mapping between the preoperative image and the intraoperative
organ position.

Within computer assisted open liver surgery, the preferred method for obtain-
ing the information about intraoperative position of the organ is via a tracked 2D
ultrasound (i.e. US) probe (optically or electromagnetically tracked). Since US
can visualize underlying anatomical structures (e.g. tumors, hepatic and portal
vein), it is widely accepted and integrated into the surgical workflow.

By coupling a 2D US probe with a tracker, intraoperative 3D US volumes can
be reconstructed. Similar to conventional tomographic images, hepatic vascula-
ture imaged within these volumes can be automatically segmented, and used for
generating a 3D model of the underlying vasculature. Such a model can be reg-
istered with its preoperative counterpart (CT or MRI-based). Accuracy of this
registration is greatly dependent on the extent and accuracy of the US-based
segmentation of liver vasculature.

The majority of previous work on hepatic vasculature segmentation in 2D
US are based on conventional segmentation techniques. In [4,5], edge detection
algorithms based on the difference of Gaussians were evaluated in phantom set-
tings. In [11], semi-automated region growing methods were used, while in [14]
dynamic texturing combined with k-nearest classification was adopted. Other
methods combined extended Kalman filters with constraints on the detection of
ellipsoid models [7,19] or tubular structures [1,10,18]. Despite promising results
in phantom settings, these methods have proven less successful in clinical set-
tings since they are prone to mislabeling due to their susceptibility to sub-optimal
imaging conditions (e.g. artefacts, shadows, air-gaps, vessel abnormalities).

With the advances in deep learning, many convolutional neural network
(CNN) based segmentation techniques that outperformed conventional algo-
rithms, were developed for a broad range of clinical application. Similar advances
are emerging in hepatic vasculature segmentation from US volumes. For exam-
ple, in [16], a CNN combined with k-means clustering for hepatic vasculature
extraction was proposed. The network, trained on 132 2D US images, contained a
significantly smaller number of parameters compared to conventional deep learn-
ing networks and reported a segmentation accuracy, expressed as an intersection
over union (IoU), of 0.696 [16]. Similar approaches were adopted in [21] and [20],
where 2D [21] and 3D U-Nets [20] for hepatic vasculature segmentation were
proposed. These studies reported average segmentation accuracies, expressed as
Dice, of 0.5 for 2D U-Nets and 0.7 for 3D U-Nets.

In the context of registration, the segmentation results obtained in [21] were
used to define a region of interest for a two-step registration procedure based on
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and gradient ori-
entation similarity. While these recent studies [16,20,21] have shown promising
results, they are limited by a number of factors.

First, the aforementioned segmentation methods do not distinguish between
the two major types of hepatic vasculature (i.e. hepatic and portal vein). This
results in a single 3D model, where hepatic and portal veins are combined and
registered to their preoperative counterpart as a single anatomical structure.
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Because these vessel trees have different mechanical properties and independent
mobility, joined registration may result in a larger local registration error. Addi-
tionally, depending on the tumor position with respect to the hepatic vasculature,
the preservation of a hepatic or portal branch has different clinical implications
and may require different degrees of accuracy. We hypothesize that a more real-
istic segmentation approach would distinguish between hepatic and portal vein.
This will result in two separate 3D models of the hepatic vasculature which can
then be registered to their preoperative counterpart independently from each
other, aiming for a more accurate registration.

Second, the registration method described in [21] is based on rigid trans-
formation between the preoperative CT and the intraoperative model of the
vessels. While this methodology has been proven effective within a restricted
area, it does not compensate for organ deformation throughout the entire organ.
In this manuscript we will apply a non-rigid registration methodology and eval-
uate its accuracy in terms of two measures. Clinically, the most relevant measure
is the registration accuracy that one can achieve in the tumor lesion of inter-
est. In order to generalize the registration to the whole liver, overall registration
accuracy between the vasculature is most important.

Third, previous studies are evaluated over limited clinical datasets, making
it challenging to generalize to clinical use.

In this study we present a segmentation-registration pipeline, that is fully
trained and validated on intraoperative imaging. By means of deep learning,
we are able to fully automate the intraoperative segmentation process, which
is then utilized in the automatic registration of vasculature from the pre- and
intraoperative imaging.

2 Methods

The automatic non-rigid registration pipeline that is proposed in this work is
schematically illustrated in Fig. 1. This pipeline enables integration of informa-
tion regarding the lesions and their location with respect to the major hepatic
vasculature into the surgical environment.

An initial registration is performed by recording the orientation of the US
transducer and a one-point translation based on the center of the lesion. Fine
registration is based on the vasculature that is present in both imaging modal-
ities. In the preoperative imaging, vasculature is segmented semi-automatically
based on the method described in [8] and refined manually. The intraoperative
US vasculature is segmented automatically using a reduced filter implementation
of the standard 3D U-Net architecture [3].

This architecture is used to train three different deep learning models for sep-
arate segmentation purposes; segmentation of all vasculature, solely the hepatic
vein and solely the portal vein. The centerlines of both the pre- and intraoper-
ative segmentations are then used for non-rigid registration with the coherent
point drift (CPD) algorithm [17].

Following the segmentation process, both the pre- and intraoperative seg-
mentations are resampled to isotropic spacing of 1.1 mm, increasing registration
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speed significantly whilst still maintaining accuracy. The registration accuracy
was computed on the hepatic and portal vein by computing two measures. To
measure the overlap of the vasculature, we computed the root mean squared
error (RMSE) of the residual distances between the centerlines of the segmented
vasculature and its preoperative registered counterpart. To measure the clini-
cal accuracy, we computed the target registration error (TRE) as the Euclidean
distance between the center of the lesion, acquired through US and manually
segmented, and its preoperative registered counterpart. TRE was computed on
11 patients. For each case three TREs were found (using hepatic, portal, and all
vasculature). Subsequently, the lowest TRE between the registrations using hep-
atic or portal vasculature was compared with the TRE found using the combined
vasculature.

Fig. 1. Vasculature is extracted from the preoperative scan (CT or MRI) prior to
surgery (top row). During surgery vasculature is extracted from a reconstructed US
volume (bottom row). Centerlines from both modalities are used for registration.

2.1 Vascular Segmentation

The 3D U-Net architecture that is used is a NiftyNet [6] Tensorflow implemen-
tation similar to Cigek et al. [3], but the amount of filters in every layer has
been reduced to an eighth, to avoid bottlenecks. A learning rate of 5 x 1073
with Adam optimizer and L1 regularization with 107° weight decay were used
for training on four NVIDIA 1080 GTX GPUs with a batch size of 2. From each
mean value normalized volume, 20 144 x 144 x 96 voxel patches were sampled and
zero-padded with a volume of 32 x 32 x 32 voxels. Data augmentation consisted
of rotation between —10° and 10°, scaling between —10% and 10% and elastic
deformation that is similar to [15]. The Dice loss function was used for training
of the network until there was no further apparent converging of the validation
loss. Segmentation performance is reported by means of the Dice score.

2.2 Gaussian Regularized Non-rigid Registration

The automatically segmented intraoperative vascular model was used for reg-
istration by means of CPD. To reduce computational cost, centerlines were
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extracted from the segmentations based on the method of [12]. Next, the preop-
erative vasculature model was mimicked as a Gaussian Mixture Model (GMM),
while the intraoperative model was treated as observations from the GMM.
Unlike diagnostic preoperative imaging, intraoperative US acquisition is a local-
ized high resolution, yet noisy image of local vasculature. Therefore, point clouds
of intraoperative centerlines models are fundamentally different from diagnostic
imaging. CPD handles noise well and should therefore be robust to registering
the complete vascular point cloud (preoperative) to a sub-set of this point cloud
(intraoperative) [17].

The CPD implementation of [9] allows for tuning of two variables; a, deter-
mining the deformability of the preoperative model, to align with the intraoper-
ative model, and (3, determining the size of the Gaussian kernel that was used
to find the coherent point in the intraoperative model. Both variables were opti-

mized by means of grid search, with values in the ranges of « = 0.1,0.2,...,0.5
and 8 = 50,100, ...,800. The TRE was minimized by grid searching the amount
of points that are used for registration in the range of points = 1,2,...,15. The

optimal combination of settings was 0.3, 550, 8 for «, § and the number of
nearest points respectively.

2.3 Data

The complete dataset contained 203 stacked 2D US volumes, of which 106 vol-
umes, acquired in 24 patients, were considered of sufficient quality. In 96 volumes,
the hepatic and portal veins were delineated, of which 85 were used in training
and validation of the segmentation network. The main reason of exclusion was
the incorrect stacking of 2D US slices, either due to rapid turning movements
of the US probe by the operator, or due to tracking or reconstruction errors.
Patients scheduled for open surgery of age >18, with centrally, primary or sec-
ondary, near vasculature located liver lesions from any origin, of diameter < 8 cm
were included in the dataset. Preoperative scans used for registration were no
older than 2 months.

Volumes were acquired by coupling a T-shaped intraoperative US probe (T-
Shaped Intraoperative I14C5T, BK Medical, Herlev Denmark) with an electro-
magnetic tracking system (Aurora Northern Digital, Ontario, Canada). Calibra-
tion between the tracking sensor and the US image was performed using the
method described in [2]. CustusX [1] was used for acquiring the tracked images,
which were then stacked in a volume using pixel nearest neighbor reconstruc-
tion. During acquisition, the US operator was instructed to acquire large volumes
following a straight path from segments 4a and 8 to segments 4b and 5. Five
different operators acquired the US volumes and each volume was delineated
by one out of four annotators using 3D Slicer. Unclear delineations of struc-
tures have been validated by a radiologist. Five scans have been delineated by
multiple annotators with the aim of setting a manual gold standard, for com-
paring the automatic segmentation performances. The hepatic and portal veins
were segmented separately and volume sizes ranged from 293 x 396 x 526 to
404 x 572 x 678 pixels, depending on the zoom of the 2D slices and length of the
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scanning trajectory, but were down sampled to 40% prior to training, similar to
[20]. Pre- and intra-operative data of 11 patients, accounting for 11 scans that
contained tumor lesions, were used for evaluation of the registration pipeline.

3 Results

The reduced filter 3D U-Net obtained Dice scores of 0.77 £+ 0.09, 0.65 £ 0.25
and 0.66 + 0.13 for combined vasculature, hepatic and portal veins respectively.
These values are comparable to the Dice score of the inter-observer variability
(0.85 4 0.04, 0.88 + 0.02, 0.74 & 0.12) for combined vasculature, hepatic and por-
tal vasculature respectively. Figure 2 shows the segmentation result for a single
case, for the different types of vasculature. The majority of mislabelling occurred
on the peripheral segments of the vasculature (i.e. small vessels).

(b) (©)

Fig. 2. Example of vascular segmentation prior to registration, with (a) all vasculature,
(b) hepatic vasculature, (c) portal vasculature, with Dice scores of 0.82, 0.72 and 0.82
respectively. The ground truth delineation is indicated in green and the automatic
segmentation in blue. (Color figure online)

The distribution of the RMSE of the registered vasculatures using CPD is
summarized in Fig. 3a. On average, the RMSE of the combined vasculature (4.4 +
3.9 mm) is lower than those calculated for the hepatic (7.0 £ 7.5 mm) and portal
vein (4.8 + 4.4 mm). Nevertheless, Fig. 3a shows a similar RMSE distribution for
the combined, hepatic and portal vein registrations. Clinical accuracy, measured
as TRE between the tumor position acquired through US and its preoperative
registered counterpart, is shown in Fig. 3b. On average, selecting the lowest TRE
of the hepatic or portal vasculature (7.1 £ 3.7 mm) results in a lower TRE
compared with the combined vasculature (8.9 £ 5.3 mm). This can also be seen
in Fig. 4a, which compares the obtained TREs for each patient. In 10 out of 11
cases, a lower TRE was found either by using only the hepatic or portal vein. In
9 out of 11 cases TRE was calculated to be below 10 mm (considered the viable
clinical threshold). The total computation time of the pipeline is 62 + 5.37s, 68.3
+ 6.23s and 84.5 4+ 11.2s for respectively hepatic, portal and all vasculature.
Figure4b shows a linear correlation coefficient of 0.796 and 0.331 between the



Hepatic Registration Using a Reduced 3D U-Net 281

25- 25-
20~ . 20~

E 15 I E 15

£ . £

= 10- ]

g 10 T = 10

ZQ@Q o —

Comé\ned He;;atic Po‘na\ Comé\ned Min hepz‘al\c/por‘[a\
Vasculature Vasculature
(a) (b)

Fig. 3. (a) Registration accuracy between the vascular centerlines expressed as RMSE
for the combined vasculature, hepatic and portal separately. (b) Registration accuracy
of all vasculature vs the minimum between the hepatic and portal vasculature. Dots
represent outliers.

! A o
25 Vasculature o — Dataset 2 -
R Combined € Automatic =Oe
Hepatic E © Ground truth 8
20° Portal o 20 o) 5
o
T N g
£ 15 ™ § 2o
w A JL g
o
= £ 10 o)
10 ¢ A o T W Q
o 3 ¢ R ] S
A w19 A ko
5 + k] (0]
A + o o
A 0
i 2 3 4 5 6 7 8 9 10 T 0 5 10 15
Case TRE [mm]
(a) (b)

Fig. 4. (a) Lesion TRE after registration compared between the individual cases, based
on whole, solely hepatic and solely portal segmentation. (b) Lesion TRE relative to
distance to vasculature in ground truth segmentations.

distance of the lesion with regards to the vascular tree relative to the TRE,
when registration is performed on ground truth and automatic segmentations
respectively.

4 Discussion

We have presented a methodology for hepatic vasculature registration that uti-
lizes a deep neural network to segment the hepatic and portal vein from 3D US
volumes.
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The network was validated over several clinical cases, thus proving the feasi-
bility and robustness of this approach over inter-patient anatomical variations.
Whilst the segmentation accuracy of the all vasculature is comparable to previ-
ous studies, it is inferior to the inter-observer variability. The largest differences
between manual and automatic segmentations are found when segmenting small
vasculature. This might be caused by the large class imbalance between the
background-foreground (i.e. parenchyma-vessels). On average we found that the
vessel-to-parenchyma area ratio is 2.3% for the hepatic and 1.7% for the portal
vein. This negatively affects the Dice score since it does not fully utilize the spa-
tial information on scales (1 pixel in a smaller volume is more important than
in a larger volume) nor does it utilize the structure of the vasculature. In the
future we will evaluate different cost functions such as focal loss [13]. Focal loss
compensates for class imbalances by penalizing common classes and rewarding
hard negative examples.

Registration accuracy, expressed as average RMS of the residual distances
between the intraoperative centerlines and their registered counterparts was
found to be comparable for all the three cases. Nevertheless, clinical accuracy
(i.e. TRE) was found lower when using only hepatic or portal vein. This con-
firms the validity of a non-rigid registration approach where hepatic vasculatures
are segmented and registered independently from each other. Even though the
majority of the cases resulted in a TRE below 10 mm, a different aspect could
be improved to obtain a more accurate registration. In the future, we plan to
combine registration obtained for the two different vasculatures, depending on
the tumor proximity to one or the other vessel. This is due to the fact that
tumor positions change for each patient and its mechanical and biological prop-
erties vary from those of the vasculature. Therefore, a better approximation of
the registered tumor position would consider these additional parameters. Other
important aspects that influence the registration accuracy are the US scanning
process and its reconstruction. The majority of the volumes were acquired in
the cranio-caudal direction, starting from segments 4a or 8 and ending at seg-
ments 4b or 5. However, within this process, factors such as speed of acquisition,
EM interference and regularity of the volume, contributed in the reconstruction
accuracy of the underlying vasculature. This high variability in the parameters
influencing the US volume, also resulted in large variations in the reconstructed
vasculature and therefore registration accuracy.

When the TRE is determined based on ground truth segmentations, there
seems to be a correlation between the lesion-to-vessel distance in the preoperative
imaging and the TRE, which is not seen when using automatic segmentations.
Hence, we argue that segmentation quality contributes even further to upfront
prediction of which vasculature to select for the registration. We will implement
this selection criteria into our pipeline, allowing us to select the most promising
registration first.
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Finally, the results show that both the segmentation and registration pro-
cesses are highly dependent on the quality and quantity of the information con-
tained in the US volume. Factors such as vessel-to-parenchyma ratio, scanning
direction, zoom and reconstruction artefacts, strongly influence the outcome of
the proposed methodology. Similar findings were also reported in [21], where
only US images containing vessel-to-image ratios greater than 1% were selected
for registration. In the future we will quantitatively evaluate the impact of these
factors on the registration accuracy and develop deep learning methods that aim
at automatically evaluating the quality of the acquired US volumes.

In conclusion, we have demonstrated that multi-class segmentation of hep-
atic vasculature from US volumes is feasible and, when combined with a selective
non-rigid registration, accurate registration can be achieved. To our knowledge,
this is the first work that utilizes deep learning based segmentation for regis-
tration purposes in hepatic ultrasound imaging where hepatic and portal vein
are segmented separately. Given the promising results, validated over several
patients, we are planning a prospective study in order to integrate this approach
within the clinical routine of computer assisted liver interventions.
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