
Proceedings of the First Workshop on Formal
Methods for Blockchains, FMBC, 2019

Néstor Cataño, E-mail: nestor.catano@gmail.com
Diego Marmsoler, E-mail: diego.marmsoler@tum.de
Bruno Bernardo, E-mail: bruno@nomadic-labs.com

Foreword

We are glad to present the articles of the 1st Workshop on Formal Methods for
Blockchains (FMBC), which is part of the Formal Methods congress that is held
this year in the city of Porto, Portugal. We expect to hold this workshop in the
coming years.

This pre-proceedings consists of 10 articles with a conditional acceptance for
publication in the post-proceedings, 2 lighting talk articles. The versions hereby
submitted are preliminary versions of the final ones that will be published in
the post-proceedings.

Acknowledgements

We would like to express our most sincere gratitude to the FM chairs, all the
PC members, the external reviewers, the Invited Speaker, and all the authors
who submitted their work and made this workshop possible.

We particularly would like to express our gratitude to our sponsor Nomadic
Labs for its generous support for the realization of FMBC 2019.

1

A Distributed Blockchain Model of Selfish
Mining

Dennis Eijkel and Ansgar Fehnker

d.j.eijkel@student.utwente.nl and ansgar.fehnker@utwente.nl

University of Twente
P.O. Box 217, 7500AE Enschede

The Netherlands

Abstract. Bitcoin is still the most widely used cryptocurrency. A big
part of Bitcoin’s appeal is that it maintains a distributed ledger for trans-
actions known as the blockchain. Miners receive a fee for every block of
transactions that they mine, and should expect a reward proportional
to the computational power they provide to the network. Eyal and Sirer
introduced seflish mining, a strategy timing the publication of blocks to
give them a significant edge in profits. This paper models the behavior
of honest and selfish mining pools in Uppaal, and analyses properties
of the mining process in the presence of network delay. This shows what
e↵ects selfish mining would have on the share of profits, but also on the
number of orphaned blocks in the blockchain. This analysis allows us to
compare those results to known results from literature and to real world
data. This analysis shows that it is essential to take into account that
there does not exist a single view of the blockchain.

Keywords: Bitcoin, Bitcoin mining, Selfish mining, Uppaal

1 Introduction

Bitcoin [3,11] is at the time of writing the most used cryptocurrency [5] by market
capitalisation. Miners in the Bitcoin network are incentivised by the reward that
they receive for validating new blocks of transactions. The aim is that every
miner receives its fair share of said reward for the computational e↵ort they
perform for the network.

The Bitcoin protocol does not specify when miners must publish their newly
found blocks. The most basic strategy is to publish them immediately after the
miner finds them. This is referred to as the honest strategy.

Eyal and Sirer introduced a strategy for publishing newly found blocks called
selfish mining [8]. It forces honest miners to waste computational power by
waiting strategically and responding to what other miners in the network find
and publish. Eyal and Sirer provide in [8] pseudo-code for selfish mining, along
with a mathematical model of the forking behaviour of the blockchain, and an
additional model for the rewards. They compute the expected rewards in the

steady state, i.e. in the long run, depending on the share of the selfish pool in
the computational power, and the share of races the selfish pool will win in case
there are competing forks. For this, they computed a threshold for which selfish
mining will increase the profit of the miner. Below this threshold, selfish mining
will actually incur a penalty for the selfish miner.

This paper presents an Uppaal-SMC model for selfish mining. It models
a blockchain network as a network of nodes, each with their own copy of the
blockchain. The model includes stochastic network delays, which means that on
average it will take a while before new blocks are adopted by the network. These
aspects are absent from the Eyal and Sirer models. Uppaal-SMC can then
analyse the behaviour of the network and the evolution of the blockchain over
the simulation time – one day – and compare this with historical data obtained
from the real blockchain. In particular, how selfish mining a↵ects the number of
expected forks, and how this is distinguished from the frequency of forks in the
presence of selfish miners.

Chaudary et al. used Uppaal in [7] to model majority attacks. Their paper
focuses on blockchain forking and included a detailed model of the blockchain.
In [9] the same authors present a simplified version of the model presented in
this paper to analyse a particular type of majority attack, intended to enforce a
new Bitcoin standard. Uppaal was also used by Andrychowicz et al. to verify
the security of Bitcoin contracts, and to repair several issues in the protocol [6].

Sapirshtein et al. mathematically investigate bounds for which selfish min-
ing is profitable and optimize the original strategy [13]. They show that selfish
mining can be optimized, such that the threshold above which the strategy is
profitable is lower than described in the original paper [8]. Heilman et al. used
Monte-Carlo simulation to investigate eclipse attacks and proposed countermea-
sures that will reduce the chances of such attacks to succeed [10]. Neudecker
presents a full-scale simulation model of Bitcoin to study partition attacks [12].

The next section will describe selfish mining and its pseudo-code implemen-
tation. Section 3 describes the Uppaal-SMC model, and Section 4 the results
of the analysis. Section 5 will conclude with a discussion of future work.

2 Selfish Mining

2.1 Bitcoin Mining Process

Bitcoin is a distributed and decentralized cryptocurrency [3,11] with a shared
ledger of transactions which is stored in an append-only chain of blocks called the
blockchain. A block contains a group of transactions, the hash of the preceding
block, and a nonce. Since the block also includes the hash of the preceding block
it defines a chain of blocks.

Nodes in the peer-to-peer Bitcoin network run a process, known as mining,
to validate blocks of transactions, as well as to induce an order on transactions.
Validation entails finding random nonce such that the hash value of the block
falls below a certain threshold. Finding such a nonce can be considered to be

2

t=85s

Block 0034 DF21

Nonce A317 3FDB

Pre 0042 E3D4

Txs tx12, tx14

Miner C

t=511s

Block 007C 11BA

Nonce 91CC A6B0

Pre 0034 DF21

Txs tx19, tx20

Miner A

t=939s

Block 001F 6A09

Nonce E00C 1A44

Pre 007C 11BA

Txs tx21, tx18

Miner B

t=1420s

Block 00D2 010E

Nonce 229A B770

Pre 001F 6A09

Txs tx22, tx24

Miner C

t=942s

Block 0009 FF5A

Nonce 5BA7 4436

Pre 007C 11BA

Txs tx21, tx22

Miner A

…

Fig. 1. Illustration of the Blockchain as hash-chain of blocks of transactions. For sim-
plicity each block contains only two transactions.

a stochastic process with an exponential distribution, and is called the proof-

of-work challenge. The threshold is regularly updated and agreed upon by the
entire network such that a new block will be found on average every 10 minutes.

Figure 1 illustrates a blockchain. It starts with a block found by Miner C
at t=85s, followed by a successor found by Miner A at t=511s. Due to the
distributed nature of the network two pools may find a block at about the same
time: in the example Miner B at t=939s, and Miner A at t=942s. If Miner A
would have received the block of Miner B before it found its own, it would have
abandoned its e↵ort and switched to the Block 001F 6A09. The example assumes
instead that Miner A found its own block first.

At this point, both blocks have been successfully mined as potential succes-
sors of Block 007C 11BA. Miners will continue with the block they receive first,
and due to the distributed nature of the network, di↵erent pools may continue
with mining di↵erent blocks, giving rise to so-called forks. It could take some
time to resolve a fork and during that time, di↵erent views of the blockchain will
exist. Blocks that fall outside of this longest chain are called orphaned blocks.

The race in Fig.1 is resolved as soon as the next block is found; here Block
001F 6A09. Once this happens the protocol stipulates that the blocks in the
longest chain become part of the authoritative blockchain. Only miners of blocks
in the longest chain will receive the rewards attached to mining.

2.2 Selfish Mining Process

The Bitcoin protocol [3,11] does not specify when miners must publish their
newly found blocks. The most basic strategy is to publish them immediately
after they are mined. This is referred to as the honest strategy. Eyal and Sirer
introduced a strategy for publishing newly found blocks called selfish mining [8].

Figure 2 illustrates one of the basic steps of selfish mining, intended to in-
crease the number of forks. In this example, Miner C finds a block at t=7s. This
block will be received by Miner A at t=8s, and by Miner B at t=11s1. All three

1 Note, that in general, the network does not have access to a shared global time.

3

M
in

er
 A

M
in

er
 B

M
in

er
 C

t=8s

Miner C

t=102s

Miner B

t=201s

Miner C

t=253s

Miner B

t=11s

Miner C

t=99s

Miner B

t=204s

Miner A

t=206s

Miner C

t=250s

Miner B

t=7s

Miner C

t=104s

Miner B

t=205s

Miner A

t=199s

Miner C

t=252s

Miner B

t=188s 202s

Miner A
t=188s 202s

Miner A
…

…

…

Fig. 2. Illustration of forks as races between di↵erent blockchains in a distributed net-
work. Pool A is selfish miner, and postpones publication of a block found at t=188s until
t=202s. This example omits for simplicity the hash values, nonces, and transactions.

miners will continue mining with this block. At t=99s Miner B finds a block and
publishes it. It will be received by Miner A and C at t=102s and t=104s, respec-
tively. Again all three miners will continue with this block. Up to this point, all
miners employ honest mining.

Assume that Miner A employs the selfish strategy. If it finds a block at
t=188s, it will not publish it immediately, but wait. If it receives a block by one
of the other miners – in the example a block of Miner C at t=201s – it will publish
its own block immediately, which intentionally creates a fork. The gamble is that
its own block arrives at the others miners before the block of Miner C. In the
example Miner B receives the block of Miner A before the block of Miner C,
and thus continues mining the block of Miner A. If Miner B then finds a new
block at time t=250s it will orphan the block Miner C found previously. Miner
C’s computational power from t=104s until t=252s – when it received the block
of Miner B – was e↵ectively wasted.

The question is if this can actually be beneficial for the selfish miner. In the
example, Miner A forwent a certain reward for the block it found at t=188s to
enter a race with pool C at t=202s. This looks superficially like a disadvantageous
strategy. However, Figure 2 describes only one step of selfish mining, namely the
step that intentionally introduces forks.

The following gives a full list of steps for the selfish miners. It assumes that
the selfish miner always mines at the end of its own private chain.

4

1. The selfish miner finds a block.

(a) There is a fork, and both branches have length 1. In this case, the
selfish miner found a block to decide the race in its favour. The selfish
miner appends the block to its private chain and publishes it. The selfish
miner intends to orphan the single block in the public branch, and secure
the rewards of its own branch.

(b) Otherwise. The new block will be appended to its private chain, with-
out publishing it. This includes cases where the private chain is two or
more blocks ahead of the public chain.

2. The selfish miner receives a block. Provided that it actually increases
the height of the public chain, the selfish miner will proceed as follows:

(a) If there is no fork. This means the public and private chains are
identical. The received block is appended to the public chain, and the
public chain is adopted as the private chain. The other miner will receive
the rewards.

(b) There is one unpublished block in the private branch. The re-
ceived block is appended to the public chain. The unpublished block is
published. This is the scenario depicted in Figure 5.

(c) There are two unpublished blocks in the private branch. The
private chain is published. Since the public chain should still be one block
behind, this would secure all rewards in the private branch for the selfish
miner. After this, there is no fork.

(d) Otherwise. This is the case when the selfish miner is more than two
blocks in the lead. The selfish miner will publish the first unpublished
block. While the private chain is at least two blocks ahead, the public
branch and the portion of the private branch that has been published
have the same height. To other miners, a race is ongoing, even though
the selfish miner already has the blocks to decide the race in its favour.

To implement this strategy the selfish miner needs to maintain a record of
the head of the public chain, of the head of the private chain, the head of the
portion of the private chain that has been published, and the block where the
private and public chain fork. It should be noted that the public chain is the
local view that the selfish miner has of the blockchain. As discussed previously,
in general, di↵erent miners may have di↵erent views.

Eyal and Sirer have shown that a miner using selfish mining will gain more
rewards than would be proportional to their computational power, under the
assumption that the other miners use the honest strategy. This result depends
on the share ↵ of computational power the selfish miner has in the network and
the fraction � of miners that adopt the block of the selfish miner in case of a fork.
They discovered that selfish mining gives an increased reward if (1��)/(3�2�) <
↵ . This means, for example, that if a quarter of the other nodes adopt the block
of the selfish miner, i.e. � = 0.25, then the selfish mining strategy will pay o↵ if
the network share satisfies ↵ > 0.3.

5

3 Uppaal Model

The Uppaal-SMC model consists of three templates: one for modelling the
behaviour of an honest miner, one for a selfish miner, and one for modelling the
propagation delay between miners. A fourth template is added to observe the
blockchain, but this node does not take part in the protocol. This section will
describe the important global variables and templates in detail.

Global variables and constants. The model includes two arrays of broadcast
channels, sendBlock[POOLS] and recvBlock[POOLS], for miners to send and re-
ceive blocks, where POOLS is the number of miners. A block is defined as a struct
of the height, a bounded integer BlockIndex, and array rewards[POOLS]. If a
miner with ID id mines a new block, it increments height and rewards[id].

Global variable syncBlock is used as an auxiliary to copy blocks between pro-
cesses. Important constants are integer PDELAY for the expected network delay,
and integer array POOL RATES[POOLS], which contains for each miner the rate at
which it finds blocks. The model uses as basic time unit 1 second; a rate of 1200
means that a miner finds on average one block every 1200 seconds.

Network links. The network link between any two miners is modelled as a one-
place bu↵er with delay. For any pair of IDs in and out, the model will include
one instance of the link template, depicted in Fig. 3. From the initial state it
will synchronize on channel sendBlock[in] with Pool in, and copy the received
block in global variable syncBlock to its local variable blockBuffer. It then
enters the location to the right. In this location it will synchronize on channel
recvBlock[out] with Miner out at a rate of 1 in PDELAY seconds. This transition
will copy the value of the bu↵er to syncBlock. If it receives another block from
Miner in, it will store that block in the bu↵er. Note, that the model will include
for any pair of miners one link, i.e. for a network with 10 miners, 100 links, each
with its own bu↵er.

Fig. 3. Parameters of the link template are the ID of sender in and receiver out.

Honest mining. Figure 4 shows the template for an honest miner with ID id. It
has a single location with two transitions. The first models successfully mining a
block. It calls method outputBlock which increments the height of the head of its
private chain and the rewards for itself. The other transition models receiving
a block which calls method updateBlock which will adopt the new block if it
improves on the height of the head of its private chain.

6

Fig. 4. The honest mining template has
as parameter the id of the miner.

Fig. 5. The selfish mining template has
as parameter the id of the miner.

Selfish mining. The selfish miner keeps a record of four blocks: the head of the
private chain privateBlock, the head of the public chain publicBlock, the most
recently published block publishedBlock, and the block where the public and the
private chain fork, forkBlock. In addition, it uses a local Boolean publishBlock

which encodes whether a block should be published.
The top-most edge models mining a block (case 1 on Page 5). It calls method

mineBlock() at a rate of 1 in POOL RATE[id] seconds. It decide whether to publish
(part of) its private chain if it mines or receives a block.

The bottom-most edge models receiving a block (case 2 on Page 5). It
synchronizes on channel recvBlock[id], and calls updateBlock which decides
whether to append it to the private chain, or whether to publish a part of
the private chain. It sets Boolean publishBlock, depending on whether a block
should be published, or not.

The committed location in the mining template in Fig. 5 completes the
process. If mineBlock() or updateBlock set publishBlock to false, the self-
ish miner returns silently to the initial location. If it was set to true method
outputBlock will copy the block that is meant to be published to syncBlock, but
also to publishedBlock and publicBlock. The code for methods mineBlock()

and updateBlock is given in Listing 1.

System composition. The analysis in Section 4 uses a model with 10 miners and
100 links. It considers the 6 sets of network shares, as given in Table 1. If the
model includes a selfish miner it would be Miner A. Miner B has a share of
20% in all experiments to make the results comparable. A share of 20% would
correspond to finding a block once every 3000 seconds, assuming a network rate
of one block every 600 seconds. These rates are simplified but still largely similar
to the distribution of hash rates in the real world [4].

Uppaal-SMC simulated each scenario 1000 times for one day of simulation
time, i.e. for 86400 seconds. The simulation of one single scenario takes about
80 seconds on an Intel Core i5-5200 with 2 cores at 2.2GHz.

7

1 void mineBlock () {//case 1

2 i f (privateBlock.height == publicBlock.height &&

3 privateBlock.height -forkBlock.height == 1) {//case 1.(a)

4 privateBlock.height ++;

5 privateBlock.rewards[id]++;

6 outputBuffer = privateBlock;

7 forkBlock = privateBlock;

8 publishBlock = true;

9 }

10 else { //case 1.(b)

11 privateBlock.height ++;

12 privateBlock.rewards[id]++;

13 publishBlock = false;

14 }

15 }

16
17 void updateBlock(Block newBlock) { //case 2

18 i f (newBlock.height >publicBlock.height) {

19 i f (newBlock.height >privateBlock.height){ //case 2.(a)

20 privateBlock = newBlock;

21 forkBlock = newBlock;

22 publishedBlock = newBlock;

23 publicBlock = newBlock;

24 publishBlock = false;

25 }

26 else

27 i f (newBlock.height == privateBlock.height) {//case 2.(b)

28 outputBuffer = privateBlock;

29 publishBlock = true;

30 }else //case 2.(c)

31 i f (newBlock.height == privateBlock.height -1) {

32 outputBuffer = privateBlock;

33 forkBlock = privateBlock;

34 publishBlock = true;

35 }

36 else { //case 2.(d)

37 publishedBlock.height ++;

38 publishedBlock.rewards[id]++;

39 outputBuffer = publishedBlock;

40 publishBlock = true;

41 }

42 }

43 }

Listing 1. Essential methods of the selfish miner.

8

Scenario A B C D E F G H I J

#1 1% 20% 20% 15% 15% 10% 10% 5% 2% 2%

#2 10% 20% 20% 15% 15% 10% 5% 2% 2% 1%

#3 20% 20% 15% 15% 10% 10% 5% 2% 2% 1%

#4 30% 20% 15% 10% 10% 5% 5% 2% 2% 1%

#5 40% 20% 10% 10% 5% 5% 5% 2% 2% 1%

#6 50% 20% 10% 5% 5% 2% 2% 2% 2% 2%

Table 1. Network shares for di↵erent scenarios.

4 Analysis Results

This section will present for a 24h period the expected mining rewards and the
expected number of orphaned blocks. The former allows a comparison with re-
sults by Eyal and Sirer, the latter with data obtained from the publicly available
Bitcoin blockchain.

4.1 Mining Rewards

Fig. 6 depicts the height and rewards in di↵erent views of the blockchain. First
is the number of blocks mined over the 24 hours period. It is around 144 blocks,
as expected for a network that finds on average one block every 10 minutes.

Not all of these blocks will become part of the longest chain. Fig. 6 gives
the blockchain height and the reward of the selfish and first honest miner, reward
selfish and reward honest, respectively. Each of these three come in two versions
depending on whether it is part of the private chain of the selfish miner, or the
chain as known by the network.

These results show that as the network share of the selfish miner increases, it
decreases the height of the blockchain, and increases the rewards for the selfish
miner. For a miner with a 50% share the height is 89.4 and the reward 68.9, in
the private blockchain of the selfish miner. In the blockchain of the first honest
miner – Miner B in Table 1, who has a network share of 20% – the height is only
81.7, and the reward of the selfish miner is only 57.7. The di↵erence is partly
due to network delay, but mostly because the selfish miner has a bu↵er of 7.6
unpublished blocks in its private chain.

Fig. 7 translates these numbers to shares in the rewards. It also includes the
nominal share these miners should achieve; the selfish miner proportionally to its
network share, and the honest miner 20%. The results show that selfish mining
becomes profitable once the network share of the selfish miner exceeds 30%.

To compare these to Eyal and Sirer’s result, we need the probability that
other miners adopt the block of the selfish miner above a competing block. It
depends on two steps succeeding from the moment that the competing block
is found. First the selfish miner has to receive the competing block before the

9

0

20

40

60

80

100

120

140

160

1% 10% 20% 30% 40% 50%

#
bl

oc
ks

network share

blocks
mined

private
blockchain
height
network
blockchain
height
private
reward
selfish
network
reward
selfish
private
reward
honest
network
reward
honest

Fig. 6. Height and rewards of selfish and
honest miner after 24 hours.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1% 10% 20% 30% 40% 50%

re
w

ar
d

network share

private
reward
selfish

network
reward
selfish

nominal
reward
selfish

private
reward
honest

network
reward
honest

nominal
reward
honest

Fig. 7. Share of rewards for selfish and
honest miner after 24 hours.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11131517192123

sh
ar

e
re

w
ar

ds

hours

private
reward
selfish

network
reward
selfish

private
reward
honest

network
reward
honest

Fig. 8. Share of rewards per hour for the
honest and selfish miner over 24 hours.

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12

#
da

ys

delay in seconds

Fig. 9. Histogram of the propagation de-
lays in the selected data set.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

real 1% 10% 20% 30% 40% 50%

op
rh

an
ed

 b
lo

ck
s

network share

2s delay

3s delay

4s delay

5s delay

6s delay

7s delay

Fig. 10. Number of orphaned blocks in
network w/o selfish miner after 24 hours.

0

10

20

30

40

50

60

real 1% 10% 20% 30% 40% 50%

or
ph

an
ed

 b
lo

ck
s

network share

2s delay

3s delay

4s delay

5s delay

6s delay

7s delay

Fig. 11. Number of orphaned blocks in
network with selfish miner after 24 hours.

10

other miners, (2) the block sent by the selfish miner in response has to arrive
before the competing block. Given that in this model all delays use the same
memoryless distribution both steps succeed with a 50% chance, giving an overall
chance of 25%. Eyal and Sirer predict a threshold of 30% for this case, while in
Fig. 7 the share of the 30% selfish miner is 29.6%.

Fig. 8 shows how this evolves over a 24 hour period for a selfish miner with
a 50% network share. Initially, the selfish miner will appear to have a share
that is below its 50% network share, as it is secretly mining blocks. As the day
progresses its share will quickly exceed 80%, once it starts publishing blocks from
its private chain.

All results of this section are based on a propagation delay of 4 seconds. For
the results in this subsection, the propagation delay has little to no influence.
The next subsection will discuss di↵erent propagation delays in more detail.

4.2 Orphaned Blocks

An essential aspect of selfish mining is to create forks such that other miners
waste computational resources on blocks that are bound to be orphaned. To
compare the models with data from the actually Bitcoin blockchain, we combined
the data on orphaned blocks [2] with data on propagation times [1]. This gave
528 usable data points in the period from 18 March 2014 to 22 March 2017, i.e.
days with both data on orphaned blocks and propagation times. Fig. 9 shows
the distribution of days over di↵erent propagation times, rounded to the nearest
integer second. This leaves us with a reasonable data set for propagation delays
in the interval from 2 to 7 seconds.

Fig.10 shows the number of expected orphans if we have a network without
any selfish miner. The figure includes, for reference, the number of orphans from
the real data set, labelled real. The results show that as the delay increases, the
number of orphans increases as well. With the exception of the data point for 7
seconds, the real data falls into the range given by the simulation.

This picture changes once we introduce a selfish miner as depicted in Fig. 11.
Even a selfish miner with only a 1% network share leads to more orphans than for
any scenario with only honest miners or the real data. This comparison suggests
that there is no evidence in the real data of a prolonged presence of a selfish
miner with a significant network share.

5 Discussion and Conclusion

In [8], Eyal and Sirer provide a pseudocode algorithm for selfish mining. The
analysis uses a separate state transition model that captures the presence and
length of a fork. Based on this model they manually derived state probabilities
and expected rewards for each state. To validate the overall reward they use
Monte Carlo Simulation. Their combination of models assumes a single view of
the public chain where blocks are propagated instantly to provide estimates of
the rewards a selfish miner can expect in the long run.

11

This paper presented a single unified modelling artefact. It also includes
propagation delays, a block model with rewards, and a distributed blockchain.
It does not separate the pseudo code from the transition probabilities, rewards,
and the analysis of the evolution of the network over time. This allowed an
automated analysis from the perspective of di↵erent participants, and compare
these to the theoretical results by Eyal and Sirer, as well as to real-world data.

The analysis confirms that selfish mining becomes profitable for networks
shares above 30%. The results of this paper show that the presence of a selfish
miner may go undetected for the first few hours, but would be obvious after that.
Future work would need to investigate how to identify a short-term attack on
a blockchain. For this type of analysis, it is especially important to distinguish
between the di↵erent views of the blockchain of di↵erent participants, as it is
done in this paper.

All Uppaal-SMC models, simulation data and more detailed results will be
available on https://wwwhome.ewi.utwente.nl/⇠fehnkera/Q19.

References

1. Bitcoinstats, network propagation times. http://bitcoinstats.com/network/

propagation/. Accessed: 06-07-2019.
2. Bitcoin.info, number of orphaned blocks. https://blockchain.info/charts/

n-orphaned-blocks?timespan=all, 2008. Accessed: 06-07-2019.
3. Bitcoin protocol rules. https://en.bitcoin.it/wiki/Protocol rules, 2019. Ac-

cessed: 06-07-2019.
4. Blockchain.info, hashrate distribution. https://blockchain.info/pools, 2019. Ac-

cessed: 06-07-2019.
5. Coinmarketcap: Cryptocurrency market capitalizations. https://coinmarketcap.

com/, 2019. Accessed: 06-07-2019.
6. Andrychowicz, Marcinand Dziembowski, S. M. D. M. L. Modeling bitcoin

contracts by timed automata. In Formal Modeling and Analysis of Timed Systems
(2014), M. Legay, Axeland Bozga, Ed., Springer.

7. Chaudhary, K., Fehnker, A., van de Pol, J., and Stoelinga, M. Modeling
and verification of the bitcoin protocol. In MARS 2015. (2015), EPTCS.

8. Eyal, I., and Sirer, E. Majority is not enough: Bitcoin mining is vulnerable. In
FC 2014 (2014), LNCS 8437, pp. 436–454.

9. Fehnker, A., and Chaudhary, K. Twenty percent and a few days - optimising
a bitcoin majority attack. In NFM 2018 (2018), LNCS 10811, Springer.

10. Heilman, E., Kendler, A., Zohar, A., and Goldberg, S. Eclipse attacks on
bitcoin’s peer-to-peer network. In SEC’15 (2015), USENIX Association.

11. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.

org/bitcoin.pdf, 2008.
12. Neudecker, T., Andelfinger, P., and Hartenstein, H. A simulation model

for analysis of attacks on the bitcoin peer-to-peer network. In INM 2015 (2015).
13. Sapirshtein, A., Sompolinsky, Y., and Zohar, A. Optimal selfish mining

strategies in bitcoin. In FC 2016. (2017), LNCS 9603, pp. 515–532.

12

https://wwwhome.ewi.utwente.nl/~fehnkera/Q19
http://bitcoinstats.com/network/propagation/
http://bitcoinstats.com/network/propagation/
https://blockchain.info/charts/n-orphaned-blocks?timespan=all
https://blockchain.info/charts/n-orphaned-blocks?timespan=all
https://en.bitcoin.it/wiki/Protocol_rules
https://blockchain.info/pools
https://coinmarketcap.com/
https://coinmarketcap.com/
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

