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ABSTRACT 

 
In many cities of the Global South, informal and deprived 
neighborhoods, also commonly called slums, continue to 
proliferate, but their locations and dwellers’ socio-economic 
status are often invisible in official statistics and maps. Very 
high resolution (VHR) satellite images coupled with deep 
learning allow us to efficiently map these areas and study 
their socio-economic and spatio-temporal variability to 
support interventions. This paper investigates a deep transfer 
learning approach based on convolutional neural networks 
(CNN) to identify the socio-economic variability of poor 
neighborhoods in Bangalore, India. Our deep network, pre-
trained on a slum classification data set, is tuned towards the 
prediction of a continuous-valued socio-economic index 
capturing multiple levels of deprivation. Experimental 
results show that the CNN-based regression model can 
explain the socio-economic variability with an R2 of 0.75. 
The use of additional publicly available geographic 
information layers allow us to spatially extend the analysis 
beyond the surveyed deprived area data samples to uncover 
city-wide patterns of socio-economic inequalities. 
 

Index Terms— urban deprivation, slums, deep learning, 
convolutional neural networks, remote sensing. 
 

1. INTRODUCTION 
 
The rapid urbanization and population growth lead often to 
the proliferation of deprived neighborhoods in low- and 
middle-income countries, i.e., settlements with limited or no 
access to basic infrastructure, sanitization, and adequate 
housing. UN-Habitat estimates that currently one billion 
people live in slums, informal and inadequate housing areas 
(here called deprived areas); this number is expected to 
grow more and faster if national and local governments do 
not urgently take counter measures. An information gap that 
hampers pro-poor policy definition and the planning of 
interventions in cities of the Global South is about the 
spatial distributions of deprived neighborhoods and the 
socio-economic status of their dwellers.  

The remote sensing literature [1], shows that VHR 
images offer us the opportunity to map deprived areas, 
extract their morphological characteristic  and their spatio-
temporal variability [2]. To this aim, machine learning 
techniques combined with various textural features have 
been investigated in [3], [4]. The recent introduction of deep 
learning techniques, such as CNNs and fully convolutional 
networks (FCNs), have showed great potentials for 
automatically learning the spatial, textural and 
morphological characteristics of deprived areas and to 
produce accurate classification maps within an end-to-end 
learning framework [5], [6]. Most papers cast the mapping 
problem as a binary classification one, assuming that a sharp 
boundary can be drawn to separate formal and deprived 
settlements (in both the feature space and the 2D image 
domain) and assuming substantial homogenous 
characteristics among deprived areas. However, there is a 
large uncertainty and variability associated with the 
definition of what constitute a deprived area, which 
characteristics encompass multiple forms of deprivation, 
including not only the physical (e.g., poor house material) 
and financial level (e.g., low-income residents), but also 
human, social and contextual variables (such as accessibility 
to healthcare, education and other services or social 
exclusion factors). A framework conceptualizing the multi-
dimensional nature of deprivation has been developed in [7] 
based on the asset vulnerability framework [8]. Ajami et al. 
adopted such a framework to introduce a data-driven 
approach to summarize multiple deprivation variables (both 
categorical and real-valued) into a single real-valued socio-
economic index, named data-driven index of multiple 
deprivation  (DIMD) [9]. As such, this approach overcomes 
the limitations of previous deprivation indices, which relied 
on weighted indictors that are sensitive to the choice of 
individual weights. 

This paper builds upon the work of Ajami et al., 
investigating a deep-transfer-learning-based approach to 
map the DIMD socio-economic index using VHR images 
and geographic information layers. Moreover, we extend the 
spatial extend of our analysis beyond the available sample 
data using publicly available data, e.g., OpenStreetMap 
(OSM), VIIRS night-time lights, WorldPop data, census, 
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and data from the Demographic and Health Surveys (DHS), 
to extrapolate the socio-economic variability at city scale. 

  
2. MATERIALS AND METHODS 

 
The method consists of three steps. The first step is about 
the analysis of socio-economic data, including a household 
data set (HH) and an in-situ quick-scan (QS) survey for the 
development of the DIMD index. The second step consists 
in a CNN-based transfer learning approach to predict DIMD 
values for the QS data set based on VHR images and GIS-
extracted features. The third step consists in the 
extrapolating of the socio-economic variability over the 
entire urban area. 
 
2.1. Study site and data set description 
Our method is applied to Bangalore, a large Indian city with 
a population of more than ten millions inhabitants. 
Bangalore is growing rapidly, attracting considerable 
investments from the ICT sector. However, citizens are not 
equally benefitting from these investments and the economic 
growth has been accompanied by the proliferation of 
deprived areas. According to the census, around 8% of the 
population is living in slums, which is a large under 
reporting of the actual deprived population in around 1,500 
slums (as compared to the 600 officially recorded slums). 

The data for our study consist in two sets of socio-
economic data: 1) a detailed data set of 1114 households 
survey from 37 notified slums in 2010 (HH data), and 2) a 
less detailed quick-scan (QS) data set with primary data 
collected from 121 slums in August 2017 covering physical 
and contextual domains of deprivation. The QS surveys are 
based on 35 categorical indicators (Table 1). Moreover, we 
have access to delineated boundaries of 1461 slums from 
2017. The study uses also four Pleiades pan-sharpened 
satellite images with a spatial resolution of 0.5 m, three of 
them are acquired in March 2016 and one in March 2015 
(see Figure 1). Furthermore, we use freely available spatial 
data and features extracted from OSM, WorldPop, census 
and the DHS data sets. 

 
Table 1. QS indicators. 
Dominant building type, Number of floors, Dominant 
building footprint size, Wall material, Roof material, 
Dominant shape of building, Overall state of buildings, 
Overall building appearance, Open spaces/green spaces, 
Appearance of open space, Presence of roads, Road 
pavement, Road material, Road width, Cables for electricity, 
Presence of footpaths, Footpath material, Streetlight, 
Pollution (smell, noise, waste), Open sewers, Presence of 
public toilet, Waterbody, Economic activities, Type of 
economic activities, Dominant land use around the slum, 
Feeling safe?, Are people interacting?, Are there vehicles 
visible?, Temple, Clothes of people, Having jewelry?, Hair 
of children, Children toys 

 
Figure 1. Available Pleaiades images over Bangalore city. 
Source [9]. 
 
2.2. DIMD socio-economic index 
To aggregate and summarize the indicator values of both 
HH and QS, we adopt the DIMD approach, which is based 
on transforming the input indicators using multiple 
correspondence analysis (MCA). MCA operates on 
categorical data extracting the underlying structure in the 
data set. It represents the data as points in low-dimensional 
Euclidean space and extract the most meaningful directions 
similarly to principal component analysis. The considered 
DIMD index is calculated as the first dimension created by 
MCA. See [9] for more details. 
 
2.3. CNN-based transfer learning  
We built a deep-transfer-learning model to learn informative 
spatial-contextual features and predict the DIMD socio-
economic index from VHR image patches. However, the 
121 QS samples with corresponding target DIMD values are 
not sufficient to train a deep CNN. We therefore adopted a 
two-stage transfer learning approach, taking advantage of 
the larger set of available slum boundaries (1461 samples).  
We pre-trained our CNN to address the binary classification 
problem to separate deprived areas from formal settlements 
using the 1461 available slum boundaries and additional 611 
polygons of formal areas. We extracted 2000 labeled 
patches of various sizes (99, 129, and 165 pixels) from the 
VHR images and reference polygons and used them for 
training our CNN with a cross-entropy loss function. Our 
network architecture is inspired by VGG-16 [10], but it is 
lighter, it is extended to accept 4-channel multispectral 
images as input and uses batch normalization instead of 
local response normalization. More details about the 
adopted network architecture are shown in Figure 2, 
including number of layers and filter sizes. 
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After optimizing the hyper-parameters (e.g., patch size, 
learning rate) and training our CNN for the binary 
classification problem, we turned it into a regression model 
by changing the loss function to Euclidean (L2). In this 
second training phase, the CNN is trained to predict the 
continuous-valued DIMD index for the available 121 
samples. We finally built an ensemble regression model 
using CNN-extracted features together with additional hand-
crafter and GIS features. 
  
2.4. Spatial extrapolation 
To extrapolate the socio-economic patters observed in the 
area of the QS data to the entire urban area of Bangalore, a 
set of covariates was selected from publicly available data to 
predict DIMD values. The selection of covariates was based 
on previous studies [11], [12], relying only on open-access 
data (extracted from OSM, freely available Earth 
Observation (EO) data and products as well as DHS data) 
the specific local geography and includes, Visible Infrared 
Imaging Radiometer Suite (VIIRS) night-time light (NTL) 
data, roads, facility and services data, location of water 
bodies, health related and population data. First, the 
covariates are checked whether they correlate with the 
DIMD socio-economic index. Second, a multiple regression 
model is built based on the most correlating covariates. 
Third, the regression model is used to predict the socio-
economic patters for the entire city of Bangalore. For this 
prediction, a gridded system of 200 × 200 m cell size is 
used. This allow us to generate a city-level map of the socio-
economic status.  

 
3. RESULTS 

 
This section presents the results of 1) the DIMD socio-
economic index for the areas of the QS data, 121 samples of 
all deprived areas in the city of Bangalore, 2) the predictions 
of the CNN-based transfer learning model for the QS data, 
and 3) the result of the spatial extrapolation to generate a 
city-wide map of socio-economic variability. 
  
3.1. DIMD socio-economic index 
The DIMD index (Figure 3), representing the first 
component of the MCA, shows that negative values indicate 
the most deprived areas (often the temporary settlements),  
  

 
Figure 3. DIMD socio-economic index for the QS locations. 

while positive values indicate the less deprived areas (often 
upgraded slums). Figure 4 shows ground photos of two 
areas, having the lowest and the highest DIMD values, 
respectively. The example of the negative DIMD shows a 
temporary settlements with low accessibility and centrality, 
while the positive DIMD sample is an upgraded slum with 
much higher accessibility and centrality. The covariates with 
highest correlation with the DIMD index are service density, 
road density, population density, amount of NTL (VIIRS) 
and distance to center.  
 
3.3. Results of the CNN-based transfer learning model 
The accuracy of our CNN-based regression model is 
assessed through a 10-fold cross-validation, calculating the 
coefficient of determination R2. Our best model, using a 3rd 
order polynomial function reaches an R2 =0.75, showing that 
CNN-based image features can explain 75% of the DIMD 
variability (Table 2). 
 
3.3. Results of the spatial extrapolation 
The predictions of the multiple regression model using the 
public data sets (with selected covariates) have a moderate 
R2 of 0.47. Table 3 shows that centrality is most important 
features (i.e., highest value of standardized coefficient), 
followed by the amount of (NTL), density of services (health 
and education), population density and road density being 
the least important. Taking the example of centrality and 
NTL, as closer to the center and as more NTL, the larger the 
DIMD index. 

  
DIMD index = -1.09 DIMD index = 2.72 

Figure 4. Ground photos and corresponding DIMD values. 

 
 
Figure 2. CNN architecture. Source [9]. 
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Table 2. CNN-based regression of DIMD index. 
R2 RMSE BIAS 

0.75 0.53 0.20 
 
Based on the result of the regression model, the obtained 
coefficients are used to make a prediction of the socio-
economic conditions based on the five covariates for the 
entire city. Fig. 5 shows the result of the model, which 
allows a prediction of the non-surveyed slums but also 
provides a general understanding of all areas across the city.  
 
Table 3. Regression coefficients of the selected covariates.  

 Coeff. Stand. Coeff. Var. Infl. 
Fact. (VIF) 

(Constant) 0.28710   
Services 0.07737 0.166 2.091 

Road Density 0.02273 0.114 1.724 
Pop Density -0.00193 -0.146 2.372 
VIIRS_NTL 0.00019 0.239 1.644 

Centrality -0.00019 -0.485 1.876 

 
4. DISCUSSION AND CONCLUSION 

 
Previous studies have shown that EO data allow one to map 
the location, extent and physical appearance of deprived 
neighborhoods. Our study goes beyond that, showing that 
deep-learning-based models using EO data can capture also 
the socio-economic conditions of deprived areas at city 
scale. Our deep-transfer-learning approach shows the 
capability to explain 75% of the variation in the DIMD 
index. This allows to predict socio-economic conditions for 
urban areas without a detailed (and expensive) ground 
survey. EO data combined with open-access spatial data 
allow to extrapolate socio-economic conditions over large 
urban areas. 
 

 
Figure 5. Socio-economic variability (SoEcVa) index 

Overcoming issues of transferability and scalability, is in 
fact a major limitation of current urban studies in deprived 
areas. Reliable and updated city-wide information on the 
socio-economic conditions of deprived neighborhoods and 
their variability is an important piece of information for 
planning interventions and allocating resources. This 
information is also essential for analyzing vulnerabilities in 
the context of disaster preparedness and serves as contextual 
information for health studies as well as for the monitoring 
of the progress and supporting the achievement of the 
sustainable development goals (SDG) 1 and 11. 
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