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Turbulent mixing exerts a significant influence on many physical processes in the ocean.
In a stably stratified Boussinesq fluid, this irreversible mixing describes the conversion of
available potential energy (APE) to background potential energy (BPE). In some settings
the APE framework is difficult to apply and approximate measures are used to estimate
irreversible mixing. For example, numerical simulations of stratified turbulence often
use triply periodic domains to increase computational efficiency. In this set-up, however,
BPE is not uniquely defined and the method of Winters et al. (J. Fluid Mech., vol. 289,
1995, pp. 115–128) cannot be directly applied to calculate the APE. We propose a new
technique to calculate APE in periodic domains with a mean stratification. By defining a
control volume bounded by surfaces of constant buoyancy, we can construct an appropriate
background buoyancy profile b∗(z, t) and accurately quantify diapycnal mixing in such
systems. This technique also permits the accurate calculation of a finite-amplitude local
APE density in periodic domains. The evolution of APE is analysed in various turbulent
stratified flow simulations. We show that the mean dissipation rate of buoyancy variance
χ provides a good approximation to the mean diapycnal mixing rate, even in flows
with significant variations in local stratification. When quantifying measures of mixing
efficiency in transient flows, we find significant variation depending on whether laminar
diffusion of a mean flow is included in the kinetic energy dissipation rate. We discuss how

† Email address for correspondence: c.j.howland@outlook.com

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. 914 A12-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

97
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
36

.1
43

.5
6.

21
9,

 o
n 

30
 M

ar
 2

02
1 

at
 1

1:
57

:0
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

mailto:c.j.howland@outlook.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog?doi=10.1017/jfm.2020.979&domain=pdf
https://doi.org/10.1017/jfm.2020.979
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


C.J. Howland, J.R. Taylor and C.P. Caulfield

best to interpret these results in the context of quantifying diapycnal diffusivity in real
oceanographic flows.

Key words: ocean processes, stratified turbulence

1. Introduction

The transport of heat and salt across surfaces of constant density (isopycnals) in the
ocean provides a vital contribution to the closure of the ocean’s energy budget (Wunsch
& Ferrari 2004; Hughes, Hogg & Griffiths 2009). As originally highlighted by Munk
(1966), such a diapycnal flux arising from molecular diffusion alone is insufficient to
balance the generation of dense water in polar regions and close the global circulation.
Turbulence therefore plays an important role in enhancing mixing through the stirring of
tracer fields (such as temperature or salinity) and the subsequent generation of small-scale
gradients. In the ocean interior, turbulence is often associated with breaking internal waves
(MacKinnon et al. 2017), which in turn lead to mixing that is strongly intermittent in
both space and time. Identifying the mechanisms by which turbulence is generated, and
how much mixing can be associated with them, is vital in understanding and accurately
modelling the transport of tracers through the ocean.

Here we define mixing as the irreversible diffusive flux across isopycnals that arises
due to macroscopic fluid motions, as in Peltier & Caulfield (2003). This flux is
sometimes expressed as the mean vertical flux of density ρ, or equivalently buoyancy
b = −g(ρ − ρ0)/ρ0, where g is gravitational acceleration and ρ0 is some reference
density. Calculated from vertical velocity and buoyancy perturbations, the buoyancy flux
〈w′b′〉 can, however, include significant contributions from entirely reversible processes
such as internal waves. Indeed, equating buoyancy flux and irreversible mixing is only
appropriate when both are averaged over time and applied to a statistically stationary
state. Winters et al. (1995) show that the true rate of irreversible, diapycnal mixing in
a Boussinesq fluid is equal to the conversion rate of available potential energy (APE)
to background potential energy (BPE). As introduced by Lorenz (1955), APE refers
to the change in energy resulting from adiabatically sorting the buoyancy field of a
fluid to its state of minimum potential energy. By extending the APE framework to
compressible flows, Tailleux (2009) argues that mixing should in fact be described as
the dissipation of APE into internal energy, which is balanced exactly by an enhancement
in the generation of BPE in the Boussinesq limit. In this study, we focus on the dynamics
of a single-component Boussinesq fluid with a linear equation of state, and refer the reader
to Tailleux (2009, 2013a) for a discussion of mixing and APE in more complex scenarios.

Although the Winters et al. (1995) framework provides an exact expression with which
to calculate diapycnal mixing, it is not practical for use in oceanographic observations.
The most precise observational estimates of mixing come from vertical microstructure
profilers that record small-scale gradients of velocity or temperature in isolated vertical
profiles. The methods of Osborn & Cox (1972) and Osborn (1980), which are derived
from mean balances in the buoyancy variance and turbulent kinetic energy equations
respectively, can then be used to estimate an effective diapycnal diffusivity Kd. This
diffusivity is related to the mixing rate through M = KdN2 where N is some appropriate
measure of the buoyancy frequency. Note that N may not be straightforward to identify
if there is significant spatio-temporal variability in the flow (Arthur et al. 2017). Both
estimation methods are derived on the assumption that the flow is statistically steady
and thus that the mixing is well described by some average of the buoyancy flux.
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The diffusivity Kd obtained from these microstructure measurements can then be checked
against estimates of diffusivity from tracer release experiments (Ledwell et al. 2000).
Understanding how Kd varies throughout the ocean is also vital for improving the accuracy
of global circulation models, where diapycnal turbulent fluxes are only captured through a
prescribed parameterisation of Kd, such as that of Klymak & Legg (2010).

Accurately quantifying mixing in computational fluid dynamics requires the use of
direct numerical simulations (DNS) that resolve down to the dissipative scales of motion.
These simulations can then be used to test the assumptions used to derive the above models
(as in Taylor et al. 2019), or to quantify the differences in inferred diffusivity arising
from the models (Salehipour & Peltier 2015). The need to resolve the smallest scales of
motion restricts the Reynolds numbers Re it is possible to attain through DNS, and so
massive computational grids are needed to push Re up towards geophysical values. Since
the earliest days of simulating turbulence through DNS, triply periodic domains have been
used to reduce computational cost (Orszag & Patterson 1972). The lack of fixed boundaries
in this set-up means that higher values of Re can be obtained. Thin boundary layers do not
need to be resolved and highly efficient pseudospectral methods, exploiting the imposed
periodicity, can be implemented.

Riley, Metcalfe & Weissman (1981) were the first to include a mean density stratification
in such a triply periodic set-up by decomposing the buoyancy field into a linear profile
N2

0z and a periodic perturbation θ . This system has since proved popular for studying
the dynamics of high Re stratified turbulence (e.g. Staquet & Godeferd 1998; Riley & de
Bruyn Kops 2003; Brethouwer et al. 2007). Investigations of mixing in periodic domains,
recent examples of which can be found in Maffioli, Brethouwer & Lindborg (2016) and
Garanaik & Venayagamoorthy (2019), do not, however, implement the rigorous (Winters
et al. 1995) framework for quantifying APE, thus identifying explicitly irreversible mixing.
It is common instead to describe diapycnal mixing in terms of the destruction rate of
buoyancy variance χ . Indeed, destruction of variance is often how one would quantify the
mixing of a passive scalar (e.g. Villermaux 2019). The buoyancy variance also acts as a
small-amplitude approximation to the APE, and its dissipation rate χ has long been of use
in field measurements (Osborn & Cox 1972; Oakey 1982; Gargett & Holloway 1984).

As we later explore in § 4.3, approximating mixing with χ can result in an
over/under-estimate depending on whether the most intense turbulence in the flow
preferentially samples regions of locally high/low stratification (and thus is associated with
different characteristic local values of the buoyancy frequency). It is therefore important
to be able to quantify mixing accurately in the periodic system and identify whether such
discrepancies can be significant. Since the buoyancy in the system is only defined through
its periodic perturbation θ , ambiguity arises in how to construct the background state of
minimum potential energy. In § 2 we use a simple example to highlight this issue and then
provide an extension to the framework of Winters et al. (1995) that resolves the ambiguity
in the case of triply periodic domains. Section 3 gives a brief overview of the numerical
simulations we shall use to test the new framework, including the numerical method used.
Section 4 uses the new framework to analyse the simulations, and compares the exact
mixing rates to commonly used estimates. Finally, we conclude and discuss these results in
§ 5, with a particular focus on how our findings impact the estimation and parameterisation
of mixing in the ocean.

2. Quantifying mixing in triply periodic domains

We consider the problem of quantifying irreversible mixing in a system governed by the
dimensionless Boussinesq equations subject to an imposed, constant, mean stratification.
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We decompose the buoyancy field as b = z + θ , where b = z represents the buoyancy
profile of the imposed mean stratification. Note that b has been non-dimensionalised
by L0N2

0 , where L0 is a typical length scale and N0 is the mean dimensional buoyancy
frequency, so the mean buoyancy gradient in the dimensionless system is always equal to
one.

∇ · u = 0, (2.1)

∂u
∂t

+ (u · ∇)u = −∇p + 1
Re

∇2u + Ri0θ ẑ, (2.2)

∂θ

∂t
+ (u · ∇)θ = 1

RePr
∇2θ − w. (2.3)

We apply periodic boundary conditions in all three directions to the flow velocity u,
pressure p and buoyancy perturbation θ . The (dimensionless) domain sizes in the x, y, and
z directions are Lx, Ly, and Lz, respectively. The dimensionless parameters in the system
are the Reynolds number, Prandtl number and bulk Richardson number, given by

Re = L0U0

ν
, Pr = ν

κ
, Ri0 = N0

2L0
2

U0
2 , (2.4a–c)

where U0 is a velocity scale, ν is the kinematic viscosity and κ is the diffusivity of
buoyancy. As mentioned in the introduction, these equations are frequently used in studies
of stratified turbulence where the periodicity allows for the use of efficient spectral
methods and removes the effect of solid boundaries.

Although the buoyancy perturbation θ is periodic in the vertical, the total buoyancy
b = z + θ is not. We are instead left with a jump condition for b at the upper and lower
boundaries that has consequences for the calculation of irreversible mixing and potential
energy. The mean potential energy in the domain is defined as

P(t) = 〈−Ri0bz〉, (2.5)

where 〈 f 〉 = (1/V)
∫

V f dV denotes an average over the domain volume V . Substituting
θ = b − z into (2.3) and multiplying by −Ri0z provides an evolution equation for the
potential energy in the form

dP
dt

= −Ri0〈wb〉 + Ri0
V

∫
∂V

zbu · n dS + Ri0
RePr

〈
∂b
∂z

〉
− Ri0

VRePr

∫
∂V

z∇b · n dS. (2.6)

Taking the top and bottom boundaries to be at z = Lz and z = 0 respectively, and applying
the periodic boundary conditions simplifies the equation to

dP
dt

= −Ri0〈wθ〉 + Ri0wθ |z=0 − Ri0
RePr

∂θ̄

∂z

∣∣∣∣
z=0

, (2.7)

where an overbar denotes a horizontal average, defined as f̄ = (1/A)
∫∫

A f dA where A is
the cross-sectional area of the domain and dA = dx dy is the area element. The conversion
rate of internal energy to potential energy, given by the third term on the right-hand side
of (2.6), has been cancelled out by the main contribution of the diffusive flux through the
boundary – the final term in (2.6). The evolution equation (2.7) highlights how sensitive
the evolution of the potential energy can be to the choice of the boundary.

The accurate quantification of irreversible mixing requires partitioning the potential
energy into background and available components. The BPE is defined as the minimum
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Mixing and APE in stratified flows

value of potential energy that can be achieved through adiabatic rearrangement of
the fluid in the domain. In this minimum state, the buoyancy profile is given by a
monotonically increasing one-dimensional function b∗(z, t), so the mean BPE is given
by PB = 〈−Ri0b∗z〉. Winters et al. (1995) show that BPE can also be expressed as

PB(t) = 〈−Ri0b(x, t)z∗(x, t)〉, (2.8)

where z∗ is the height a parcel of fluid with buoyancy b(x, t) is moved to under the
adiabatic rearrangement. Following Lorenz (1955), the APE is defined as the surplus
potential energy

PA(t) = 〈−Ri0b(z − z∗)〉. (2.9)

The rate of irreversible mixing associated with fluid motion is then given by the energy
transfer rate from APE to BPE, which takes the form

M = Ri0
RePr

〈
∂Z∗
∂b

∣∣∣∣
b(x,t)

|∇b|2 − ∂b
∂z

〉
= Ri0

RePr

(〈
∂Z∗
∂b

∣∣∣∣
b(x,t)

|∇b|2
〉

− 1

)
, (2.10)

where Z∗(b, t) is the inverse function associated with the sorted buoyancy profile b∗ which
satisfies z∗(x, t) = Z∗(b(x, t), t). It is important to appreciate that the term scaling |∇b|2
in (2.10) is effectively the inverse square of the buoyancy frequency of the sorted variables,
and so accentuates the contributions where the sorted buoyancy gradient is relatively weak.
As discussed below in § 4.3, this is a potential source of difference between M and the
buoyancy variance destruction rate χ .

Note that Tailleux (2013a) argues for a more general definition of APE, where b∗
is replaced by an arbitrary reference state br that can depend on a wide range of
thermodynamic quantities. This definition is particularly useful for its possible extension
to multicomponent, compressible fluids as shown by Tailleux (2018). Defining buoyancy
relative to an arbitrary reference state also highlights an inherent ambiguity in calculating
APE. If APE is quantified as the cumulative work done against buoyancy forces,
then different definitions of a reference buoyancy state may alter how one interprets
mixing and APE dissipation. For the single-component, Boussinesq, linear equation of
state considered here, we shall continue to use the adiabatically sorted b∗ given its
aforementioned connection to a widely studied approach used for the quantification of
diapycnal mixing.

We now present a simple example to highlight how the aperiodicity of b can cause issues
for calculating the mixing rate M. We consider the buoyancy field given by θ = sin x in
a domain of length 2π. This might be thought of as a representation of the buoyancy field
associated with a standing internal gravity wave, at an instant when half the columns of
fluid in the domain are raised up and half are pushed down relative to their equilibrium
location.

The total buoyancy field b = z + sin x and its corresponding sorted profile Z∗(b) are
shown in figures 1(a) and 1(b) respectively. In an unbounded domain, we would expect
a linear profile for Z∗ since the wave is simply a rearrangement of the initial linear
stratification. However, by taking the boundaries at z = 0 and z = 2π, we produce a profile
with deviations from a uniform slope close to these values. Since θ is independent of z, we
would also expect the mixing rate M to be constant regardless of the vertical extent that
we average over. Figure 1(c) instead shows that the variations in ∂Z∗/∂b change the value
of M across much of the domain, with the horizontally averaged mixing rate even taking
negative values close to the boundary.

This issue has caused problems in the literature before. By sorting the buoyancy profile
of a rectangular, periodic domain, Bouruet-Aubertot et al. (2001) observe extremely large
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0 2π 2ππ π

x b

Z∗

Z∗

zz

2π

b = z + θ

0 0 0.5

0

ππ

2π

(b)(a) (c)

M

M(z)

Figure 1. (a) Displays contours of the total buoyancy field given by θ = sin x; (b) shows the sorted profile
Z∗(b) associated with this buoyancy field; (c) shows the horizontally averaged irreversible mixing rate
M̄(z) = (∂Z∗/∂b)|∇b|2 − ∂ b̄/∂z. Note that an overbar here denotes an average over x, and ∂Z∗/∂b is evaluated
at b(x, z).

oscillations in the APE of a breaking internal wave (as shown in figure 9a of that paper)
due to fluxes across the top/bottom boundary of the domain. The large oscillations make
it difficult to draw precise, quantitative conclusions about the evolution of APE and
diapycnal mixing in that system.

2.1. Potential energy between isopycnal boundaries
We propose the use of a control volume bounded by surfaces of constant buoyancy
(isopycnals) to tackle the highlighted issue of quantifying mixing in triply periodic
domains. Consider tiling the computational domain by stacking several computational
domains vertically, as in figure 2. The velocity and buoyancy perturbation repeat in
each domain, but the vertical coordinate, z, is continuous such that the total buoyancy
in one tile is Lz larger than the total buoyancy at the same relative position in the tile
immediately below it. In this system it is particularly useful to consider two isopycnals
separated by the vertical periodic length, i.e. Lz. These isopycnals will have the same
shape due to the periodicity of θ , and the volume enclosed by these two isopycnals will
therefore be constant. The buoyancy profile can then be sorted into a background state
b∗(z), where the parcels are sorted into the one-dimensional domain 0 ≤ z < Lz. Although
this background profile must have a mean vertical gradient equal to the imposed mean
stratification, its local gradients ∂b∗/∂z can vary more generally. In the simple example
considered in figure 1, this technique recovers the linear profile Z∗(b) = b expected from
the column displacement argument mentioned above.

We now describe more precisely the details of implementing isopycnal boundaries for
quantifying APE and mixing. We first choose a buoyancy value b0 that defines the lower
boundary surface z1(x, y, t) implicitly through

b(x, y, z1(x, y, t), t) = b0. (2.11)

Vertical periodicity of θ then requires that the upper boundary surface b = b0 + Lz is
defined by z2 = Lz + z1. It is important to appreciate that (2.11) defines z1 (and hence
also z2) as a single surface that spans the horizontal cross-section of the domain. This
ensures that the volume enclosed by the isopycnals is clearly defined. To aid the calculation
of volume integrals, we also require (essentially for clarity of exposition) z1 to be a
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b =
3L z/

2

b =
L z/

2

b =
– L z/

2

(b)

(a)

(c) (d ) b

w

w θ

Figure 2. Example schematic of tiling the periodic computational domain vertically. The vertical velocity w,
shown in (a, b), and buoyancy perturbation θ , shown in (c), simply repeat thanks to their periodic boundary
conditions. The total buoyancy b = z + θ , shown in (d), is not periodic in the vertical, although isopycnal
surfaces separated by the vertical period Lz are of identical shape.

single-valued function of x and y, or equivalently that the boundary isopycnal cannot
exhibit overturning. Such an isopycnal may be difficult to find in homogeneous turbulence,
although stratified flows are often strongly spatially inhomogeneous. A discussion of how
this approach could be generalised for an overturning isopycnal surface can be found in
appendix A.

Constructing evolution equations for mean energy quantities involves taking time
derivatives of volume integrals. Since the boundaries of our domain are now time
dependent, we must apply the Leibniz rule to any such integral, that is

d
dt

(∫
V

f dV
)

=
∫

V

∂f
∂t

dV +
∫

A

(
f |z=z2 − f |z=z1

) ∂z1

∂t
dA, (2.12)

where A is the horizontal cross-sectional area of the domain and the area element
dA = dx dy.

The mean kinetic energy of the system K = 〈|u|2〉/2 is unaffected by the change of
boundaries, since its integrand is periodic in the vertical direction. The evolution of K can
therefore be derived straightforwardly from (2.2) by applying (2.1) to obtain the simple
form

dK
dt

= J − ε, (2.13)

where the buoyancy flux and kinetic energy dissipation rate are respectively given by

J = Ri0〈wθ〉, ε = 1
Re

〈
∂ui

∂xj

∂ui

∂xj

〉
. (2.14a,b)

Note that from this definition, positive values of buoyancy flux correspond to a conversion
of potential energy to kinetic energy.

However, extra terms do arise compared to (2.6) when deriving the potential energy
evolution equation. These new terms provide a secondary reservoir of potential energy for
the system, as is explained below. The advective flux across the boundary, given by the
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cba

d

z = 1

b = 1

z = 0

b = 0

Figure 3. A sketch of two-layer buoyancy fields with varying vertical boundaries.

second term on the right of (2.6), is now zero since the bounding isopycnals have the same
shape and the same gradients due to periodicity. Applying the Leibniz result (2.12) to the
potential energy P and imposing the boundary conditions therefore produces the evolution
equation

dP
dt

+ dS
dt

= −J + Dp − Fd. (2.15)

(A more detailed derivation of this equation can be found in appendix B.1.) Dp =
Ri0/RePr is the conversion rate of internal energy to potential energy, and Fd is the
diffusive boundary term given by

Fd = Ri0
ARePr

∫
A

[ |∇b|2
∂b/∂z

]
z=z1

dA = Ri0
RePr

( |∇b|2
∂b/∂z

)
z=z1

, (2.16)

where the overbar denotes a cross-sectional average over x and y, importantly taken after
the quantity in brackets is evaluated at z = z1(x, y, t). We refer to the quantity S as the
surface potential energy, where S is defined as

S = Ri0

(
〈b0z〉 +

�z22

2

)
. (2.17)

We can arbitrarily set b0 = 0 in all of the above by shifting our vertical coordinate
to z − b0. S then takes the form of potential energy associated with an interface at z2,
motivating our choice for its name.

2.2. APE and BPE between isopycnal boundaries
Using the Winters et al. (1995) form of APE defined in (2.9) is not appropriate for
the time-varying domains considered here. This can be understood by considering the
simple two-layer system shown in figure 3. Panel (a) shows the background state obtained
through constructing the one-dimensional buoyancy profile b∗ for the buoyancy fields in
panels (b, c). Since the buoyancy field in figure 3(b) can be obtained from the background
state through shifting the same number of fluid columns up as down, P does not change
between states (a) and (b). P = PB therefore holds for state (b), and hence PA = 0. It is
simple, however, to construct a state (c) with lower potential energy than state (b). The
Winters et al. (1995) definition would then in fact give PA < 0 for the buoyancy profile in
figure 3(c), which is not consistent with the concept of APE.

We aim to define a new APE variable A that can be used in the time-varying domain.
Progress can be made by considering the total potential energy P + S that appears in
(2.15). The decrease in P from figures 3(a) to 3(c) is matched exactly by an increase in S .
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Mixing and APE in stratified flows

In terms of the total potential energy, states (a) and (c) are therefore equivalent background
states. This motivates subdividing the potential energy into

P + S = A + B. (2.18)

We expect A = 0 for states (a, c, d) in figure 3. In particular for state (d) this means that
any change in P + S due to a vertical shift of the domain is captured by the BPE B. We
therefore construct the background profile b∗(z) over the domain �z1 < z < �z2, such that

Z∗(0, t) = �z1(t), Z∗(Lz, t) = �z2(t), b∗(�z1, t) = 0, b∗(�z2, t) = Lz. (2.19a–d)

This ensures that any change in P due to a shift in the mean height of the lower isopycnal
�z1 leads to a corresponding change in PB. Accounting also for the corresponding change
in S leads to the following definitions for background and APE:

B = 〈−Ri0bz∗〉 + Ri0
2

�z2
2, (2.20)

A = 〈−Ri0b(z − z∗)〉 + Ri0
2
( �z22 − �z2

2). (2.21)

Note that for a closed system with fixed, insulated boundaries, these definitions recover
the Winters et al. (1995) form for BPE and APE up to a constant in the BPE.

Evolution equations for these quantities can be readily obtained through multiplying
the buoyancy evolution equation (2.3) by z∗ and taking volume averages. An analogous
derivation as that leading to (2.15), as shown in appendix B.2, results in

dB
dt

= M + Dp − Fd, (2.22)

where M is the irreversible mixing rate defined in (2.10). Subtracting (2.22) from (2.15)
also gives an evolution equation for our new APE variable as

dA
dt

= −J − M. (2.23)

We therefore recover the simple evolution equation for APE in a closed system, where the
irreversible mixing rate M may also be identified with a destruction of APE (e.g. Peltier
& Caulfield 2003).

2.3. Comparison to local APE of Scotti & White (2014)
The concept of local APE is used as an alternative framework for quantifying APE in
situations where fluxes through a boundary are important. Originally devised by Holliday
& McIntyre (1981) and Andrews (1981), local APE quantifies the work done against
buoyancy forces to move a fluid parcel from a reference position to its actual position. The
framework has seen renewed interest recently in its application to numerical simulations.
We follow Scotti & White (2014) in defining the local APE density EAPE as a function of
space and time by

EAPE(x, t) = −Ri0

∫ b(x,t)

b∗(z,t)
z − Z∗(s, t) ds. (2.24)

We use this form primarily for its ease of notation, although as we show in appendix C, for
the set-up we consider it is equivalent to various other expressions proposed for local
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C.J. Howland, J.R. Taylor and C.P. Caulfield

APE density. Although this quantity varies in space and time, its dependence on the
globally sorted profiles b∗ and Z∗ means that it cannot be calculated solely from local
fields. In particular, the issue for quantifying mixing highlighted by figure 1 remains
unless we change the domain over which b∗ is constructed. If we instead take isopycnal
boundaries as in § 2.1, then EAPE becomes a useful tool for investigating the local
mechanisms that lead to mixing in the domain.

Indeed, we can relate the volume-averaged EAPE to our global APE variable A as
follows. The mean local APE defined in this way can also be written in the form

EA ≡ 〈EAPE〉 = −Ri0〈b(z − z∗)〉 − Ri0

〈∫ z∗(x,t)

z
b∗(s, t) ds

〉
. (2.25)

Winters & Barkan (2013) explain that the final term in this expression accounts for the
energy changes arising from the requirement of incompressibility, leading to displacement
of some fluid elements to make room for the rearrangement of a fluid parcel in the
sorting process. They also showed through considering fluid parcel exchanges that this
term vanishes in the case of fixed horizontal boundaries.

We now consider a simple example to show how this term can change with
non-horizontal boundaries and how it relates to the additional terms in (2.21). We take
θ = −z1(x, y, t) as the buoyancy perturbation field, so the domain represents that of a
uniform stratification where each fluid column has been shifted so that the b = 0 isopycnal
is at z1, analogously to the situations shown in figures 1(a) and 3(b). In this case, the
reference profiles simply take the form b∗(s, t) = s − �z1(t), and Z∗(s, t) = s + �z1(t). We
can therefore analytically compute

EAPE(x, t) = Ri0
2
(z1(x, y, t)− �z1(t))2 . (2.26)

Considering each of the terms in (2.25) separately, we also find that

− Ri0〈b(z − z∗)〉 = 0, −Ri0

〈∫ z∗(x,t)

z
b∗(s, t) ds

〉
= Ri0

2

(
z12 − z1

2
)
. (2.27a,b)

The integral term therefore accounts for all of the available potential energy associated
with the surface potential energy S . Since z22 − �z2

2 = z12 − �z1
2, we find that the

volume-integrated local APE exactly matches the changes we propose for the global APE
in (2.21).

In contrast to A, the calculation of EAPE does not rely on computing a surface integral
over the isopycnal boundary. Indeed the moving boundary only affects the calculation of
local APE through the boundary conditions (2.19a–d) for the reference profiles b∗(z, t)
and Z∗(s, t), and even here one only needs to know the mean height of the isopycnal.
The strong agreement between A and EA gives us hope that in flows where A is not well
defined, EA can provide an accurate measure of APE.

3. Numerical simulations

We apply the extended APE framework developed in § 2.2 to two sets of DNS. All of these
simulations are performed using DIABLO, which uses a third-order Runge–Kutta scheme
for time stepping and a pseudo-spectral method for calculating spatial derivatives (Taylor
2008). The software also implements dealiasing of nonlinear terms through a 2/3 rule.
One set of simulations (set F) adds forcing terms to (2.2) and (2.3) to produce a flow in
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Mixing and APE in stratified flows

Simulation F1 F2 F3 U1 U2 U3 U4

Reynolds number (Re) 10 000 10 000 10 000 8000 8000 5000 5000
Domain size (Lx × Ly × Lz) 2π × 2π × 2π 8π × π/2 × 2π

Resolution 1024 × 1024 × 1024 4096 × 256 × 1024
Initial condition IGW spectrum Shear and wave
Forcing Vortical Waves Waves Unforced

Table 1. Overview of the various numerical simulations, all of which are performed using a bulk Richardson
number Ri0 = 1 and Prandtl number Pr = 1. IGW, internal gravity wave.

a statistically steady state, whereas the other simulations (in set U) solve the equations
unforced as an initial value problem. All of the simulations considered here are performed
using a bulk Richardson number Ri0 = 1 and Prandtl number Pr = 1.

The first set of simulations is that used in our previous study on mixing in forced
stratified turbulence (Howland, Taylor & Caulfield 2020). We refer to the simulations
H,R and P in that paper by F1, F2, and F3, respectively, and outline some of their key
parameters in table 1. Simulation F1 is forced by randomly phased large-scale vortical
modes, and importantly features no direct forcing of the buoyancy field. The evolution
equations (2.22) and (2.23) for B and A still therefore hold. On the other hand, simulations
F2 and F3 are forced by large-scale internal gravity waves that include a buoyancy
forcing component. The buoyancy forcing can act as a source or sink of potential energy,
modifying the evolution equations. However, if we are primarily concerned with diapycnal
mixing, it remains useful to calculate the irreversible mixing rate M in these cases. For
more precise details of the forcing in these simulations, we refer the reader to Howland
et al. (2020).

The second set of simulations investigates the interaction of a sinusoidal vertical shear
flow and a plane internal gravity wave. The initial velocity and buoyancy fields are given
by u = (sin z)x̂ + u′ and θ = θ ′ respectively, where

θ ′ = s
m

cos(kx + mz), u′ = s√
k2 + m2

sin(kx + mz)
(

1, 0,− k
m

)
. (3.1a,b)

We express the initial amplitude of the internal wave through its steepness s and choose
the wave vector k = (k, l,m) = (1/4, 0, 3) based on the typical aspect ratios of waves
observed in the thermocline by Alford & Pinkel (2000). Small-amplitude noise is added
to the initial velocity field to allow the development of three-dimensional motion from the
two-dimensional initial condition. Simulations U1 and U3 use an initial wave steepness of
s = 1, with s = 0.5 for simulation U2 and s = 0.75 for simulation U4. As an example, the
initial buoyancy and spanwise vorticity fields for U4 are shown in figure 4. Note that by
taking b = z + θ mod 2π in figure 4(a), we have effectively defined isopycnal boundaries
at b = 0 and b = 2π. (A more detailed analysis of the properties of these simulations is
presented in Howland, Taylor & Caulfield (2021).)

4. Results

4.1. Energy budgets
We now investigate the evolution of BPE and APE in the various simulations, and consider
how terms in the energy budgets (2.22) and (2.23) relate to the flow dynamics. Figure 5
plots a range of time series associated with the unforced simulation U1. The kinetic energy
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Figure 4. The initial condition of simulation U4, where s = 0.75. (a) Contours and colour map of the total
buoyancy field b = z + θ mod 2π. (b) Colour map of the spanwise vorticity ζy = ∂u/∂z − ∂w/∂x.
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Figure 5. Energy budgets for simulation U1. (a) Time series of the mean buoyancy flux and viscous dissipation
rate; (b) time series of the BPE budget terms; (c) time series of APE and BPE defined in (2.20) and (2.21). The
time series for B is shifted by −B(0) for clarity. Terms denoted by symbols are computed from full flow output
files, and so have lower time resolution than J and ε, which are computed ‘on the fly’.

budget terms J and ε, defined in (2.14a,b), are shown in figure 5(a), and the BPE budget
terms from (2.22) are shown in figure 5(b). Time series of A and B are finally shown in
figure 5(c). Up to time t ≈ 20, the energetics are dominated by large, reversible changes
through the buoyancy flux. The initial increase in A seen in figure 5(c) is almost entirely
returned to the kinetic energy through wave–mean flow interactions. During this time,
there is little mixing and any changes in B are small. A wave breaking event follows,
producing an intermittent burst of turbulent activity that coincides with high values of the
diapycnal mixing rate M and the kinetic energy dissipation rate ε. For 30 < t < 50, this
mixing coincides with positive values of the mean buoyancy flux, leading to a fast drop in
A. The flow relaminarises at late times, with all quantities tending to constant values and
small fluctuations persisting in the APE and buoyancy flux.
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Figure 6. Potential energy budgets for the late-time statistically steady state achieved in simulation F1. Panels
are as in figure 5, with −J additionally plotted on panel (b).

The increase in B over the full duration of the simulation is well described by the
total diapycnal mixing associated with the breaking event. Indeed the other non-negligible
terms in the budget (2.22) are close to being equal, as shown in both figures 5 and 6.
The diffusive boundary term Fd primarily acts to cancel out any increase in B due to
the conversion of internal energy to potential energy through Dp. This cancellation is
exact when the boundary has no lateral variation, and arises since the system is forced to
maintain a constant mean buoyancy gradient through the periodicity of θ .

Figure 6 repeats the analysis of figure 5 for the forced simulation F1. We only consider
the statistically steady period achieved at late times in this flow. Unlike in the unforced
simulation, the mean buoyancy flux remains negative throughout as shown in figure 6(a),
providing a source of APE from the kinetic energy. Figure 6(b) furthermore shows that the
buoyancy flux is on average in balance with the mixing rate, leading to an approximately
constant value of A, as shown in figure 6(c). The constant mixing rate also predictably
leads to a linear increase in the BPE.

4.2. Visualising mixing with local APE
We can further investigate the local processes that lead to the global results above by
analysing the distribution of local APE throughout the domain. Figure 7 plots snapshots
of EAPE(x, t) from simulations F1–F3 and from simulation U1 at various times. Since the
turbulence arising in each simulation is patchy and inhomogeneous, we are able to choose
appropriate isopycnal boundaries for each simulation and hence calculate the surface
potential energy S . These isopycnal boundaries are shown in figure 7 as solid black lines.

Data from the forced simulations of set F are presented in figures 7(a–c). Each snapshot
of EAPE is taken at time t ≈ 150, when the turbulence is in a statistically steady state.
Figure 7(a) highlights low local APE values throughout the domain of simulation F1.
Increased EAPE occurs only at small scales and in regions with high turbulent dissipation
rates (not shown). In this sense, APE is primarily associated here with the distortion of
the buoyancy field by turbulence, and not with internal waves. By contrast, figures 7(b)
and 7(c) show patches of high local APE throughout the domain at a range of scales.
This is consistent with associating mixing with intermittent, large-scale overturns and
convectively driven turbulence, as discussed in Howland et al. (2020).
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Figure 7. Vertical plane snapshots of EAPE as defined in (2.24). Solid lines in each case denote the isopycnal
boundary z1 from which the APE is calculated. Snapshots from the forced simulations are each taken at time
t ≈ 150 with runs F1, F2 and F3 shown in (a), (b) and (c) respectively. Panels (d−f ) display the evolution of
EAPE in simulation U1 from the initial condition to the peak in mixing at time t = 30.

The development of local APE during the unforced simulation U1 is presented in
figures 7(d–f ). The distribution of EAPE in the initial condition is shown in figure 7(d),
and is entirely associated with the internal gravity wave described by (3.1a,b). At early
times, the wave is refracted by the shear flow, leading to a distortion of the banded
structure in the local APE field. By time t = 20, EAPE preferentially accumulates in the
upper half of the domain while maintaining some signal of the wave structure, as shown
in figure 7(e). The large values of EAPE lead to locally unstable buoyancy profiles, and
the development of convective instabilities. The associated convection converts APE to
kinetic energy through the buoyancy flux, and also promotes the emergence of small
scale structures seen in figure 7(e). Later, at t = 30, the flow becomes more complex
with the development of shear-driven turbulent billow structures. These structures, seen
prominently on the right of figure 7( f ), span regions of both high and low EAPE. Although
the volume-averaged mixing rate peaks near this time, the banded structure of EAPE leads
to strong local variation in local mixing rates within the turbulent patches. Mixing is high
where turbulence and APE coexist, and it cannot occur where there is no APE to remove.

4.3. Estimating mixing with χ
In the limit of small buoyancy perturbations from the uniform, imposed buoyancy gradient,
APE can be approximated by

Ã = Ri0
2

〈θ2〉. (4.1)
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Mixing and APE in stratified flows

This quantity satisfies the simple evolution equation

dÃ
dt

= −J − χ, (4.2)

where χ is the rate of destruction of buoyancy variance, i.e. the dissipation rate defined by

χ = Ri0
RePr

〈|∇θ |2〉 = Ri0
RePr

〈|∇b|2 − 1
〉
. (4.3)

Comparing the definitions (2.10) and (4.3), we see that χ precisely takes the form of
the irreversible, diapycnal mixing rate M only for the specific case where the sorted
background buoyancy profile b∗ exactly matches the imposed uniform stratification. Recall
that this imposed constant stratification has a dimensionless buoyancy gradient equal to
one by construction. In our simulations, local deviations in the buoyancy field are not
always small and we should treat the above approximation with caution. For example,
during the convective phase (20 < t < 30) of simulation U1 there are sizeable regions
of the domain with statically unstable buoyancy gradients. The peak mixing in this
case occurs where the (horizontal) mean buoyancy is in a layered state, with ‘layers’
of relatively low stratification separated by ‘interfaces’ of relatively high stratification
compared to the imposed constant buoyancy gradient. Such layered states are observed
to arise naturally in turbulent stratified flows, for a wide variety of dynamical reasons (see
Caulfield (2021) for a review).

Nevertheless, the dissipation rate χ is significantly more straightforward to quantify than
the true diapycnal mixing rate M, and so it is useful to investigate how well it can actually
approximate the mixing. The accuracy of χ for estimating mixing is also important in the
context of ocean microstructure measurements, where small-scale gradients are measured
directly but there is no way to obtain the relevant reference profile b∗. In figures 8(a–c),
we therefore plot the time series of both χ and M for each of our simulations. By
inspection, the two quantities appear to match up very well, with the symbols marking
the mixing rate overlapping the lines plotting the time series of χ . To quantify how well
χ approximates M, we plot the time series of their ratio in figures 8(d–f ). Throughout
the forced simulations, and for the early times of the unforced simulations, χ remains
within 10 % of the true mixing rate. At late times in simulations U1 and U3 the difference
increases up to 20 %, but at this stage the flow is relaminarising and M and χ are both
small. Indeed we show that this discrepancy is unimportant for quantifying the total mixing
achieved over the course of the simulations in figures 8(g–i), where we plot the ratio of
time-integrated χ and M. The time integral of M is equal to the increase in BPE due to
diapycnal mixing, and we see that using χ to estimate this quantity results in at most a 5 %
error in the total BPE change (corresponding to the final values of the cumulative ratio
plotted in figures 8g–i).

In the unforced simulations, χ consistently provides a slight underestimate of the
diapycnal mixing rate. This suggests that regions of intense turbulent mixing, associated
with high values of |∇b|, preferentially sample regions where ∂Z∗/∂b > 1. These regions
are in turn associated with the reference buoyancy profile b∗ having a locally weaker
stratification than the mean. In simulations F2 and F3, where forcing is applied in the
form of internal gravity waves, the opposite is true and χ provides a slight overestimate
of M. However, it is not true that intense mixing occurs only in regions of strong or
weak local stratification in each flow. In all of the forced simulations, for example, the
standard deviation of ∂Z∗/∂b rises from the range 0.1–0.15 at time t = 50 up to 0.25–0.3
at t = 150, suggesting that as mixing persists throughout the simulations, the background
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Figure 8. A time series comparison of the irreversible mixing rate M and the dissipation rate χ for each
simulation in table 1. (a−c) plot the time series of M and χ ; (d−f ) plot the time series of χ/M to highlight
the fractional difference between the two; (g−i) plot the time series of the ratio of the time-integrated quantities.

profile is modified. The fractional error between χ and M seen in figure 8(d) does
not show this increasing trend, suggesting that some local overestimates of M (where
∂Z∗/∂b < 1) cancel with some local underestimates (where ∂Z∗/∂b > 1) in the global
average. Similarly, the standard deviation of ∂Z∗/∂b reaches values in the range 0.15–0.2
for simulations U1 and U3 when t > 30, approximately double the fractional error during
the period of peak mixing.

4.4. The effect of mean flow dissipation
In the unforced simulations of set U, the majority of the kinetic energy is associated with
the initial mean shear profile ū = sin z. At late times in these scenarios, the flow begins to
relaminarise and the kinetic energy dissipation rate ε is dominated by the laminar diffusion
of the mean shear. Mixing efficiency is, however, often calculated using the turbulent
kinetic energy dissipation rate, that we quantify here as

ε′ = 1
Re

〈
∂ui

′

∂xj

∂ui
′

∂xj

〉
, (4.4)
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Figure 9. Time series of (a−c) instantaneous and (d−f ) cumulative mixing efficiency, calculated with and
without the mean flow dissipation, as defined in (4.5a,b) and (4.6) respectively.

where u′ = u − ū is the velocity field perturbation from the horizontal average. Figure 9
compares time series of the following definitions of mixing efficiency calculated using
either the turbulent dissipation rate ε′ or the total rate ε

η = χ

χ + ε
, η′ = χ

χ + ε′
. (4.5a,b)

We use χ rather than M in our definition of efficiency, since we have seen that the
difference between them is small in the previous section, and our records of χ have
better resolution in time. Large discrepancies between η and η′ are observed when the
average turbulent kinetic energy dissipation rate ε′ is small compared to the dissipation
rate of the mean flow ε̄ = 〈|∂ū/∂z|2〉/Re. In simulation U2, wave breaking occurs at
t ≈ 50 and consists of small, strongly localised overturns that dissipate relatively quickly.
Consequentially ε′ remains smaller than ε̄ for the entire duration, leading to large
differences between the efficiencies in figure 9(b). The parameter η′ takes much larger
values than η in all of the unforced simulations at early and late times, with η′ close to its
initial value of 0.5. This value corresponds to the diffusion associated with the plane wave
form of (3.1a,b) and is a consequence of the choice Pr = 1, that is molecular diffusion of
buoyancy occurs at the same rate as the diffusion of momentum. At larger values of Pr,
diffusion of the wave would result in a far lower value of η′.

In figures 9(d–f ) we also plot associated cumulative mixing efficiencies, defined here in
terms of appropriate integrals of χ and ε (or ε′)

ηc =

∫ t

t0
χ(t′) dt′∫ t

t0
χ(t′)+ ε(t′) dt′

, η′
c =

∫ t

t0
χ(t′) dt′∫ t

t0
χ(t′)+ ε′(t′) dt′

, (4.6)
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Simulation U1 U2 U3 U4

Maximum Reb(t) = ε′Re
Ri0

11.29 0.46 6.89 2.41

Maximum Reb(z) = ∂ju′
i∂ju′

i

Ri0(1 + ∂zθ̄ )
69.61 3.73 39.37 21.12

Table 2. Peak values of the buoyancy Reynolds number in the unforced simulations. The top row displays
maximum (over t) values computed from the volume average ε′. The bottom row shows the maximum (over z)
value of Reb computed from horizontal averages at the time instant of peak ε′.

where t0 = 50 for the forced cases, and t0 = 0 for the unforced cases. The time
integrals represent the energy changes associated with the cumulative effects of χ and ε.
Figures 9(e) and 9( f ) show that the diffusion of the mean shear flow has a significant
impact on the total cumulative efficiency in the unforced simulations. To emphasise that
this is primarily a Reynolds number effect, we have listed measures of the buoyancy
Reynolds number for the unforced simulations in table 2. Since the flows considered are
extremely inhomogeneous in the vertical (as seen in figures 7e, f ) we have calculated Reb
from both volume and horizontal averages. In oceanographic flows, we expect molecular
diffusion to be negligible compared to the turbulent dissipation rate for the vast majority
of the internal wave spectrum. This result therefore highlights the challenge of using
direct numerical simulations, where Re is inevitably limited by computational resources,
to investigate ocean mixing processes.

5. Discussion and conclusions

In this study, we have highlighted how the APE framework of Winters et al. (1995)
should be generalised in the triply periodic system often used in numerical simulations
of stratified turbulent flows. In these systems it is important to constrain the buoyancy
field, inferred from the periodic perturbation θ , to lie in a prescribed range. We can then
construct an accurate background buoyancy profile b∗ that is consistent with the periodic
nature of the system. However, setting limits on the buoyancy values effectively means that
the shape of the domain can change in time. In the case where the limiting buoyancy value
has a non-overturning isopycnal surface, we find that this introduces an extra potential
energy term S as defined in (2.17). Appropriate definitions of available and BPE can then
be obtained by accounting for this additional term as in (2.20) and (2.21).

Constructing the correct background profile is also vital for accurately calculating
the local APE density EAPE defined by Scotti & White (2014). This quantity can then
provide useful information for identifying mechanisms by which mixing can occur. When
integrated over the domain, the local APE also recovers all of the additional terms in
our new global APE variable A. Furthermore, the local APE can even be quantified in
scenarios where our global APE is not well defined. So long as the background profile
b∗ is identified, both EA ≡ 〈EAPE〉 and the irreversible, diapycnal mixing rate M can be
calculated. The evolution of EA is then entirely determined by the mixing rate and the
buoyancy flux, with zero contribution from boundary fluxes. We can therefore calculate the
exact rate of diapycnal mixing in more energetic stratified flows that use periodic domains,
such as those considered by de Bruyn Kops & Riley (2019) and Portwood, de Bruyn Kops
& Caulfield (2019).
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Mixing and APE in stratified flows

This technique for calculating APE could also be applied to unstably stratified periodic
systems, where Ri0 < 0, used to study bulk properties of convection (e.g. Lohse & Toschi
2003). In traditional Rayleigh–Bénard convection, Gayen, Hughes & Griffiths (2013) find
that irreversible mixing is largely confined to thermal boundary layers. It would therefore
be interesting to investigate whether the theoretical prediction of η → 0.5 at high Ra holds
for the periodic convection set-up, where such boundary layers are absent. The sorting
technique presented here is also applicable to the case of passive scalar flows where a mean
gradient is imposed. Such set-ups are useful for studying the mixing of biogeochemical
tracers, which are often found with significant mean gradients in the ocean (Williams &
Follows 2011). Although the concept of APE would not be relevant here, sorting between
isoscalar surfaces would provide an appropriate background profile to enable accurate
calculation of the diascalar flux as proposed by Winters & D’Asaro (1996).

In observational oceanography, turbulent mixing can be estimated by using
fast-response thermistors to measure small-scale temperature gradients. The primary
aim in this context is to estimate a diapycnal diffusivity, defined in our dimensionless
formulation as

Kd = Ri0
RePr

〈(
∂Z∗
∂b

∣∣∣∣
b(x,t)

)2

|∇b|2
〉

= Ri0
RePr

〈 |∇b|2
(∂b∗/∂z|z∗(x,t))2

〉
. (5.1)

Since the reference profile b∗ cannot be obtained in the ocean, a large-scale average is
taken of the buoyancy (or temperature) gradient. The estimate often attributed to Osborn
& Cox (1972) is then used such that

Kd ≈ Ri0
RePr

〈|∇θ |2〉
〈∂b/∂z〉2 = χ. (5.2)

Note that the internal energy conversion rate Dp is neglected here, since it is assumed to
be much smaller than χ in a turbulent flow. In dimensional form it is common to see (5.2)
written as Kd = χ/N2, but in our non-dimensionalisation the mean buoyancy gradient in
the denominator is prescribed to be equal to one. The approximation made in estimating
Kd in (5.2) is the same approximation used in § 4.3 to estimate the mixing rate M with χ .
Precisely, we approximate the reference buoyancy gradient ∂b∗/∂z by the imposed mean
stratification. We test this approximation in the context of diapycnal diffusivity in figure 10
by plotting the time series of (χ + Dp)/Kd. The fractional error between the estimate
χ + Dp and the true diffusivity remains within one standard deviation of ∂Z∗/∂b for every
simulation. Figures 10(b) and 10(c) show that χ + Dp underestimates the diffusivity at the
time of most intense mixing in the unforced simulations. This reaffirms the conclusion
drawn from figures 8(e) and 8( f ) that the turbulent mixing in this flow preferentially
samples regions of relatively weak local stratification. Salehipour & Peltier (2015) find
a similar underestimation of Kd in turbulent flows developing from Kelvin–Helmholtz
instability in a stratified shear layer. An investigation to identify in which flows (5.2)
provides an over/underestimate of the diffusivity would be valuable for understanding the
variability associated with the approximation.

We include the internal energy conversion rate Dp in our estimate in figure 10 since it
is not always negligible in the simulations. Furthermore Gregg et al. (2018) remark that
Dp should be included when applying mixing results to the strongly stratified pycnocline
where mixing is localised and intermittent. In the periodic set-up studied here, the
boundary flux Fd counteracts Dp in the BPE energy budget (2.22) to maintain the constant
mean stratification. When quantifying diffusivity in this system, it is therefore important
to include the contribution from Dp and to compute M + Dp directly, instead of relying
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Figure 10. A time series comparison of the diapycnal diffusivity Kd and the approximation of χ + Dp.
The ratio of the two is plotted in an analogous fashion to figures 8(d–f ).

on changes in BPE. In many observational studies focused on mixing in turbulent patches
(where Dp is negligible), practical difficulties in obtaining an accurate value of χ result in
far larger implied levels of uncertainty than those apparent in in figure 10 (see for example
Waterhouse et al. 2014). In this sense our results show that (5.2) provides a good estimate
of the diapycnal diffusivity in the stratified flows considered.

In the case of homogeneous turbulence subject to a uniform mean stratification, Stretch
& Venayagamoorthy (2010) show χ and M to be equivalent. Indeed, if such homogeneous
turbulence is maintained in a steady state by energy transfers from the velocity field, then
χ is also equivalent to −J . This is exactly the reasoning of Osborn & Cox (1972). In
the periodic system considered here, if mixing were homogeneous throughout the domain
then the boundary flux Fd would also balance the interior diapycnal flux M + Dp such
that the BPE equation (2.22) was steady. As highlighted by Portwood et al. (2016), many
stratified flows are not homogeneous in this sense, with turbulence becoming more patchy
and intermittent when subject to stronger stratification. This even applies to flows where
the initial state is homogeneous, such as the decay of a turbulent cloud in an initially
uniform stratification (e.g. Bartello & Tobias 2013). We believe the APE framework
presented above will prove useful in determining the potential impacts of such developing
inhomogeneities.

Due to the aforementioned difficulties involved in accurately resolving small-scale
temperature gradients, shear probes are used more frequently than thermistors to infer
mixing rates in the ocean. Further assumptions are, however, needed to obtain mixing
estimates from such velocity gradient measurements. On top of the Osborn & Cox (1972)
model, the buoyancy variance destruction rate may be approximated by χ  −J = Γ ε,
where the turbulent flux coefficient Γ is taken to be a constant, usually 0.2 in practice
after Osborn (1980), under a set of assumptions that the turbulent flow is, for example
quasi-steady. The turbulent flux coefficient is related to the mixing efficiency defined in
(4.5a,b) through

Γ = η

1 − η
. (5.3)

Many experimental and numerical studies have shown variation in the mixing efficiency
across a range of stratified flows, as reviewed by Ivey, Winters & Koseff (2008) and
Caulfield (2021). This has motivated a body of work to investigate the functional
dependence of η on various dimensionless parameters, including the Richardson number,
buoyancy Reynolds number Reb = ε/νN2, and turbulent Froude number Fr = ε/NK.
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Mixing and APE in stratified flows

Despite this concerted effort to provide insight into how η varies, there is no clear physical
explanation as to why Γ = 0.2 is a sensible assumption or why it appears to provide
diffusivity estimates in line with those from tracer release experiments (Ledwell et al.
2000). In figure 9 we highlight examples where laminar diffusion of a shear flow can
strongly impact the calculated values of η. Although not relevant for high Reynolds number
flows found in the ocean, it is important to acknowledge the effect of this diffusion in
idealised numerical studies that discuss mixing efficiency in the context of ocean mixing.
This is most relevant for flows where turbulence is transient and localised, such as those
arising from instabilities in stratified shear layers.

In the context of estimating mixing from oceanic measurements, the poorly constrained
variability of Γ implies that the Osborn & Cox (1972) model will instead provide the
best estimates of mixing from microstructure data. Indeed, our results above show that in
turbulent flows with a large-scale mean buoyancy gradient N2

0 , the Osborn & Cox (1972)
model (5.2) provides a reliable estimate of the diapycnal diffusivity. In oceanic flows
calculating N0 can, however, prove challenging, particularly in the case of internal waves
breaking close to boundaries as highlighted by Arthur et al. (2017). Given the significant
dissipation of energy close to boundaries in the ocean, the calculation of N0 in such flows
remains an important outstanding issue for estimating diapycnal mixing in these regions.
Furthermore, the Osborn & Cox (1972) method can only be applied in regions where the
ocean is stratified by temperature. Where salt acts as a stratifying agent, the turbulent flux
coefficient Γ must be specified to obtain microstructure mixing estimates through the
Osborn (1980) method.

In particular, for the energetic framework presented here to be truly applicable to real
oceanographic flows, there are at least three open issues which need to be addressed.
First, it is not at all clear what the effect of more realistic Reynolds numbers, or
indeed realistically higher values of Pr = O(10–1000) will have on the various mixing
properties and energetic pathways discussed here. Second, it is still an open question
of some controversy whether Γ ≈ 0.2, or equivalently η ≈ 1/6, is actually ‘typical’ of
quasi-steady mixing processes, or whether Γ actually depends on parameters of the flow.
Portwood et al. (2019) recently demonstrated the emergence of Γ = 0.2 in sheared DNS
that was controlled by construction to be quasi-steady. It is at least plausible that the
higher values of efficiency observed for the flows discussed here are artefacts of the
inherent transience of these flows. Of course, mixing events in the ocean are likely to
be highly spatio-temporally intermittent, not least because of the key role played by
‘breaking’ internal waves, as argued by MacKinnon et al. (2017) and modelled here,
so the relevance of quasi-steady sustained stratified turbulence to the real ocean is not
immediately obvious. Thirdly, complications associated with layered states, either due
to hydrodynamic mechanisms associated with turbulence (Caulfield 2021) or associated
with double-diffusive convection (Schmitt 1994) are clearly of interest. The energetic
framework presented here is nevertheless well-suited to address these three open issues,
or indeed other challenges of real relevance to the quantification and parameterisation of
mixing in realistic stratified flows.
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Appendix A. Consideration of a more general boundary isopycnal

In (2.11), we assume that the boundary buoyancy contour can be parameterised by x
and y. Now let us consider a more general isopycnal boundary that may overturn, where
the surface of constant buoyancy is parameterised by arbitrary coordinates p and q. The
implicit definition of the isopycnal surface x1( p, q, t) is then given by

b(x1( p, q, t), y1( p, q, t), z1( p, q, t), t) = b0. (A1)

Considering the same volume integral as in (2.12), we apply the Reynolds transport
theorem to obtain

d
dt

(∫
V

f dV
)

=
∫

V

∂f
∂t

dV +
∫

S

(
f |x=x2 − f |x=x1

) ∂x1

∂t
· n dS. (A2)

Here, S denotes the domain in ( p, q) space that parameterises the surface, x1 = (x1, y1, z1)

is the location of the isopycnal surface in Cartesian coordinates and the area element is
given by

n dS =
(
∂x
∂p

× ∂x
∂q

)
dp dq. (A3)

Note that, for p = x and q = y, this recovers the original Leibniz rule result of (2.12) since
x1 = (x, y, z1(x, y, t)) and

n dS = ∇b
∂b/∂z

dx dy. (A4)

We know in general that the direction of the normal is that of the buoyancy gradient ∇b,
but for the arbitrary form (A3) the magnitude of xp × xq depends on the coordinates
chosen. Since we wish to calculate the surface integral from simulation data, it is
convenient to restrict ourselves to non-overturning isopycnals, where the magnitude of
the area element can be straightforwardly obtained.

We can, however, manipulate (A2) further by noting that n = ∇b/|∇b|, and defining
the average over the surface S as

f̄ ∗ = 1
AS

∫
S

f dS, (A5)

where AS is the surface area of the isopycnal defined in (A1). Applying this to the Reynolds
transport theorem result (A2) gives

d
dt

(∫
V

f dV
)

=
∫

V

∂f
∂t

dV + [ f ]b=b0+Lz
b=b0

∂x1

∂t
· ∇b

|∇b|
∗
. (A6)

Substituting f = −Ri0bz to find the extra term in the potential energy equation provides

dP
dt

= −Ri0

〈
z
∂b
∂t

〉
− Ri0

AS

A
(b0 + z2)

∂x1

∂t
· ∇b

|∇b|
∗
, (A7)
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where A is the cross-sectional area of the domain in the x–y plane, and from Winters &
D’Asaro (1996) we know that

AS

A
= ∂Z∗

∂b
|∇b|2 ∗

|∇b| ∗ . (A8)

Although the last term in (A7) can be expressed analytically, its computation is far more
arduous than −dS/dt, and it does not appear (thus far) to simplify to a similar form.

Appendix B. Derivation of the potential energy equations

B.1. Total potential energy
In this section, the control volume is bounded by the isopycnals b = b0 (z1) and b = b0 +
Lz (z2). Consider the time evolution of P = −Ri0〈bz〉 by applying the Leibniz rule as in
(2.12)

dP
dt

= −Ri0

〈
∂(bz)
∂t

〉
− Ri0

V

∫
A

[bz]z2
z=z1

∂z1

∂t
dA, (B1)

= −Ri0

〈
z
∂b
∂t

〉
− Ri0

V

∫
A

Lz(b0 + z2)
∂z2

∂t
dA, (B2)

= −Ri0

〈
z
∂b
∂t

〉
− Ri0b0

d�z2

dt
− Ri0

d
dt

( �z22

2

)
. (B3)

Defining S as in (2.17), we move the last two terms in the above equation to the right-hand
side, and use the buoyancy evolution equation (2.3) to expand the first term as

dP
dt

+ dS
dt

= −Ri0

〈
z
(

−u · ∇b + 1
RePr

∇2b
)〉
, (B4)

= Ri0
〈
∇ · (zbu)− wb − z

RePr
∇ · ∇b

〉
, (B5)

= Ri0 〈∇ · (zbu)〉 − Ri0 〈wθ〉 − Ri0 〈wz〉 − Ri0
RePr

〈∇ · (z∇b)− ∇z · ∇b〉 ,
(B6)

= Ri0 〈∇ · (zbu)〉 − J − Ri0

〈
∇ ·

(
z2

2
u
)〉

− Ri0
RePr

〈∇ · (z∇b)〉 + Dp. (B7)

The final term in the above equation is obtained through

Ri0
RePr

〈∇z · ∇b〉 = Ri0
RePr

〈
∂b
∂z

〉
= Ri0

VRePr

∫
A

[b]z=z2
z=z1

dA = Ri0
RePr

≡ Dp. (B8)

With the boundaries we have specified, the divergence theorem for an arbitrary vector field
f (x, t) takes the form ∫

V
∇ · f dV =

∫
A

[ f ]z2
z=z1

· ∇b
∂b/∂z

dA, (B9)
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where ∇b/(∂b/∂z) is evaluated on the surface z = z1 (and takes the same value on the
surface z = z2). Applying the divergence theorem to each of the above terms then gives

〈∇ · (zbu)〉 = 1
V

∫
A

[zbu]z2
z1

· ∇b
∂b/∂z

dA = 1
A

∫
A
(b0 + z2)

[
u · ∇b
∂b/∂z

]
z1

dA, (B10)

〈∇ · (z2u/2)〉 = 1
V

∫
A

[
z2u
2

]z2

z1

· ∇b
∂b/∂z

dA = 1
A

∫
A

(
Lz

2
+ z1

)[
u · ∇b
∂b/∂z

]
z1

dA, (B11)

〈∇ · (z∇b)〉 = 1
V

∫
A

[z∇b]z2
z1

· ∇b
∂b/∂z

dA = 1
A

∫
A

[ |∇b|2
∂b/∂z

]
z1

dA. (B12)

The potential energy evolution therefore simplifies to

dP
dt

+ dS
dt

= −J − Fd + Dp +
(

b0 + Lz

2

)
1
A

∫
A

[
u · ∇b
∂b/∂z

]
z1

dA. (B13)

We can show that this final integral is zero by considering the evolution of the
volume-averaged buoyancy. Since b = z + θ , we know that 〈b〉 = Lz/2 + �z1 + 〈θ〉. The
mean buoyancy perturbation is coupled to the mean vertical velocity through the system

d〈θ〉
dt

=
〈
∂θ

∂t

〉
= −〈w〉, d〈w〉

dt
=
〈
∂w
∂t

〉
= Ri0〈θ〉. (B14a,b)

Importantly, if both 〈θ〉 and 〈w〉 are initially zero, then they remain so forever. This is
the scenario most commonly applied in studies using the periodic stratified set-up, so we
proceed taking 〈θ〉 ≡ 0. We therefore know that

d〈b〉
dt

= d�z1

dt
. (B15)

Applying the Leibniz rule of (2.12) to 〈b〉 instead gives

d〈b〉
dt

=
〈
∂b
∂t

〉
+ 1

V

∫
A

[b]z2
z1

∂z1

∂t
dA =

〈
∂b
∂t

〉
+ d�z1

dt
. (B16)

We can then deduce that the desired integral is zero as follows

0 =
〈
∂b
∂t

〉
=
〈
−∇ · (bu)+ 1

RePr
∇ · ∇b

〉
, (B17)

= − 1
V

∫
A

[bu]z2
z1

· ∇b
∂b/∂z

dA + 1
VRePr

∫
A

[∇b]z2
z1

· ∇b
∂b/∂z

dA, (B18)

= − 1
A

∫
A

[
u · ∇b
∂b/∂z

]
z1

dA, (B19)

where we have applied the divergence theorem and used that ∇b|z1 = ∇b|z2 .

B.2. Background potential energy
In this section, we set b0 = 0 so the boundary surfaces z1 and z2 correspond to
the isopycnals b = 0 and b = Lz. We begin by determining the time evolution of
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PB = −Ri0〈bz∗〉. Applying the Leibniz result of (2.12) to this quantity gives

dPB

dt
= −Ri0

〈
∂(bz∗)
∂t

〉
− Ri0

V

∫
A

[bz∗]z2
z=z1

∂z1

∂t
dA, (B20)

= −Ri0

〈
z∗
∂b
∂t

+ b
∂z∗
∂t

〉
− Ri0

V

∫
A

Lz�z2
∂z1

∂t
dA, (B21)

= −Ri0

〈
z∗
∂b
∂t

〉
− Ri0

〈
b
∂z∗
∂t

〉
− Ri0�z2

d�z2

dt
. (B22)

The second term in the line above is zero in the case of fixed, insulating, horizontal
boundaries. We therefore consider the simple case of θ = −z1(x, y, t) to investigate the
contribution this term has in the case of time-dependent isopycnal boundaries. As in § 2.3,
this example has the linear background profiles Z∗(s, t) = s + �z1, and b∗(s, t) = s − �z1, so

z∗(x, t) = Z∗(b(x, t), t) = b(x, t)+ �z1(t) = z − z1(x, y, t)+ �z1(t). (B23)

For this simple example we find that 〈
b
∂z∗
∂t

〉
= 0, (B24)

and conclude that there is no additional contribution to this term when considering a
moving boundary. We now consider the first term in (B22), and use the buoyancy evolution
equation (2.3) to obtain〈

z∗
∂b
∂t

〉
=
〈
z∗
(

−u · ∇b + 1
RePr

∇2b
)〉
, (B25)

=
〈
−u · z∗∇b + 1

RePr
z∗∇ · ∇b

〉
, (B26)

=
〈
−∇ · (ψu)+ 1

RePr
(∇ · (z∗∇b)− ∇z∗ · ∇b)

〉
. (B27)

Here, we have introduced the Casimir

ψ(b) =
∫ b

0
Z∗(s) ds, (B28)

that satisfies ∇ψ = z∗∇b. Since Z∗ is the inverse of b∗, and we know that 〈b∗(z)〉 =
〈b(x)〉, we can furthermore deduce that

ψ(Lz) =
∫ Lz

0
Z∗(s) ds = Lz�z2 −

∫ �z2

�z1

b∗(s)ds = Lz
2

2
. (B29)

We also note that ∇z∗ = (∂Z∗/∂b)∇b, and this can be applied to the final term in (B27).
Applying the divergence theorem (B9) to the term involving the Casimir produces

〈∇ · (ψu)〉 = Lz

2A

∫
A

[
u · ∇b
∂b/∂z

]
z=z1

dA = 0. (B30)
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Only the diffusive terms remain, giving

−Ri0

〈
z∗
∂b
∂t

〉
= −Ri0

RePr

(
1
A

∫
A

[ |∇b|2
∂b/∂z

]
z=z1

dA −
〈
∂Z∗
∂b

|∇b|2
〉)
, (B31)

= −Fd + M + Dp. (B32)

We now have

dPB

dt
= M + Dp − Fd − Ri0

d
dt

(
�z2

2

2

)
. (B33)

Defining B = PB + Ri0�z2
2/2 as in (2.20), we finally arrive at the evolution equation

dB
dt

= M + Dp − Fd. (B34)

Appendix C. Equivalence of various local APE definitions for an adiabatically sorted
buoyancy profile

Tailleux (2013b) proposes the following APE density as work against buoyancy forces
defined relative to an arbitrary z-dependent reference density profile ρr(z, t):

Ea(Si, T, z, t) =
∫ z

zr

g
ρ0

(
ρ(Si, T, z′)− ρr(z′, t)

)
dz′. (C1)

Here, the density field depends on a materially conserved temperature variable T as well as
an arbitrary number of compositional variables Si, and zr is the level of neutral buoyancy
satisfying ρ(Si, T, zr) = ρr(zr, t). The above expression generalises the ‘potential energy
density’ of Andrews (1981) to an arbitrary nonlinear equation of state. Although (C1)
only applies under the Boussinesq approximation, this expression can be extended as in
Tailleux (2018) to describe APE density for a compressible multicomponent fluid. The
arbitrary reference profile can be useful for defining alternative measures of APE. For
example if the uniform, mean gradient is taken as the reference buoyancy profile br = z,
then (C1) recovers the APE defined in (4.1).

In this study, we consider a Boussinesq fluid with a linear equation of state in one
variable, and take the reference profile to be the adiabatically sorted buoyancy br = b∗.
With these assumptions, and applying our non-dimensionalisation, (C1) becomes

Ea(x, t) = −Ri0

∫ z

z∗(x,t)
b(x, t)− b∗(z′, t) dz′. (C2)

This expression is exactly that used by Roullet & Klein (2009). Note that (C2) can also be
rearranged into the form

Ea(x, t) = −Ri0(z − z∗(x, t))
[

b(x, t)− 1
z − z∗(x, t)

∫ z

z∗(x,t)
b∗(z′, t) dz′

]
, (C3)

the expression for APE density used by Winters & Barkan (2013).
We can further relate (C2) to the definition of APE by Scotti & White (2014) (which

itself is equivalent to the original definition of Holliday & McIntyre (1981) but with
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simpler notation). We rewrite (C2) as

Ea = −Ri0b(z − z∗)+ Ri0

∫ z

z∗
b∗(z′, t) dz′, (C4)

and make the substitution z′ = Z∗(s, t), where Z∗ is the inverse map of the sorted buoyancy
profile b∗. The integral part of (C4) then becomes∫ z

z∗
b∗(z′, t) dz′ =

∫ b∗

b
s
∂Z∗
∂s

ds, (C5)

since b∗(Z∗(s, t), t) = s and b∗(z∗(x, t), t) = b∗(Z∗(b(x, t), t), t) = b(x, t). Integrating by
parts then leads to ∫ z

z∗
b∗(z′, t) dz′ = [sZ∗(s, t)]s=b∗

s=b −
∫ b∗

b
Z∗(s, t) ds, (C6)

= b∗z − bz∗ −
∫ b∗

b
Z∗(s, t) ds. (C7)

Finally, we can substitute this expression into (C4) to recover the form of Holliday &
McIntyre (1981) and Scotti & White (2014)

Ea = −Ri0[bz − bz∗ − b∗z + bz∗ +
∫ b∗

b
Z∗(s, t) ds], (C8)

⇒ Ea = EAPE ≡ −Ri0

∫ b

b∗
z − Z∗(s, t) ds. (C9)
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