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Abstract. In this paper, we present a numerical framework for con-
structing bounds on stationary performance measures of random walks
in the positive orthant using the Markov reward approach. These bounds
are established in terms of stationary performance measures of a per-
turbed random walk whose stationary distribution is known explicitly.
We consider random walks in an arbitrary number of dimensions and
with a transition probability structure that is defined on an arbitrary
partition of the positive orthant. Within each component of this partition
the transition probabilities are homogeneous. This enables us to model
queueing networks with, for instance, break-downs and finite buffers. The
main contribution of this paper is that we generalize the linear program-
ming approach of [10] to this class of models.
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1 Introduction

We present a framework for establishing bounds on stationary performance mea-
sures of a class of discrete-time random walks in the M-dimensional positive
orthant, i.e., with state space S = {0, 1,...}M. This class of random walks
enables us to model queueing networks with nodes of finite or infinite capacity,
and with transition rates that depend on the number of jobs in the nodes. The
latter allows us to consider, for instance, queues with break-downs or networks
with overflow. The stationary performance measures that can be considered in
our framework include average number of jobs in a queue, throughput and block-
ing probabilities.

More precisely, for a random walk R we assume that a unique stationary
probability distribution 7 : S — [0,1] for which the balance equations hold
exists, i.e., there exists 7 that satisfies

m(n) Z P(n,n') = Z 7(n)P(n',n), Vn €S, (1)
n’es n’es
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where P(n,n’) denotes the transition probability from n to n’. For a non-negative
function F : S — [0,00), we are interested in the stationary performance
measure,

F= > m(n)F(n). (2)

n=(ni,...,np)ES

For example, if F(n) = ny, then F represents the average number of jobs in the
first node.

If 7 is known explicitly, F can be derived directly. However, in general it is
difficult to obtain an explicit expression for the stationary probability distribu-
tion of a random walk. In this paper, we do not focus on obtaining the stationary
probability distribution. Instead, our interest is in providing a general numerical
framework to obtain upper and lower bounds on F for general random walks.
In line with this goal, we do not establish existence of F a priori. Instead we
will see that if our method successfully finds an upper and lower bound, then F
exists.

Consider a perturbed random walk R, of which the stationary probability
distribution 7 is known explicitly. Moreover, we consider an F': S — [0, 00) for

R, which can be different from F. The bounds on F are established in terms of

F =Y an)Fn). (3)

nes

We use the Markov reward approach, as introduced in [4], to build up these
bounds. The method has been applied to various queueing networks in [3,5,7,8]
and an overview of this approach has been given in [6]. In the works mentioned
above, error bounds have been manually verified for each specific model. The
verification can be quite complicated. Thus, a linear programming approach has
been presented in [10] that provides bounds on F for random walks in the quarter
plane (M = 2). In particular, in [10] the quarter plane is partitioned into four
components, namely the interior, the horizontal axis, the vertical axis and the
origin. Homogeneous random walks with respect to this partition, i.e., transition
probabilities are the same everywhere within a component, are considered there.

In this paper, we extend the linear programming approach in [10]. The con-
tribution of this paper is two-fold. First, we build up a numerical program that
can be applied to general models. In [10], an R in the quarter plane with a spe-
cific partition is considered. The numerical program used in [10] cannot be easily
implemented for general partitions or multi-dimensional cases. In this paper, we
are able to consider an R in an arbitrary dimensional state space. Moreover, we
allow for general transition probability structures. For example, we can consider
models such as a two-node queue with one finite buffer and one infinite buffer.
We can also consider models in which the transition probabilities are dependent
on the number of jobs in a node. Secondly, in the linear programming approach
in [10], one important step is that in the optimization problem established for
obtaining the performance bounds we first assign values to a set of variables
using their interpretation such that all the constraints hold. Next we see these
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variables as parameters in the problem. In this paper we formulate a linear
program to obtain values for this set of variables while in [10] the values are
manually chosen and then verified. We show that this linear program is always
feasible.

The problem of obtaining the stationary probability distribution has been
considered in various works. For instance, methods have been developed to find
7 through its probability generating function in [2,9,19]. It is shown that for
random walks in the quarter plane a boundary value problem can be formulated
for the probability generating function. However, the boundary value problem
has an explicit solution only in special cases (for example in [19]). If the probabil-
ity generating function is obtained, the algorithm developed in [1] can provide
a numerical inversion of the probability generating function. In addition, the
matrix geometric method has been discussed in [16, 18] for Quasi-birth-and-death
(QBD) processes with finite phases, which provides an algorithmic approach to
obtain the stationary probability distribution numerically. In [17] perturbation
analysis has been applied to various QBD processes in the quarter plane. Under
certain drift conditions, explicit expressions are derived for the error bound. One
advantage of the approach in [10] is that its approach can be applied when the
drift conditions are not satisfied. In the works mentioned above, only random
walks in the two-dimensional orthant have been considered. As is mentioned
above, our main contribution is to be able to establish performance bounds for
random walks in the multi-dimensional positive orthant.

The remainder of this paper is structured as follows. In Sect. 2, we define
the model and notation. Then, in Sect.3 we review the results of the Markov
reward approach. In Sect. 4, we formulate optimization problems for the upper
and lower bounds, which are non-convex and have countably infinite number
of variables and constraints. Next, in Sect.5 we apply the linear programming
approach and establish linear programs for the bounds. Finally, in Sect.6 we
present some numerical examples.

2 Model and Notation

Let R be a discrete-time random walk in § = {0,1,...}". Denote by P : S x
S — [0, 1] the transition probability matrix of R. In this paper, only transitions
between the nearest neighbors are allowed, i.e., P(n,n') > 0 only if n’ —n €
N(n), where N(n) denotes the set of possible transitions from n, i.e.,

N(n) ={ue {-1,0,1}" |n+ue S}. (4)
For a finite index set K, we define a partition of S as follows.
Definition 1. C = {Ci} .k is called a partition of S if

1. S = UgerCy.
2. Forall j,k € K and j #k, C; N Cy, = 0.
3. For any k € K, N(n) = N(n'), Vn,n' € Cj.



204 X. Bai and J. Goseling

The third condition, which is non-standard for a partition, ensures that all
the states in a component have the same set of possible transitions. With this
condition, we are able to define homogeneous transition probabilities within a
component, meaning that the transition probabilities are the same everywhere
in a component. Denote by ¢(n) the index of the component of partition C' that
n is located in. We call ¢ : S — K the index indicating function of partition
C. Throughout the paper, various partitions will be used. We will use capital
letters to denote partitions and the corresponding small letters to denote their
index indicating functions.

We restrict our attention to an R that is homogeneous with respect to a
partition C' of the state space, i.e., P(n,n + u) depends on n only through
the component index c(n). Therefore, we denote by Ne(,) and pe(n),. the set of
possible transitions from n and transition probability P(n,n + u), respectively.
To illustrate the notation, we present the following example.

Example 1. Consider S = {0,1,...}2. Suppose that C consists of
C; ={0} x {0}, Cy=1{1,2,3,4} x {0}, C5=1{5,6,...} x {0},
Cy={0} x{1,2,...},05 ={1,2,3,4} x {1,2,...},
Cs=1{5,6,...} x{1,2,...}.

The components and their sets of possible transitions are shown in Fig. 1.

n2
D5,u P6,u
P4 ju
C Cs Cs

N N
p U u
Cs 3 ni

Fig. 1. A finite partition of S = {0,1,...}> and the sets of possible transitions for its
components

Based on a partition, we now define a component-wise linear function.

Definition 2. Let C be a partition of S. A function H : S — [0,00) is called
C-linear if there exists hi, ..., hi,m € R such that

M
H(n) = Z 1 (n S Ck) (hho + th,ﬂu) . (5)

keK i=1
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In this paper, we often consider transformations of H of the form G(n) =
H(n+u), u € N(n). It is of interest to consider a partition Z of S such that G
is Z-linear when H is C-linear.

Definition 3. Given a finite partition C, Z = {Zj}jeJ is called a refinement
of C if

1. Z is a finite partition of S.
2. Forany j € J, anyn € Z; and any u € Nj, c(n+ u) depends only on j and
U, i.€.,

c(n+u)=c(n +u), Vn,n' ez (6)

Remark that a refinement of C' is not unique. To give more intuition, in the
following example we give a refinement of C' that is given in Example 1.

Ezxample 2. In this example, consider the partition C' given in Example 1. A
refinement of C' is shown in Fig. 2.

e

() (al2lles
e S la

Fig. 2. A refinement of C' defined in Example 1

Since R is homogeneous with respect to partition C, it is homogeneous with
respect to partition Z as well. Next, we present the result that H(n + u) is
Z-linear if H is C-linear. The proof of the lemma is straightforward and is hence
omitted.

Lemma 1. Let H : S — [0,00) be a C-linear function. Moreover, let Z be a
refinement of C. For any u € {—1,0,1}", define G : S — [0,00) as G(n) =
1n4+u € SYH(n+u). Then, G is Z-linear.

Let us consider an example to demonstrate the intuition behind this lemma.
Consider the partition C' and partition Z given in Example 1 and 2 respectively.
Moreover, let

H(n)— 1, ifn601702,04ac57 (7)
h 0, ifn e Cs,Cs.
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and let v = (1,0). It is easy to check that H(n) is C-linear. Now consider
ng = (4,0) and n{ = (5,0), which are both in Cy. We can verify that G(ng) =
H(no +u) =0 and G(n() = 1. Therefore, G(n) is not C-linear. In partition Z,
no and ng are located in two different components. Then it can be checked that
G(n) is indeed Z-linear.

3 Preliminaries: Markov Reward Approach

Suppose that we have obtained an R for which 7 is known explicitly. Then, we
build up upper and lower bounds on F using the Markov reward approach, an
introduction to which is given in [6]. In this section, we give a review of this
approach including its main result.

In the Markov reward approach, F'(n) is considered as a reward if R stays in
n for one time step. Let F(n) be the expected cumulative reward up to time ¢
if R starts from n at time 0, i.e.,

Fin) = 32 3 PH(n, m)F(m), (®)

k=0meS

where P¥(n,m) is the k-step transition probability from n to m. Then, since R
is ergodic and F exists, for any n € S,
Ft

lim f”) = F, 9)

t—o0

i.e., F is the average reward gained by the random walk independent of the
starting state. Moreover, based on the definition of F, it can be verified that
the following recursive equation holds,

F'*(n) = F(n) + »_ P(n,n')F'(n) (10)
n’'es

and F9(n) = 0. Next, we define the bias terms as follows.

Definition 4. For any t = 0,1,..., the bias terms D' : S x S — R, are
defined as

Dt(n,n’) = F'(n’) — F'(n). (11)
We present the main result of the Markov reward approach below.
Theorem 1 (Result 9.3.5 in [6]). Suppose that F: S — [0,00) and G : S —
[0,00) satisfy
F(n) - F(n) + Z (p(n,n/) - P(n7n/)) Dt(nvn,) S G(n)a (12)
n’es

forallne S, t>0. Then ’f—]—"‘ <D hes T(n)G(n).
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In this paper, we obtain bounds on F by finding F' and G for which (12)
holds.

We do not need R and R to be irreducible. More generally, it is sufficient that
there is a single absorbing communicating class (which can be different for R
and R). This implies that we allow for transient states. Even though we are only
interested in the steady-state behavior of our processes, it will be important
for the application of the Markov reward approach to explicitly model these
transient states. Existing proofs of the Markov reward approach considers only
irreducible processes. It is clear from the proof of Result 9.3.2 in [6] that this
result can be straightforwardly generalized to processes with transient states.
We will use this extended result in a numerical example in Sect. 6. In addition to
the bound on ]f" -F |, the following comparison result, which sometimes gives
a better upper bound, is given in [6].

Theorem 2 (Result 9.3.2 in [6]). Suppose that F : S — [0,00) satisfies

F(n) = F(n)+ Y (P(n,n) = P(n,n')) D'(n,n’) >0, (13)
n’es

forallne S, t>0. Then F < F.

Similarly, if the LHS of (13) is non-positive, then F > F.

4 Problem Formulation

Recall that P(n,n’) and P(n,n’) denote the transition probability of R and R,
respectively. Let A(n,n’) = P(n,n’)—P(n,n’). From the result of Theorem 1, the
following optimization problem comes up naturally to provide an upper bound

on F.

Problem 1 (Upper bound).

min Z [F(n) + G(n)] 7(n),

st. |[F(n) — F(n) + Z A(n,n')D'(n,n)| < G(n), V¥ne€S,t>0, (14)
n’eS
F(n)>0,G(n) >0, V¥necsS.

In this problem, F(n), G(n) and D(n) are variables and 7(n), A(n,n’) are
parameters. Similarly, using max Y., .o [F(n) — G(n)] 7(n) as the objective
function, we obtain a problem that returns a lower bound on F.

In addition, the following problems provide a direct upper or lower bound on
F, which follows from the comparison result introduced in Sect. 3.
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Problem 2 (Comparison upper bound).
min Z F(n)7(n),

s.t. F(n) — F(n) + Z A(n,n')D'(n,n') >0, ¥YneS,t>0, (15)
n’eS
F(n) >0, Vnes.

Problem 3 (Comparison lower bound).

s.t. F(n) — F(n) + Z A(n,n')D'(n,n') <0, VYnecS,t>0, (16)

F(n)>0, Vnes.

Note that if Problem 2 is feasible then Problem 3 will be unbounded or
infeasible and vice versa. It will be seen from numerical results that in some
cases the comparison result can provide a better upper or lower bound than
that obtained from Problem 1. In the remainder of this paper, we only consider
Problem 1, since the other problems can be solved in the same fashion. There
are countably infinite variables and constraints in Problem 1. In the next two
sections, we will reduce Problem 1 to a linear program with a finite number of
variables and constraints.

5 Linear Programming Approach to Error Bounds

In this section we first present the theory of the linear programming approach and
formulate a linear problem for obtaining the lower bound. Then we reduce the
linear problem with infinite number of variables and constraints to one with finite
variables and constraints by restricting our consideration to C-linear functions.
For the linear programming approach, we use the idea from [10] that we consider
bounding functions on D*(n,n’) which are independent of t. Replacing D*(n,n’)
with these bounding functions in (14), we get rid of ¢ in the constraints and obtain
sufficient conditions for (14). Simultaneously, we add several extra constraints to
ensure that these newly introduced functions are indeed upper and lower bounds
on Dt(n,n’).

In (12), since only transitions between the nearest neighbors are allowed, we
have A(n,n +u) = 0 for u ¢ N,). Then, A(n,n’')D*(n,n’) vanishes from (12)
for all n’ —n ¢ N,e,). Thus, it is sufficient to only consider the bias terms between
nearest neighbors, i.e., D*(n,n + u) for u € N(,).

More precisely, consider functions A : Sx S — [0,00) and B : S x5 — [0, c0),
for which

—A(n,n+u) < D'(n,n+u) < B(n,n+u), (17)
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for all t > 0. Then, in Problem 1, replacing D!(n,n’) with the bounding func-
tions, we get rid of the time-dependent terms and obtain the following constraints
that guarantee (14),

F(n) — F(n) + Z max {A(n,n +u)B(n,n +u), —A(n,n +u)A(n,n +u)}

UEN(n)

< G(n), (18)

F(n) — F(n) + Z max {A(n,n 4+ u)A(n,n +u),—A(n,n+u)B(n,n+u)}
UENe(n)

< G(n). (19)

Besides the constraints given above, additional constraints are necessary to guar-
antee that (17) holds. In the next part, we establish these additional constraints.

Recall that D*(n,n+u) = F'(n+u)— F'(n). We will show in the next section
that D**!(n,n + u) can be expressed as a linear combination of D!(m,m + v)
where v € Ny(,), m € S. More precisely, there exists é(n,u,m,v) > 0 for which
the following equation holds,

Dt+1(n,n+u):F(n+u)7F(n)+ g g é(n,u,m,v)D*(m, m +v),
meS VEN(m)
(20)

for t > 0. We will reduce the sum in the equation above to a sum over a finite
number of states. Therefore, the convergence of the sum is not an issue. Then,
the following inequalities are sufficient conditions for —A(n,n’) and B(n,n’) to
be a lower and upper bound on D¥(n,n + u), respectively,

F(n+u)—F(n)+ Z Z o(n,u,m,v)B(m,m+v) < B(n,n+u), (21)
mES VEN ()

Fn+u)— F(n) — Z Z d(n,u,m,v)A(m, m+v) > —A(n,n + u).
mES VEN (m
(m) )

Summarizing the discussion above, the following problem gives an upper
bound on F.

Problem 4.
min »  [F(n) + G(n)] 7(n),
nes
s.t. F(n) — F(n) + Z max {A(n,n +u)B(n,n+u), —A(n,n +u)A(n,n +u)}
uENC(n)
< G(n), (23)
F(n) — F(n) + Z max {A(n,n +uw)A(n,n +u),—A(n,n+u)B(n,n+u)}
ueNc(,L)

< G(n), (24)
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D™ (n,n+u) = F(n+u) — —|—Z Z é(n,u,m,v)D* (m, m + v),
mESvEN,(m)
(25)
Fin+u)—F(n)+ Z Z d(n,u,m,v)B(m,m +v) < B(n,n +u), (26)
mES VEN,(m)
F(n)— F(n+u)+ Z Z o(n,u,m,v)A(m, m +v) < A(n,n + u), (27)
meS UENC(m)

é(n,u,m,v) >0, for n,m € S,u € Ny, v € Nem)
A(n,n+u) >0,B(n,n+u) >0,F(n) >0,G(n) >0, forn,n €S5.

In this problem the variables are ¢(n,u,m,v), A(n,n + u), B(n,n + u),
Dt(n,n+u), F(n), G(n) and the parameters are 7(n), F(n), A(n,n+u). Prob-
lem 4 is non-linear since there are product terms such as ¢(n,u, m,v)A(n,n’)
and ¢(n,u, m,v)B(n,n’). Therefore, we apply the idea proposed in [10]. More
precisely, first we obtain values of a set of ¢(n,u, m,v), for which (25) holds.
Then, we plug the obtained ¢(n,u, m,v) into Problem 4 as parameters and
remove (25) from the problem. As a consequence, Problem 4 becomes linear.
In [10], the set of ¢(n,u, m,v) is obtained by manual derivation. In the following
part, we formulate a linear program where the variables are ¢(n,u, m,v) and
they are interpreted as flows among states.

5.1 Linear Program for Finding ¢(n,u, m,v)

In this section, we formulate a linear program to obtain ¢(n,u,m,v) for
which (25) holds. For the bias terms, using (10), we get

D' (n,n+u) = F**(n + u) — Ft+1( )
=F(n+u)— )+ Z (n +u,m) — P(n,m)|F*(m). (28)
mesS
Thus, (25) holds if and only if

Z Z é(n,u, m,v) D (m, m + v) = Z [P(n 4 u,m) — P(n,m)|F*(m).
meS VEN(m) meS
(29)

Rewriting the LHS of (29), we have
Z Z é(n,u,m,m +v)D*(m, m +v)

mES VEN (i)

:Z Z B(n, u,m,m + v)[F'(m +v) — F'(m)]

mES VEN (m)

=30 > [pnu,m+v,—v) — d(n,u,m,v)] p Ft(m). (30)

meS | vEN(m)
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In comparison with the RHS of (29), we obtain the following constraint that is
sufficient for (29) as well as for (25),

Z [6(n,u,m +v,—v) — ¢(n,u,m,v)] = P(n+u,m) — P(n,m), (31)
VEN(m)

for all n,m € S, u € N, Intuitively, for any fixed n € S and any fixed
u € Newy, ¢(n,u,m,v) can be interpreted as a flow from state m to state
m+v, and P(n+wu,m) — P(n,m) can be seen as the demand at state m. Then,
intuitively (31) means that the demand at every state m is equal to the difference
between the inflow and outflow of m.

Next we formulate a linear program with a finite number of constraints and
variables. Moreover, we show that based on the solution of this linear program
we can obtain ¢(n,u,m,v) > 0 that satisfies (31) and hence satisfies (25). The
objective of this linear program is to minimize the sum of all ¢(n,u, m,v). We
remark that in this paper we do not optimize with respect to the overall objective,
which is to find the best error bound. In the discussion section, we provide an
outlook on alternative objective functions that may be used.

We need a final piece of notation. Let Z = {Z;},_; be a refinement of
partition C defined in Definition 3. Then, for any n € Z; and u € Ny, let ¢(j, u)
be the index of the component of partition C' that n + u is located in. For j € J
and v € Nj, let

Nju = N; U (t+ Ne)) - (32)
Now, we consider the following problem and present Theorem 3.

Problem 5.

min Z Z Z Z Pju,d,vs

jE€J u€EN; dEN; » vEN (5, a)

s.t. Z 1(d+ve Nj.,u) [@j,u,dJrv,fv - Spj.,U,d,v] = Pc(j,u),d—u — Pj,d»
’UENC(]",i)
Vje Jue Nj,de Nj,, (33)
Pjudv =0, VjeJueNjde Njy,ve Nega-

Theorem 3. Problem 5 is feasible and has a finite number of variables and
constraints. Suppose that ©; . 4. 5 the optimal solution of Problem 5. Then,

(b(n’ u,m, U) _ Pz(n),u,m—n,vs me € Tl+ Nz(n),u and m+v €n+ Nz(n),ua
0, otherwise,
(34)

satisfies (31).
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Proof. We present the proof in two steps. First, for every j € J and u € Ny,
we consider a specific state in Z; and its neighbors. Using its neighborhood
structure we show that a feasible solution ¢; , 4., of Problem 5 exists. Next we
show that based on the optimal solution and using the homogeneous property,
we can assign values to the flows between the states of S, i.e., ¢(n, u, m,v). After
this assignment, we can obtain flows ¢(n, u, m,v) for which (31) holds.

Consider some fixed j € J and u € N;. Let ng be some state in Z;. Consider
an undirected graph G = (V, £), where V contains all the nearest neighbors of ng
and of ng +u. Moreover, e € £ if and only if e connects two nearest neighbors. It
is easy to see that G is connected. From the discussion after (31), we see that (31)
intuitively means to find flows on e € & such that the demand at every node
m €V is equal to the difference between the inflow and outflow of m.

This is a classical flow problem in graph theory and combinatorial optimiza-
tion. In our case, the graph is connected. Moreover, there is no capacity for the
flows and all the demands sum up to 0. Thus, there exists a feasible non-negative
flow on G (see, for instance, Exercise 5 in Chap. 8 in [15]). In other words, there
exists ¢g(ng,u, m,v) > 0, where m, m + v € V, such that for all m € V,

Z 1(m+v € V)[po(no,u,m+ v, —v) — ¢o(ng,u, m,v)]
veNc(m)

= P(ng +u,m) — P(ng, m). (35)

From (32), we see that m € V if and only if m = n + d for some d € N, ,,. Take
©ju,do = ¢$o(no, u,n+d,v). Since R is homogeneous with respect to partition C
as well as partition Z, P(ng+u, m) = pe(ju),d—u and P(ng,m) = p; 4. Therefore,
we can verify that (35) is equivalent to (33) hence Problem 5 is feasible.

Suppose that ¢;, 4, is the optimal solution of Problem 5. Then consider
#(n,u,m,v) where n,m € S, u € Nepny and v € Negyy. If m € n+ Ny, and
m—+v € n+ Nomyu, then 0.y um—n, is well defined and satisfies (33). Thus,
using ¢(n, u,m,v) = ©.(n)um-n,y We can verify that (31) holds. Otherwise if
m & n+ Nypyu or m+v&n+ N, (31) holds since ¢(n,u, m,v) =0 and
for its RHS, P(n 4+ u,m) — P(n,m) = 0.

Finally we argue that Problem 5 has a finite number of variables and con-
straints. Since there are |.J| components in partition Z and at most 3% possible
transitions for every component, the number of the variables in Problem 5 is
bounded by 2 |J| - 27™ from above. Moreover, the number of the constraints is
bounded from above by 2[.J| - 9M.

5.2 Implementation of Problem 4

Suppose that we have obtained a set of coefficients ¢; 4 4., from Problem 5. In
this section, we show that by restricting F(n), A(n,n’), B(n,n’) to be C-linear
and using the partition structure of S described in Sect. 2, Problem 4 can be
reduced to a linear program with a finite number of variables and constraints.
Since we only consider the bias terms between the nearest neighbors, we
rewrite the bounding functions as A,(n) and By(n) for n € S and u € Ngg,.
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Then, using the result of Theorem 3, plugging ¢(n,u, m,v) as parameters into
Problem 4 and removing (25), Problem 4 is equivalent to the following problem.

Problem 6.

UENe(n)

(36)
F(n) — F(n) + Z max { Ac(n),uAu(n), —Acn)uBu(n)} — G(n) <0,

uENC(n)
(37)
F(’I’L + u) - F(n) + Z Z wz(n),u,d,va(n + d) - Bu(n) S Oa
deNz(n),u UeNc(z(n),d)
(38)

F(’I’L) - F(?’L + U) + Z Z @z(n),u,d,vAv(n + d) - Au(n) S 07
deNz(n),u UeNc(z(n),d)

Ay(n) >0,Bu(n) > 0,F(n) >0,G(n) >0, forn €S u€c Ny,. (39)

In the problem the variables are A, (n), B,(n), F(n) and G(n). Here Prob-
lem 6 is already linear in its variables. It remains to reduce it to a problem with
finite number of constraints and variables.

Next, we give the reduction by restricting F', G, A, and B, to be C-linear.
From Lemma 1, we know that A,(n+d) and B,(n+ d) are Z-linear. Thus, it is
easy to check that all the constraints in Problem 6 have the form,

where H(n) is Z-linear.
For any Z; and i € {1,..., M}, define L;; and U;; as

Lj; = min n,, Uj; = sup n,. (40)
nezj nez;
Notice that Z; can be unbounded in dimension 7, in which case U;; = oo.

Moreover, let I(Z;) be the set containing all the unbounded dimensions of Z;
and 0Z; be the corners of Z;, i.e.,

I(Z;)={ie{1,2,....,.M} | U;,; = oo}, (41)
0Zj={n¢€ Zj|n; = Lj;, Vi€ l(Z;), nx€{Ljr,Ujr}t, Yk & I(Z;)}.
(42)

For example, for the Z partition in Example 2, I(Z3) = 0,073 = {(2,0), (3,0)}
and I(Zs) = {1},0Zs = {(6,0)}. Then, for the constraint H(n) < 0 for n € Z;,
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sufficient and necessary conditions can be obtained in terms of the coefficients
hj,i. We give the following lemma to specify these conditions. The proof for this
lemma is straightforward and hence is omitted.

Lemma 2. Suppose that H(n) is Z-linear. Then, H(n) <0 for alln € n € Z;
if and only if

H(n) <0, Vne 8Zj, hj,i <0, Vi e J(ZJ) (43)

For any n € 0Z;, clearly H(n) = hj,0+zi]\i1 hjin; is linear in the coefficients
hj;. For each bounded dimension, there are at two corners of Z;. Thus, (43)
contains at most 2™ linear constraints in hji.

Next, consider the objective function of Problem 6. In the next lemma, we
show that it can be written as a linear combination of the coefficients fk,i and
gk,i- The proof for the lemma is straightforward and hence is omitted.

Lemma 3. Suppose that F : S — [0,00) and G : S — [0,00) are C-linear.
Then,

Z [F(n) + G(n)] #(n) = Z (fr.0 + 9r.0) Z T(n)

nes keEK neCh,
M —
+ Z Z (fk,i “l‘gk,i) Z n;w(n). (44)
kEK i=1 neCy

Therefore, based on the two lemmas above, we give the main result of this
section in the following theorem.

Theorem 4. Suppose that F, G, A, and B, are C-linear. Then, Problem 6 can
be reduced to a linear program with a finite number of variables and constraints.

Proof. From Lemmas 2 and 3, we see that Problem 6 can be reduced to a linear
program where the coefficients of the functions are variables. Next, we will show
that there is a finite number of variables and constraints in the reduced problem.

There are at most |K| components and at most 3™ transitions from each
state. Since F, G, A, and B,, are C-linear, the total number of coefficients is
at most 2 |K| (3™ 4 1)(M + 1). Hence, the number of variables in Problem 6
is finite. Moreover, for each component Z;, there are at most 2M corners and
at most M unbounded dimensions. Hence, each constraint in Problem 6 can be
reduced to at most |J| (M + 2M) constraints. Then, the number of constraints
is finite.

6 Numerical Experiments

In this section, we consider some numerical examples for various queueing net-
works and establish upper and lower bounds on various performance measures.
We have used Pyomo [13], a Python-based, open-source optimization model-
ing language package, to implement the optimization problems. The Gurobi
solver [12] has been used to obtain solutions to these problems.
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6.1 Finite Two-Node Tandem System

Consider a tandem system containing two nodes. Every job arrives at Node 1
according to a Poisson process and then goes to Node 2 after receiving its service
at Node 1. Each node has a capacity for jobs that can be allowed. Let N; and
Ny denote the capacity of Node 1 and Node 2, respectively. An arriving job is
rejected and lost if Node 1 is saturated. When Node 2 is saturated, a job remains
at Node 1 upon completion. Let A be the arrival rate. For Node 1, we consider
a threshold T" < N;. The service rate is p; if the number of jobs in Node 1 is no
more than T and p} otherwise. The service rate of Node 2 is always 2. Assume
that A < u1, A < p} and A < po. This system does not have a product-form
stationary probability according to [4].

The Original Random Walk. Let n = (n1,n3) represent the number of
jobs in the system. Then the state space is S = {0,1,... }2. Note that the tan-
dem system is a continuous-time system. We apply the uniformization technique
introduced in [11] to transform the system into a discrete-time random walk R.
Without loss of generality, we assume that A + max {u1, pf} + p2 < 1 and take
uniformization constant 1. First we describe the resulting transition probabilities
for n € {0,1,...,N1} X {0,1,...,N2}

P(n,n+e1) =A1(n1 < N1), P(n,n—ez)=p2l(ng >0), (45)
1 0 N. <T

P(n,n+dy) = pl(ng > 0,m2 < Na), n1 <T, (46)
,uf]_(ng < Ng), ny > T,

Pnn)=1- > P(n,n+u), (47)

u€{e1,di,—ez}

where e; = (1,0), d; = (—1,1) and ez = (0, 1).

We see that {0,1,...,N;} x {0,1,..., N} forms a communicating class.
Next, we define transition probabilities for the states outside {0,1,..., N1} x
{0,1,..., Ny} in such a way that these states are transient. The remaining tran-
sition probabilities are

P(n,n+e1) =X, (48)

P(n,n — ez) = psl(ng > 0), (49)
1 <T

P(n,n+dy) = {“1 (1 >0), m<T, (50)
Ui, ny > 1T,

P(n,n)=1— > P(n,n+u), (51)

ue{er,di,—ea}

The transition probabilities of R are shown in Fig. 3.
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Fig. 3. Transition probabilities of R

The Perturbed Random Walk. For the perturbed random walk, consider
an R in S with the transition probabilities

Pn,n+e)=Al(n+e €5), Pnn—e)=pl(n—e €59), (52)

_ 1 <T
P(n,n+d1) _ 1951 (n—l—d1 € S), ny >4, (53)
pwiln+dy € 5), ny >T,
P(n,n)=1-— Z P(n,n+ u). (54)

u€{er,di,—ez}

The transition probabilities of R are shown in Fig.4. We can verify that the
stationary probability distribution of R is

(n) = {C oo, msT (55)
C-pfpyr="om ng >T,

where p1 = A/p1, p2 = A/pi, 0 = A\/pe and C is the normalization constant,

ie, Ol =(1=p) " (1L=p{ ™) (1= 0) "+ plp2(l = p2) ' (1 —0)".

We consider two performance measures, namely the probability that an arriv-
ing job is rejected and the average number of jobs in the system. For the first
performance measure F'(n) = 1(n; = Np) and for the second F(n) = ny + na.
Consider a symmetric scenario, i.e., N1 = Nj. In the numerical example, take
for example T' =4, A/u1 = 1/2, A/ui = 1/3 and A/pe = 1/3. In Fig. 5, we plot
bounds on F for various Nj. In addition, we plot the upper bound given by the
comparison result in Problem 2. The upper and lower bounds are denoted by F,
and JF; respectively, and the upper bound given by comparison result is denoted
by fq(f). Note that in Fig.5(a) the y-axis is in logarithm scale. Moreover, in

Fig.5(a), although it is subtle .7-'156) still provides a slightly better upper bound
than F,.
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6.2 Tandem System with Boundary Speed-Up or Slow-Down

Consider a tandem system containing M nodes. Every job arrives at node 1 and
goes through all the nodes to receive its service from each node. In the end, the
job leaves the system through node M. Let A\ be the arrival rate. Moreover, we
assume that each server has the service rate p when there are jobs in the queue.
For server 1, the service rate changes to p*, if all the other queues become empty.
Let p* = n - u. For the stability of the system, assume that A/u < 1.

The Original Random Walk. In this example, we have S = {0,1,... }M.
Notice that the tandem system described above is a continuous-time system.
Therefore, we use the uniformization method to transform the continuous-time
tandem system into a discrete-time R. Without loss of generality, assume that
A+ max{p, u*} + 2p < 1. Hence, we take the uniformization constant 1. Then,
the non-zero transition probabilities of the discrete-time R are given below.
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P(n,n+e1) = A,
Pty {1 e =m0
Pn,n+d)=1n+d; €S)p, Vi=2,....M—1,
P(n,n—epn)=1(n—en €95)pu,

P(n,n)=1- Z P(n,n+u),

u€{er,di,....,dr—1,enm}

for all n € S, where e; is the vector with the i-th entry being 1 and all the other
entries being 0 and d; is the vector with the i-th entry being —1, the ¢ + 1-th

entry being 1 and all the others being 0.

The Perturbed Random Walk. For the perturbed random walks R, we take

P(n,n+e)
P(n,n+d;)
)
)

P(n,n — ey (n—en €8)u,

Z P(n,n +u).

u€{er,di,...,dm—1,enm}

A,
1(n+d; €S)p, Vi=1,....M -1,
1
1-—

P(n,n

We know from [14] that the stationary distribution of R is,

Mo
w(n) = (L—p)* - pZima ™,

where p = \/p.

0.2 0.4 0.6 0.8

A

Fig. 6. Bounds on F for various A\/p: F(n) = ni, p* = 1.5u

(61
(62
(63
(

)
)
)
64)

As the performance measure, we consider the average number of jobs in the
first queue (including the job in service), i.e., F(n) = ny. First we consider
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Table 1. Bounds on F for various M: F(n) = ni, \/u = 0.5, u* = 0.75u

M R F, | FY
1.0 1.4667 | 1.4667
1.0|1.26 1.26
1.0]1.0843 | 1.0843
1.0/1.0717 | 1.0717

UL W N

the case that M = 3, i.e., a three-node tandem system. We take n = 1.5 and
consider various values of A/u. The bounds and comparison result are given in
Fig. 6. When the load is larger than 0.75, the problems for both upper and lower
bound are infeasible. Hence, the results for these cases are not included.

Next, we fix A\/u = 0.5, n = 0.75 and consider various values for M. The
bounds on F and the comparison result are given in Table1. As we see from
Table 1, our numerical program can be applied to higher-dimensional space.

7 Conclusions and Discussion

In this paper, we have considered random walks in M-dimensional positive
orthant. Given a non-negative C-linear function, we have formulated optimiza-
tion problems that provide upper and lower bounds on the stationary perfor-
mance measure. Moreover, we have shown that these optimization problems can
be reduced to linear programs with a finite number of variables and constraints.

Through numerical experiments, we see that the linear programs for upper
and lower bounds are not always feasible. In particular, for some models, once the
load exceeds some threshold the problems become infeasible. It will be of interest
in future work to gain additional insight and to generalize our methodology to
also work with these models. Another interesting direction is to explore how to
choose the objective function of Problem 5 such that it improves the error bound.
Finally, as the dimension increases, the number of variables and constraints in
Problems 5 and 6 increase exponentially. It is of interest to develop methods to
reduce the number of variables and constraints, especially for models where M
is large.

Acknowledgments. Xinwei Bai acknowledges support by a CSC scholarship [No.
201407720012].
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