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Abstract
In the current study, the effects of fluidic parameters with

entropy generation properties on velocity, temperature, and

entropy numbers of non-Newtonian fluid flowing through

the porous channel are investigated. The complex system

of fluid equations is handled with analytically and numer-

ically. The first-order perturbation expansion is employed

on both velocity and temperature to obtain the approxi-

mate analytical solution. A comparison of the analytical

solution is made with numerical results that are obtained

by discretizing the system of boundary value problems.

The pseudo-spectral collocation method was used for the

discretization, and the Newton method was to get the solu-

tions to the complex differential equations. In the Newton

method, the finite difference approximation of Jacobian is

utilized. The pseudo-spectral solutions are in good agree-

ment with the analytical findings. The order of accuracy

in temperature and velocity profiles is of order 10−6 which

will be compared in the future with the experimental results

of given non-Newtonian fluid.
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1 INTRODUCTION

In view of ever-increasing applications of non-Newtonian fluids in biochemical and process engineer-

ing, the importance of such fluids, specifically in the research field, has been enlarged from the last

few decades. Non-Newtonian fluids indicate significant performance in boiling, polymers, plastic foam

processing, coating, plasma, and slurries [1–13]. Many researchers focused on non-Newtonian fluid

while considering various geometries. Some of the relevant literature is discussed in the following

paragraphs.

A few essential investigations about non-Newtonian properties of fluids have been performed in

these papers, which motivate the researchers towards the study of such complex fluids. Ali et al. [14,

15] have employed the finite element method to calculate the porous, and magnetic effects on velocity

and temperature distributions of the non-Newtonian fluids. Kefayati [16] used the Lattice Boltzmann

method to analyze the entropy generation in a power-law fluid through an inclined enclosure. They

concluded that the mass transfer enhances against the Soret parameter. In another study [17], he con-

sidered the Bingham fluid inside an open conduit to highlight the importance of free convection flow.

Sheremet and Pop [18] investigated the water-based nanofluid of steady laminar mixed convection in

a lid-driven cavity. They described the effects of pertinent parameters, namely, Reynolds, Prandtl, and

Lewis numbers on local Sherwood and local Nusselt numbers. They also compared their results with

previously published data. The work on heat transfer enhancement of nanofluids is further extended

by Turkyilmazoglu [19]. He studied the heat transfer under the effects of limited velocity slips in cir-

cular pipes. He used the single-phase nanofluid model to calculate the exact solution of the problem.

He also discussed the slip effects on different nanofluids with the solution for temperature and veloc-

ity profiles. Sheremet et al. [20] reported the magnetic effects on the cavity flow problems by using

the numerical scheme and highlighted the increment of heat transfer rate via the viscosity parameter.

Elniel et al. [21] investigated the magnetic field effects on MHD Powell–Eyring fluid near the accel-

erated plates with constant properties. Adomian decomposition method is used to solve the nonlinear

system of equations. The analysis of heat and mass transmission influences for the unsteady flow of

EP non-Newtonian fluid passing through the stretching sheet performed by Krishna et al. [22]. Their

results showed that the heat transfer decreases, and mass transfer increase by increasing the chemi-

cal reaction parameters. The properties of entropy generation in the magnetohydrodynamic flow of

Eyring–Powell fluid over a stretching surface are inspected by Alharbi et al. [23]. They discussed

the effect of the heat source and thermal radiation on fluid flow. The stagnation point flow of EP

non-Newtonian fluid above the stretching sheet was evaluated by Javed et al. [24]. They obtained the

numerical solution by applying the Keller box method and the effect of material parameters on the

velocity distribution and skin-friction coefficient described in detail. The heat flux and magnetic field

characteristics of EP nanofluid flowing above a sheet were examined by Malik et al. [25]. The shoot-

ing method was used to calculate the numerical solution of the problem. Kumar et al. [26] evaluated

the 3D mixed convection flow of EP nanofluid under the effect of flow and heat transfer. The results

revealed mixed convection parameter diminishes the mass concentration and temperature fields for

higher values. Some relevant investigations related to Eyring–Powell fluid can be mentioned in these

studies [6, 27–31].

In the previous investigation, Khan et al. [32] discussed the Eyring–Powell fluid with entropy gen-

eration in the porous horizontal channel. They used the semi-analytical scheme to handle the nonlinear

complex fluid equations and validated their solution with the shooting method. The analytical expres-

sions of velocity, temperature, and entropy number were missing in their study. Furthermore, they did

not provide the error magnitude in velocity and temperature profile, which has significant importance

while considering such a problem. The ranges of fluidic parameters were also missing in their study.
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FIGURE 1 Geometric depiction of the porous flow channel

The objectives of our investigation are:

(i) Obtain the analytical expressions of velocity, temperature, and entropy number.

(ii) Provide the ranges of fluidic parameters used.

(iii) Compare the analytical solution with a numerical solution.

2 PROBLEM FORMULATION

The flow of Eyring–Powell fluid in the horizontal parallel plates is considered, as illustrated in Figure 1.

Cartesian coordinate system is taken in which x̂ and ŷ directions are parallel and perpendicular to the

channel, respectively.

The extra shear tensor for the present investigation is given as [1]:

𝜏x̂ŷ = 𝜇
𝜕û
𝜕ŷ

+ 1

k1

Sinh−1

(
1

k2

𝜕û
𝜕ŷ

)
. (1)

By using the expansion, we get

Sinh−1

(
1

k2

𝜕û
𝜕ŷ

)
= 1

k2

𝜕û
𝜕ŷ

− 1

6

(
1

k2

𝜕û
𝜕ŷ

)3

,
|||| 1

k2

𝜕û
𝜕ŷ

|||| ≪ 1. (2)

The important flow equations are given by

𝜕û
𝜕x̂

= 0, (3)

−v̂0
𝜕û
𝜕ŷ

= −1

𝜌

𝜕p̂
𝜕x̂

+ 1

𝜌

𝜕

𝜕ŷ
𝜏x̂ŷ, (4)

𝜌Ĉp̂

(
−v̂0

𝜕𝜃

𝜕ŷ

)
= 𝜅

𝜕2𝜃

𝜕ŷ2
+ 𝜏x̂ŷ

𝜕û
𝜕ŷ

, (5)

where 𝜇, dynamic viscosity of fluid; k1, k2, material parameters; 𝜌, fluid density; v̂, kinematic viscosity;

Ĉp̂, specific heat; p̂, k, pressure and thermal conductivity, respectively.

By substituting Equation (1) into Equations (4) and (5), we have the following momentum and

energy equations in dimensional form:

−v̂0
𝜕û
𝜕ŷ

= −1

𝜌

𝜕p̂
𝜕x̂

+
(

v̂ + 1

𝜌k1k2

)
𝜕2û
𝜕ŷ2

− 1

2𝜌k1k2
3

(
𝜕û
𝜕ŷ

)2
𝜕2û
𝜕ŷ2

, (6)

𝜌Ĉp̂

(
−v̂0

𝜕𝜃

𝜕ŷ

)
= k𝜕

2𝜃

𝜕ŷ2
+
(
𝜇 + 1

k1k2

)(
𝜕û
𝜕ŷ

)2

− 1

6k1k2
3

(
𝜕û
𝜕ŷ

)4

. (7)
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To compute the constants for the solution of Equations (6) and (7), two boundary conditions are

required. These boundary conditions at the lower and upper boundary of the channel are:

û(0) = 0, û(ĥ) = 0,

𝜃(0) = 𝜃0, 𝜃(ĥ) = 𝜃ĥ. (8)

To transform Equations (6) and (7) into dimensionless form, we introduce the following dimensionless

variables:

𝜂 = ŷ
ĥ
, u1 = û

v̂0

, 𝜃 = 𝜃 − 𝜃0

𝜃ĥ − 𝜃0

. (9)

By using the above mentioned non-dimensional quantities into Equations (6) and (7), we have the

following dimensionless momentum and energy equations:

(1 + S)𝜕
2u1

𝜕𝜂2
+ Re𝜕u1

𝜕𝜂
− K 𝜕2u1

𝜕𝜂2

(
𝜕u1

𝜕𝜂

)2

= −P, (10)

𝜕2 𝜃

𝜕 𝜂2
+ Pe𝜕𝜃

𝜕𝜂
+ Br

(
(1 + S)

(
𝜕u1

𝜕𝜂

)2

− b
6

(
𝜕u1

𝜕𝜂

)4
)

= 0. (11)

Wherein the above equations,

Re = v̂0ĥ
v̂

, Pe =
v̂0ĥ𝜌Ĉp̂

k
, P = ĥ2

v̂0v̂𝜌

(
−𝜕p̂
𝜕x̂

)
,

Br =
𝜇v̂2

0

k(𝜃ĥ − 𝜃0)ĥ2
, S = 1

𝜇k1k2

, K =
Sv̂2

0

2k2ĥ2
, b =

v̂2
0

𝜇k1k2
2ĥ2

. (12)

In the above boundary value problem Re, Br, and Pe are the Reynolds, Brinkman, and Peclet numbers

respectively, P is the pressure parameter, S, K, and b are the material parameters of an Eyring–Powell

fluid, u1 is the velocity component, 𝜃 is the temperature of the fluid.

Next, by using dimensionless quantities in Equation (8), boundary conditions in dimensionless

form become:

u1(0) = 0, u1(1) = 0,

𝜃(0) = 0, 𝜃(1) = 1. (13)

3 PERTURBATION METHOD

To obtain the approximate analytical solution of equation (10) and (11), we use the perturbation

technique. For this, we consider the following relation:

u1 = U0 + 𝜖U1 + O(𝜖2), 𝜃 = 𝜃0 + 𝜖𝜃1 + O(𝜖2),K = 𝜖𝜎,Br = 𝜖b1,

and setting Γ = (1 + S) (14)

where 𝜖(0 < 𝜖 ≪ 1) is a known perturbation parameter. Comparing the coefficient of order 𝜖0, from

Equations (10) and (13a) we obtain

Order 𝜖0:

Γ𝜕
2U0

𝜕𝜂2
+ Re𝜕U0

𝜕𝜂
+ P = 0, (15)
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U0(0) = 0, U0(1) = 0. (16)

Solving Equation (15), we obtain the general solution of Equation (15) is:

U0 = −P𝜂
Re

−

(
Γe−

Re 𝜂
Γ

Re

)
c1 + c2. (17)

Using the boundary conditions (15) in Equation (17), the values of arbitrary constant c1 and c2 are:

c1 = e
Re
Γ P

Γ
(
−1 + e

Re
Γ

) , c2 = e
Re
Γ P(

−1 + e
Re
Γ

)
Re

. (18)

With the help of the above integration constants c1 and c2, Equation (17) becomes

U0 = 𝜆0𝜂 + 𝜆1

(
1 − e−

Re 𝜂
Γ

)
. (19)

System of the order of 𝜖,

Order 𝜖1:

Γ𝜕
2U1

𝜕𝜂2
+ Re𝜕U1

𝜕𝜂
− 𝜎

(
𝜕U0

𝜕𝜂

)2
𝜕2U0

𝜕𝜂2
= 0, (20)

U1(0) = 0, U1(1) = 0. (21)

Using Equation (19) into Equation (20), we get the general solution of a system of O(𝜖1) as:

U1 = c4 −
e−

Re 𝜂
Γ Γc3

Re
+ 𝜎

⎛⎜⎜⎜⎝
e
− Re 𝜂

Γ 𝜆2
0
𝜆1

Γ
+ e

− Re 𝜂
Γ Re 𝜂 𝜆2

0
𝜆1

Γ2

− e
− 2Re 𝜂

Γ Re 𝜆0 𝜆
2
1

Γ2 − e
− 3Re 𝜂

Γ Re2 𝜆3
1

6Γ3 𝜂

⎞⎟⎟⎟⎠ . (22)

The values of c3 and c4 are obtained by employing the boundary condition which is given in

Equation (21) as:

c3 = 𝜎Re𝜆1e−
2Re
Γ

6Γ4
(
−1 + e

Re
Γ

) (
−6Γ2𝜆2

0e
2Re
Γ + 6Γ2𝜆2

0e
3Re
Γ − 6ΓRe𝜆2

0e
2Re
Γ +

6ΓRe𝜆0𝜆1e
Re
Γ − 6ΓRe𝜆0𝜆1e

3Re
Γ + Re2𝜆2

1 − Re2𝜆2
1e

3Re
Γ

)
,

c4 = − 𝜎Re𝜆1e−
2Re
Γ

6Γ3
(
−1 + e

Re
Γ

) (
6Γ𝜆2

0 e
2Re
Γ − 6Γ𝜆0𝜆1e

Re
Γ

+6Γ𝜆0𝜆1e
2Re
Γ + Re𝜆2

1e
2Re
Γ

)
. (23)

With the help of the values of c3 and c4, Equation (22) can also be defined as

U1 = 𝜎
⎛⎜⎜⎝
𝜆2 + 𝜆3

(
e−

Re 𝜂
Γ − 𝜂e−

Re 𝜂
Γ + 𝜂e

Re(1−𝜂)
Γ

)
+ 𝜆4

(
e−

2Re 𝜂
Γ − e

Re(1−2𝜂)
Γ − e−

Re(1+𝜂)
Γ + e

Re(1−𝜂)
Γ

)
+𝜆5

(
e−

3Re 𝜂
Γ − e

Re(1−3𝜂)
Γ − e−

Re(2+𝜂)
Γ + e

Re(1−𝜂)
Γ

) ⎞⎟⎟⎠ . (24)

The expression of velocity in terms of original parameters is defined by

u1 = 𝜆0 𝜂 + 𝜆1

(
1 − e−

Re 𝜂
Γ

)
+ K

⎛⎜⎜⎜⎜⎝
𝜆2 + 𝜆3

(
e−

Re 𝜂
Γ − 𝜂e−

Re 𝜂
Γ + 𝜂e

Re(1−𝜂)
Γ

)
+

𝜆4

(
e−

2Re 𝜂
Γ − e

Re(1−2𝜂)
Γ − e−

Re(1+𝜂)
Γ + e

Re(1−𝜂)
Γ

)
+𝜆5

(
e−

3Re 𝜂
Γ − e

Re(1−3𝜂)
Γ − e−

Re(2+𝜂)
Γ + e

Re(1−𝜂)
Γ

)
⎞⎟⎟⎟⎟⎠
. (25)

Order 𝜖0:
𝜕2 𝜃0

𝜕 𝜂2
+ Pe𝜕𝜃0

𝜕𝜂
= 0, (26)
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𝜃0(0) = 0, 𝜃0(1) = 1. (27)

To obtain the general solution of the order of one, solving Equation (26) and we get:

𝜃0 = −e−Pe𝜂c5

Pe
+ c6, (28)

The constants of integration c5 and c6 are obtained by using the boundary condition which is defined

in Equation (27):

c5 = ePePe
−1 + epe , c6 = ePe

−1 + ePe . (29)

𝜃0 = 𝜒0(1 − e−Pe𝜂), (30)

Order 𝜖1:

𝜕2 𝜃1

𝜕 𝜂2
+ Pe𝜕𝜃1

𝜕𝜂
+ b1Γ

(
𝜕U0

𝜕𝜂

)2

− bb1

6

(
𝜕U0

𝜕𝜂

)4

= 0, (31)

𝜃1(0) = 0, 𝜃1(1) = 0. (32)

To find the solution of Equation (31), the values of U0 which is given in Equation (19) are used to

obtain the general solution and solution of 𝜃1 is:

𝜃1 = c8 + 𝜒1e−Pe 𝜂c7 + b1

(
𝜒2𝜂 + 𝜒3e−

Re 𝜂
Γ + 𝜒4e−

2Re 𝜂
Γ + 𝜒5e−

3Re 𝜂
Γ + 𝜒6e−

4Re 𝜂
Γ

)
. (33)

The values of the constant of integration c7 and c8 are obtained by using Equation (32) and that values

are:

c7 = −
−b1(𝜒3 + 𝜒4 + 𝜒5 + 𝜒6) + b1

(
𝜒2 + e−

Re
Γ 𝜒3 + e−

2 Re
Γ 𝜒4 + e−

3 Re
Γ 𝜒5 + e−

4 Re
Γ 𝜒6

)
−𝜒1 + e−Pe𝜒1

,

c8 = −

b1e−
4Re
Γ

(
ePe+ 4Re

Γ 𝜒2 − e
4Re
Γ 𝜒3 + ePe+ 3Re

Γ 𝜒3 − e
4Re
Γ 𝜒4 + ePe+ 2Re

Γ 𝜒4

−e
4Re
Γ 𝜒5 + ePe+ Re

Γ 𝜒5 + ePe𝜒6 − e
4Re
Γ 𝜒6

)
−1 + ePe . (34)

With the help of the above constants we get

𝜃1 = b1

(
𝜒2𝜂 + 𝜒3e−

Re 𝜂
Γ + 𝜒4e−

2Re 𝜂
Γ + 𝜒5e−

3Re 𝜂
Γ + 𝜒6e−

4Re 𝜂
Γ + 𝜒7e−Pe𝜂 + 𝜒8

)
. (35)

The temperature in terms of the original parameter is defined as

𝜃 = 𝜒0(1 − e−Pe𝜂) + Br
(
𝜒2𝜂 + 𝜒3e−

Re 𝜂
Γ + 𝜒4e−

2Re 𝜂
Γ + 𝜒5e−

3Re 𝜂
Γ + 𝜒6e−

4Re 𝜂
Γ + 𝜒7e−Pe𝜂 + 𝜒8

)
. (36)

4 ENTROPY GENERATION

To evaluate the entropy generation, we will use the following expression [32]

Ns =
(

d𝜃
d𝜂

)2

+ Br
Ω

(
Γ − b

6

(
du1

d𝜂

)2
)(

du1

d𝜂

)2

. (37)
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In the above Equation (37), the first term arises due to heat generation and which can be written as

Ns1, whereas the second term appears due to viscous dissipation and can be written as Ns2, that is,

Ns1 =
(

d𝜃
d𝜂

)2

and Ns2 = Br
Ω

(
Γ
(

du1

d𝜂

)2

− b
6

(
du1

d𝜂

)4
)
. (38)

Using the analytical expressions of velocity and temperature profiles given in Equations (25) and (36),

respectively into Equation (37) to obtain the final form of the entropy generation numbers, which is

given by:

Ns =
(

e−Pe𝜂𝜒8 + Br
(
𝜒2 + e−

Re 𝜂
Γ 𝜒9 + e−

2Re 𝜂
Γ 𝜒10 + e−

3Re 𝜂
Γ 𝜒11 + e−

4Re 𝜂
Γ 𝜒12 + e−Pe𝜂𝜒13

))2

+ Br
Ω⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Γ

⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝜆0 + e−

Re 𝜂
Γ 𝜆6 + K

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜆3

(
−e−

Re𝜂
Γ + e

Re(1−𝜂)
Γ

)
− 𝜆7

(
e−

Re 𝜂
Γ − e−

Re 𝜂
Γ 𝜂 + e

Re(1−𝜂)
Γ 𝜂

)
−

𝜆8

(
2e−

2Re 𝜂
Γ − e−

Re(1+𝜂)
Γ − 2e

Re(1−2𝜂)
Γ + e

Re(1−𝜂)
Γ

)
− 𝜆9

⎛⎜⎜⎜⎜⎜⎝

3e−
3Re 𝜂
Γ

−e−
Re(2+𝜂)

Γ

−3e
Re(1−3𝜂)

Γ

+e
Re(1−𝜂)

Γ

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠

2

−1

6
b

⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝜆0 + e−

Re 𝜂
Γ 𝜆6 + K

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜆3

(
−e−

Re 𝜂
Γ + e

Re (1−𝜂)
Γ

)
− 𝜆7

(
e−

Re 𝜂
Γ − e−

Re 𝜂
Γ 𝜂 + e

Re(1−𝜂)
Γ 𝜂

)
−

𝜆8

(
2e−

2Re 𝜂
Γ − e−

Re(1+𝜂)
Γ − 2e

Re(1−2𝜂)
Γ + e

Re(1−𝜂)
Γ

)
− 𝜆9

⎛⎜⎜⎜⎜⎜⎝

3e−
3Re 𝜂
Γ

−e−
Re(2+𝜂)

Γ

−3e
Re(1−3𝜂)

Γ

+e
Re(1−𝜂)

Γ

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (39)

To calculate the Bejan number, we have

Be = Ns1∕(Ns1+Ns2), (40)

or

Be = 1∕(1+𝜙). (41)

5 PSEUDO-SPECTRAL COLLOCATION METHOD

The coupled system of nonlinear equations is discretized by using the pseudo-spectral collocation

method [33]. It is well known that the pseudo-spectral collocation method offers high accuracy in

the approximation of derivatives. Equations (10) and (11) are nonlinear and represent second-order

boundary value problems. The domain of our problems is [0,1] and usually, the matrix operators in

pseudo-spectral collocation method to approximate the derivatives are defined over the domain [−1,1]

and there is a transformation Γ from [−1,1] to [0,1], that is,

Γ = [−1, 1] → [0, 1] ∶ Γ(r) = 0.5 (r + 1). (42)

We discretize the domain of our problem [0,1] and introduce n-grid points:

𝜂i = (i − 1)h, for i = 1, 2, 3, … , n.
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where h = 1

n−1
. If we denote the differentiation pseudo-spectral collocation matrix by D then matrix

operator D that approximate the first-order derivative in our problem is:

D = 2D. (43)

The beauty of the pseudo-spectral collocation method is that higher-order derivatives can be com-

puted by computing the power of D, that is, the ith order derivative can be approximated by Di. The

discretized form of the boundary value problem is:

(1 + S)D2u + ReDu − K(Du)2 ⊙ (Du) + P1 = 0,

D2𝜃 + PeD𝜃 + Br
(
(1 + S)(Du)2 − b

6
(Du)4

)
= 0, (44)

where u =

⎡⎢⎢⎢⎢⎢⎣

u1

u2

.

.

.
un

⎤⎥⎥⎥⎥⎥⎦n×n

, 𝜃 =

⎡⎢⎢⎢⎢⎢⎣

𝜃1

𝜃2

.

.

.
𝜃n

⎤⎥⎥⎥⎥⎥⎦n×n

, 1 =

⎡⎢⎢⎢⎢⎢⎣

1
1
.
.
.
1

⎤⎥⎥⎥⎥⎥⎦n×n

.

ui = u(𝜂i) and 𝜃i = 𝜃(𝜂i). The system of nonlinear equations in (44) can be written as:

F =
⎡⎢⎢⎣
(1 + S)D2u + ReDu − K(Du)2 ⊙ (Du) + P1
D2

𝜽 + PeD𝜽 + Br
(
(1 + S)(Du)2 − b

6
(Du)4

)⎤⎥⎥⎦ =
[

0

0

]
. (45)

The boundary conditions can be imposed as:

F(1) = u(1), (46)

F(n) = u(n), (47)

F(n + 1) = 𝜃(1), (48)

F(2n + 1) = 𝜃(n) − 1, (49)

where u(1) = 0 and u(n) = 0, 𝜃(1) = 0 and 𝜃(n) = 1 describe the boundary conditions. The system

of nonlinear equations (44) (after the adjustment of boundary conditions) can be solved by using the

Newton method. The Newton method is used in the following form:

zk+1 = zk − (F′(zk))−1F(zk), k = 0, 1, … (50)

where z = [u, 𝜃]T , z0 = 0, and F′(zk) are the Jacobian of the system of nonlinear equations. We evaluate

the Jacobian for the nonlinear system of equations and avoid the direct computation of Jacobian inverse

for each iteration of Newton’s method. To compute Jacobian’s inverse at each iteration of Newton’s

method is computationally very expensive but gives us a quadratic convergence. To avoid the compu-

tation of Jacobian at each iteration, we freeze the Jacobian for some number of iterations (say for five

iterations) and then periodically update it. The freezing of the Jacobian can compromise the quadratic

convergence order. By running some simulations, one may find a trade-off between higher order of

accuracy and low computational cost. The direct computation of Jacobian can be avoided by comput-

ing the LU-factors of Jacobian. We computed the LU-factors of the Jacobian and used them to solve the

lower and upper triangular system of linear equations instead of computing the direct inverse. As we are
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FIGURE 2 Variation of velocity distribution [Color figure can be viewed at wileyonlinelibrary.com]

using the freezing-Jacobian strategy, we use the LU-factors repeatedly to fix the number of iterations.

By using the technique of freezing Jacobian, we perform 10 iterations of Newton’s method on aver-

age to achieve 7-digits of accuracy in the numerical solution of the system of nonlinear equations. To

perform numerical simulation, we take the size of the system of nonlinear equation n = 100.The total

number of equations is 200; we are solving a system of nonlinear coupled equations. In all the simu-

lations, we take 0, as an initial guess, and on average we get numerical accuracy in the solution of a

system of nonlinear equations.

6 RESULTS AND DISCUSSION

Non-Newtonian fluid such as an Eyring–Powell fluid with entropy generation inside an infinite pipe

is considered here. The effects of various fluidic parameters on velocity and temperature profiles are

highlighted through graphs and illustrated in Figures 2–7. The entropy generation number is also

accounted for constants viscosity model. The analytical expressions of velocity, temperature, and

entropy-generation numbers are obtained under the implementation of the perturbation technique. The

range of parameters are: material parameter S is 0≤ S≤ 1, material parameter K (0≤K ≤ 1), mate-

rial parameter b (0.1≤ b≤ 3), pressure number P (0≤P≤ 3), Reynolds number Re (1≤Re≤ 5), Peclet

number Pe (1≤Pe≤ 5), Brinkman number Br (0≤Br ≤ 5) and the value of temperature difference

parameter Ω is fixed 0.017 [34] for the construction of entropy generation number against the length

of the channel.

http://wileyonlinelibrary.com
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FIGURE 3 Variation of temperature distribution [Color figure can be viewed at wileyonlinelibrary.com]

The effects of fluidic parameters such as Reynolds number (Re), pressure parameter (P), and

material parameters S and K on velocity profiles are presented in Figure 2. The effects of S on the

velocity profile are indicated in Figure 2a while the rest of the fluidic parameters are fixed. The veloc-

ity field decreases versus S throughout the channel. The reason is that for higher values of material

parameter S, the viscosity of the fluid increases. Due to an increase in the viscosity of the fluid, the

velocity profile is showing decreasing behavior. On the other hand, against the values of Reynolds

number, the velocity profile is showing the increasing trend while the rest of the channel the oppo-

site trend is noted via Reynolds number values (see Figure 2b). The velocity profiles increase with

material parameter K and pressure parameter P. Generally, the velocity profile of an Eyring–Powell

fluid is shows a parabolic trajectory. Furthermore, the velocity profile attains the maximum height in

the center of the channel (see Figure 2c,d). The effects of pertinent parameters, namely, Brinkman

number (Br), Peclet number (Pe), Reynolds number (Re), and material parameter (S) on temperature

profile, are expressed in Figure 3. The temperature increases by increasing the values of Brinkman

number (Br) (Figure 3a). The reason is that the viscous dissipation effects increase the temperature

of the fluid in the channel. It is observed that the temperature field has a direct relation with the

Reynolds number, Peclet number, and material parameter (see Figure 3b–d). These parameters also

increase the temperature of the fluid. Figure 4 exhibits the effects of emerging material parameters (S
and b), Brinkman number (Br), and pressure parameter (P) on entropy number (Ns) against the length

of the channel. The entropy generation number Ns is a decreasing function of material parameters

http://wileyonlinelibrary.com
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FIGURE 4 Variation of entropy generation distribution [Color figure can be viewed at wileyonlinelibrary.com]

S and b while the reverse behavior is observed against Brinkman number Br and pressure parameter P.

It is noted that the entropy number is maximum near the boundaries of the channel and decreases

expressively as the center of the channel. The variation of Bejan number (Be) against various fluidic

parameters (Br, Pe, S, and K) are plotted against the length of channel distance (𝜂) in Figure 5. The

Bejan number is decreasing against Brinkman number and material parameter S and reverse behavior

is noted against Peclet number and material parameter K. The magnitude of error between veloc-

ity and temperature distribution for Eyring–Powell fluid are also noted and plots in Figures 6 and 7,

respectively. These figures show the order of accuracy in temperate and velocity profiles, which is of

order 10−6.

7 CONCLUSIONS

An approximate analytical solution for the computational study of non-Newtonian (Eyring–Powell)

fluid under the impacts of Bejan and Entropy numbers in a porous channel is presented in this investi-

gation. The analytical expressions of velocity, temperature, and entropy number are obtained by using

the perturbation method. The effects of various pertinent parameters on velocity, temperature, entropy

number are discussed. The analytical solution is compared with a numerical solution. For this, the

pseudo-spectral method was used and the error plots of velocity and temperature profiles were con-

structed. The comparison of analytical and numerical solutions helped to confirm the validity of the

http://wileyonlinelibrary.com
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FIGURE 5 Variation of Bejan number [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 6 Absolute error in the velocity field

obtained results. A highly accurate method (pseudo spectral colocation method) is used to discretize

the system of boundary value problems and finally, the Newton method which has quadratic conver-

gence is employed to solve the associated system of nonlinear equations. On average, 10−6 accuracy is

obtained in the numerical results. The number of iterations was six to find the accuracy in temperature

and velocity. These results will be validated with experimental data of Eyring–Powell fluid under the

same assumptions in future work.

http://wileyonlinelibrary.com
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APPENDIX A.
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