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Abstract—Objective: Nonlinear modeling of cortical re-
sponses (EEG) to wrist perturbations allows for the quan-
tification of cortical sensorimotor function in healthy and
neurologically impaired individuals. A common model
structure reflecting key characteristics shared across
healthy individuals may provide a reference for future clin-
ical studies investigating abnormal cortical responses as-
sociated with sensorimotor impairments. Thus, the goal of
our study is to identify this common model structure and
therefore to build a nonlinear dynamic model of cortical re-
sponses, using nonlinear autoregressive–moving-average
model with exogenous inputs (NARMAX). Methods: EEG
was recorded from ten participants when receiving con-
tinuous wrist perturbations. A common model structure
detection method was developed for identifying a com-
mon NARMAX model structure across all participants, with
individualized parameter values. The results were com-
pared to conventional subject-specific models. Results:
The proposed method achieved 93.91% variance accounted
for (VAF) when implementing a one-step-ahead predic-
tion and around 50% VAF for a k-step ahead prediction
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(k = 3), without a substantial drop of VAF as compare to
subject-specific models. The estimated common structure
suggests that the measured cortical response is a mixed
outcome of the nonlinear transformation of external inputs
and local neuronal interactions or inherent neuronal dy-
namics at the cortex. Conclusion: The proposed method
well determined the common characteristics across sub-
jects in the cortical responses to wrist perturbations.
Significance: It provides new insights into the human sen-
sorimotor nervous system in response to somatosensory
inputs and paves the way for future translational studies
on assessments of sensorimotor impairments using our
modeling approach.

Index Terms—EEG, nonlinear system identification,
NARMAX, closed-loop system, sensorimotor control.

I. INTRODUCTION

THE human nervous system is one of the most complicated
systems known. There are at least 1011 neurons, 1014

interconnections, and many thousand kilometers of cabling in
1.5 kilograms of brain tissue [1], [2]. Our daily activities such as
movement and perception are fulfilled by the collective behavior
of neural populations. Despite plenty of knowledge of single
neuron responses to stimuli, the stimulus-response relation at a
system level is not yet fully understood [3]. The system-level
neural response is a complex output of collective neuronal ac-
tivity from neuronal populations and their dynamic interactions,
and includes highly nonlinear processes [2], [3]. Assessing
the stimulus-response relation between neural populations is
essential to a better understanding of the nervous system and
could lead to an increased insight of normal and pathological
neural functions [4].

A practical way to study a stimulus-response relation in a
functionally closed-loop system, like the nervous system, is to
use well-designed external perturbations as independent input
[3], [5]. Applying periodic mechanical perturbations to the
wrist joint of healthy individuals and measuring the associated
steady-state cortical responses via electroencephalography
(EEG) allows studying the stimulus-response relation in the
sensorimotor system [6]. A recent study indicated that over 80%
of cortical responses to mechanical perturbations originates from
nonlinear interactions, and a linear model could only explain
10% of cortical response, according to the measured variance ac-
counted for (VAF) [7]. Nonlinear modeling of cortical responses
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to mechanical perturbations allows for a better understanding of
the sensorimotor system and may pave the way for assessments
of sensorimotor impairments caused by neurological disorders,
such as Parkinson’s disease, stroke and cerebral palsy [4], [8].

Our previous studies investigated the cortical responses to
mechanical perturbations based on their relative phases [9],
[10]. These studies demonstrated the dominance of quadratic
nonlinearity in the nervous system. Based on these findings,
Vlaar and colleagues modeled cortical responses to wrist per-
turbations using regularized Volterra series with a second-order
nonlinearity [11]. The obtained subject-specific models explain
around 46% (measured by VAF) of cortical response. This
result is better than using a linear model (explaining 10% of
cortical response). The study also found that after extensive
averaging the recorded cortical response contained around 8%
noise, indicating that more advanced methods may be able to
model a higher percentage of the response.

Over the past years, many linear modelling techniques have
been proposed and successfully applied to neural signal mod-
elling for brain-computer-interface (BCI) research. For exam-
ple, in [12], a 2-D linear decoupling model was introduced to
represent the EEG signals relating to BCI systems. Each of the
two sub-models (for the horizontal and vertical velocities of the
cursor, respectively) involves a total of 34 × 11 = 374 model
elements (model terms), which were determined by the number
of sensors (= 34) and the maximum lag (= 10) for model input
variables. In [13], the 2-D model introduced in [12] was extended
to 3-D, representing the velocities in the x-, y- and z-axis. Each
of the three sub-models involves a total of 64 × 11 = 704
model terms. While these models provide a good representation
of the relevant EEG signals, they have several limitations, for
example, 1) they lack interpretability in that the models include
a great number of terms (elements); each of which may just
make a trivial contribution to explaining the target signal, and the
contributions are unknown. 2) These models cannot reveal the
underlying nonlinear relationships between the input and output
signals of the systems under study. 3) These models do not an-
swer the question: do subjects participating in experiments share
any common features, which are important and useful for future
clinical studies e.g. investigating abnormal cortical responses
associated with sensorimotor impairments and monitoring the
functional changes in the brain after neurological disorders and
during the recovery. To overcome the limitations of linear models
and obtain more useful information from experimental data,
this study proposes a nonlinear modelling approach which can
generate parsimonious models. The proposed method will be
briefly introduced in the next paragraphs first and described in
detail in Section II.

Commonly used nonlinear modeling methods includes regu-
larization regression, sparse regression (e.g. lasso), basis func-
tion expansions, neural networks, and linear and nonlinear au-
toregressive moving average. These methods have some advan-
tages and disadvantages. For example, neural networks normally
show excellent prediction performance, but they could be very
complex and takes a large amount of time for training. The
regularization regression and lasso methods are efficient for

structure detection and model term selection [14]. In basis func-
tion expansions, the basis functions may well capture the tempo-
ral dynamics without explicitly considering sampling resolution
and number of lags. However, these methods might produce
less accurate predictions than neural network models. The non-
linear autoregressive–moving-average with exogenous inputs
(NARMAX) model provides parsimonious and transparent rep-
resentation of nonlinear systems and in general shows excellent
prediction performance [16,17]. However, the challenges still
remain for building a common model structure. Moreover, one
needs to construct transparent and parsimonious models where
the role of individual system variables, and their interactions
are explicitly known, so as to facilitate future translations to
clinically related research.

Recently, we proposed a biologically inspired approach based
on the prior knowledge of neuroanatomical connections and
corresponding transmission delays in neural pathways [15].
However, this previous method has the limitation to be applied
to an unknown “black-box” system. For example, it would be
hard to apply method to individuals suffering from a stroke,
since the damage to neuroanatomical connections and following
neural plasticity will result in an unknown system like a “black”
box. Thus, a data-based method that is proposed in this study
seeks to address this limitation. Furthermore, a common model
structure estimated from different healthy subjects may provide
a reference of key characteristics shared across individuals.
This reference is important for future clinical studies investigat-
ing abnormal cortical responses associated with sensorimotor
impairments. This will then provide a potential quantitative
tool for monitoring the functional changes in the brain after
neurological disorders and during the recovery [4]. However,
the common model structure cannot be achieved by the previous
subject-specific (nonparametric) Volterra models [11] as well as
other system identification techniques as discussed above.

In this study, we modeled the cortical response to mechanical
perturbation using a polynomial NARMAX method. Such a
NARMAX method is used since 1) the “true” mathematical
model of the human sensorimotor system is unknown and 2)
most nonlinear functions can be approximately represented
by a polynomial series. A common model structure detection
(CMSD) method is proposed, which allows for the selection of
key model terms from many candidates, to build a common
model structure for multiple datasets. The proposed method
was applied to the open-access datasets previously recorded
by Vlaar and colleagues [7], [11]. The datasets are available
in Nonlinear System Identification Benchmarks website (http:
//www.nonlinearbenchmark.org/#EEG)

Results obtained from this study can enhance our under-
standing of the underlying nonlinear behaviors in the human
somatosensory central nervous system. The proposed method
would allow us modeling the human somatosensory system in
a more precise way than current state of the art approaches
with few key parameters. The common model estimated from
different subjects provides a useful reference of key character-
istics shared across individuals. This may pave the way for our
future research that aims to quantitatively assess the pathological

http://www.nonlinearbenchmark.org/&num;EEG
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changes in the somatosensory system caused by neurological
disorders.

II. NONLINEAR MODELLING USING NARMAX

The NARMAX method [16–18] provides a powerful tool for
black-box system identification problems where the true model
structure is unknown or hard to obtain. A wide range of nonlinear
systems can be represented well using NARMAX modeling. The
input-output relationship of a nonlinear dynamic system can be
represented using polynomial NARMAX model as follows:

y (t) = f(y (t− 1) , . . . , y (t− ny) , u (t− 1) , . . . ,

u (t− nu) , e (t− 1) , . . . , e (t− ne)) + e (t) (1)

where y(t), u(t) and e(t) are the output, input and prediction
error, respectively; ny, nu, and ne are the associated maximum
lags, and f(·) is a nonlinear function which is unknown in
advance and is identified from experimental data using a model
structure detection algorithm.

Most existing model structure detection algorithms focus on
identifying a model structure based on one single dataset. The
orthogonal forward regression (OFR) algorithm is a commonly
used method for such a purpose [17]. The OFR operates in a
stepwise manner to produce a parsimonious representation of
the input-output relation. It first defines a dictionary consisting
of a great number of candidate model terms (e.g. individual
variables and their interaction terms). Then, an orthogonaliza-
tion transformation is performed over the dictionary to generate
a subset of model terms. During the orthogonaliztion procedure,
a simple and effective error reduction ratio (ERR) index is
used to measure the contribution of each model terms. At each
step, the algorithm selects a most important model term from
the dictionary. The selection procedure normally generates a
small subset of model terms which are used for model building.
This algorithm and its variants have been successfully applied
to studies in various research fields including ecological [19],
environmental [20], geophysical [21], societal [22] and neuro-
physiological sciences [23]–[26]. The scenario considered in
this study, however, is quite different from previous studies.
In this study there are multiple datasets recorded from a se-
ries of experiments with different inputs (i.e., seven different
multi-sine realizations) and from multiple participants. Thus, the
single-dataset based OFR algorithm cannot be used to generate
the common model structure that represents all datasets (i.e.
within and between participants). Therefore, a new method
that can effectively handle multiple-dataset modeling problems
is needed. Below, we introduce a Common Model Structure
Detection (CMSD) method to address this need.

A. Parsimonious Common Model Structure Detection

The nonlinear autoregressive exogenous (NARX) model, as a
special case of NARMAX model, is commonly used in nonlinear
system identification. It can be expressed in a linear-in-the-
parameters form [16], [17], [27]:

y (t) = θ1ϕ1 (t) + θ2ϕ2 (t) + . . .+ θMϕM (t) + e (t) (2)

whereθ1, . . . θMare unknown parameters andM is the total num-
ber of candidate regressors, ϕ1(t), . . . ϕM (t) are model terms

(also known as regressors) generated from the regressor vector
[y(t− 1), . . . , y(t− ny), u(t− 1), . . . , u(t− nu)]

T . For ex-
ample, for a single input and single output (SISO) system
(where u(t) and y(t) are the input and output, respectively),
if the nonlinear degree is chosen to be 2, and the time lags
of input and output are chosen to be nu = 2 and ny= 1, re-
spectively, then the candidate model terms include the constant
term, linear terms y(t− 1), u(t− 1), u(t− 2), and nonlin-
ear terms y(t− 1)y(t− 1), y(t− 1)u(t− 1), y(t− 1)u(t− 2),
u(t− 1)u(t− 1), u(t− 1)u(t− 2), u(t− 2)u(t− 2).

Considering the scenario where a total number of
K datasets is available, our objective is to find a
common model structure in the form of Eq. (2) that
summarizes the common characteristics across all datasets.
For k-th dataset, the model terms [ϕ

(k)
1 (t), . . . , ϕ

(k)
M (t)]

can be generated from the associated regressor vector
[y(k)(t− 1), . . . , y(k)(t−ny), u

(k)(t− 1), . . . , u(k)(t−nu)]
T .

Here the superscript is used to index the datasets. For example,
ϕ
(k)
1 indicates that the model term is for the k-th dataset.
If using all the available model terms, the k-th datasets can be

represented by a full polynomial NARX model:

y(k) (t) = θ1 ϕ1
(k) (t) + . . .+ θM ϕM

(k) (t) + e(k) (t) (3)

Model (3) can be written in a compact matrix format as:

y(k) = θ1ϕ1
(k) + . . .+ θM ϕM

(k) + e(k) (4)

where y(k) = [y(k)(1), . . . , y(k)(N (k))] T ,θ (k) = [θ1
(k),

. . . , θM
(k)] T , e(k) = [e(k)(1), . . . , e(k)(N (k))]T and ϕ

(k)
m =

[ ϕm
(k)(1), . . . , ϕm

(k)(N (k))] T for k = 1, 2, . . . ,K and
m = 1, 2, . . . ,M .

The total number of candidate model termsM depends on the
number of input variables nu (i.e., the length of input history),
the maximum time lags of the output ny and the degree of

nonlinearity d. It can be calculated that M =
(nu+ny+d)!
(nu+ny)!d!

. In
order to determine the maximum time lags for both the input
and output variables, following the approach described in [25],
we have carried out pre-modelling experiments and simulations.
In this study, the maximum time lag is chosen to be ny = 5 and
nu = 20, and based on the observations of Vlaar [8], [11] the
second order nonlinearity (d= 2) was set. Thus, the total number
of candidate terms M is (20 + 5 + 2)!/[(20 + 5)!2!] = 351. In
practice, a smaller number of the significant model terms could
be enough to represent the data [17]. Thus, we proposed a model
structure detection algorithm to select the key model terms from
these 351 candidates.

For the k-th dataset, let D(k) = { ϕ1
(k), . . . , ϕM

(k)}be
the full dictionary of candidate model terms and ϕ

(k)
m be

the m-th candidate basis vector comprised by the candidate
model terms δm

(k). Then, the common model structure de-
tection problem is equivalent to finding a common subset
Dn = {ϕl1 , . . . , ϕln} with {l1, . . . , ln} ∈ {1, 2, . . . ,M}, so
that y(k) (k = 1, 2, . . . ,K) can be approximated by a linear
combination of {ϕl1 , . . . ,ϕln }, as:

y(k) = θl1
(k) ϕl1 + . . .+ θln

(k) ϕln + e(k) (5)

We used a stepwise forward search approach to identify the
key model terms in the common model structure. The overall
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mean absolute error (oMAE) was employed to indicate the
significance and contribution of each model term in reducing
the modeling error. At the first search step, the oMAE of each
candidate model term can be estimated from a MAE matrix:

Ψ (1) =

⎡
⎢⎢⎢⎢⎣

ε
(1)
1 ε

(1)
2

ε
(2)
1 ε

(2)
2

· · · ε
(1)
M

ε
(2)
M

...
. . .

...

ε
(K)
1 ε

(K)
2

· · · ε(K)
M

⎤
⎥⎥⎥⎥⎦

(6)

where ε(k)m is the individual MAE value when the m-th candidate
model term is used to predict the k-th output:

ε(k)m =
1

Nk
y(k) − α(k)

m ϕ(k)1
m (7)

where α
(k)
m is the parameter and ‖ · ‖1 represents the L1 norm.

Then, the oMAE associated with the m-th candidate model term
δm

(k)(i.e., when the m-th candidate basis vector ϕ(k)
m is used to

represent all K datasets) is defined as the average of the K MAE
values:

ε̄m =
1

K

(
ε(1)m + ε(2)m + . . .+ ε(K)

m

)
(8)

Define:

l1 = arg min
1≤m≤M

{ε̄m} (9)

subsequently, the first significant model term can be selected as
δl1

(k) and the first associated orthogonal vector can be defined

as q1
(k) = ϕ

(k)
l1

. When δl1
(k) is selected by the algorithm, the

l1-th candidate model term should be removed from the initial
dictionary D(k), as well as the corresponding column of matrix
Φ(k) (i.e., the l1-th candidate basis vector). After removing
δl1

(k) from the dictionary, the dictionaries of all K datasets
are reduced and consist of only M − 1 candidate model terms.
Accordingly, allK matrices associated with theseM − 1model
terms have M − 1 columns.

At a step s (s ≥ 2), each of the K dictionaries consist of
M − s+ 1 candidate model terms and the bases in each dic-
tionary are first transformed into a new group of orthogonalized
bases through the Gramm-Schmidt (GS) transformation [13],
[14], [24]. Here, the GS transformation is used to achieve
the following objective: to select the most important variables
(bases) that are most representative for all the K datasets. The or-
thogonalization transformation at the step s can be implemented
by:

q
(k,s)
j = ϕj

(k) −
s−1∑
r=1

(
ϕ

(k)
j

)T

qr
(k)

(
q
(k)
r

)T

qr
(k)

qr
(k) (10)

where qr
(k) (r = 1, 2, . . . , s− 1) are orthogonal vectors,

ϕj
(k) (j = 1, 2, . . . ,M − s+ 1) are unselected bases

and q
(k, s)
j (j = 1, 2, . . . ,M − s+ 1) are new orthog-

onalized bases. The MAE matrix at the step s can
be then calculated using the new group of K bases
[q(1, s)

j , q
(2, s)
j , . . . , q

(K, s)
j ] (j = 1, 2, . . . ,M − s+ 1), and

the MAE matrix is:

Ψ (s) =

⎡
⎢⎢⎢⎢⎣

ε
(1)
1 ε

(1)
2

ε
(2)
1 ε

(2)
2

· · · ε
(1)
M−s+1

ε
(2)
M−s+1

...
. . .

...

ε
(K)
1 ε

(K)
2

· · · ε(K)
M−s+1

⎤
⎥⎥⎥⎥⎦

(11)

The oMAEs of all unselected bases at step s can be calculated
and the s-th model term can be selected to be ϕls

(k), with:

ls = arg min
1≤m≤M−s+1

{ε̄m} (12)

The s-th associated orthogonal vector is defined as qs
(k) =

ϕ
(k)
ls

. Thus, the model terms of the subset [ ϕl1
(k), . . . , ϕln

(k)]
can be selected step-by-step to identify the common model struc-
ture for all K datasets. The number of model terms is determined
by an adjustable prediction sum of squares (APRESS) to achieve
a balance between model complexity and model performance.
The details of the APRESS can be found in [28].

B. Parameter Estimation

Assume that a total of n model terms are selected, the
model parameter vector for the k-th dataset, i.e. θ(k) =
[θl1

(k), θl2
(k), . . . , θln

(k)] can then be estimated from the trian-
gular equation A(k)θ(k) = g(k), where A(k) is a unity upper

triangular matric, and g(k) =
(y(k))

T
qj

(k)

(q
(k)
j )

T
qj

(k)
(i = 1, . . . , n) (see

e.g. [26], [27] for details). By averaging the model parameters
from the K sub-datasets, we can further obtain a unique model
parameter vector θ = [θl1 , θl2, . . . , θl3 ] for the common model.

C. Noise Modeling

The EEG signal in this study is collected from ten participants,
using scalp electrodes. For the data collected from real systems,
the noise signal e(t) is usually a colored or correlated noise,
which is generally not observed. One of the common approaches
to handling noise is to model it using model residuals. A distinc-
tive feature of the NARMAX model, setting it apart from other
data based modelling techniques, is that it does not make any
assumption on the noise distribution but only treats the noise to
be colored.

In this study, noise modelling was incorporated in the NAR-
MAX procedure for each of the individual models. Let f̂(·)
represent an estimator for the model f(·), the residuals ε(t) can
then be estimated as

ε (t) = y (t)− ŷ (t) (13)

= y (t)− f̂ (y (t− 1) , . . . , y (t− ny) , u (t− 1) , . . . ,

× u (t− nu) , ε (t− 1) , . . . , ε (t− ne))

The algorithm in Sections II (A) and (B) includes two extra
steps:

� Computing the prediction errors ε(t),
� Using the value of ε(·) from the previous iteration to

estimate noise model terms in the model f(·).
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TABLE I
PERFORMANCE STATISTICS OF THE SUBJECT-SPECIFIC STRUCTURE NARX

MODELS. NARX: NONLINEAR AUTOREGRESSIVE EXOGENOUS. OSA:
ONE-STEP-AHEAD

In most cases, a linear noise model can be used:

ε (t) = α1ε (t− 1) + . . .+ αne
ε (t− ne) (14)

If this is insufficient, then ε(t− p) for p = 1, 2, . . . ne

can be included in model (2), where the ba-
sic regressor vector is defined as y(t− 1), . . . ,
y(t− ny), u(t− 1), . . . , u(t− nu), ε(t− 1), . . . , ε(t− ne).
This will then increase the computational workload for the
modelling task of study due to the huge number of candidate
variables for each of the 10 modelling cases (related to the 10
participants). The model validity tests [28–30] were used to
determine if the process and noise models are adequate.

D. Model Evaluation

We compared the estimated outputs obtained from one-step-
ahead (OSA) and k-step-ahead (3-step ahead in this study)
predictions with the measured output to evaluate the model.

i) 1-step-ahead model predicted output:

ŷ (t) = f
(
y (t− 1) , . . . , y (t− ny) ,

u (t− 1) , . . . , u (t− nu)
)

(15)

ii) 2-step-ahead model predicted output:

ŷ (t+ 1) = f(ŷ (t) , y (t− 1) , . . . ,

y (t− ny + 1) , u (t) , u (t− 1) , . . . , u (t− nu + 1)) (16)

iii) 3-step-ahead model predicted output:

ŷ (t+ 2) = f(ŷ (t+ 1) , ŷ (t) , y (t− 1) , . . . ,

y (t− ny + 2) , u (t+ 1) , u (t) . . . , u (t− nu + 2)) (17)

where ŷ(t) represents the model predicted output, while y(t)
is the corresponding measured output. We used 1) the correlation
coefficient (Corr), 2) the variance accounted for (VAF) and 3)
the normalized root means square error (NRMSE) to determine
the model performance (see Table I). –>

Fig. 1. Experimental setup. Participants were seated with their right
forearm attached to an arm support and their hand strapped to the
handle of a one-degree freedom wrist joint manipulator. During each
realization, a designed multi-sine signal (as shown in the bottom-left for
example) was applied as the input to perturb peripheral nervous system
sensors via the wrist joint manipulator.

III. DATA AND PREPROCESSING

A. Data

In this proof-of-concept study, the experimental data were
recorded from ten healthy participants (age range 22–25 years;
5 women; all right-handed) who received continuously angular
position perturbations (i.e., the external input to the nervous sys-
tem) to their right wrist under passive conditions (i.e., the partici-
pant had to relax). The experimental procedure was approved by
the Human Research Ethics Committee of the Delft University
of Technology. All participants signed informed consent before
participating in the experiments.

The experimental setup is shown in Fig. 1 Perturbation signals
were applied to the participants’ wrist as an external input to
the nervous system via a wrist joint manipulator (Wristalyzer
by MOOG Inc, Nieuw-Vennep, The Netherlands). Participants
were instructed to relax their wrist muscles and not to voluntarily
react to the perturbation signal. The wrist is an ideal joint to study
the cortical response to external input, since the wrist (and the
hand in general) has a large cortical representation. Furthermore,
the wrist joint is relatively lightweight and therefor relatively
easier to perturb than other joints. Participants were instructed
to relax their wrist muscles. Surface electromyography (EMG)
was recorded from the flexor carpi radialis and the extensor carpi
radialis muscles and online monitored to ensure no voluntary
reaction to the perturbation signal. The perturbation signals
were periodic multi-sine signals [31], i.e., the sum of multiple
sinusoids with the frequencies of 1, 3, 5, 7, 9, 11, 13, 15, 19,
and 23 Hz and a period of 1 s. The multi-sine signals have
several advantages over other signals (e.g. white noise, step
signal) for system identification of the sensorimotor system
[7], [11]: 1) Its excited frequencies cover the frequency band
of neural activity in the human sensorimotor system [15]; 2)
the periodical characteristics of a multi-sine signal allow for
leakage-free analysis of the steady-state response and averaging
to reduce the effect of random signals, e.g. background noise
from spontaneous neural oscillations in the brain [32].

In this study, seven different realization of the multi-sine sig-
nal (with the same frequencies) were generated using different
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Fig. 2. Input-output data pairs of the seven realizations of one repre-
sentative participant (the input signals were amplified 100 times to make
the input and the output in the same scale).

(random) phase realizations. Our main objective is to evaluate
sensory function, therefor we need a small perturbation which
is large enough to evoke a cortical response. All perturbation
signals had the same root-mean-square of 0.02 radians, with
peak-to-peak value less than 0.06 radians. The signals were
designed to have the equal power on the first three frequency
components (i.e. 1, 3, 5 Hz) and a decaying power spectrum
(-20dB/decade slope) for the remaining frequency components,
resulting in a flat velocity spectrum for these frequencies. In the
time domain, the instantaneous velocity was changing over the
time as a multisine with the same frequencies as the perturbation
signal, i.e., the first derivative of the perturbation signal. This
design is a trade-off between reduced predictability of signal (to
prevent the anticipation of participants during the experiment)
and the sensitivity of the muscle spindles [7]. Our main objective
is to evaluate sensory function. Based on our previous studies,
this perturbation is able to evoke a steady-state cortical sensory
response [7], [11].

The seven multisine realizations were the identical for all
participants but applied in a random order during 49 trials of
36 seconds for each subject. Six seconds were removed from
each trial to reduce transient effects, resulting in a total of 1470
recorded periods, i.e. 210 periods for each realization. Cortical

Fig. 3. Estimated parameters of ten models (one per subject) with the
common model structure.

responses to the perturbations were recorded by a 126-channel
EEG cap (WaveGuard cap, ANT Neuro) according to the 5–10
system with Ag/AgCl electrodes. Both the applied perturbation
signal and the recorded EEG signals were sampled at 2048 Hz
and stored for offline analyses using a Refa System (TMSi,
Oldenzaal, the Netherlands). More details about the datasets can
be found in [7].

B. Preprocessing

The preprocessing procedure was in line with previous studies
[7], [11] and described below. EEG signals recorded from scalp
electrodes have a very poor signal to noise ratio (SNR). Due
to the volume conduction EEG signals are “blurred” copies
of multiple underlying source activities and noise [33]. We
used independent component analysis (ICA) to extract the EEG
source activities for modeling purposes. ICA [34] is a widely
used preprocessing technique to separate the most important
signal contributions from noise by decomposing EEG signals
into independent components. Before applying ICA, the con-
tinuous EEG signals were filtered by a 1–100 Hz zero-phase
shift band-pass filter to remove possible high-frequency noise
from neck muscles and slow trends in the data (e.g., blood
pressure, heartbeat, breathing and sweat potentials). Notch filters
implemented in Fieldtrip toolbox [35] were applied to remove
the 50 Hz line power noise and the harmonics. ICA was per-
formed using the Infomax algorithm [36] as implemented in
CUDAICA [37]. Subsequently, all signals were resampled to
256 Hz and segmented into 1 s periods, i.e. the period of the
perturbation signal. We carefully examined independent compo-
nents to identify the components associated with eye movement
and muscle artifacts and removed them [38]. The SNRs for rest
non-artifact ICA components are calculated using the algorithm
from Vlaar et al. (2015) [39]. For each participant, the ICA
component with the highest SNR was used as the system output.
The contribution (or weights) of this ICA component to EEG
channels was projected to the scalp and considered as the spa-
tially distribution of the ICA component in the scalp for building
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a forward model in the source localization [40]. A dipole fitting
algorithm implemented in the Fieldtrip toolbox [35] was used to
verify that the sources of all selected components were located in
the primary sensorimotor areas in the contralateral hemisphere.

The “true” output signal in the studied system is the perturba-
tion “evoked” cortical activity from the primary sensorimotor
areas. This “evoked” cortical activity is phase locked to the
perturbation, known as a type of event-related potentials (ERPs)
[41]–[43]. The ERPs are mixed with background “spontaneous”
neural activity. Thus, we averaged the signal over perturbation
periods to remove the “spontaneous” background noise and
extract the ERPs [44], leaving 1 s (256 sampled input-output
data points) per dataset as shown in Fig. 2. There is a scale
difference between the amplitudes of the input (i.e., the me-
chanical perturbation signal) and output signals (i.e., the IC
component of EEG signal) in the original experimental datasets.
To avoid the ill-conditioned problem in the relevant procedures
(e.g. calculation of designed matrices and associated model
parameters), the input signals are scaled up as u = u′ × 100,
where u is the amplified input signal and u′ is the original input
signal, so that the amplitude of the input signals used for model
identification is at a similar scale as that of output signals.

C. Training and Testing Dataset

The cortical responses were recorded from 10 participants.
Each participant had 7 datasets according to the 7 different
realizations of the multi-sine input signal. Thus, there are 70
datasets in total. The mean SNR across all datasets is 12.5, so
the noise is around 8% of the signal. The first six realizations
of each participant were used for model identification and the
remaining one was used for model evaluation.

In this study, by averaging the model parameters from the
6 estimated datasets for the same participant, we can further
obtain a unique model parameter vector for each participant
θ = [θl1 , θl2 , . . . , θl3 ].

IV. MODELING RESULTS.

This section presents two identified model for cortical re-
sponses to mechanical wrist perturbations, which are the subject-
specific structure model and common structure model.

A. Subject-Specific Structure Models for Cortical
Responses to Mechanical Wrist Perturbations

As a reference, subject-specific NARX models (a NARMAX
model specified by Eq. (2)) were first identified for each par-
ticipant using the OFR algorithm. The number of model terms
of each subject-specific model is determined by the APRESS
criterion [28], to avoid overfitting. Their performances are shown
in Table I, where Corr, VAF and NRMSE represent the ‘cor-
relation coefficient’, ‘variance accounted for’ and ‘normalized
root mean square error’, respectively. For Corr and VAF, the
higher the value is, the better the performance is. For NRMSE,
a lower value indicates a better performance. The model terms
for each participant are quite different. The performances of
subject-specific models vary from different subjects. The model

TABLE II
OMAE VALUES AND ERROR REDUCTIONS (ER) OF THE SELECTED 20

COMMON MODEL TERMS (ER = OMAE VALUE OF PREVIOUS TERM-OMAE
VALUE OF CURRENT TERM)

for the 10th subject has the best performance, while the model
for the 3rd subject has the worst performance. Overall, all the
subject-specific models perform well with Corr being over 0.96
and VAF over 93% for one step ahead prediction. For k-step
ahead prediction, most of the models perform well, while some
of the models can be further improved (e.g. the 3rd model).
The person-specific models will be very interesting in-patient
population. However, this study is more focused on identifying a
common model structure to reveal the key characteristics shared
among all the 10 different healthy subjects, so that a reference
can be obtained for future clinical studies. In next section, we
will identify the common model to see which terms are shared
by all the participants.

B. Common Structure Models for Cortical Responses to
Mechanical Wrist Perturbations

A common model structure was built to characterize the
cortical response behavior of the 10 participants. The com-
mon model structure was identified using the proposed CMSD
method based on 60 datasets (first 6 realizations of each of
the 10 participant). The duration of each time lag is 3.9 ms.
According to the APRESS criterion [28], the optimal number
of model terms should be 20. The common model structure
includes the most important 20 model terms (regressors) selected
from a great number of candidates (i.e. 351 candidates) (see
Table II). Although the same model structure was obtained for
all participants, subject-specific parameters were estimated to
indicate the individual differences (see Fig. 3). As shown in
Fig. 3, the variations of estimated parameters of the first 11 and
the 18th, 19th model terms are quite small; this means that the
system components are similar for all the 10 participants. The
variations of the other terms are large; this indicates that the
contributions of these terms vary for different participants.

The significance of each model terms is assessed by the
proposed oMAE (see Section II-A). The oMAE values of all
selected model terms in the common structure are presented in
Table II. As shown, the inclusion of each model term progres-
sively reduced the prediction error. Additionally, the t-statistics
(with 95% confidence) of each selected model terms are pre-
sented in Fig. 4 . The t-statistics indicate that the selected model
terms are significant for most of the participants. It is worth
mentioning that the significance of each model term varies for
different participants. While the treatment for each participant
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Fig. 4. T values of the 20 terms for the tested ten subjects.

Fig. 5. Comparisons of the model predicted outputs (k-step ahead
prediction) and the corresponding measurements of cortical responses
for the ten participants.

should be mainly determined by its most significant model terms,
the less significant terms should also be considered. As shown
in Table II, the first 5 autoregressive terms are important in
reducing the prediction error. However, this does not indicate
that a linear auto-regressive (AR) model is sufficient to describe
the system. The VAF of the linear AR model with only the 5
AR terms y(t-1) … y(t-5) is only 36.83% in the 3-step ahead
prediction. These results show that the inclusion of AR terms
has significantly improved the model performance. The reason
is that the AR terms are very important in neuron systems.
However, the previous models [e.g. [9]–[11]] do not include
the auto-regressive (AR) part. The new NARMAX model can
better capture the system feedback components and thus help
improve the performance.

Fig. 6. Auto-correlations of the model residuals for the ten participants
(blue lines indicate 99% confidence bounds).

TABLE III
PERFORMANCE STATISTICS OF NARX MODELS WITH THE COMMON

STRUCTURE. NARX: NONLINEAR AUTOREGRESSIVE EXOGENOUS, OSA:
ONE-STEP-AHEAD, CORR: CORRELATION COEFFICIENT, VAF: VARIANCE

ACCOUNT FOR, NRMSE: NORMALIZED ROOT MEAN SQUARE ERROR

We compared the OSA prediction as well as k-step ahead
(k = 3) model predicted outputs with the measured output
using correlation coefficient, VAF and NRMSE to evaluate
the models (see Table III). Comparisons of the NARX model
predicted output (obtained from the k-step ahead prediction)
and the corresponding measured cortical responses are shown
in Fig. 5 for the ten participants. As shown in Fig. 5, waveforms
of predicted outputs and measured cortical responses look very
similar across participants. We applied Kolmogorov-Smirnov
test on the model residual. The results show that the residuals do
not follow the normal standard distribution. Since the common
model estimation requires that the model fits different data
realizations, the model residual may not be a perfect white noise.
The Kolmogorov-Smirnov test might be too sensitive for this
real data modelling problem. Thus, we used autocorrelation to
evaluate if the model can approximately fit the data, with the
results shown in Fig. 6. For most participants, the statistically
significant non-zero auto-correlation values rarely occur with
very small magnitudes, indicating that the estimated NARX
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models describe the inherent dynamics of the cortical responses
well.

V. DISCUSSION

This study focused on modeling the cortical responses to
position perturbations applied at the wrist joint. Our results
indicated that the cortical response can be well explained by
the NARMAX method using a common model structure for all
participants.

In modeling, the performance of a common structure
model (and using individualized model parameter values) is
slightly lower than subject-specific structure models. However,
a subject-specific model structure could not summarize com-
mon characteristics across subjects. A common model structure
attempts to capture the common characteristics shared by and
buried in all datasets, by sacrificing local properties hidden in
individual datasets. A key advantage of the common model
structure for the cortical response is that the model structure
reveals the most important inherent features that can explain
all data from different participants. Nevertheless, the parameter
values may differ from subject to subject when the common
model structure is used (see Fig. 3). This result is consistent
with previous EEG studies demonstrating individual differences
in estimated parameter [45], [46]. The common model structure
approach may especially be useful for future pathophysiological
research to detect abnormalities after neurological dysfunction.

Following the same procedure as used in the NARX mod-
elling, we investigated the performance of the Volterra models.
The subject specific Volterra models achieve average correlation
of 0.6625 and VAF of 42.84%. A common structure Volterra
models with 20 model terms are also built. The mean correlation
coefficient, VAF, and NRMSE are 0.4893, 23.27% and 0.1690,
respectively. From these results and that reported in Table III, the
NARX models outperform the Volterra models. These indicate
that the inclusion of autoregressive terms, as with a NARX
model, improves the model prediction performance substan-
tially. It is because that the NARX model structure captures
inherent dynamics in the nervous system using autoregressive
variables. The OSA yielded much better performances than the
k-step ahead for both subject-specific models as well as the
common model. The k-step ahead prediction for brain activity
is still a recognized challenge in the specific field of brain signal
modeling due to the complexity of brain dynamics [47], as well
as the poor signal to noise ratio and the non-stationary properties
of EEG signals [48]. In this study, the sampling rate of EEG
signal is 256 Hz, then each sample time lag is approximately
4 milliseconds (ms). Thus, k-step ahead prediction actually
estimates brain activity based on the measured brain “state”,
i.e. the output, around 12 ms ago (in case k is 3 steps).

As shown in Fig. 3, all model terms (except the constant
term) are dynamic components with specific time lags. Our
dynamic modeling is in line with dynamic properties of the
human nervous system summarized in a recent review article
[47]. Multiple nonlinear terms and time lags in the common
model structure revealed that the processing of somatosensory
information in the human nervous system involves multiple

neuronal circuitries with different neural transmission delays.
These results provide new evidence to support our previous
theoretical explanations on neurophysiological mechanisms un-
derlying nonlinear processing of somatosensory information in
the human nervous system [4].

The human nervous system receives the mechanical per-
turbation to the wrist via mechanoreceptors including muscle
spindles, Golgi tendon organs, and cutaneous afferents. There
are two kinds of sensory fibers in muscle spindles: type Ia
primarily sensing muscle stretch velocity and type II primarily
sensing muscle stretch. Golgi tendon organ (Ib fibers) detects
the tendon strain and as such the force in the muscle-tendon
complex. The transmission delays for type Ia fibers are much
shorter than those for type II and Ib fibers. Finally, cutaneous
afferents (Aβ fibers) conduct the activity of skin sensors result-
ing from the mechanical perturbation. When the participants
are subjected to the mechanical perturbations, all these sensory
fibers are active and sense different modalities with different
transmission delays. Nonlinear terms with input signal u are
likely associated with nonlinear encoding and processing of
external inputs in the nervous system. Different time lags in these
nonlinear terms (e.g. u(t-2)∗u(t-8)) may be related to different
transmission delays in the sensory input pathways from the
mechanoreceptors to the brain. The individual differences are re-
flected on the subject-specific parameters (see Fig. 3.). However,
invasive recording or animal models will be needed in the future
to further interpret the relation between specific fibers and the
terms in the common model structure, as well as the individual
difference.

In the model, we also found (AR) terms with output signal y,
both linear (e.g., y(t− 5)) and nonlinear (e.g. y(t− 1)y(t− 1)).
These output related terms indicate that both linear and nonlinear
neuronal interactions occur at the cortex, presumably caused
by cortical neural networks or the inherent dynamics of the
cortical processes. Nevertheless, the linear terms have much
large weights than the nonlinear terms (see Fig. 3), indicating
the dominance of the linear terms in the AR part of the model.
This result is in line with our recent brain network modeling
study, showing that the local neuronal interaction at the cortex
may be dominated by linear interactions [49].

In this study, we used EEG source component obtained by
independent component analysis (ICA) instead of raw EEG in
our modeling as we explained in III.B Preprocessing. The raw,
single-trial EEG data has strong background noise, so it is not
suitable for a modeling study. We used a series preprocessing
steps (as detailed in III.B Preprocessing) to improve its SNR, so
as to avoid overfitting in the modeling. The proposed modeling
method includes the history of the output signal in the prediction.
That allows us to capture system dynamics, which is important in
the modeling. The proposed method has the potential to advance
brain signal modeling. It may have clinical value in assessing
sensorimotor impairments, since previous studies have indicated
clinical relevance of cortical response to somatosensory input in
stroke rehabilitation [49], [50].

However, we acknowledge that the multi-step ahead predic-
tion is still a recognized challenge in time series forecasting,
especially for cortical activity. In the future, we will work on
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improving the long-term prediction performance of the common
structure models.

VI. CONCLUSION

This study modeled the nonlinear cortical responses to wrist
position perturbations using the NARMAX method. Different
from previous studies, we used a common model structure,
with individualized parameter values, to describe the data for
all participants. The identified common model generates good
model predictions (OSA and k-step-ahead) for the cortical re-
sponses and reveals the most important model terms which
can explain system behaviors of all participants. Our results
suggest that the measured cortical response is a mixed outcome
of the nonlinear transformation of the external input and local
neuronal interaction or inherent neuronal dynamics at the cortex.
This proof-of-concept study may bring us with a useful tool to
improve our understanding of the human sensorimotor system.
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