
Analysing Large-Scale Scrum Practices with Respect to Quality
Requirements Challenges

Wasim Alsaqaf a, Maya Daneva b and Roel Wieringa
School of Computer Science, University of Twente, Enschede, The Netherlands

{w.h.a.alsaqaf, m.daneva, r.j.wieringa}@ utwente.nl

Keywords: Agile Scaled Framework, Large-Scale Scrum, LeSS, Quality Requirements, Requirements Engineering,
Non-functional Requirements, Documentary Research Method.

Abstract: Published empirical research using agile practitioners’ perceptions indicated several important Quality
Requirements (QRs) challenges experienced in agile large-scale distributed projects. It also indicated that a
popular solution approach to those challenges is to inject some heavyweight practices into agile, for example
adding documentation or roles of authorities for QRs. At the same time, agile methodologists proposed several
scaled agile frameworks to specifically serve agile organizations working on large and distributed projects.
How do these frameworks address QRs? Do they put forward any heavyweight practices as a solution to QRs
challenges, or do they invent new agile practices fully aligned with the values of the Agile Manifesto?
Currently, very little is known about the extent to which the QRs issues are accounted for in the design of
these frameworks as proposed by agile methodologists. This paper attempts to narrow this gap of knowledge.
It analyses Large-Scale Scrum (LeSS), a prominent scaled framework, from the perspective of QRs
engineering and the Agile Manifesto’s values. To this end, we first applied the 4-Dimensional Analytical Tool
to evaluate the degree of agility of the practices of the LeSS framework. We then analysed these practices and
evaluated their applicability to mitigate the QRs challenges reported in previous work.

1 INTRODUCTION

The urgent need of organizations to react quickly to
the rapidly changing environment forces them to
embrace agility and get rid of the traditional
heavyweight development methodologies (Helmy et
al., 2012). The 13th annual state-of-agile report
(Collab.net & Versionone.com, 2019) stated the
following reasons for adopting agile in general:
1) Accelerate software delivery, 2) Enhance ability to
manage changing priorities, 3) Increase productivity,
4) Improve business/IT alignment, 5) Enhance
software quality, 6) Enhance delivery predictability,
7) Improve project visibility, 8) Reduce project cost,
9) Improve team morale, 10) Reduce project risk, 11)
Improve engineering discipline, 12) Increase
software maintainability, 13) Better manage
distributed teams. The adoption of agile is driven by
the benefits companies strive to achieve (e.g. Ability
to manage changing priorities, Project visibility,
Business/IT alignment, Delivery speed/time to

a https://orcid.org/0000-0002-0253-428X
b https://orcid.org/0000-0001-7359-8013

market) (Collab.net & Versionone.com, 2019).
However, moving from the original context for which
agile methods were designed for - small single, co-
located teams – toward the implementation of agile
development methods in large-scaled distributed
context is not a flawless transformation (e.g.
communications challenges, coordination challenges,
lack of flexibility) (Conboy & Carroll, 2019).

To provide guidelines on how to address the
challenges of the transformation to large-scaled
distributed agile, many agile scaled frameworks such
as Scaled Agile Framework (SAFe) (Leffingwell &
Knaster, 2017), Large-Scale Scrum (LeSS) (Larman
& Vodde, 2016), Spotify (Kniberg & Ivarsson, 2012),
Scrum of Scrums (SoS) (Sutherland, 2001) have been
introduced and used since the creation of the Agile
Manifesto (Agile Alliance, 2001). Based on the
principles of the Manifesto, each framework defines
its own structure to guide practitioners through
scaling agile. However, there is scarcity of evidence
regarding the evaluation of agility’s degree of these

92
Alsaqaf, W., Daneva, M. and Wieringa, R.
Analysing Large-Scale Scrum Practices with Respect to Quality Requirements Challenges.
DOI: 10.5220/0009680600920103
In Proceedings of the 15th International Conference on Software Technologies (ICSOFT 2020), pages 92-103
ISBN: 978-989-758-443-5
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

agile scaled frameworks (Qumer & Henderson-
Sellers, 2008) and the use and effectiveness of the
agile scaled frameworks in real life projects (Conboy
& Carroll, 2019). Moreover, in our previous
empirical research (Alsaqaf et al., 2019) we have
investigated one particular aspect of scaling agile,
namely the engineering of Quality Requirements
(QRs) such as security, performance, usability,
availability. Based on an exploratory case study on
how agile practitioners treat QR’s, we concluded that
engineering QRs remains a challenge in agile context
(be it small single co-located or large-scaled
distributed). Particularly in large-scaled projects, our
study has further identified 15 QRs challenges, 13
mechanisms behind the challenges and 9 practices
agile practitioners currently use to cope with the
identified challenges. Given this background, in the
present research we aim to explore those agile
practices that are suggested by the most popular
published agile scaled frameworks and that could
help mitigating the QRs challenges which were
identified in our previous work (Alsaqaf et al., 2019).
Particularly, we want to know those practices
designed by agile-at-scale methodologists that are
agile in nature and align with the values of the Agile
Manifesto and not heavyweight practices that when
added to an agile process have a tendency to make it
less agile. We make the note that our previously
published empirical work (Alsaqaf et al., 2019)
revealed a tendency of many large agile project
organizations to counter their QRs challenges by
introducing heavyweight practices that add new
artefacts (e.g. security stories), roles (e.g. security
officer) and activities to the agile process. In turn,
adding such practices often means making the process
less agile (Alsaqaf et al., 2019).

The present paper reports our results of analysing
one specific scaled framework, namely, LeSS
(Larman & Vodde, 2016). Our ongoing research also
includes some other scaled frameworks, however
these are out of scope in this paper. To this end, we
set out to answer the following research question:
RQ: What are the agile practices suggested by the
LeSS agile scaled framework that could mitigate the
effect of the QRs challenges identified in (Alsaqaf et
al., 2019)? Using a documentary research process, we
analysed the practices that the LeSS methodologists
(Larman & Vodde, 2016) proposed to use in large
projects including of up to 8 teams (LeSS) and
projects with more than 8 teams (LeSS Huge).

The rest of this paper is structured as follow:
Section 2 describes our research process. Section 3
provides some background and definitions of the
most important concepts. Section 4 presents our

results. Section 5 discusses them. Section 6 is on
limitations of our research and Section 7 is on
implications.

2 RESEARCH PROCESS

The overall goal of our research is to investigate the
agile practices suggested by published agile scaled
frameworks which could mitigate the impact of the
QRs challenges which were identified in (Alsaqaf et
al., 2019). To achieve this goal, we used the following
steps inspired by documentary research methods
(Appleton & Cowley, 1997), as depicted in Figure 1.

Figure 1: Our research Process.

Our process includes: (1) selecting agile scaled
frameworks for inclusion in the research, (2)
evaluating the degree of agility of their proposed
practices, and (3) evaluating the extent to which the
practices proposed in the frameworks mitigate the
QRs challenges identified in (Alsaqaf et al., 2019).
Step (1) explains our reasoning for including certain
frameworks. Step (2) is concerned with the evaluation
of how much agile the practices of a scaled
framework are as is described by the authors of the
framework in their framework’s documentation (and
not as implemented in a particular organization). Step
(3) is concerned with the matching of the agile
practices proposed by the authors of the scaled
framework against the QRs challenges found in
(Alsaqaf et al., 2019). As this paper is focused on one
framework only LeSS (Larman & Vodde, 2016), it in
turn reports on steps 2 and 3 as executed in the context
of analysing this specific framework. We describe the
steps of our process in the next sub-sections.

2.1 Selecting Agile Scaled Frameworks

Portman (2017) has reported the existence of more
than 30 agile scaled frameworks. He classified these
into two categories, namely i) Enterprise-targeted
frameworks (e.g. SAFe (Leffingwell & Knaster,
2017), LeSS (Larman & Vodde, 2016), Nexus

Analysing Large-Scale Scrum Practices with Respect to Quality Requirements Challenges

93

(Schwaber, 2018), Scrum@Scale (S@S) (Sutherland,
2019)) which are used to deliver complex enterprise-
level products whereby the collaboration between
distributed teams is essential and ii) Web scale-
targeted frameworks (e.g. Spotify (Kniberg &
Ivarsson, 2012), Scaled Agile Lean Development
(http://scaledprinciples.org/)) which are used to
support the IT-department of an organization in
maintaining the existing applications whereby the
dependencies between distributed teams are
minimalized. In this paper, we focus on the first
category of frameworks because these frameworks
match our research interest, namely the distributed
and large-scaled context. Furthermore, we limit our
selection of frameworks to those that are the most
used according to (Collab.net & Versionone.com,
2019). The 13th annual state-of-agile report
(Collab.net & Versionone.com, 2019) has indicated
the following agile scaled frameworks as the most
popular:(i) SAFe (Leffingwell & Knaster, 2017), (ii)
SoS (Sutherland, 2001), (iii) Internally created
methods, (iv) Disciplined Agile Delivery (DAD)
(Ambler & Lines, 2012), (v) Spotify (Kniberg &
Ivarsson, 2012), (vi) LeSS (Larman & Vodde, 2016),
(vii) Enterprise Scrum (ES) (Beedle, 2018), (viii)
Lean management (https://www.lean.org/), (ix) Agile
Portfolio Management (AgilePM) (Krebs, 2008), (x)
Nexus (Schwaber, 2018), (xi) Recipes for Agile
Governance in the Enterprise (RAGE)
(https://www.cprime.com/rage/). The intersection
between the Enterprise-targeted frameworks in
(Portman, 2017) and the most popular agile scaled
framework described in (Collab.net &
Versionone.com, 2019) reduces our selection group
to SAFe, LeSS, Nexus, S@S, SoS, DAD, ES,
AgilePM, Lean management and RAGE. In this paper
we chose to focus on the agile practices of the LeSS
framework, because of the simplified organizational
design it introduces, and because it is less process-
heavy (compared to e.g. SAFe). Besides, LeSS is
grounded on Scrum (Schwaber & Sutherland, 2016)
which is the most used agile method (Collab.net &
Versionone.com, 2019). However, our choice for
LeSS does not mean that we prefer or recommend
LeSS. The other frameworks will be investigated in
our follow-up research.

2.2 Evaluating the Degree of Agility

Since the introduction of the Agile Manifesto, over 30
frameworks have been published that claim to be
agile. Each has based its claim on providing practices
that adhere to some or all of the agile principles
described in (Agile Alliance, 2001). However, while

creating a framework for scaling up agile, it might
well be possible that the framework’s authors
introduce some heavyweight practices into it. This is
because scaling up agile necessarily involves some
balancing of agility, discipline, organizational
structures, coordination mechanisms and roles
(Conboy & Carroll, 2019). In fact, a 2018 literature
review (Abheeshta et al., 2018) on the adoption of the
SAFe framework reports the “moving away from
agile” as an important challenge among others.
Evaluating the degree of agility of an agile scaled
framework is therefore essential to be able to accept
or reject its practices or part of them as agile practices.
In our research, we selected the 4-Dimensional
Analytical Tool (4-DAT) described by (Qumer &
Henderson-Sellers, 2006) in order to evaluate the
degree of agility of LeSS (Larman & Vodde, 2016).
We note that there are other approaches that assess
the agility factor of an agile software development
framework such as the Conceptual Framework of
Agile Methods described by (Conboy & Fitzgerald,
2004) and the AgilityMod approach of (Özcan-Top &
Demirors, 2019). However, in contrast to the 4-DAT
approach (Qumer & Henderson-Sellers, 2006) which
is focused on the agile practices of the agile scaled
framework itself, these other assessment frameworks
(Conboy & Fitzgerald, 2004) and (Özcan-Top &
Demirors, 2019) focus on the agility factor of the
particular organizational application of the particular
framework’s practices by agile teams. We note that
the right implementation of an agile scaled
framework by software development teams depends
on multiple factors (e.g. a solid understanding of the
agile scaled framework, the skills and knowledge of
the involved software development teams (Conboy &
Carroll, 2019)). In turn, evaluating the agile practices
as implemented by software development teams does
not give an insight in how the agile scaled framework
itself describes its own practices. It merely describes
the way the software development teams implement
the particular agile scaled framework. Taking into
account that the 13th annual state of agile report
(Collab.net & Versionone.com, 2019) has stated
among others: Lack of skills/experience with agile
methods, Insufficient training and education, and
Inconsistent processes and practices across teams, as
challenges experienced in scaling agile, we decided
to evaluate the practices of LeSS as described by its
literature (Larman & Vodde, 2016).

ICSOFT 2020 - 15th International Conference on Software Technologies

94

2.3 Identifying Practices Mitigating
QRs Challenges

The literature provided by LeSS (Larman & Vodde,
2016) in its official website (www.less.works) was
investigated. The suggested practices were analysed
based on their description and fitness to mitigate the
QRs challenges identified in (Alsaqaf et al., 2019).
The analysis started with reading and re-reading the
reference document of LeSS and the information on
the www.less.works site that pertains to the 27 large
companies that implemented LeSS, which served as
input. The first two authors then checked the
relevance of each LeSS practice for mitigating the
QRs challenges identified in (Alsaqaf et al., 2019).
For clarity, we list these challenges as follows: i) Late
detection of QRs infeasibility: QRs are not visible in
the same way Functional Requirements (FRs) do and,
in turn, identifying and designing acceptance tests for
them may be difficult, too. ii) Assumptions in inter-
team collaboration: Teams make tacit assumptions
about inter-team collaboration. iii) Uneven teams’
maturity: Team maturity levels across teams vary,
some teams are more mature than others and act
differently on QRs. iv) Suboptimal inter-team
organization: Large agile projects organize agile
teams differently around the Product backlogs (e.g.
component teams, Feature teams). A suboptimal
teams’ organization choice could affect negatively
the quality attributes of the system. v) Inadequate
QRs test specification: Agile teams report the
complexity of modelling QR’s and therefore
identifying and designing acceptance tests for them
may be difficult. vi) Simulated integration tests: Agile
teams simulate integrated tests due to the lack of cost-
effective real integration test for QRs, which results
in identifying QRs defects late in the development
cycle. vii) End user acceptance of QRs: Agile teams
in some occasions use the so-called ‘definition-of-
done’ (DoD) to specify the conditions for deeming
the QRs ‘met’ by the delivered product, which could
result in a very long DoD. viii) Strict adherence to
quality guidelines: Coordination on standards and
compliance is hard. ix) Overlooking sources of QRs:
Lack of an adequate process to identify the right
stakeholders, which could result in missing QRs or
not identifying them at the right time. x) Lack of QRs
visibility: Hard to keep attention on internal qualities
that matter to developers e.g. maintainability,
modifiability, extensibility. xi) Ambiguous QRs
communication process: who owns the QR’s and how
to describe them. xii) Conceptual definition of QRs:
Lack of clarity on how to treat QRs – are FRs and
QRs to be treated the same way? Or QRs are

‘standalone’ requirements and need separate
treatment? xiii) Mixed specification approaches to
QRs: Confusion about QR’s specification
approaches. How to record them? xiv) Unmanaged
architecture changes: Changes made to QRs at any
time in the development cycle could result in costly
changes in the software architecture because the
earlier architecture becomes inappropriate for the
new QRs. xv) Misunderstanding the architecture
drivers. Conflicting ideas of which QRs drive the
architecture and why architecture trade-offs are made
in a particular way.

3 BACKGROUND AND
DEFINITIONS

3.1 LeSS

Large-Scale Scrum (LeSS) is developed by two agile
practitioners: Larman (www.craiglarman.com) and
Vodde (www.odd-e.com). It is built upon the
fundamentals of Scrum. The authors (Larman &
Vodde, 2016) describe LeSS as being “Scrum applied
to many teams working together on one product”.
Based on this description, LeSS includes all those
roles, events and artifacts that make up Scrum.
However, LeSS differs from Scrum in the following:
i) LeSS proposes the so-called ‘Sprint planning one’,
it is a meeting for all teams to decide which team will
work on which part of the product backlog, ii) Daily
scrum, it is an event known from Scrum, though LeSS
explicitly encourages teams to visit each other’s daily
scrum for observation to increase knowledge sharing.
iii) Coordination and integration, LeSS supports
decentralized team’s coordination iv) Overall product
backlog refinement, it is a meeting attended by the
product owner (PO) and representatives of all teams
to decide which items are likely to be implemented in
the next sprint and select them for further single-team
product backlog refinement v) Product backlog
refinement, it is the same single-team refinement
session as described by Scrum, however LeSS
encourages that multiple teams perform this session
together to increase learning and help coordination.
vi) Sprint review, in comparison with Scrum, LeSS
uses different techniques to conduct this event (e.g.
diverge-converge meeting pattern). vii) Overall
retrospective, it is a LeSS meeting for approximately
45 minutes at the end of each sprint where teams’
representatives, PO and scrum masters explore
improving the whole development process.

Furthermore, LeSS includes: i) Rules that define

Analysing Large-Scale Scrum Practices with Respect to Quality Requirements Challenges

95

the key structures of LeSS and have to be
implemented as part of the application of LeSS, ii)
Principles that shape the philosophy behind LeSS and
need to be considered when applying LeSS in a
company’s own context, iii) Guides which are a set of
tips to help practitioners adopting the LeSS rules and
iv) the so-called Experiments which provide some
examples of applying LeSS.

There are two variants of LeSS: i) LeSS for 2 to 8
teams, and ii) LeSS Huge, meant for more than 8
teams. Both variants postulate that there is one PO
and one product backlog for the whole product, one
common ‘definition of done’ shared by all teams, one
common sprint across all teams and one shippable
product increment delivered at the end of each sprint.

LeSS Huge consists of multiple implementation
of LeSS and is meant to help very large agile
organizations (with projects including more than 8
teams) achieving the value and simplicity of Scrum
while introducing as few additional concepts as
possible to the project organization. These concepts
are the Requirements Area (an attribute of the product
backlog that allows to view all those items specific to
an area of importance to stakeholders), the Area
Product Owners (forming one team with the PO), the
Area Feature Teams (responsible for implementing
those items in the product backlog belonging to a
particular area).

3.2 4-Dimensional Analytical Tool
(4-DAT)

This section explains the evaluation model that we
use for understanding the degree of agility of LeSS.
Qumer and Henderson-Sellers (2006) have developed
the 4-DAT tool to compare agile methods and
evaluate their degree of agility. The 4-DAT tool
analyses an agile method in terms of four dimensions
and is extendable with additional dimensions as
needed.

3.2.1 Dimension 1 – Method Scope
Characterizations

This dimension serves to compare agile methods at
scope level, by checking key scope items (e.g. Project
Size, Team Size, Development Style, Code Style,
Technology Environment, Physical Environment,
Business Culture, Abstraction Mechanism as
described).

3.2.2 Dimension 2 – Agility
Characterizations

The second dimension is a set of agility features to
measure the agility of a given method. The agility
features are: flexibility (FY), speed (SD), leanness
(LS), learning (LG) and responsiveness (RS) (see
Table 1). The authors derived these agility features
from the following definition of agility they have
offered based on assessing existing definitions of
agility:

‘‘Agility is a persistent behaviour or ability of a
sensitive entity that exhibits flexibility to
accommodate expected or unexpected changes
rapidly, follows the shortest time span, uses
economical, simple and quality instruments in a
dynamic environment and applies updated prior
knowledge and experience to learn from the internal
and external environment.’’ (Qumer & Henderson-
Sellers, 2006).

Table 1: Agility features and description.

Agility
feature

Description

Flexibility (FY) Does the method accommodate
expected or unexpected changes?

Speed (SD) Does the method produce results
quickly?

Leanness (LS) Does the method follow the
shortest time span, use
economical, simple and quality
instruments for production?

Learning (LG) Does the method apply updated
prior knowledge and experience
to create a learning environment?

Responsiveness
(RS)

Does the method exhibit
sensitiveness?

Dimension 2 is quantitative and is evaluated by
identifying the presence or absence of the agility
features in high level elements (e.g. phases) and low
level elements (e.g. practices) of a given method. The
elements are shown in Table 1. Therein, only a value
of 0 or 1 is assigned to each agility feature (FY, SD,
LS, LG and RS, see the respective columns of Table
1), where 0 and 1 mean absence and presence of a
feature, respectively. Then, the average of degree of
agility can be calculated using the equation provided
in (Qumer & Henderson-Sellers, 2008).

For a method to have sufficient agility and be
considered as agile method, the calculated average of
the degrees of agility should be in the interval 0.5-0.6.
However, the closer the calculated average is to 1, the
higher the agility of the evaluated method. Table 2
gives examples - as provided by (Qumer &

ICSOFT 2020 - 15th International Conference on Software Technologies

96

Henderson-Sellers, 2008) - of measuring the agility
degree of Scrum’s phases as representative of agile
methods. Table 2 shows that the authors recognise
speed in all Scrum’s phases and therefore assign 1 for
speed. In contrast the authors report the lack of
leanness in all Scrum’s phases.

Table 2: Degree of Agility of Scrum.

Scrum Agility Features
Phases FY SD LS LG RS Total
Pre-Game 1 1 0 1 1 4
Development 1 1 0 1 1 4
Post-Game 0 1 0 0 0 1
Total 2 3 0 2 2 9
Degree of
Agility

2/3 3/3 0/3 2/3 2/3 9/(3*5)
= 0.6

3.2.3 Dimension 3 – Agile Values
Characterizations

Dimension 3 evaluates whether the practices of the
agile method to be examined supports six agile
values. Four of those are the values provided by the
Agile Manifesto. The other two were reported by
(Qumer & Henderson-Sellers, 2006) (see Table 3).

Table 3: Agile values and description.

Agile values Description
Individuals and
interactions over
processes tools

Which practices value people
and interaction over processes
and tools?

Working software
over comprehensive
documentation

Which practices value working
software over comprehensive
documentation?

Customer
collaboration over
contract negotiation

Which practices value customer
collaboration over contract
negotiation?

Responding to
change over
following a plan

Which practices value
responding to change over
following a plan?

Keeping the process
agile

Which practices helps in
keeping the process agile?

Keeping the process
cost effective

Which practices helps in
keeping the process cost
effective?

3.2.4 Dimension 4 – Software Process
Characterization

This dimension examines those practices of the agile
method that support four components of the software
development process, namely: i) Development
process, ii) Project management process, iii) Support
process, and iv) Process management process.

3.2.5 Application of 4-DAT in Our Research

Based on the description of 4-DAT, Dimensions 2
(Agility Characterizations) and 3 (Agile Values
Characterizations) are applicable for achieving our
research objectives stated in Section 2. Dimensions 1
(Method Scope Characterizations) and 4 (Software
Process Characterization) are therefore beyond the
scope of this paper.

In the next section, we first describe the practices
and phases of LeSS and LeSS Huge that were
subjected to our evaluation on Dimensions 2 and 3,
and then present how these practices possibly
mitigate those QRs challenges identified in (Alsaqaf
et al., 2019).

4 FINDINGS

4.1 Evaluating the Degree of Agility of
Less

The LeSS framework was analysed to explore LeSS
phases and practices and to measure their agility in
terms of the aforementioned agility features (see
Table 1).

4.1.1 Less Practices

As already noted, LeSS is built upon Scrum
(Schwaber & Sutherland, 2016) and hence shares
Scrum roles, artefacts and practices such as scrum
master, PO, product backlog, sprint planning (in
LeSS terminology called ‘sprint planning two’),
single-team product backlog refinement, single-team
retrospective and sprint. Below, we discuss and
analyse only the LeSS practices that are different in
their implementation from those in Scrum or are
newly introduced in LeSS (see subsections a-k,
below) and LeSS Huge (see l-n).

a) Initial Product Backlog Refinement (Initial-PBR)
is a one-off not repeatable meeting which is
conducted at the very beginning of the project.
During the Initial-PBR many important activities
take place e.g. creating and filling the product
backlog, identifying risks, defining project vision.
The Initial-PBR meeting is held at one place and
meant to establish shared knowledge among all
people involved in carrying out the project within
at least two days.

b) Sprint planning one. This is a meeting attended by
the PO and all teams’ members or their
representatives. Its goals are to tackle open
questions, to fill each team’s sprint backlog with

Analysing Large-Scale Scrum Practices with Respect to Quality Requirements Challenges

97

the product backlogs items which each team has
selected to work on, to define the sprint goal and
to identify possible inter-team collaborations.

c) Multi-team Sprint planning two. This is done by
having two or more teams meet in the same
physical location with each team conducting its
own single-team sprint planning two meeting
(analogous to scrum sprint planning). Multi-team
sprint planning two is used when two or more
teams have to implement features that affect the
same part of the system. The teams in that
particular situation need to collaborate to resolve
design issues and coordinate shared work. During
a multi-team sprint planning two, a multi-team
design workshop session can be conducted to
tailor out the design of complex shared items.
Besides, test scenarios can be structured during
multi-team sprint planning two to make the
development progress visible to the stakeholders
during the sprint review.

d) Overall product backlog refinement. It is a
product backlog refinement meeting shared
among all teams together with the PO. This
meeting holds before the single-team product
backlog refinement meeting. The goals of this
meeting are to assign product backlog items to the
teams, to split big items, to estimate items and to
identify team’s collaboration possibilities.

e) Multi-team product backlog refinement. It is a
product backlog refinement meeting shared
amongst two or more teams working on related
features to coordinate their work.

f) Sprint review. LeSS suggests the use of diverge-
converge meetings to conduct the sprint review at
the end of each LeSS sprint. During diverge
periods, a bazar is established where all teams or
their representatives demonstrate their
implemented items. The stakeholders visit the
team’s area of their interest and discuss the
delivered work. In the converge periods, the
stakeholders summarize what they have seen and
inspect the items of interest. Multiple diverge-
converge meeting cycles could be conducted if
needed.

g) Overall retrospective meeting. This meeting
occurs right after the team’s retrospective and is
attended by all teams, PO and scrum masters to
discuss cross-team, organizational and systemic
problems within the organization. LeSS suggests
to use Cause-Effect diagrams during the overall
retrospective to investigate problems and possible
solutions.

h) Daily Scrum. The LeSS daily scrum is identical
with the one described in Scrum, however LeSS

encourages teams’s representatives to attend the
daily scrum of the other teams to enhance
knowledge sharing.

i) LeSS teams. While Scrum advocates self-
organizing teams, LeSS goes beyond that by
emphasizing the need for self-managing teams. A
self-managing LeSS team has the authority to
design, implement and monitor their work. They
take all the responsibility of how to get the work
done. Moreover, LeSS encourages the use of
features teams above component teams. A feature
team is a team that has all the skills needed to
implement a customer value across components.
Members of the feature teams must be fully
dedicated to one team, namely their own team to
enhance sharing responsibility of the team’s goal.
Further, LeSS suggests the use of leading teams to
guide the implementation of large features. Large
features have to be split up into small product
backlog items. These small items would be
allotted to different feature teams to be
implemented. The leading team of a large feature
would then coordinate the work among the feature
teams to ensure the right implementation of that
particular large feature.

j) Communities of Practice (CoP). These are
voluntary groups of people who share the same
interest. Each CoP is used to enhance the
knowledge of the participants on particular
subject. It is a self-organized group with no
decision rights.

k) Definition of Done (DoD). LeSS encourages the
use of the DoD, a practice well-known from
Scrum. Moreover, LeSS emphasizes that one
common definition of done must exist for the
whole product and must be shared by all involved
teams. Each team may however strengthen the
common definition of done by expanding it. A
perfect DoD from LeSS’ perspective is the one
that includes all needed activities to ship the
whole product at the end of each sprint to the end
users with the new “completed” and “done”
features. LeSS team should improve the initial
DoD frequently toward the perfect one.
Furthermore, LeSS makes a clear distinction
between the DoD as described above and the
acceptance criteria which is a list of specific
stipulations demanded for each particular product
backlog item to be accepted by the stakeholders.

l) Requirements area. This is part of the LeSS Huge
implementation. It is a customer-centric category
of the requirements. For example, as provided by
(Larman & Vodde, 2016), for a telecom system,
some of the requirements areas could be

ICSOFT 2020 - 15th International Conference on Software Technologies

98

Protocols, Performance, and Network
Management.

m) Area product backlog. This is part of LeSS Huge
and includes those product backlog items that
relate to one requirements area. These items are
grouped into one area product backlog. An area
product backlog is therefore only part of the whole
product backlog.

n) Area product owner. While the PO in both LeSS
and LeSS Huge is responsible for the whole
product backlog, an area PO is the one responsible
for a particular area product backlog in LeSS
Huge. (S)he is specialized in the requirement area
of that area product backlog and acts as the PO of
that area to the feature teams involved in
implementing it.

4.1.2 Less Phases

The literature of LeSS (i.e. the official website
www.less.works) and (Larman & Vodde, 2016)) do
not mention any phases in the LeSS framework.
However, since LeSS is built upon the fundamentals
of Scrum, we assume that the phases of Scrum as
described in (Schwaber & Beedle, 2001) are applied
to LeSS. We chose further not to investigate the
Scrum phases and check their agility factor because it
is beyond the scope of this paper where the focus is
put on the LeSS framework. Besides, the agility of the
Scrum phases was analysed in (Qumer & Henderson-
Sellers, 2008) (see Table 2).

Following the analysis of LeSS phases and
practices, the first two researchers checked whether a
particular LeSS practice supports the five agility
features of the 4-DAT approach by separately
answering the descriptive questions related to each
agility feature in Table 1. If a LeSS practice does
support an agility feature, the score of 1 is assigned to
that agility feature of that practice, otherwise a 0 is
assigned. Thereafter, the researchers came together
and discussed the scores they separately have applied
to each agility feature of each particular LeSS
practice. Similar scores were confirmed, and different
scores were resolved by conducting an argumentative
discussion (Hitchcock 2002) between the two
researchers to reach a shared rationally supported
score. No unconfirmed scores remained after this
argumentative discussion.

Table 4 shows the support of the LeSS practices
for the agility features as described in Table 1. For
example, the Initial-PBR takes place only once in a
LeSS project lifecycle, therefore changes in project
risks or project vision are difficult to be
accommodated – which lets us assign 0 for FY

(meaning that the phase does not support the agility
feature FY). The Initial-PBR could last for two or
more days, LeSS however did not specify the
maximum duration of this meeting – which lets us
assign 0 for SD. The Initial-PBR requires all people
involved in the project (e.g. scrum masters, team
members, stakeholders, PO) to attend the meeting –
which means that we assign 0 for LS. Sharing
knowledge and learning are increased when all people
involved in the project discuss the project together –
1 for LG. The Initial-PBR requires a lot of people at
one place to discuss once different aspects of the
project – 0 for RS.

Table 4: Degree of Agility of LeSS.

LeSS Agility Features
Practices FY SD LS LG RS Total
Initial-PBR 0 0 0 1 0 1
Sprint
planning
one

1 1 0 1 1 4

Multi-team
sprint
planning
two

1 1 0 1 1 4

Multi-team
product
backlog
refinement

1 1 0 1 1 4

Overall
product
backlog
refinement

1 1 0 1 1 4

Sprint
review

0 0 0 1 0 1

Overall
retrospectiv
e meeting

1 1 0 1 1 4

Daily scrum 1 1 0 1 1 4
LeSS teams 1 1 0 1 1 4
Communitie
s of Practice

1 1 0 1 1 4

Definition
of Done

1 1 0 1 1 4

Requiremen
ts area

1 1 0 1 1 4

Area
product
backlog

1 1 0 1 1 4

Area PO 1 1 0 1 1 4
Total 12 12 0 13 12 50
Degree of
Agility

12/
14

12/
14

0/1
4

14/
14

12/
14

50/
(14*5)
= 0.72

Furthermore, the support of LeSS practices for the
agile values presented in Table 3, is also evaluated.

Analysing Large-Scale Scrum Practices with Respect to Quality Requirements Challenges

99

We note that LeSS has several practices that
explicitly support agile values except the value
“Keeping the process cost effective” (see Table 5).
The identified LeSS practices do not describe
explicitly how to keep the process cost effective. In
Table 4 we can clearly see that none of the identified
LeSS practices support Leanness. We think that the
lack of support for Lean shown by LeSS practices is
in fact caused by the different Lean definitions
utilized in 4-DAT tool and the LeSS framework.

Table 5: The support of Agility values.

Agile Values LeSS practices
Individuals and
interactions over
processes tools

Sprint planning one, Sprint
planning two, Multi-team sprint
planning two, Product backlog
refinement, Multi-team product
backlog refinement, Overall
product backlog refinement,
Sprint review, Team retrospective,
Overall retrospective meeting,
Daily scrum, LeSS teams

Working software
over
comprehensive
documentation

Sprint planning two, Sprint, Sprint
review

Customer
collaboration over
contract
negotiation

Initial-PBR, PO, Requirements
area

Responding to
change over
following a plan

Sprint review, Sprint planning
one, Sprint planning two, Multi-
team sprint planning two

Keeping the
process agile

Daily scrum, Sprint review, Team
retrospective, Overall
retrospective meeting, LeSS
teams.

Keeping the
process cost
effective

-

4.2 Identifying LeSS Practices
Mitigating QRs Challenges

After evaluating the degree of agility of LeSS, we
have analysed the identified LeSS practices to
examine their fitness in mitigating the QRs challenges
reported in (Alsaqaf et al., 2019). We mapped
therefore the identified LeSS practices to the reported
categories of the challenges by using Conklin’s dialog
mapping technique for qualitative data structuring
(Conklin, 2003). Table 6 summarizes this mapping.
The first column of the table represents the reported
challenges (see Section 2.3), while the second column
shows LeSS practices that could be used to mitigate
the related challenge in the first column. A dash “-”

in the second column means that LeSS does not
explicitly specify a particular practice that could
mitigate the reported QR challenge in the first
column.

Table 6: Mapping LeSS practices to challenges.

Challenges LeSS practices
Late detection of
QRs infeasibility

Sprint planning one; Multi-team
sprint planning two, Multi-team
product backlog refinement,
Overall product backlog
refinement, Daily scrum

Assumptions in
inter-team
collaboration

LeSS teams

Uneven teams
maturity

Communities of Practice

Suboptimal inter-
team organization

LeSS teams

Inadequate QRs test
specification

Sprint planning one; (Multi-
team) sprint planning two,
definition of done

Simulated
integration tests

Definition of Done

End user acceptance
of QRs

-

Strict adherence to
quality guidelines

LeSS teams, Multi-team
planning two, Definition of
Done

Overlooking sources
of QRs

Initial-PBR, Sprint review

Lack of QRs
visibility

Requirements area, Area
product backlog, Area PO

Ambiguous QRs
communication
process

Requirements area, Area
product backlog, Area PO

Conceptual
definition of QRs

-

Mixed specification
approaches to QRs

Requirements area, Area
product backlog, Area PO,
Communities of Practice

Unmanaged
architecture changes

Multi-team sprint planning two

Misunderstanding
the architecture
drivers

Initial-PBR, Multi-team sprint
planning two

LeSS recognizes several practices that could
(partially) mitigate one or more of the reported QRs
challenges in (Alsaqaf et al., 2019) (see Table 6). For
example, Communities of practice could be used to
establish cross-team discussions of quality assurance
related subjects (e.g. automation tests, test driven
development, quality standard definitions). Besides,
establishing communities of practices that discuss a
particular QR (e.g. performance, usability, security)
or the concept of QR as whole could help mitigating
the conceptual challenges of QRs.

ICSOFT 2020 - 15th International Conference on Software Technologies

100

5 DISCUSSION

This section discusses first the evaluation of the
LeSS’ degree of agility and then our reflection on
LeSS deals with the QRs challenges identified in
(Alsaqaf et al., 2019).

Table 4 indicates that LeSS does not show lean
characteristics. We do not claim that LeSS phases or
practices are not lean at all. We only demonstrate that
those phases and practices are not compliant with the
definition of lean as used in the 4-DAT tool applied
to analyse the agility characteristics of LeSS. While
the 4-DAT tool defines leanness in terms of waste
reduction (see Table 1), LeSS emphasizes that ‘lean’
is not waste reduction but it is about showing respect
to people and continuous improvement. However, not
showing leanness does not reject the agility of a given
method or framework, since leanness and agility have
both different focus areas (Towill & Christopher,
2003): the lean approach is focused on eliminating
waste and hence works well when the requirements
are stable and predictable; agile, in the other side,
focuses more on increasing flexibility to deal with
unpredictable and dynamic environments.

LeSS emphasizes that a team member should be
dedicated 100% of the time to one team. It means that
periodically shuffling of people between the LeSS
teams is not encouraged. LeSS recognized this
demand as inflexible, however, LeSS considers
sharing responsibility of the team’s goal very
important. We are wondering if keeping team
members 100% assigned to one team only translates
in creating silos where the responsibility for the
team’s goal gets higher priority than the responsibility
for the whole product, especially when allocating
teams to particular requirements area?

We have not identified any LeSS practices that
could mitigate the QR challenges: End user
acceptance of QRs and Conceptual definition of QRs.
LeSS makes a clear distinction between i) a DoD that
includes all activities needed to ship the whole
product to the end users, and ii) the acceptance
criteria which is a list of conditions that must be met
by each product backlog item to be accepted by the
stakeholders. LeSS does not provide guidelines about
how to specify the acceptance criteria, while the steps
needed to structure the DoD are very explicit (Larman
& Vodde, 2016). Further, LeSS recognizes that agile
practitioners often neglect QRs because they believe
that QRs cannot be specified and tested. Therefore,
LeSS encourages agile practitioners to treat QRs as
functional requirements and does not provide further
any guidelines about how to handle the QRs
specifically.

In Table 6, three LeSS practices, namely,
requirements area, area product backlog and area PO
were identified as possible mitigations to the QRs
challenges Lack of QRs visibility, Ambiguous QRs
communication process and Mixed specification
approaches to QRs However, it turns out that these
LeSS practices are only available when applying
LeSS Huge (Larman & Vodde, 2016). Hence, for
projects with less than nine teams, they have fewer
LeSS practices available to deal with the QRs
elicitation challenges and the conceptual challenges
of QRs namely, only sprint review and communities
of practice.

We have observed that LeSS uses the term ‘self-
managing’ when it describes the responsibilities of
LeSS teams. ’Self-managing’ is one of the four types
of teams described in LeSS (Larman & Vodde, 2016),
namely: i) Manager-lead teams, ii) Self-managing
teams, iii) Self-designing teams and iv) Self-
governing teams. LeSS defines the ‘self-managing’
team as “The team’[that] is responsible for executing
the tasks and monitoring and managing process and
progress”. Scrum (Schwaber & Sutherland, 2016)
however uses the term ‘self-organizing’ to describe
Scrum teams, which is not part of the four types of
teams described in LeSS. Agile practitioners seem to
have different interpretations of ‘self-managing’ team
as described by LeSS versus ‘self-organizing’ as
described by Scrum. For example, Mario Moreira, an
agile practitioner, provided in his blog
(http://cmforagile.blogspot.com/2017/07/what-is-
self-management-and-is-it-good.html) different
definitions for ‘self-managing’ and ‘self-organizing’
where ‘self-managing’ teams in his opinion have
more authority than ‘self-organizing’ teams. It is
important to explicitly describe the responsibilities of
an agile team to avoid any assumptions that could
resulted in confusions by the teams regarding the
right implementation of the requirements in general
and QRs in specific.

In Table 6, we have identified Initial-PBR and
Sprint review as possible mitigations to the QRs
challenge Overlooking sources of QRs. These two
LeSS practices however have the lowest degree of
agility in comparison with other LeSS practices (see
table 4). This observation could mean that
heavyweight practices need to be injected into agile
scaled frameworks to cope with QRs challenges,
which is in line with the reported findings of previous
studies (e.g. Abheeshta et al., 2018, West et al., 2011).

LeSS explicitly moves the responsibility of inter-
teamwork coordination to the teams themselves. We
observe this in those LeSS practices that require team
coordination (e.g. multi-team sprint planning two,

Analysing Large-Scale Scrum Practices with Respect to Quality Requirements Challenges

101

multi-team product backlog refinement, overall
product backlog refinement, overall retrospective
meeting). Giving the coordination’s responsibility to
the involved teams could mitigate the team’s
coordination and communication challenges reported
in (Alsaqaf et al., 2019), if the teams are mature
enough, and in turn know how to act. We think that
the lack of team’s maturity could possibly result in
abusing the given responsibility and lead to chaos.

6 LIMITATIONS

This study dealt with one specific framework, namely
LeSS. We therefore cannot expect that the evaluation
of the degree of agility would be similar for other
scaled frameworks, e.g. SAFe and Scrum of Scrums.
This is a limitation. In line with this, our immediate
plan and future work is to apply the 4-DAT approach
to evaluating the other frameworks included in our
research (see Section 2.1).

Moreover, this research is based on the
investigation of the literature provided by LeSS
(Larman & Vodde, 2016) in its official website
(www.less.works) and represents the ideas of the
authors and their interpretation of the LeSS literature.
We acknowledge that the presented results might
possibly be different if external LeSS practitioners
have been involved in this research. Therefore, as part
of our immediate future work, we plan to evaluate the
results of this research by interviewing LeSS experts
in the Netherlands and discuss the results with them.

Furthermore, the matching of LeSS and LeSS
Huge practices against the previously published
challenges (Alsaqaf et al., 2019) is a list of hypotheses
at best. As the terms “quality requirements” and non-
functional requirements” are not used in the LeSS
reference book (Larman & Vodde, 2016), we had to
use our own interpretation, experience and
knowledge. This could be partly subjective. However,
we countered this issue by using Conklin’s mapping
technique consistently. Despite of this, we are
considering important to further evaluate our
mappings possibly with the participation of LeSS
experts from industry.

7 CONCLUSION

This paper investigated how QRs issues that were
identified in prior research, are treated in LeSS
(Larman & Vodde, 2016), an agile scaled framework.
We first assessed the degree of agility of LeSS by

using the 4-dimensional analytical tool 4-DAT. This
assessment indicated that the LeSS framework
matches the Agile Manifesto, in the sense that it
provides a scaling path to large and very large agile
teams without deviating much from the agile
philosophy due to incorporating heavyweight
practices. We have further identified those LeSS
practices that could be used to mitigate the QRs
challenges reported in (Alsaqaf et al., 2019).

Our results show that LeSS practices could be
used to mitigate one or more QRs challenges.
However, our study shows also that LeSS does not
provide specific practices that could be used to
mitigate some QRs challenges (e.g. End user
acceptance of QRs and Conceptual definition of
QRs).

This research has some practical implications.
First, practitioners conscious about QRs in projects
that employ LeSS, should make explicit steps towards
creating practices that help counter issues due to
unclear conceptual definitions of QRs (see Table 6).
Also, practitioners should come up with their own
ideas on how to manage the length of the QRs
acceptance checklist, just because LeSS offers no
specific help regarding this. On the other side,
practitioners can rely on LeSS regarding coping with
QRs challenges related to team coordination and
communication. As LeSS is designed to support team
collaboration, it seems relatively straightforward to
resolve QRs issues traceable to team coordination,
Our immediate future work includes the evaluation of
the degree of agility of the other scaled frameworks
in our list and the matching of these frameworks’
agile practices to the QR challenges identified in
(Alsaqaf et al., 2019).

REFERENCES

Abheeshta, P., Paasivaara, M., & Lassenius, C. (2018).
Benefits and Challenges of Adopting the Scaled Agile
Framework (SAFe): Preliminary Results from a
Multivocal Literature Review. PROFES 2018, 9459,
334–351.

Agile Alliance. (2001). Manifesto for Agile software
development, http://www.agilemanifesto.org.

Ambler, S. W., & Lines, M. (2012). Disciplined Agile
Delivery: A Practitioner’s Guide to Agile Software
Delivery in the Enterprise. IBM Press.

Appleton, J. V., & Cowley, S. (1997). Analysing clinical
practice guidelines. A method of documentary analysis.
Journal of Advanced Nursing, 25(5), 1008–1017.

Alsaqaf, W., Daneva, M., & Wieringa, R. (2019). Quality
requirements challenges in the context of large-scale

ICSOFT 2020 - 15th International Conference on Software Technologies

102

distributed agile: An empirical study. Information and
Software Technology.

Beedle, M. (2018). Enterprise Scrum Definition 4.0. In
Enterprise Scrum Inc.

Collab.net, & Versionone.com. (2019). 13th Annual State
of Agile Report. VersionOne. https://explore.
versionone.com/state-of-agile.

Conboy, K., & Fitzgerald, B. (2004). Toward a conceptual
framework of agile methods: A Study of Agility in
Different Disciplines. XP/Agile Universe 2004, pp 105-
116.

Conboy, K., & Carroll, N. (2019). Implementing Large-
Scale Agile Frameworks: Challenges and
Recommendations. IEEE Software, 36(March/April),
1–9.

Conklin, J. (2003). Dialog Mapping: Reflections on an
Industrial Strength Case Study. Visualizing
Argumentation, 1–15.

Hitchcock, D. (2002). The Practice of Argumentative
Discussion. Argumentation, 16(3), 287–298.

Helmy, W., Kamel, A., & Hegazy, O. (2012). Requirements
engineering methodology in agile environment.
International Journal of Computer Science Issues, 9(5
5-3), 293–300.

Kniberg, H., & Ivarsson, A. (2012). Scaling Agile @ Spotify
- with Tribes, Squads, Chapters & Guilds.

Krebs, J. (2008). Agile Portfolio Management. In Microsoft
Press. 1st edition.

Larman, C., & Vodde, B. (2016). Large-Scale Scrum more
with less. Pearson Education.

Leffingwell, D., & Knaster, R. (2017). SAFe 4.0 Distilled:
Applying the Scaled Agile Framework for Lean
Software and Systems Engineering, Pearson Education,
1st edition.

Özcan-Top, Ö., & Demirors, O. (2019). Application of a
software agility assessment model – AgilityMod in the
field. Computer Standards and Interfaces, 62(July
2018), 1–16.

Portman, H. (2017). Scaling agile in organisaties. In Van
Haren Publishing.

Qumer, A., & Henderson-Sellers, B. (2008). An evaluation
of the degree of agility in six agile methods and its
applicability for method engineering. Information and
Software Technology, 50(4), 280–295.

Qumer, A., & Henderson-Sellers, B. (2006). Measuring
agility and adaptibility of agile methods: A 4-
dimensional analytical tool. IADIS International
Conference on Applied Computing, January, 503–507.
http://www.iadis.org.

Schwaber, K. (2018). Nexus Guide - The Definitive Guide
to scaling Scrum with Nexus: The Rules of the Game.
Scrum.Org, January, 0–11. https://www.scrum.org/
resources/nexus-guide.

Schwaber, K., & Beedle, M. (2001). Agile Software
Development with Scrum. In Pearson, 1st edition.

Schwaber, K., & Sutherland, J. (2016). The Scrum Guide.
In Scrum.Org.

Sutherland, J. (2001). Agile Can Scale: Inventing and
Reinventing SCRUM in Five Companies. Cutter IT
Journal, 14(12), 5–11.

Sutherland, J. (2019). The Scrum@Scale Guide - The
Definitive Guide to Scrum@Scale: Scaling that Works.
Scrum@Scale, January, 1–19. https://
www.scrumatscale.com/scrum-at-scale-guide/.

Towill, D., & Christopher, M. (2003). The Supply Chain
Strategy Conundrum: To be Lean Or Agile or To be
Lean And Agile? International Journal of Logistics
Research and Applications, 5(3), 299–309.

West, D., Gilpin, M., Grant, T., & Anderson, A. (2011).
Water-scrum-fall is the reality of agile for most
organizations today. In Forrester Research.

Analysing Large-Scale Scrum Practices with Respect to Quality Requirements Challenges

103

