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Abstract

Recently, sparse training methods have started to be established as a de facto approach for training and inference efficiency
in artificial neural networks. Yet, this efficiency is justin theory. In practice, everyone uses a binary mask to simulate sparsity
since the typical deep learning software and hardware are optimized for dense matrix operations. In this paper, we take
an orthogonal approach, and we show that we can train truly sparse neural networks to harvest their full potential. To
achieve this goal, we introduce three novel contributions *, specially designed for sparse neural networks: (1) a parallel
training algorithm and its corresponding sparse implementation from scratch, (2) an activation function with non-trainable
parameters to favour the gradient flow, and (3) a hidden neurons importance metric to eliminate redundancies. All in one,
we are able to break the record and to train the largest neural network ever trained in terms of representational power -
reaching the bat brain size. The results show that our approach has state-of-the-art performance while opening the path
for an environmentally friendly artificial intelligence era.

Keywords: Deep Learning, Sparse Neural Networks, Parallel Algorithms, Bio-inspired optimization, Activation Functions,
Connection Importance, Breaking Symmetry

Introduction

Artificial Neural Networks (ANNs) succeeded in a broad range of application domains (LeCun et al. (2015)) due to
their ability to learn complex transformations from data while achieving superior generalisation performance.
However, current state-of-the-art networks are typically highly overparameterised (e.g. Zhang et al. (2017)) and
demand extensive computational resources to be trained, which become a bottleneck where such resources
are limited (Kepner et al. (2018)). Reducing the memory footprint and training time of ANNs are active areas of
research, crucial to handle the rapid expansion of machine learning which has resulted in enormous datasets,
with millions to billions of examples and features, but also to decrease the high environmental impact of
the energy-hungry deep learning algorithms. Taking inspiration from nature, a solution to improve neural
network scaling is to use sparse connectivity. The traditional dense-to-sparse training paradigm (known mainly
as network pruning) (Mozer & Smolensky, 1989; LeCun et al., 1989; Han et al., 2015; Frankle & Carbin, 2019)
offer computational benefits just in the inference phase as first, it trains a dense network in order to prune
unimportant connections and to obtain a sparsely connected neural network.

Therefore, to obtain scalable and efficient ANNs, contrary to general practice, artificial neural networks, like
biological neural networks, should not have fully connected layers also in the training phase. Recently, a new
sparse-to-sparse training paradigm (or simply, sparse training) began to establish inside the research community,
with several studies focus on developing memory and computational efficiency from the start by training directly
sparse neural networks from scratch. The first attempt (Mocanu et al., 2016) has used just static sparsity limiting
the capacity of the model sparse connectivity graph to fit the data distribution. This concept has been revised
and drastically improved by introducing the Sparse Evolutionary Training (SET) algorithm with dynamic (or
adaptive) sparsity in (Mocanu et al. (2018)). Currently, the sparse training concept has started to be a de facto
approach for efficient training of ANNs, as demonstrated in (Bellec et al., 2018; Dettmers & Zettlemoyer, 2019;

1 The code will be soon available at https://github.com/SelimaC/large-scale-sparse-neural-networks
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Mostafa & Wang, 2019b; Evci et al., 2019; Anonymous, 2021a; Jayakumar et al., 2020). These algorithms search
for an optimal sparse topology according to some salience criteria, while simultaneously optimising the model
weights. Here, the topology of a neural network refers to the way the neurons are connected, and it is a crucial
factor in network functioning, and learning (Miikkulainen (2010)). The resulting networks have a significantly
lower number of parameters by design, and they have empirically shown to outstretch higher generalisation
power than their dense counterparts in a number of cases, especially in the case of multilayer perceptrons and
recurrent neural networks (Anonymous (2021a); Bourgin et al. (2019); Liu et al. (2020c); Anonymous (2021c)).
Besides this, intrinsically sparse models allow, in theory, real scalable deep learning solutions in low-resource
devices, standard computers, and in the cloud.

The main limitation to achieve this theoretical scalability level is given by the fact that all state-of-the-art
deep learning frameworks are based on very well-optimised dense matrix multiplications on Graphics Processing
Units (GPUs), while sparse matrix operations are practically ignored. The only notable exception is given by the
NVIDIA A100 GPU which was released in 2020 (Jeff Pool (2020)) and support a hardware fixed 2:4 sparsity level
(i.e. 50% sparsity level). Within these frameworks, one can only simulate the sparsity by using a binary mask
over the connections; therefore, the model will carry on training dense matrices. As follows, until optimised
hardware for sparse operations appears, one would have to focus on optimising the algorithms.

In (Liu et al. (2020b)), the authors developed an efficient implementation of sparse multilayer perceptrons
(MLPs) trained with SET. For the first time, they built sparse MLP models with over one million artificial neurons
on commodity hardware, only utilising one CPU core. Still their sparse framework is completely sequential and
cannot yet compete against advanced professional frameworks designed to accelerate the learning of dense
neural networks.
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Figure 1. A graphical high-level overview of the proposed methods to efficiently train truly sparse neural networks.

Additionally, there is the need for revisiting various aspects (e.g. optimizers and activation functions) of
sparse neural networks training since most of the literature has mainly focused on dense models. The choice
of the activation function for deep neural networks has a critical impact on the performance of the training
procedure. Aninappropriate selection can lead to the loss of information of the input during forward propagation
and the exponential vanishing/exploding of gradients during backpropagation (Hayou et al. (2019)). It is crucial
to question weather the activation functions currently used for densely connected networks still behave reliably
in the sparse context. SReLU is a relatively little-known activation function suggested in (Jin et al. (2016)) and it
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has proven to outperform ReLU (Agarap (2018)) when training sparse networks over different datasets (Mocanu

et al. (2018); Dubowski (2020)) as it improves the networks gradient flow (Anonymous (2021b)). However, this

activation function requires to learn four additional parameters per neuron, which becomes a non-negligible
number and introduces a serious computational overhead if we want to train models with millions or billions of
hidden units.

To alleviate the aforementioned limitations, this paper proposes four new contributions which advance the
scalability of neural networks by exploiting sparsity:

« We introduce Weight Averaging Sparse Asynchronous Parallel SGD (WASAP-SGD), a parallel algorithm to train
truly sparse neural networks and expand their feasible size on commodity hardware, without any GPU support.

« We propose a variant of ReLU, called ALternated Left ReLU (All-ReLU), to achieve performance comparable to
SReLU without the additional overhead for training its associated parameters.

« Weintroduce the concept of neuron importance and a method (/Importance Pruning) to blend it into the sparse
training procedure, which allows us to shrink even more the number of weights and to accelerate sparse
training considerably.

» We developed a customised and modularized software framework for sparse neural networks to test our
theoretical contributions. It allows us to break the record and to train as a proof-of-concept the largest neural
network model ever trained, i.e. 50 million neurons.

The three approaches (WASAP-SGD, All-ReLU and Importance Pruning) represent independent contributions to

sparse neural network literature, but also they can be used together as complementary methods to improve

further the performance of sparse models, as we illustrate in our experimental results.

Results

Our work is focused on the most straightforward type of neural networks, MLPs, as they count for 61% of a typical
Google TPU (Tensor Processing Unit) workload for production neural networks applications, while convolutional
neural networks represent merely 5% (Jouppi et al. (2017)). Despite the numerous algorithms available to
train sparse neural networks from scratch, we decided to base our evaluation on the SET algorithm, given its
simplicity and good performance on a broad range of domains. Unlike the other sparse training techniques
mentioned in section 4 that calculate and store information for all the parameters, including the non-existing
ones, SET is memory-efficient because it uses information just from the existing parameters, and it does not
require high computational complexity. These are all favourable advantages to our goal of developing large
scale sparse neural networks. We evaluate and discuss the performance of our proposed methods on sparse
MLP models by considering five publicly available datasets listed in Table 1.

Problem formulation

Given adataset D = (x;, yi)/_, and a network f (x; 8) with L layers parameterized by 6 (weights w and biases b).
We train the network to minimize the loss function }, L(f(x;8), y). The motivation of sparse neural networks
is to use a fraction of parameters to reparameterize the whole network, while preserving the performance
as much as possible. Hence, a sparse neural network can be denoted as f;(x; 8;) with a given sparsity level.
Initially, the network is uniformly initialized with a sparse distribution in which the sparsity level S; of each
layer / is controlled by a parameter ¢ (see Mocanu et al. (2018) for details) and stays constant during the
training. More precisely, for each layer / the connections are defined in a sparse adjacency weights matrix
W = [[wir, Wiz, ... Win oo oy [Way i1, Way 12 - - - Wi 1] in which the elements are either null (w;; = 0)
when there is no connection between neuron i and neuron j or have a connection weight (w;; # 0) when the
connection between i and j exists. Initially each W) is a Erdés-Rényi random graph (Erdds & Rényi (1959)).



2.1 Proposed contributions

WASAP-SGD method

We propose a novel parallel training method with two phases based on a data parallelism strategy (where
the learning phase of a model is partitioned by input samples) to improve the scalability of sparse neural
networks. The algorithm, called WASAP-SGD, is based on asynchronous SGD (Dean et al. (2012)) training for
the first phase and Stochastic Weight Averaging (Izmailov et al. (2018)) for the second phase. This two-phase
method helps in filling the gap between sparse and dense neural networks’ performances (accuracy, running
time and generalization).

We consider a system with K workers, which repeatedly compute gradient contributions based on indepen-
dently drawn data mini-batches from the given dataset 9. We also consider a shared parameter server, which
communicates with each of the workers independently, to give state information and get updates that it applies
according to the algorithm it follows. The master and each worker have a replica of the sparse model to be
trained. Moreover, each worker has access to a subset of the training data, as depicted in Figure 2.
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Figure 2. Sparse model replicas asynchronously fetch parameters w and push gradients Aw to the parameter server with
atomic read and write operations.

In Algorithm 1 we show the pseudocode for WASAP-SGD, describing how standard asynchronous SGD using a
parameter server is extended with a local training phase followed by a sparse model averaging step to improve
its generalization performance. Moreover, it is designed to include the topology adaptation step of sparse
networks. The training is carried out asynchronously by all workers. We adopt a simple SGD update rule with
momentum, which has shown to be effective for training intrinsically sparse models:

Wi = We + ((We — We_1) — 1 VW (1)

The master must periodically pause the asynchronous update to carry on the weight evolution algorithm on the
sparse model to generate the new topology. Each update must include a minor modification, since individual
weights may be outdated due to the topology evolution (as illustrated in Figure 3).

Then, to improve the model generalization performance, each worker locally updates its sparse replica for
the next phase (phase two). Once phase two is concluded, the K different models are averaged:

K

of = %Zeg (2)

The averaging step does not preserve the sparsity level S, since each worker has updated its topology inde-
pendently from each other. Hence, the final model 87 will have a different sparsity level S/, , for each layer /,

(O
where S('/) > S8,V/=1,...,L.Thus,unimportant connections, accounting for a certain fraction S/, — S, will

(N
be pruned in each layer. More precisely, the unimportant connections are pruned based on their magnitude,

corresponding to the largest negative weights and the smallest positive weights in W(/).
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Figure 3. Worker k’ fetches parameters w;,1 and push gradients Aw;,1 to the parameter server. These gradients may
contain non-valid updates, since in that time frame the global model may have performed the topology evolution, hence
they need to be corrected.

All-ReLU
The new proposed activation function, All-ReLU (Alternated Left ReLU), is designed for training sparse MLPs and
is able to accelerate training, without adding any additional computational complexity. All-ReLU is inspired by
the S-shaped rectified linear activation unit (SReLU) presented in Jin et al. (2016). The intuition behind it came
from analysing the SReLU parameters as well as the input distribution of the learned topology. Like SReLU, this
function can improve the networks gradient flow, and consequently achieve better accuracy. However, since
All-ReLU does not require to train additional parameters, it can be considered as simple and fast as ReLU to use.
Given an ANN with L layers, our proposed Alternate Left ReLU (All-ReLU) is defined as follows for each layer /:

—ax; x;i<0 & /%2==0
fi(x;)) =Sax; xi<0 & /%2 =="1 (3)

X X,'>0

where x; is the input value, a is the slope for the negative side of the input and % represent the modulo operation.
The input layer (/ = 1) and the output layer (/ = L) are excluded. We believe that the proposed activation
function can accelerate convergence by breaking symmetry during training and preserving the gradient flow
through the network, hence leading to better performance for sparse models.

Importance Pruning

To substantially reduce the size of neural networks, we propose a novel method, for selecting the most important
neurons, based on their strength (importance). In graph theory, the node strength is the sum of weights of links
connected to the node (Barrat et al. (2004)). Taking inspiration from this graph measure, we determine the
importance of each neuron based on the summation of absolute weights of its incoming connection. For each
neuron j in layer / we define its importance as follows:

n _ (N
=% (4)

jer="
J

where I;(H) is the set of all neurons connected to neuron J, i.e. I}(H) ={il1<i<n' VD VieN A w,.S./) # 0},
given that n/=") is the number of hidden neurons from the previous layer / — 1 and W/y) denotes the weight of
connection linking neuron 7 to j in two consecutive layers as defined in W), This neuron importance metric can
rapidly identify the main hubs of the sparse network, i.e. nodes that are positioned to make strong contributions
to global network performance.

This metric can be easily integrated during training and we named this procedure Importance Pruning, once
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2.2

the topology is stable, to reduce overfitting with almost no loss in accuracy and substantially lessen the number
of parameters up to 80% with respect to the initial sparse network and, as a consequence, decrease the overall
training running time. In Algorithm 2, we provide an example of how Importance Pruning can be integrated with
dynamic sparse training. The pseudocode refers to the SET algorithm; however, it could be easily replaced by
any other sparse-to-sparse training technique.

Large scale Sparse Neural Network framework

We extended the sparse framework presented in Liu et al. (2020b) by implementing the theoretical contributions
presented in this paper. The initial implementation was sequential and it was not able to obtain the same
accuracy as Keras on some datasets such as CIFAR10. Our focus was on MLP as we did not have the human
resources to develop RNNs and CNNs from scratch and we let this as future work. With respect to the speed of
our approaches, it is worth to highlight that first we substantially improved the training time of a truly sparse
MLP from its previous implementation in Liu et al. (2020b) with no parallelisation by replacing Cython with
Numba (Lam et al. (2015)) and adopting 32-bit float precision instead of 64-bit. These minor changes ensure
minimum resource requirements. WASAP-SGD is designed using Python 3.7, one of the most popular Machine
Learning languages, combined with Message Passing Interface (MPI).

With our framework, we were able to build the largest Sparse MLP model, in terms of the number of neurons,
ever trained on a single machine on the cloud (with no GPU). Note that the enormous models mentioned in
literature have been usually trained in a distributed fashion or on several GPUs. Since a high-dimensional dataset
for this task is hard to find, we use an artificial one to train a model with 50 million neurons on a machine with
96 virtual cores and 768 GB of RAM. This experiment demonstrates how the Sparse MLP can achieve what its
dense counterpart cannot, due to memory error.

Experiment Dataset Dataset properties
Domain Features Trainsamples Testsamples Classes
MLPs Leukemia Microarray 54675 1397 699 18
Higgs Physics particles 28 105000 50000 2
Madelon Artificial data 500 2000 600
FashionMNIST Images 784 60000 10000 10
CIFAR10 RGB Images 3072 50000 10000 10

Table 1. List of dataset used for the experiments.

Performance on Sequential Trained Sparse MLPs

This section summarises the performance for the comparison between All-ReLU and ReLU on sparse MLP models,
and their integration with Importance Pruning to speed up the training. All SET-MLP variants have been run using
our own truly sparse implementation framework and just one CPU core. Table 2 lists the maximum accuracy for
each method/dataset combination, along with the total training time (expressed in minutes), the number of
parameters at the beginning (start_n") and at the end of the training (end_n"). This is particularly interesting
to report when Importance Pruning is applied to the sparse models for understanding the benefits in terms of
memory footprint. The resulting learning curves of our experiments are shown in Figure 4, for both testing and
training sets. For all figures, we obtain the mean accuracy by averaging the best test accuracy from 5 trials over
500 epochs. Moreover, for each model, we display the resulting number of parameters for the dense MLP version,
the basic SET-MLP and SET-MLP where the neuron importance metric is adopted for taking out unimportant
hidden units.



Dataset Architecture NN model Activation Importance Results

Pruning Accuracy [%] start_n" [#] end_n"[#] Training [min]
Leukemia 54675-27500-27500-18 SET-MLP RelLU no 85.98 1684944 1684944 ~ 375
RelLU yes 85.40 1582214 312900 ~266.5
All-ReLU (@ =0.75) no 86.42 1582518 1582518 ~ 375
All-ReLU (a = 0.75) yes 85.69 1582581 313047 ~266.5
Dense MLP? RelU - n/a 2260362518 2260362518 n/a
All-ReLU - n/a 2260362518 2260362518 n/a
Higgs 28-1000-1000-1000-2 SET-MLP RelLU no 73.59 50224 50244 ~216.67
RelLU yes 73.50 50246 10065 ~182.3
All-ReLU (@ = 0.05) no 73.67 50165 50165 ~216.67
All-ReLU (a = 0.05) yes 73.76 50165 9992 ~140.3
Dense MLP RelLU - 70.59 2033002 2033002 ~182.3
All-ReLU - 70.10 2033002 2033002 ~140.13
Madelon 500-400-100-400-2 SET-MLP RelLU no 68.50 19000 19000 ~3.6
RelLU yes 75.00 19000 2739 ~3.2
All-ReLU (o = 0.5) no 71.33 19011 19011 ~3.6
All-ReLU (a = 0.5) yes 77.00 19000 2737 ~3.2
Dense MLP RelLU - 59.66 281702 281702 ~3.62
All-ReLU (a = 0.5) - 62.00 281702 281702 ~3.62
FashionMNIST  784-1000-1000-1000-10 SET-MLP RelLU no 90.48 126302 126302 ~1375
RelLU yes 89.43 126302 26111 ~96.25
All-ReLU (a = 0.6) no 91.38 126302 126302 ~1375
All-ReLU (a = 0.6) yes 90.12 126302 25759 ~96.25
Dense MLP RelLU - 90.85 2797010 2797010 ~95.05
All-ReLU (o =0.25) - 90.73 2797010 2797010 ~95.05
CIFAR10 3072-4000-1000-4000-10 SET-MLP RelLU no 67.05 381758 381758 ~ 590
RelLU yes 65.21 381758 238114 ~ 530
All-ReLU (@ = 0.75) no 69.83 381425 381425 ~ 590
All-ReLU (a = 0.75) yes 68.55 380318 221323 ~ 530
Dense MLP RelLU - 64.94 20337010 20337010 ~530.7
All-ReLU (o =0.25) - 67.96 20337010 20337010 ~530.7

Table 2. On each dataset, we report the best classification accuracy and error obtained by each model on the test data over
five different runs for 500 epochs. start_n" represents the number of weights in the model at the beginning of the training,
while end_n" represents the number of parameters in the final model. Importance Pruning (y/n) indicates if the proposed
pruning strategy based on our neuron importance metric is activated. Training reports the overall running time needed
for training the models. Furthermore, the table reports the performance of fully connected MLPs (Dense MLPs) with both
activation functions. The networks have been trained using momentum SGD in its standard sequential version. It is worth
mentioning that the Dense MLP has been run using Keras using all CPU cores and SET-MLP using our own implementation
and just one CPU core.



2.3

We can observe that All-ReLU consistently outperforms ReLU on all datasets, indicating that the novel activa-
tion function associated with a sparse-to-sparse training algorithm helps to model better the data distribution.
Moreover, when Importance Pruning is activated, we can notice a significant reduction in the number of parame-
ters, which leads to a remarkable speedup in running time, with almost no loss in terms of accuracy. Looking at
the CIFAR10 dataset (Figure 4¢€), we can see that the new activation function is capable of boosting the accuracy
on test data by more than 2%. SET-MLP on CIFAR10, after 500 epochs when using SReLU reaches about 70.30
% accuracy. This result suggests that All-ReLU indeed fills the performance gap with SReLU successfully. The
model version with Importance Pruning can achieve comparable performances while training roughly 40% fewer
parameters (where the reduced number of parameters refers to the final model and it is obtained by gradually
reducing the connections during training) and gaining a speedup of 60 minutes. In this case, the importance
metric seems to be more stable when adopting All-ReLU, resulting in a minor loss in performance. A similar
outstanding result is obtained with Madelon (Figure 4c), where All-ReLU obtains 3% increase in accuracy with
no Importance Pruning and about 2% with Importance Pruning (where the model uses 80% fewer parameters).
Here, the Importance Pruning method has improved the performance significantly.

For FashionMNIST, All-ReLU can surpass both ReLU (Figure 4d) and SReLU. The latter achieves around 90.10
% accuracy when trained for 500 epochs with the same settings, while All-ReLU achieves 91.38 %. The smaller
version obtained via Importance Pruning ends with 20% of the original parameters, gaining a 41 minutes speedup.
We attain similar performance for Leukemia and Higgs, although the increase in accuracy is more predominant
for image data and Madelon. Lastly, in Figure 5, we show the gradient flow for the sparse models trained with
All-ReLU and ReLU on CIFAR10 (Figure 5a), FashionMNIST (Figure 5b) and Madelon (Figure 5c). We recall that
gradient flow is the first-order approximation of the decrease in the loss expected after a gradient step, hence
the higher, the better. All-ReLU visibly improves this metric, which is associated with efficient training of sparse
neural networks (Anonymous (2021b); Wang et al. (2020); Anonymous (2021a)).

Performance on Parallel Trained Sparse MLPs

The available algorithms for parallelisation of dense neural networks are not suitable for sparse neural networks
training. Hence they are not considered in our experimental evaluation of the proposed method. We did not test
WASAP-SGD with Madelon and Leukemia because there is no added value in parallelising the training under
the conditions where the data and/or the model size are minimal. In Table 3 we summarise the performance
of the proposed parallel algorithm on three different datasets where All-ReLU is adopted, with and without
Importance Pruning. For completeness, we report the results for a variant where phase one is synchronous,
called WASSP-SGD (Weight Averaging Sparse Synchronous Parallel SGD). In this way, we want to empirically
demonstrate that our asynchronous version is more suitable to train sparse models. Furthermore, for easy
comparison, we again report the accuracy and training time for the sequential version (baseline). Since we run
the experiments on a machine with six physical cores, we employed five workers and one master (parameter
server). The time reduction does not improve significantly as the number of workers surpasses the number of
physical processors.

The synchronous variant WASSP-SGD is implemented by following the suggestions from (Goyal et al. (2017)),
such as their gradual warmup and linear scaling rule for the learning rate. Conversely, for our WASAP-SGD,
where the first phase is asynchronous, we observed it benefits from larger learning rates for the first few epochs,
followed by fixed learning rates.

In Table 4, we show the average running time using the Keras implementation of SET-MLP with a mask
over the parameters. The statistics are provided for three different configurations of the hardware: training on
one CPU core only, training with no constrains (all CPUs cores) and GPU training. These numbers allow us to
make a comparison between our proposed sparse framework and a popular deep learning library like Keras.
By looking at the results in Table 3, we can observe that the proposed parallel algorithm exhibits persistently

With our hardware settings (CPU Intel Core i7-9750H, 2.60 GHz x 6, RAM 32 GB, Hard disk 1000 GB, NVIDIA GeForce GTX 1650 4GB), it was
not possible to train the dense MLP on Leukemia due to memory error.
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Figure 5. Gradient Flow for sparse MLPs with three hidden layers on CIFAR10 (a), FashionMNIST (b) and Madelon (c) trained
with All-ReLU and ReLU.

Dataset Algorithm Importance Accuracy[%]  Training CcPU Memory
Pruning time [min] usage[%] usage[MB]
Higgs WASSP-SGD no 74.26 ~ 142.52 ~62% ~ 2800 MB
WASSP-SGD yes 74.16 ~113.33 ~62% ~ 2800 MB
WASAP-SGD no 74.47 ~138.52 ~62% ~ 2800 MB
WASAP-SGD yes 74.88 ~108.33 ~62% ~ 2800 MB
Sequential no 73.67 ~216.67 ~ 24% ~ 1700 MB
Sequential yes 73.76 ~182.3 ~ 24% ~ 1700 MB
FashionMNIST WASSP-SGD no 90.52 ~90.6 ~ 65% ~ 3300 MB
WASSP-SGD yes 89.96 ~77.6 ~ 65% ~ 3300 MB
WASAP-SGD no 91.23 ~87.25 ~ 65% ~ 3300 MB
WASAP-SGD yes 90.15 ~ 74.85 ~ 65% ~ 3300 MB
Sequential no 91.38 ~137.5 ~20% ~ 1900 MB
Sequential yes 90.12 ~96.25 ~20% ~ 1900 MB
CIFAR10 WASSP-SGD no 67.13 ~309.9 ~70% ~ 6500 MB
WASSP-SGD yes 66.88 ~279.9 ~70% ~ 6500 MB
WASAP-SGD no 69.03 ~281.9 ~T70% ~ 6500 MB
WASAP-SGD yes 68.51 ~246.5 ~T70% ~ 6500 MB
Sequential no 69.83 ~ 590 ~25% ~ 2200 MB
Sequential yes 68.55 ~ 530 ~25% ~ 2200 MB

Table 3. The table reports the accuracy, average running time and average resource utilisation over five different runs for
500 epochs when using parallel training with WASAP-SGD and our proposed sparse implementation framework. For com-
pleteness, we report the performance for the synchronous (phase 1) version of the algorithm as well. Here, this synchronous
version is called WASSP-SGD (Weight Averaging Sparse Synchronous Parallel SGD). Moreover, we include the performance
of sequential training for facilitating the comparison. Importance Pruning (y/n) indicates if the proposed pruning strategy
based on our neuron importance metric is activated. Note that in this setting, the memory usage will decrease during train-
ing.
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2.4

Dataset Configuration Training CPU Memory
time [min] usage [%] usage [MB]

Higgs Keras 1 core ~ 350 ~27T% ~2100 MB
Keras all CPUs cores  ~ 191.7 ~65% ~ 2300 MB
Keras GPU ~78.3 ~25% ~ 2400 MB
FashionMNIST Keras 1 core ~ 316 ~20% ~ 2800 MB
Keras all CPUs cores  ~ 135.6 ~76% ~ 2800 MB
Keras GPU ~ 65 ~26% ~ 3000 MB
CIFAR10 Keras 1 core ~ 1000 ~20% ~ 4700 MB
Keras all CPUs cores  ~ 530.7 ~ 80 % ~ 4700 MB
Keras GPU ~ 195 ~20% ~ 4800 MB

Table 4. The table reports the average running time over five different runs for 500 epochs when using the Keras imple-
mentation of SET-MLP with a mask over the parameters. The statistics are provided for three different configurations of the
hardware.

better convergence when the first phase is carried out asynchronously. The same outcome holds in terms of
training time. If we compare the running times of WASAP-SGD against the one from the sequential version, we
gain an improvement of about half among all datasets, without introducing a notable increase in memory
footprint. Our method is able to outperform Keras CPU-based wall-clock running time for training of sparse
MLPs significantly. We would like to emphasise that our sparse implementation together with parallelisation
and Importance Pruning gets quite close to GPU training time. Plus, this is the kind of comparison that people
typically do not make, because (for dense networks) does not make sense to compare CPU with GPU. Moreover,
as we could notice from the results in subsection 2.2 for the Leukemia dataset, this computational advantage of
GPUs manifests its limitation when it comes to training huge models. In this case, Keras is not able to allocate the
dense tensors, resulting in a memory error. Additionally, it is worth mentioning that GPU training utilises more
resource than CPU training and classic GPU training, as it also uses the CPU besides GPU. Hence, we believe that
our approach has more potential to tackle large scale deep learning models.

Extreme large sparse MLPs

To the best of our knowledge, the largest public (claimed) dense neural network has 160 billion (B) parameters,
where a parameter roughly corresponds to a synapse in the human brain. Given the human brain is estimated
to have about 100 trillion synapses, that neural network could be said to be about 0.16% of the human brain.
State-of-the-art networks in a generic sense contain around 16M neurons. For comparison, the 16 million (M)
neurons number when compared with the 100B neurons in a human brain—only represents 0.016% of human
brain size. Now, it is worth noting that size is not the only thing that matters. Most advanced models today
perform worse when their network size is increased blindly. While it is true that DNN capabilities increase with
their network size, there is also a fairamount of engineering work that goes into making larger networks accurate.
Hopefully, sparsity will help in overcoming some challenges when training such large models.

In this scenario, we tried to push the limit of ANNs on a virtual machine with 96 cores and 768GB of RAM to
train extreme large sparse MLP models. We are attempting to enter a region where neural networks have never
been explored. Hence, we believe that any small finding is important. Because of limited time and resources,
we did not repeat experiments to get statistical confidence. We just run them once for few epochs, on different
regimes, to collect statistics such as matrix initialisation time, training time per epoch, inference time and
topology evolution time.

Our main goal was to train a sparse model with more than 125 million neurons because we believe that this
is the latest state-of-the-art (just for inference) size, according to (Mohammad Hasanzadeh Mofrad & Hammoud

11



(2021)). For the sake of clarity, we mention that these results ignore entirely the training focusing just on
inference. We want to go one step further and train such models. Herein, we have discovered that we are very
close of reaching the limits of our proposed implementation framework of training extremely large sparse neural
networks, but it is good to know the limits in order to know how to proceed further.

There are not many available datasets with a high number of features and a reasonable amount of data
points to exploit data parallelism. For this reason, we created an artificial dataset by adopting the function
make_classification? from Scikit-learn, a free software machine learning library for the Python programming
language. The algorithm is adapted from (Guyon (2003)) and was designed to generate the "Madelon" dataset.
We generated a binary classification task with 10000 samples, where each sample has 65536 features. We
used 30% of the data as test data and 70% as train data. The models are trained using our parallel algorithm
WASAP-SGD with momentum (set to 0.9), weight decay and dropout (set to 0.4). Moreover, the batch size is
set to 128, and the learning rate is 0.01. The statistics for different architectures are presented in table Table 5.
Moreover, we report the number of workers, the number of parameters and the value for e, which controls
the sparsity level. We stress that the training is performed on a single machine with no GPU, while popular
state-of-the-art models are usually trained with distributed algorithms on multi GPUs.

Architecture Epsilone Neurons [#] Parameters[#] Workers[#] Weightinitialization [min] Training [min] Testing [min] Weight evolution [min]
65536-0.5M-0.5M-2 10 1M 20.6 M 16 ~1 ~6 ~25 ~1
65536-2.5M-2.5M-2 5 5M 50.3M 16 ~2 ~10 ~6 ~2
65536-5M-5M-2 5 10M 100.3M 16 ~3 ~20 ~11 ~5
65536-5Mx 4-2 1 20M 40.3M 8 ~5 ~26 ~18 ~6
65536-5M x 10-2 1 50M 100.3M 8 ~9 ~52 ~20 ~6

Table 5. The table reports the running time (per epoch) when training extreme large sparse models with WASAP-SGD on
the big artificial dataset. The training is performed with 16 workers. We trained the model for a few epochs, to make sure
the loss is decreasing, hence the networks are learning.

While trying to build these large sparse models, multiple challenges and technical difficulties have emerged:
Inference bottleneck: Up to this moment, our work was focused on the training phase of neural networks
since inference did not play an important role for common sized networks. However, once we started building
extreme large models, we immediately noticed how important it is to optimise this phase as well. We tried to
overcome the bottleneck by parallelising the inference in batches with python mutiprocessing. We are aware
that there exist more sophisticated approaches, but this simple solution could already decrease the running
time considerably.

MPI overflow: Parallelization in Python integrates Message Passing Interface via mpi4py module. When we
first selected this framework, we did not consider that mpi4py does not support the parallelisation of objects
greater than 231 bytes, limiting the size of sparse matrices to be created. This limitation is probably becoming
more noticeable nowadays, given the importance of Big Data analysis, and in Ascension & Aralizo-Bravo (2020),
the authors developed BigMPI4py, a Python module that wraps mpi4py, supporting object sizes beyond this
boundary.

Matrix initialisation time: When building such larges models, weights initialisation starts to play a significant
role. If the sparse matrix initialisation is not implemented efficiently, this may cause a bottleneck. In this regard,
we had to vectorise this step in order to reduce the weight initialization running time.

Memory allocation issues: Sparsity allows for creating a bigger model (in terms of the number of hidden units)
than when one adopts fully connected layers. However, this advantage has its limitations as well. When adopting
a data parallelism strategy, the sparse model is replicated among all workers to accelerate the training procedure.
When the model becomes extremely large, the number of workers which can fit in memory decreases (as can be
noticed in Table 5). At this point, the training should become distributed by having each workers running on a
different node in a network. Alternatively, other strategies may be explored to overcome the memory issues. Our

3 More details about the function are available here.
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implementation adopts MPI standard; hence it could be automatically run in a distributed fashion. Nevertheless,
the feasible size of sparse models is much larger than their dense counterparts. In this regard, the largest dense
network we can build on the virtual machine has around 600000 neurons.

We note that the weight evolution step is able to scale successfully without adding too much overhead.
Moreover, we want to briefly outline that we managed to train a model with 10 million neurons (¢ = 1) via
sequential training on Leukemia. Each training epoch takes around 33 minutes, and 18 seconds, inference takes
12 minutes and 9 seconds, and evolution time 30 seconds. Similarly, we could train a model with 50 million
neurons where one epoch takes about 1 hour and 15 minutes. In the end, we were not able to train sparse
models with more than 50 million neurons due to the challenges listed above. After a point, to grow the number
of neurons, we had to increase the sparsity as well as decrease the number of workers. Nonetheless, from these
extreme experiments, we could learn some of the limitations of our approach and the chosen technologies.
Lastly, it is important to highlight that these limitations come from the implementation itself and they are not
limitations of the three theoretical contributions.

Discussion

To improve the scalability of ANNs by exploiting sparsity, three main contributions have been introduced in this
work. Each of them has been implemented in a truly sparse manner with sparse matrices and operations. First,
we introduced WASAP-SGD, a new parallel algorithm to efficiently train sparse neural networks asynchronously.
This type of communication protocol has proven to be more effective than synchronous training for sparse
models, both from a running time and convergence point of view. Furthermore, the last training phase ensures
higher generalization performance. For example, for CIFAR10, we could bring down the sequential training time
of 590 minutes to 282 without Importance Pruning and to 246 with Importance Pruning while the GPU training
time is around 200. It should be pointed out that all communications are intrinsically sparse, reducing the
overhead significantly. From our experimental evaluation, we argue that sparsity could more easily overcome
the typical negative traits of asynchrony. At the same time, the communication overhead is mitigated since the
processes in the system exchange sparse updates. Lastly, the concept of staleness-adaptive AsyncPSGD and
delayed compensation strategies have been explored, but they did not improve statistical efficiency.

Secondly, we proposed a new activation function called All-ReLU to boost sparse MLPs performances. All-
ReLU has shown promising results, outperforming ReLU in all five datasets, across various domains, without
adding any extra computational complexity to the training procedure. To present some outstanding results,
it has shown to significantly increase accuracy on test data for CIFAR10 and Madalon by more than 2% when
compared to ReLU. The benefit on CIFAR10 becomes even more visible if we train the network longer. In this
case, All-ReLU increases the accuracy by 3.4 % when compared to the classic ReLU. Moreover, if the model is
trained longer, All-ReLU gets on par results (72-73%) with SReLU, achieving an accuracy close to the 73-74%
reported in original SET (Mocanu et al., 2018). For image datasets, we hypothesized that the higher performance
of our activation function might be caused by its ability to capture the feature shift that is common in this data.
Our results are in line with independent parallel literature on sparse neural networks, as we demonstrate that
All-ReLU achieves better performance by enriching the gradient flow during the training process. These findings
make stronger the contribution of both works and the generality of the concept.

Lastly, we proposed a metric to define neuron importance which can be employed to remarkably shrink
the number of parameters via Importance Pruning, an active pruning strategy. The sparsity level of the network
can be increased without performance loss using our proposed method, which reduces computation time and
memory requirements. The combination of the new activation and Importance Pruning has been tested across
all datasets, resulting in better or comparable outcomes when pruning is included. The most interesting case has
been revealed for Madelon data, where the combination of the two methodologies has significantly improved
performance up to 77%. This happens because the artificial dataset contains many redundant features which
are eliminated, and it might imply that the neuron importance metric is useful for implicit feature selection.

The three methods are complementary and can be combined to obtain large scale sparse MLPs. In sub-
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section 2.4 we performed some experiments to train extremely large networks (in terms of neurons), and we
managed to train a sparse MLP with 50M neurons on a single machine. Thanks to this investigation, we could
identify many important limitations in order to open several new research directions. Our contributions allow
advancing the state-of-the-art in representational power (i.e. number of neurons) of artificial neural networks.
Currently, up to our knowledge, the largest ANNSs, built on supercomputers, accommodate the size of a frog’s
brain (about 16 million neurons)(Goodfellow et al. (2016)). After some technical challenges are overcome, with
sparse neural networks, we may create on the same supercomputers ANNs close to the human brain size (about
80 billion neurons).

There are several directions for future work. The concept of staleness-adaptive AsyncPSGD for the first
training phase has been under-explored for a high number of workers. Although these adaptations do not seem
to help in our experiments, continuing to investigate asynchrony-aware SGD is of interest for very sparse large
models. Future research directions also include investigating the nature of sparse training with more extensive
experiments on various model architecture, as CNNs and Transformers. The latter would likely benefit the most
since they use large dense layers. Additionally, it would be intriguing to consider a decentralized architecture
with no parameter server involved. From an implementation point of view, it would be great to develop the
parallelization in C++, in order to achieve better performance and overcome some sloppy characteristics of
Python. Lastly, we need to adopt distributed settings if we want to outstretch the size of ANNs and approach the
human brain’s size. A clear limitation for All-ReLU consists in choosing the slope a. Although we provide some
practical advice (see subsection 5.2), it would be interesting to find a way to tune this parameter before training
automatically.

We believe that our research opens the path for obtaining better performance for current state-of-the-art
sparse training research in terms of accuracy, computational requirements, and energy costs. With regard to
the latter, people use artificial intelligence for climate change, but they do not improve deep learning to save
energy. With our work, we hope to raise more awareness concerning this problem and show that it is possible to
pursue sustainable supercomputing. Finally, it can pave the way to develop much larger neural networks with
billion of neurons which can help us to tackle challenging problems in complex domains such as health care.

Methods

Sparse Neural Networks Training

Fully connected neural networks have been shown to have a substantial number of redundant parameters, and,
in some cases, more than 95% of the parameters can be predicted from the remaining ones without accuracy loss
(Denil et al. (2013)). In early work on sparsification, Optimal Brain Damage LeCun et al. (1989) and Optimal Brain
Surgeon (Hassibi et al. (1993)) use gradient methods to sparsify networks during training. They observed that a
sparse network demonstrated several advantages over its dense counterparts, such as better generalisation,
reduced memory footprint and faster inference time.

Dense-to-Sparse Training

Recently, more and more studies attempted to obtain memory and computational efficiency methods for the
inference phase of deep neural networks. Numerous post-pruning techniques (dense-to-sparse training) have
been proposed to reduce the number of parameters and speed up the inference phase across a broad range
of neural network architectures (Han et al., 2015; Narang et al., 2017; Zhu & Gupta, 2017; Zhou et al., 2019);
yet, these approaches require to fully train the dense model first. Several methods strove to learn the sparse
networks during training (Louizos et al., 2018; Wen et al., 2018; Liu et al., 2020a). However, these techniques
begin with a fully-connected model, and as a consequence, they are not memory efficient. Another viable way is
one-shot pruning, which aims to find sparse neural networks by pruning once before the main training phase
(Leeetal., 2019, 2020; Wang et al., 2020). In this setting, at least one iteration of the dense model requires to be
trained to identify the sparse sub-networks, and therefore the pruning process is unfeasible for memory-limited
scenarios. Additionally, this method cannot meet the performance of dynamic sparse training, especially at
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extreme sparsity levels (Wang et al. (2020)).

Sparse-to-Sparse Training

The aforementioned issues can be naturally overcome by training intrinsically sparse neural networks from
scratch to obtain the efficiency for both the training and inference phases. A training technique that allows for
sparsity throughout the entire training process (sparse-to-sparse training) was first introduced in Mocanu (2017);
Mocanu et al. (2018), with a simple and effective procedure called Sparse Evolutionary Training (SET) which uses
magnitude-based pruning and random growth at the end of each training epoch. After that, in Deep Rewiring
(DeepR) (Bellec et al. (2018)), the authors rigorously combined dynamic sparse parameterisation with stochastic
parameter updates for training; however, this approach is computationally expensive and difficult to deploy on
large models. More recent work like (Mostafa & Wang (2019a)) includes the cross-layer redistribution of weights,
while in (Dettmers & Zettlemoyer (2019)) they present a similar approach which uses gradient information and
momentum, significantly improving performances on various Convolutional Neural Networks (CNNs) models.
Nevertheless, these additional calculations can result in a significant amount of extra computation. Very recently,
based on the Lottery Ticket Hypothesis (Frankle & Carbin (2019)), RigL (Evci et al. (2019); Jayakumar et al. (2020))
was introduced as a novel method for training sparse models without the need of a "lucky initialisation"; it can
match and sometimes exceed the performance of pruning based approaches. Lastly, in (Anonymous (2021c)),
the authors propose an approach to successfully train sparse Recurrent Neural Networks (RNNs) with a stable
number of floating-point operations (FLOPs) and a fixed parameters count.

Parallel Training of Deep Neural Networks

Accelerating training for Deep Neural Networks (DNNs) is a daunting challenge and techniques range from
distributed algorithms to hardware optimisations. Stochastic Gradient Descent (SGD) (Robbins & Monro (1951))
together with backpropagation, and in particular, its mini-batch variants (Bottou (2010)) are the de-facto methods
to train DNNs. SGD, however, is inherently sequential with a dependency across iterations and, this dependency
limits parallelism. In (Ben-Nun & Hoefler (2018)), the authors provide an extensive survey about the vast
catalogue of parallelisation approaches in deep learning. There are three prominent strategies to partition
the learning phase of a model: partitioning by input samples (data parallelism), by network structure (model
parallelism), and by layer (pipelining). Data parallelism can be easily implemented, and it is, therefore, the most
widely used implementation strategy on multi-GPUs (Li et al. (2016)). We have explored this option focusing
on CPUs only, where each core utilises the same sparse model to train on different data subsets. The replicas
communicate updates through a centralised parameter server (shared memory) which maintains the current
state of all parameters for the sparse model. In this architecture, there is no synchronisation between CPU cores
during the forward pass, but the gradients must be synchronised for the weights update. As for the parallelisation
of SGD algorithms, one can choose to do it in either a synchronous or asynchronous way (Figure 6).

Synchronous Parallel SGD

In a shared parameter server system, the local workers can compute the gradients over their mini-batch of data,
and then add the gradients to the global model; this approach is commonly referred to as Synchronous Parallel
SGD (SyncPSGD) due to its barrier-based nature. In its standard form, SyncPSGD has scalability issues due to
the waiting time that is inherent in the aggregation when independent workers compute with different speed
(Backstrom et al. (2019)).

Recent work in Goyal et al. (2017); You et al. (2017), explores the various limitation of this approach, as in
general models trained with large mini-batches often do not generalise well. To overcome the communication
overhead, local SGD has recently attracted increasing research interest Zhang et al. (2016); McMahan et al. (2017);
Yu et al. (2019); Stich (2019) where data is partitioned among computation nodes, and the nodes compute
local updates with periodically exchanging the model among the workers to perform averaging. To address the
current generalisation issue of large-batch training and improve the scalability of SyncPSGD, in Lin et al. (2020)
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the authors proposed Post-Local SGD, where the classic large mini-batch SGD is followed by a local SGD phase
which allows workers to independently update their models for a few steps before synchronising. Moreover,
(Gupta et al. (2020)) introduces a variant where they adapt Stochastic Weight Averaging Dean et al. (2012) to
accelerate DNNs training. In the second phase, each worker refines its network separately, and at the end, they
average the weights of the resulting models to produce the final result.

Asynchronous Parallel SGD

An alternative type of parallelisation is Asynchronous Parallel SGD (AsyncPSGD) Dean et al. (2012), in which
workers fetch and update the shared model independently of each other. Hence, the training procedure has
no barrier imposed. Notably, for sparse problems, Hogwild method (Recht et al. (2011)) shows that updating
only the relevant parameters without any synchronisation could guarantee a nearly linear speedup with the
number of processors (Recht et al. (2011)). Although AsyncPSGD can achieve faster speed due to the absence
of waiting overhead, the lack of coordination implies that gradients may be computed on stale (old) version
of the weights, which leads to statistical inefficiency. This problem is well-known, and some researchers have
analysed its negative effect on the convergence speed Avron et al. (2014); Lian et al. (2015). Another critical
factor to monitor when considering different scales of asynchrony is that it introduces momentum to the SGD
update, called the implicit momentum (Mitliagkas et al. (2016)).

Recent studies in Lan & Zhou (2018); Backstrom et al. (2019); Zheng et al. (2020) proposes different staleness-
adaptive SGD algorithms to reduce the negative impact of asynchrony and approach the performance of se-
quential SGD. Moreover, they allow for fine-tuning the implicit momentum and increase the number of workers
while maintaining statistical efficiency.

Parallel Training of Sparse Networks

To reduce the communication overhead in parallel distributed DNN training, various quantisation techniques and
sparse gradient updates have been developed Wangni et al. (2018); Alistarh et al. (2017); Stich et al. (2018). In this
regard, one significant advantage of sparse models is that the sparse gradient communication is automatically
at hand. Related work on parallelisation for sparse DNN is presented in (Sattar & Anfuzzaman (2020)) as a
solution to the Sparse DNN Challenge posed by MIT/IEEE/Amazon. However, their work is focused on sparse
neural networks created using RadiX-Net (Kepner & Robinett (2019)) which do not evolve the topology over
time. Moreover, their solution is implemented in Tensorflow, where sparse layers are represented by dense
matrices with a mask over weights. Similarly, in (Mohammad Hasanzadeh Mofrad & Hammoud (2021)), the
authors devised a parallel strategy for large sparse neural networks (up to 125 millions of neurons), but even if
they employ truly sparse matrices their approach is focused on the inference phase only. In short, none of the
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available parallel training algorithms is designed for training truly sparse dynamic neural networks.

Activation Functions

Activation functions determine the output of a deep learning model, its accuracy, and also the computational
efficiency, which can make or break a large scale neural network. They are essential for an artificial neural
network to help the model learn complex non-linear patterns in the data.

RelLU

Rectified Linear Unit (ReLU) is one of the most widely used activation functions in neural networks (Glorot et al.
(2011); Nair & Hinton (2010)), which can effectively solve the problem of vanishing gradient (small gradient pre-
vents the weight from altering its value) and slow training time of saturated activation function. Its mathematical

expression is:
0 x;<0
f(xi) = { ’ (5)
Xj Xj> 0

and its derivatives can be easily calculated with a meagre computational cost; this is a desirable advantage
for choosing ReLU to speed up the training. When the input value x; is lower than zero, the resulting derivative
will also be zero, leading to a disconnection of the neuron (zero-sparsity). Disconnecting some neurons may
reduce overfitting; however, this will hinder the neural network from learning in some cases due to the neurons
death problem. The ReLU function also keeps the mean activation value to be greater than zero, which makes
it difficult for the network to determine the direction with the fastest gradient drop in the backpropagation
process, thus affecting the network convergence. This "free" sparsity (in terms of neuron activations) obtained
by adopting ReLU may represent an advantage for training fully-connected layers. However, this might be
untrue for sparsely connected neurons since, in these settings, the fact they are not capable of capturing some
significant aspect of the data on the negative side and the dead neurons problem could lead to a higher impact
on performance overall.

Leaky ReLU

Leaky ReLU (LReLU) is a modification of ReLU which replaces the zero part of the domain in [ inf, 0] by a low
slope a. The reason for using LReLU instead of ReLU is that constant zero gradients can also result in slow
learning, as when a saturated neuron uses a sigmoid activation function. Additionally, others do not even
activate. According to the authors in (Maas (2013)), this sacrifice of the zero-sparsity might bring worse results
than when the neurons are entirely deactivated, suggesting the leaky rectifiers’ non-zero gradient does not
substantially impact training optimisation.

PRelLU

Parametric Rectified Linear Unit (PReLU) is proposed by (He et al. (2015)) and generalizes the traditional recti-
fied unit. The authors reported that its performance was considerably better than ReLU in large-scale image
classification tasks. It is the same as Leaky ReLU with the exception that the slope parameter is learned during
training via backpropagation.

Activation Functions in Sparse Networks
Itis crucial to question weather the activation functions currently used for densely connected networks still
behave reliably in the sparse context. S-shaped rectified linear activation unit (SReLU) is a relatively little-known
activation function suggested in (Jin et al. (2016)) and used by Mocanu et al. (Mocanu et al. (2018)) in their
implementation of the SET algorithm. When compared with the most common activation functions, SReLU in
SET models has shown to perform best at all sparsity levels (Dubowski (2020)) in various domain.

Very recently, in (Anonymous (2021b)) the authors have shown that SReLU and PRelLU are more suitable
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activation function for sparse networks as they improve the networks gradient flow and achieve better accuracy
when compared to the other activations. In this regard, they proposed a normalised measure of gradient flow
called Effective Gradient Flow (EGF), which is better suited to examining the training dynamics of sparse networks.
Their results related to activation functions are in line with our findings. Previous papers were already suggesting
that low gradient flow is an exacerbated issue in sparse networks Wang et al. (2020); Anonymous (2021a), but
they did not investigate its relation with activation functions.

Neuron Importance

The importance of hidden units in neural networks is still an open problem, crucial to understand neural
networks’ behaviour and to enhance the explainability of these black-box models. Many papers on dense deep
networks speculate about the significance of a neuron towards a prediction. They tend to use the activation
value of the hidden unit or its product with the gradient as a proxy for feature importance (e.g. Zagoruyko &
Komodakis (2017)); however, both metrics can have undesirable outcomes. To overcome these problems, in
(Dhamdhere et al. (2019)), the authors proposed the notion of conductance to gain a better understanding of
neuron relevance through extensive ablation studies.

We argue that a neuron importance metric can be straightforwardly identified in sparse neural networks
trained with a sparse training algorithm where the topology evolves overtime to find the best weight config-
uration. The proposed metric is shown to be valuable since it can remove a big chunk of unimportant units
and related connections with almost no loss in accuracy. More importantly, this metric can be simultaneously
derived for all neurons without requiring expensive computations. To define the importance of a neuron, we
borrow some terminology and ideas from graph theory and hence, we introduce them here. In network science,
a hubis a high-degree node that occupies a central role in the overall organisation of a network. Hubs have a
significantly larger number of links in comparison with other nodes in the network (Barabasi & Posfai (2016)).
They can be found in many real networks, such as the brain (van den Heuvel & Sporns (2013)) or the Internet. The
loss of such well-connected hubs can be extremely devastating to network function. Given the role of hubs and
their significance to networks, their locations and functions in the brain are of clear interest to neuroscientists.
Accordingly, we would expect to find a similar biological structure in sparse ANNs as well.

Data availability

The data used in this paper are public datasets, freely available online, as reflected by their corresponding
citations from Table 1. Prototype software implementations of the models used in this study are freely available
online.
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Algorithm 1: WASAP-SGD

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26

27
28

29

30

Result: Trained sparse model 67
Input: Number of workers K, t = 0,t’ = 0, phase = 1, epoch = 0, sparsity level S
Step size n and momentum u
Training dataset D wit labels 7 ; Mini-batch size 8
SGDSparseUpdate(-), a function that updates the weights using momentum SGD
TopologyEvolutionStep(-), a function that updates the sparse topology

RetainValidUpdates(-), a function that retain only gradients applicable to the topology defined by

b
Epoch 71 and 13, at which to exit phase one and phase two respectively

Phase 1:
Worker kin [1,...,K]
/* Each worker shuffle its data partition Ir(k) after each local epoch */
while phase == 1 do
Sample a mini-batch B from 7,/
Calculate worker gradient: th(k) = % e W
Send gradients th(k) and time step ¢ to PS
Receive updated model from PS and time step ¢’
Update time step: ¢t = ¢’
end
Parameter server PS
while epoch < 7, do
Receive gradients th(“ and time step ¢ from a ready worker k
Retain valid updates: g = RetainValidUpdates(th(k), oY)
Update model: 8¢+ = 8% + SGDSparseUpdate(g, 1, u)
if t’%(n + B) == 0then
Update sparse topology: 8¢ *' = TopologyEvolutionStep(6?)
Update epoch: epoch = epoch + 1
end
Send updated model 85*' and time step ¢’ to worker k
Update timestep: t’ = t" + 1
end
Switch phase: phase = 2

Phase 2:;
/* Local training of K sparse models that evolve their topology separately */
while epoch < 1, do
Each worker shuffles its data partition It(k>
for kin[1,...,K] in parallel do
Sample a mini-batch B from 7,/

Calculate worker gradient: th(k) = % Sicgk YW/

Update model: 8:1 = 6! + SGDSparseUpdate(th(k), n, 1)
Update sparse topology: 8:*! = TopologyEvolutionStep(6?)
end
Update time step: t=t+1; epoch=epoch+1
end
We get K different models at the end of phase 2
Produce averaged model 87 and select a fraction S of weights with bigger magnitude for each layer
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Algorithm 2: Sparse evolutionary training (SET) with Importance Pruning

Result: Trained sparse model
Input: An ANN model with L layers
Weight 6;, sparsity S
pruning rate ¢, pruning step p, starting pruning epoch 7, and threshold ¢
1 % Sparse initialization;
2 for each fully-connected (FC) layer [ do
\ replace [ with a Sparse Connected Layer having a Erdés-Rényi topology

w

4 end

5 % Training;

6 for each training epoch e do

7 Perform standard training procedure;

8 Perform weights update;

9 ife% p==0and e > 7 then

10 % Perform Importance Pruning;

11 for each SC layer of the ANN do

12 Calculate importance (I) per each neuron;
13 Remove incoming weights of neurons where I < ¢
14 end
15 end

16 % Weight pruning-regrowing cycle;
17 for each SC layer of the ANN do

18 Remove a fraction ¢ of the smallest positive weights;

19 Remove a fraction ¢ of the largest negative weights;

20 Add randomly new weights in the equivalent amount as the one removed previously;
21 end

22 end
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Supplementary Information
From SReLU to All-ReLU
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Figure 7. Average activations distribution for a 3-layers sparse MLP on CIFAR10 trained with ReLU and momentum SGD after
1000 epochs.
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Figure 8. Average activations distribution for a 3-layers sparse MLP on CIFAR10 trained with All-ReLU and momentum SGD
after 1000 epochs.
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Figure 9. Average activations distribution for a 3-layers sparse MLP on CIFAR10 trained with SReLU and momentum SGD
after 1000 epochs.
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Figure 10. Average weighted sum of the inputs distribution for a 3-layers sparse MLP on CIFAR10 trained with ReLU and
momentum SGD after 1000 epochs.
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Figure 11. Average weighted sum of the inputs distribution for a 3-layers sparse MLP on CIFAR10 trained with All-ReLU and
momentum SGD after 1000 epochs.
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Figure 12. Average weighted sum of the inputs distribution for a 3-layers sparse MLP on CIFAR10 trained with SReLU and
momentum SGD after 1000 epochs.
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Figure 13. Left slopw a, distribution for a 3-layers sparse MLP on CIFAR10 trained with SReLU and momentum SGD after
1000 epochs.
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Figure 14. Left slopw a; distribution for a 3-layers sparse MLP on CIFAR10 trained with SReLU and momentum SGD after
1000 epochs.
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Figure 15. Left slopw a, distribution for a 3-layers sparse MLP on CIFAR10 trained with SReLU and momentum SGD after
1000 epochs.
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Figure 16. Input vs Activations for a 3-layers sparse MLP on CIFAR10 trained with SReLU and momentum SGD after 1000
epochs.
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5.2 Finding the Best Slope for All-ReLU
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Figure 17. Grid Search for slope a on FashionMNIST for the proposed All-ReLU activation function. The plot reports the
accuracy on the test dataset when training the various SET MLPs models for 500 epochs. Each run is repeated five times
and averaged to visualize the learning curves.

In this appendix, we illustrate the tuning of the hyperparameter a required by the proposed All-ReLU function
when considering the FashionMNIST dataset. In Figure 17, we report the learning curve for different values of
the slope, averaged over five runs, while in Table 6 are shown the best results in term of accuracy. The best value
of a for training a SET model on FashionMNIST is 0.6. To avoid the expensive grid search, we want to propose a
practical method to narrow down the choices of this parameter. Based on our intuition, we propose to pick the
slope a based on the observed skewness of the input data distribution. When the input is skewed on the left
side, the chosen slope should reflect the level of distortion or asymmetry in the data distribution.

a=0 | a=0.5 a=0.1 a=02 | a=0.25 a=05 a=06 | a=0.75 a=038 a=09

Best accuracy [%] | 90.48 90.86 90.87 90.75 91 91.08 91.38 91.09 91.16 91.02

Table 6. The table reports the best accuracy obtained by the sparse models on the test dataset when adopting All-ReLU for
different values of a.

It is essential to notice that any alpha level greater than 0.05 leads to better results than ReLU. Hence, even
with suboptimal values is possible to attain satisfactory results.
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5.3 Importance Pruning Post-Training
The proposed method Importance Pruning based on our neuron importance metric can be easily applied one
time only, once the sparse training procedure is concluded. With the experiments reported in Table 7, we
empirically demonstrate that the Importance Pruning technique should be integrated during training to gain
the best results in terms of the memory footprint, running time and accuracy.

Dataset Model Accuracy [%] Parameters [#] Pruning thresholdt Results

Accuracy [%] end_n" [#]

Leukemia 86.42 1684944 5t percentile 86.89 1074251
10" percentile 86.69 1034977
15" percentile 85.84 992711
20t percentile 85.84 947981
25 percentile 85.69 901289
Higgs 73.67 50224 5t percentile 73.00 48508
10" percentile 73.16 46693
15t percentile 72.61 44897
20t percentile 72.27 42601
25 percentile 71.51 40491
Madelon 71.33 19006 5% percentile 71.33 18385
10" percentile 72.00 17661
15 percentile 70.33 16883
20" percentile 69.16 16106
25 percentile 65.33 15297
FashionMNIST 91.38 125901 5t percentile 90.66 120894
10" percentile 90.12 115486
15t percentile 89.37 109923
20" percentile 88.7 104158
25t percentile 85.97 98360
CIFAR10 69.83 381758 5t percentile 69.53 368062
10th percentile 68.61 352791
15 percentile 68.38 336968
20" percentile 67.35 320316
25t percentile 66.57 276349

Table 7. On each dataset, we report the classification accuracy obtained by each model on the test data when the pruning
method based on neuron importance is applied solely once at the end of the training procedure. The models employed for
this evaluation are the resulting sparse MLPs from Table 2 trained with All-ReLU and no pruning. Parameters [#] and Model
Accuracy [%] represent, respectively, the number of weights in the model and the final accuracy at the end of the training,
while end_n" represents the number of parameters in the pruned model.

Here, the pruning threshold t is used to remove all neurons and related connection which have animportance
value lower than t. The post-pruning is carried out multiple times for different values of t (pruning threshold)
to observe the loss in accuracy as the threshold increases. If we compare the results with the one obtained in
Table 2 when importance pruning is employed while training, we can notice that we are not able to eliminate
a significant number of parameters without reflecting a remarkable drop in accuracy. Hence, the Importance
Pruning technique has shown to have more advantages if integrated during training.
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Experiments hyperparameters

We primarily used the same configuration of parameters as in the original SET paper (Mocanu et al. (2018)). Like
SET, our methods were also tested on a multilayer perceptron, in which the fully connected layers have been
replaced with sparse layers. The MLP models in subsection 2.2 are trained with sequential momentum SGD
(momentum is set to 0.9), weight decay, a dropout rate of 0.3 and fixed learning schedule. In Table 8 we provide
an overview of the primary hyperparameters. The slope a for All-ReLU has been mostly identified via grid search.
Similarly, the epoch 7, that determines the starting point of Importance Pruning is determined based on a local
search within a limited set of value, and it is set to 200 for all models. The fraction ¢ of the smallest positive
weights and the largest negative weights to be removed is always set to 0.3. Here, € controls the sparsity level
as discussed in Mocanu et al. (2018), n is the learning rate and 8 the batch size. Furthermore, to improve the
learning process of our networks, we standardise the features of our datasets such that each attribute has zero
mean and unit variance. The models in subsection 2.3 employ the same hyperparameters configurations, but
the training procedure is parallelised with WASAP-SGD.

Experiment Dataset Hyper-parameters
e n B Weight initialization «
MLPs Leukemia 10 0.005 5 normal 0.75
Higgs 10 0.01 128  xavier 0.05
Madelon 10 0.01 32 normal 0.5
FashionMNIST 20 0.01 128  he uniform 0.6
CIFAR1O 20 0.01 128  he uniform 0.75

Table 8. List of hyperparameters used for the experiments.
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