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Abstract. Fiber-top cantilevers are new monolithic devices obtained by carving a 
cantilever out of the edge of a single-mode optical fiber. Here we report evidences of 
their potential impact as sensing devices for multipurpose applications. 
©2006 Optical Society of America 
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1. Fiber-top cantilevers: description of the design 

 

Micromachined cantilevers are commonly used for a wide variety of applications, such as atomic force 
microscopy [1], selective detection of chemicals or biological species [2-4], monitor of chemical and 
physical parameters [5,6], et cetera. These devices rely on the possibility to measure the mechanical 
deformation of the cantilever in response to certain external events. Measurements of the deflection of the 
cantilever can be performed by means of either electronic or optical readouts (see references in [7]). 
Electronic readouts are not always compatible with the surroundings (e.g., conductive liquids, explosive 
gases, high and low temperatures, et cetera). Optical readouts are more versatile, in that they can be used, in 
principle, in any (optically transparent) medium. However, they typically require an accurate procedure for 
the alignment of the optical equipment, a major disadvantage for non-skilled users and for applications in 
small environments, where there is no room for manipulators or translational stages.  

Our group has recently introduced a new concept for the implementation of monolithic cantilevers with 
plug-and-play optical readout: the fiber-top cantilever [7,8]. In Fig. 1.a we report a scanning electron 
microscope image of one of these devices. Fiber-top cantilevers are obtained by carving a thin rectangular 
beam directly at the center of the cleaved edge of a single-mode optical fiber. The cantilever is integral part 
of the optical fiber, robustly anchored to it, and already aligned with its core. Deflections of the cantilever 
can be inferred by coupling light into the fiber and measuring the amplitude of the interference signal 
obtained from the superimposition of the light reflected by the fiber-to-air interface with that reflected by 
the cantilever itself [7]. 

In this paper, we will briefly review the fabrication procedure, the readout technique, and the results 
obtained so far by our group in the development of fiber-top devices for multipurpose applications. 

 
Fig. 1. (a) Scanning electron microscope image of a fiber-top cantilever equipped with a pyramidal tip. (b) Schematic view of the 

readout apparatus: L=laser, PD=photodiode, (i)=fiber-to-air interface, (ii)=air-to-cantilever interface, (iii)=cantilever-to-air interface.   
 
2. Fabrication and readout apparatus 

 

Fabrication of fiber-top cantilevers [7,8] is currently based on focus ion beam (FIB) milling. The machining 
steps are illustrated in Fig. 2. The cleaved edge of a single-mode optical fiber (cladding=125 µm, core=9 
µm), stripped of its jacket and coated with a thin metallic film (5 nm of Cr and 20 nm of Pd), is first 
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machined in the form of a rectangular ridge (Fig 2a and 2b). The ridge is then carved in the form of a thin 
rectangular beam, suspended over the center of the fiber by means of an anchor post positioned at one of its 
ends (Fig. 2e and 2f). For utilization in scanning probe measurements (or other applications that might 
require it), it is also possible to fabricate a sharp pyramidal tip at the hanging end of the cantilever (Fig. 2c 
and 2f). The dimensions of the cantilever can be greatly varied according to the application for which they 
serve. We refer the reader to [8] for more details on the fabrication procedure. 
 

 
Fig. 2. Schematic view of the focused ion beam milling steps followed for the fabrication of fiber top cantilevers. The arrows indicate 

the direction of the ion beam with respect to the orientation of the fiber. 
 

In order to measure the vertical displacement of the cantilever, the optical fiber is connected to the 
readout apparatus sketched in Fig. 1.b [7]. The light of an infrared laser (wavelength λ=1.31 µm), coupled 
to the fiber, is partially reflected at the fiber-to-air, air-to-cantilever, and cantilever-to-air interfaces. While 
propagating backwards, the three signals pass through an optical fiber coupler that transmits 50% of the 
light to another fiber aligned with an infrared photodiode. As a result of the interference of the three 
signals, the output of the photodiode is given by [7]: 
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where W0 is the midpoint output, V is the fringe visibility, f is a constant that depends on the thickness of 
the cantilever, and d is the distance between the fiber-to-air and the cantilever-to-air interfaces [7]. It is thus 
clear that the deflection of the cantilever can be measured by monitoring the output signal of the 
photodiode. 
 

3. Proof-of-concept experiments 

 

For a first series of tests, a tip-less fiber-top cantilever (length≈112 µm, width≈14 µm, thickness≈3.7 µm) 
was coated with a 100 nm thick metallic layer by means of thermal evaporation. Fig. 3.a shows the output 
signal of the readout apparatus upon mechanical deformation the cantilever [7]. Roughly 800 ms after 
starting data acquisition, a tip was brought to contact with the edge of the fiber. The first spike in the trace 
corresponds to the approaching movement. The cantilever was then left in contact position for 500 ms, as 
indicated by the flat part of the signal between the two spikes. Finally, the tip was retracted (second spike 
of the trace), allowing the cantilever to go back to its initial position (flat signal after 1.5 s). This 
experiment demonstrates that the device can be used as an optomechanical transducer. 

 
Fig 3. (a) Output signal of the readout apparatus obtained in correspondence of mechanical contact of a metallized fiber-top cantilever 

with an external object. The drawings illustrate the position of the object and of the cantilever before contact, at contact, and after 
contact. (b) Vertical displacement of the same fiber-top cantilever induced by thermal expansion of the metallic coating layer upon 

heating. Inset: output signal of the readout apparatus obtained in the same experiment. 
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In the inset of Fig. 3.b we report the output signal of the readout apparatus as a function of the 
temperature of the same fiber-top cantilever [7]. In this case, the deflection of the cantilever was caused by 
the different thermal expansion of the metallic coating on the silica cantilever (bimorph effect). The rms 
noise of the output signal at room temperature, measured with a digital oscilloscope (bandwidth DC-400 
MHz) over a 0.2 s time interval, was ≈3.5 mV. This value corresponds to a displacement sensitivity in 
quadrature of ≈4 Å [7], which is comparable with that achievable with commonly used cantilever-based 
devices. For a better visualization of the data, using Eq. 1 we have converted the amplitude of the 
photodiode signal to the correspondent vertical displacement of the cantilever. The results are reported in 
Fig. 3.b. This experiment proves that fiber-top cantilevers are still well-functioning at very high 
temperatures, and suggests the use of bimorph fiber-top cantilevers as temperature sensors and infrared 
detector systems. 

A similar fiber-top cantilever [9] was coated with a ≈150 nm thick palladium film and mounted inside 
a ≈10 cm3 chamber. The chamber was flushed with a hydrogen-argon mixture (5% hydrogen, 250ml/min 
flow, ≈10.5 minutes exposure) and then with an oxygen-argon mixture (20% oxygen, 250ml/min flow, 
≈10.5 minutes exposure). In Fig. 4.a and 4.b we report the output signal of the readout apparatus as 
recorded during gas circulation and the corresponding cantilever vertical deflection as extracted by means 
of Eq. 1. It is evident that, during hydrogen exposure, hydrogenation of the palladium layer causes large 
deflections of the cantilever; during oxygen exposure, the release of hydrogen from the palladium film 
brings the cantilever back to its original position. This experiment demonstrates that fiber-top cantilevers 
can be successfully used for selective hydrogen detection. More generally, changing the coating layer, one 
can obtain different chemical or biological sensors.  

 
 

 
Fig. 4. (a) Signal of the readout apparatus obtained with a palladium-coated fiber-top cantilever when exposed first to hydrogen (open 
circles) and then to oxygen (closed circles). (b) Vertical displacement of the same fiber-top cantilever as a function of time as obtained 

by elaborating the data of Fig. 4. a by means of Eq. 1. 
 
4. Conclusions 

 

Fiber-top cantilevers represent an interesting alternative to commonly used cantilever-based 
instrumentation. The monolithic structure of the device (which completely eliminates any problem 
associated to the alignment of the optical components of the readout apparatus) and the absence of 
electronic contacts on the sensing head make this design the ideal solutions to all those situations in which 
sensors must operate in small volumes and/or in the presence of harsh conditions. Furthermore, the 
performances of a fiber-top cantilever are not inferior to those achieved by similar commercially available 
devices: its simplicity facilitates plug-and-play utilization, a detail that might be preferred by users who are 
not used to operate with complicated optical or electronic readouts. It is thus reasonable to envision 
applications of fiber-top cantilevers in standard environments as well. 

A large variety of instruments can be implemented on the basis of fiber-top design. Our group is now 
exploring the possibility to develop fiber-top cantilevers or other fiber-top micromachined devices for 
measurements of liquid flows, vibrations, pH, material stiffness, surface forces, biological and chemical 
species, magnetic and electric fields, temperature, surface topography, et cetera. We are investigating 
procedures to fabricate biocompatible fiber-top sensors for utilization in the human body as well. Other 
fabrication methods to reduce the production costs and time are also under investigation. 
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