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a b s t r a c t

Part I of this paper presented a systematic derivation of the Stokes–Dirac structure
underlying the port-Hamiltonian model of ideal fluid flow on Riemannian manifolds.
Starting from the group of diffeomorphisms as a configuration space for the fluid, the
Stokes–Dirac structure is derived by Poisson reduction and then augmented by boundary
ports and distributed ports. The additional boundary ports have been shown to appear
naturally as surface terms in the pairings of dual maps, always neglected in standard
Hamiltonian theory. The port-Hamiltonian model presented in Part I corresponded only
to the kinetic energy of the fluid and how its energy variables evolve such that the
energy is conserved.

In Part II, we utilize the distributed port of the kinetic energy port-Hamiltonian
system for representing a number of fluid-dynamical systems. By adding internal energy
we model compressible flow, both adiabatic and isentropic, and by adding constraint
forces we model incompressible flow. The key tools used are the interconnection maps
relating the dynamics of fluid motion to the dynamics of advected quantities.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In Part II of this paper, we present the port-Hamiltonian models of a number of fluid dynamical systems on general
iemannian manifolds. We start from the velocity representation of the port-Hamiltonian model describing the evolution
f the kinetic energy of the fluid. The explicit dynamical equations, derived in Part I and repeated here for the reader’s
onvenience, were given in terms of the kinetic energy state variable xk = (ṽ, µ) ∈ X = s∗ by(

˙̃v

µ̇

)
=

(
−d(δµHk) − ιvdṽ

−d(δṽHk)

)
+

( 1
∗µ

0

)
fs, (1)

ωv =

(
1

∗µ
0
)(

δṽHk
δµHk

)
, (2)

Hk(xk) =Hk(ṽ, µ) =

∫
M

1
2
(∗µ)ṽ ∧ ∗ṽ. (3)
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Table 1
Summary of interconnection maps for the advected quantities: mass form µ ∈ Ωn(M) and entropy
function s ∈ Ω0(M). Their associated dual elements are denoted by µ̄ ∈ Ω0(M) and s̄ ∈ Ωn(M),
respectively.
Advected quantity (a) Advection space (V ∗) ϕ̃a(ω) ϕ̃∗

a (ā) ηϕ̃a (ω, ā)

Mass form (µ) Ωn(M) Lω̂µ −(∗µ)dµ̄ −(∗µ)ω ∧ µ̄

Entropy (s) Ω0(M) Lω̂s (∗s̄)ds 0

The variational derivatives δṽHk ∈ Ωn−1(M) and δµHk ∈ Ω0(M) with respect to the states ṽ ∈ g∗
= Ω1(M) and

∈ V ∗
= Ωn(M), respectively, are given by

δṽHk = (∗µ) ∗ ṽ = ιvµ, δµHk =
1
2
ιv ṽ. (4)

It was shown in Part I, that the port-Hamiltonian system (3) can be represented by a kinetic energy storage port
in addition to two open ports that can be interconnected to other systems. Namely, the boundary port (e∂k, f∂k) =

( 12 ιv ṽ|∂M , −ιvµ|∂M ) ∈ Ω0(∂M) × Ωn−1(∂M) and the distributed port (ed, fd) = (fs, ωv) ∈ g∗
× g = Ω1(M) × Ωn−1(M). The

kinetic energy Hamiltonian Hk satisfies the power balance

Ḣk =

∫
∂M

e∂k ∧ f∂k +

∫
M
ed ∧ fd, (5)

stating that the change in kinetic energy is due to the sum of added power due to mass inflow through the boundary port
or due to the stress forces through distributed port.

The three ports of the port-Hamiltonian system (3) were connected via the underlying Stokes–Dirac structure given
by

D̃k = {(fsk,f∂k, fd, esk, e∂k, ed) ∈ Bk|(
fṽ
fµ

)
=

(
deµ +

1
∗µ

ιêṽdṽ
deṽ

)
−

( 1
∗µ

0

)
ed,

fd =

(
1

∗µ
0
)(eṽ

eµ

)
,(

e∂k
f∂k

)
=

(
0 1

−1 0

)(
eṽ|∂M
eµ|∂M

)
}.

(6)

So far we have deliberately considered only storage of kinetic energy in the fluid system and neglected poten-
ial/internal energy. In part II of this paper, we discuss how the port-Hamiltonian system (1)–(3) will be extended to
epresent physically meaningful fluid dynamic systems. Namely, isentropic and adiabatic compressible flow as well as
ncompressible flow, extending the work of [9,10] which treated isentropic compressible by manipulating the classical
uler equations into a port-Hamiltonian form.
The key tool that will allow relating the advected quantities dynamics defined on V ∗

×V to the distributed port defined
n g × g∗ will be the interconnection maps

ϕ̃a : g → V ∗

ω ↦→ ϕ̃a(ω) := Lω̂a,
,

ϕ̃∗

a : V → g∗

ā ↦→ ϕ̃∗

a (ā),
(7)

ntroduced in Proposition 3.1 of Part I, and summarized in Table 1. The primary map ϕ̃a and its dual ϕ̃∗
a are related to

ach other by⟨
ϕ̃∗

a (ā)
⏐⏐ω⟩

g
= ⟨ ā| ϕ̃a(ω)⟩V∗ +

∫
∂M

ηϕ̃a (ω, ā)|∂M . (8)

The remainder of this paper is organized as follows. In Section 2, we demonstrate how the distributed port will be
tilized to add internal energy for developing port-Hamiltonian models for isentropic and adiabatic compressible flow.
hen, we follow the same procedure to add constraint forces to develop a port-Hamiltonian model for incompressible
low in Section 3. Finally, we conclude this article in Section 4.

. Port-Hamiltonian modeling of compressible flow

The distributed force fs present in the model (1) originates physically from the random motion and collisions of the
olecules that comprise the fluid. The force fs is defined through averaging the momentum transfer of a large group of
olecules over a short time scale, compared to the macroscopic motion of the fluid encoded by the vector field v. Thus,

he transfer of momentum on the microscopic scale is equivalent to the continuous force fs acting at each point in the
patial domain M at the macroscopic scale.
2
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There are two types of basic forces due to the microscopic motion of the fluid; pressure forces and viscous friction
orces. Both pressure and viscous forces are forces of stress. In this work, we will consider ideal flow, and thus model
pressure forces only, while modeling the viscous forces is an issue of future work.

The molecular kinetic and vibration energy is encoded, at the macroscopic scale, as a continuous function Ū := ρU ∈

C∞(M), called the internal energy density, where ρ is the mass density function, and U is the specific internal energy
(i.e. per unit mass). The first law of thermodynamics states that the internal energy Ū is conserved only if the system is
isolated, i.e. does not interact with its surrounding. The internal energy of a system changes if there is transfer of mass
and heat to or from the system, and by work done on or by the system.

The specific internal energy U(ν, s) depends on the fluid’s specific volume ν = 1/ρ ∈ C∞(M) and the fluid’s specific
entropy s ∈ C∞(M). The differential of the internal energy dU ∈ Ω1(M) is given by the famous Gibbs equation

dU(ν, s) = −pdν + Tds, (9)

where Tds corresponds to the heat exchanged per unit mass, and pdν corresponds to the mechanical work done by the
fluid system due to pressure forces. Note that from (9) we have that

∂U
∂ν

= −p,
∂U
∂s

= T , (10)

re the components of the one-form dU .
A more convenient form of Gibbs equation is given by

dU(ρ, s) =
p
ρ2 dρ + Tds, (11)

which follows from the chain rule ∂U
∂ρ

=
∂U
∂ν

∂ν
∂ρ

= p/ρ2. The relation between the pressure p, specific internal energy U
nd the mass density, given by

p = ρ2 ∂U
∂ρ

, (12)

s known as the equation of state of the fluid, which should be specified for a choice of fluid.
Another useful thermodynamic variable is the specific enthalpy h ∈ C∞(M), related to the internal energy by the

Legendre transformation. The enthalpy can be expressed as

h = U +
p
ρ

= U + ρ
∂U
∂ρ

=
∂

∂ρ
(ρU), (13)

here the second equality follows from (12), while the last equality follows from the chain rule. In terms of the enthalpy,
he Gibbs equation becomes

dh(ρ, s) =
dp
ρ

+ Tds. (14)

In general, the specific entropy function st ∈ C∞(M) is not an advected quantity. However, in the case of adiabatic
compressible flow, st is advected with the flow. Thus, it satisfies

∂

∂t
st + Lvst = 0. (15)

A consequence of the entropy conservation (15), is that if the entropy is homogeneous in space initially (i.e. s0(x0) = s0
s constant) then it remains constant in space for all time (i.e. st (x) = s0, ∀t > 0, x ∈ M), and thus ds = 0. In such case,
he compressible flow is called isentropic and the specific internal energy U(ρ) depends on the density ρ only. Therefore,
he two forms of Gibbs Eqs. (9) and (14) become

dU(ρ) =
p
ρ2 dρ, dh(ρ) =

dp
ρ

. (16)

Next, we show how to systematically represent the pressure forces using the distributed force fs in (1) acting on an
infinitesimal fluid element at a point in M . For ease of presentation, we first consider the case of isentropic flow, followed
by the slightly more general case of adiabatic flow, describing a fluid with no irreversible thermodynamic phenomena,
but in which the advected entropy function st , might not be constant in space.

2.1. Isentropic compressible flow

In the port-Hamiltonian system (1) in which only kinetic energy is present, the distributed port (ed, fd) could be used
o add storage of internal energy of the fluid. The storage of the fluid’s total internal energy Hi(µ) is represented by a
torage element with state manifold X = V ∗

= Ωn(M) and its corresponding state variable x = µ being the mass form.
i i

3
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The internal energy Hamiltonian Hi : Xi → R is given by

Hi(µ) =

∫
M
U(∗µ)µ, (17)

where U(∗µ) = U(ρ) is the specific internal energy introduced earlier.
The effort and flow variables of the internal energy storage element are given by

δµHi ∈ T ∗

xiXi ∼= V = Ω0(M), µ̇ ∈ TxiXi ∼= V ∗
= Ωn(M), (18)

where δµHi is given by the following result.

Proposition 2.1. The variational derivative of the Hamiltonian functional Hi : V ∗
→ R in (17) with respect to µ ∈ V ∗

=

Ωn(M), denoted by δµHi ∈ V = Ω0(M), is equal to the enthalpy function (13):

δµHi = h ∈ C∞(M). (19)

Proof. The variational derivative δµHi ∈ C∞(M) is defined implicitly as the function satisfying⟨
δµHi

⏐⏐ δµ⟩V∗ =
d
dϵ

⏐⏐⏐⏐
ϵ=0

Hi(µ + ϵδµ), (20)

or any ϵ ∈ R and δµ ∈ Ωn(M). For notational simplicity, we introduce µϵ := µ + ϵδµ ∈ Ωn(M), ρ := ∗µ ∈ C∞(M), and
δρ := ∗δµ ∈ C∞(M). Consequently, we have that ρϵ := ρ + ϵδρ = ∗µϵ , as well as

d
dϵ

⏐⏐⏐⏐
ϵ=0

µϵ = δµ. (21)

Using (17), (21), and the Leibniz rule, we can rewrite (20) as∫
M

δµHi ∧ δµ =

∫
M

d
dϵ

⏐⏐⏐⏐
ϵ=0

(U(∗µϵ) ∧ µϵ) =

∫
M

d
dϵ

⏐⏐⏐⏐
ϵ=0

U(∗µϵ) ∧ µϵ + U(∗µϵ) ∧
d
dϵ

⏐⏐⏐⏐
ϵ=0

µϵ,

=

∫
M

d
dϵ

⏐⏐⏐⏐
ϵ=0

U(∗µϵ) ∧ µϵ + U(∗µ) ∧ δµ. (22)

ince U : C∞(M) → C∞(M) is a function on C∞(M), its derivative dU
dρ (ρ) ∈ C∞(M) is defined implicitly as the function

atisfying

dU
dρ

(ρ) · δρ =
d
dϵ

⏐⏐⏐⏐
ϵ=0

U(ρϵ). (23)

By substituting (23) into (22), we get∫
M

δµHi ∧ δµ =

∫
M

dU
dρ

(ρ) · δρ ∧ µ + U(ρ) ∧ δµ. (24)

sing the equality δρ ∧ µ = δρ · ρ ∧ µvol = ρ · δρ ∧ µvol = ρ · ∧δµ, we can rewrite (24) as∫
M

δµHi ∧ δµ =

∫
M
(
dU
dρ

(ρ) · ρ + U(ρ)) ∧ δµ. (25)

herefore, using the chain rule, we have that

δµHi =
dU
dρ

(ρ) · ρ + U(ρ) =
d
dρ

(ρ · U(ρ)), (26)

hich is equal to the enthalpy as defined by (13). Note that in case U is a multi-variable function of ρ, the derivative dU
dρ

in this proof is replaced by a partial derivative. ■

The Hamiltonian Hi satisfies the power balance

Ḣi =
⟨
δµHi

⏐⏐ µ̇⟩V∗ . (27)

ince the flow does not exchange heat with its surrounding, any change in the internal energy of the system is caused
y the transformation of kinetic energy (if we assume there is no mass-flow through the boundary). The power incoming
he internal energy storage element

⟨
δµHi

⏐⏐ µ̇⟩V∗ is then equal to the power outcoming the distributed port of the kinetic
nergy subsystem, i.e.⟨

δµHi
⏐⏐ µ̇⟩V∗ = −⟨ ed| fd⟩g = ⟨ fs| − ωv⟩g , (28)

s shown in Fig. 1.
4
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Fig. 1. Augmenting the kinetic energy system (1) with the storage of internal energy through the distributed port (ed, fd). The model corresponds
to isentropic compressible flow on a manifold without boundary. The Bond graph (top) and block diagram (bottom) representations are shown.

However, to interconnect the internal energy storage port to the kinetic energy distributed port they should be
compatible. Their incompatibility lies in the fact that (δµHi, µ̇) ∈ V × V ∗ while (ed, fd) ∈ g × g∗ by their definitions.
The key to connecting these two ports is related to the semi-direct product structure of g and V , and more precisely the
interconnection maps (7). For simplicity, we first introduce the idea of interconnecting the two ports assuming M has no
boundary, then we consider the general case with the boundary port variables.

The two ports are made compatible by the use of a power-conserving transformation that relates the efforts of the
two ports to each other, and relates the flows of the two ports to each other. In the bond graph in Fig. 1, the modulated
transformer element MTF implements the map(

ed
µ̇

)
=

(
0 ϕ̃∗

µ

ϕ̃µ 0

)(
−fd
δµHi

)
, (29)

where the map ϕ̃µ : g → V ∗ and its dual ϕ̃∗
µ : V → g∗ are given in Table 1 for µ as the advected parameter (i.e,

= µ ∈ V ∗). The minus sign next to fd in (29) is due to the zero junction in Fig. 1, used to represent the power inversion
from inflow to outflow) given by

⟨ ed| fd⟩g = −⟨ ed| − fd⟩g . (30)

Both the zero-junction and the MTF combined represent a power-conserving Dirac structure Dis, given by the image
f the map Jis : s → s∗, as illustrated in Fig. 1. The Dirac structure Dis is modulated by the mass form µ (as a state of
dvected quantity), and its power-preserving property is clearly visible by the skew-symmetry of the map Jis.
Now we show that the previous energy-based construction correctly models compressible isentropic flow. Consider

he following equalities

⟨ fs| − ωv⟩g =
⟨
ϕ̃∗

µ(δµHi)
⏐⏐− ωv

⟩
g
=
⟨
δµHi

⏐⏐ ϕ̃µ(−ωv)
⟩
V∗ =

⟨
δµHi

⏐⏐ µ̇⟩V∗ = Ḣi, (31)

hich follows using (29) and the port variables definitions. Therefore, using the expressions of ϕ̃µ and ϕ̃∗
µ in Table 1, we

ave that

µ̇ = ϕ̃µ(−ωv) = −ϕ̃µ(ωv) = −Lω̂vµ = −Lvµ, (32)

fs = ϕ̃∗

µ(δµHi) = −(∗µ)d(δµHi) = −(∗µ)dh = −dp. (33)

herefore, (32) correctly represents the evolution of µ as being advected with the flow, while (33) correctly represents
he stress forces due to pressure applied within M [1, pg. 588].

Now in case M has a permeable boundary, the pairing equality (31) is no loner valid and should be augmented with
surface term ηϕ̃µ from (8). In this case, using the expression of ηϕ̃µ in Table 1, (31) is rewritten as

⟨ fs| − ωv⟩g =
⟨
ϕ̃∗

µ(δµHi)
⏐⏐− ωv

⟩
g
=
⟨
δµHi

⏐⏐ ϕ̃µ(−ωv)
⟩
V∗ +

∫
∂M

−(∗µ)(−ωv)|∂M∧δµHi|∂M

=
⟨
δµHi

⏐⏐ µ̇⟩V∗ +

∫
∂M

h|∂M∧(∗µ)ωv|∂M= Ḣi +

∫
∂M

h|∂M∧ιvµ|∂M . (34)

By defining the boundary port variables e∂ i := h|∂M= δµHi|∂M and f∂ i := ιvµ|∂M , the pairing equality (34) becomes

⟨ fs| ωv⟩g + Ḣi +

∫
e∂ i ∧ f∂ i = 0. (35)
∂M

5
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Fig. 2. Augmenting the kinetic energy system (1) with the storage of internal energy through the distributed port (ed, fd). The model corresponds
to compressible isentropic flow on a general manifold with permeable boundary.

Therefore, as shown in Fig. 2, the interconnection to model isentropic flow is achieved by the Dirac structure Dis given
by

Dis = {(fsi,f∂ i, fd, esi, e∂ i, ed) ∈ Bis|(
ed
fsi

)
=

(
0 ϕ̃∗

µ

−ϕ̃µ 0

)(
fd
esi

)
,(

e∂ i
f∂ i

)
=

(
1 0
0 ∗µ|∂M

)(
esi|∂M
fd|∂M

)
},

(36)

here the bond-space Bis = Fis × Eis is the product space of the flow space Fis = Ωn(M) × Ωn−1(∂M) × Ωn−1(M) and
the effort space Eis = Ω0(M) × Ω0(∂M) × Ω1(M). The Dirac structure (36) is modulated by the mass form µ ∈ V ∗, and
ncodes the power balance

⟨ ed| fd⟩g + ⟨ esi| fsi⟩V∗ +

∫
∂M

e∂ i ∧ f∂ i = 0,

hich is equivalent to (35) by setting the ports of Dis by

(µ̇, ιvµ|∂M , ωv, δµHi, h|∂M , fs) ∈ Dis,

s illustrated in Fig. 2, and thus restoring (32) and (33).
In conclusion, the port-Hamiltonian model for compressible isentropic flow consists of two storage elements for kinetic

nd internal energy, two boundary ports (e∂k, f∂k) and (e∂ i, f∂ i) representing power through the boundary of M due to mass
nflow, and all the remaining power conserving elements that allow the interconnection of the aforementioned ports,
hown in Fig. 2.
It is interesting to combine all the energy storage elements into one as well as combine all the power conserving

lements to a new Stokes–Dirac structure Dc,i, as shown in Fig. 3. The new storage element has its state variables
t = (ṽ, µ) and its Hamiltonian Ht given by the total energy of the system (the sum of kinetic and internal), i.e,

Ht (ṽ, µ) = Hk(ṽ, µ) + Hi(µ) =

∫
M

1
2
(∗µ)ṽ ∧ ∗ṽ + U(∗µ)µ, (37)

with flow and effort variables

ẋt =

(
˙̃v

µ̇

)
, δxtHt =

(
δṽHt
δµHt

)
=

(
ιvµ

1
2 ιv ṽ + h

)
. (38)

he new energy balance for Ht is given by the following result.

roposition 2.2. The rate of change of the total Hamiltonian Ht , given by (37), along trajectories of its state variables
t = (ṽ, µ) is expressed as

Ḣt =

∫
∂M

e∂ ∧ f∂ , (39)

here the new boundary port variables (e∂ , f∂ ) ∈ Ω0(∂M) × Ωn−1(∂M) are defined by

e∂ := δµHt |∂M= (
1
2
ιv ṽ + h)|∂M , f∂ := −δṽHt |∂M= −(ιvµ)|∂M . (40)
6
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Fig. 3. Port-based representation of Euler equation (42) of compressible isentropic flow.

Proof. By starting from the energy balance for Ḣk in (5) and using the equality (35), we have that

Ḣk =

∫
∂M

e∂k ∧ f∂k +

∫
M
ed ∧ fd =

∫
∂M

1
2
ιv ṽ|∂M∧ − ιvµ|∂M+ ⟨ fs| ωv⟩g

=

∫
∂M

1
2
ιv ṽ|∂M∧ − ιvµ|∂M−

⟨
δµHi

⏐⏐ µ̇⟩V∗ −

∫
∂M

e∂ i ∧ f∂ i

=

∫
∂M

1
2
ιv ṽ|∂M∧ − ιvµ|∂M−Ḣi −

∫
∂M

h|∂M∧ιvµ|∂M

=

∫
∂M

(
1
2
ιv ṽ + h)|∂M∧ − ιvµ|∂M−Ḣi.

hus, we have that

Ḣt = Ḣk + Ḣi =

∫
∂M

(
1
2
ιv ṽ + h)|∂M∧ − ιvµ|∂M ,

which concludes the proof using (40). ■

Physically the boundary effort variable e∂ is known as the stagnation or total enthalpy at the boundary, while the
boundary flow variable f∂ represents the mass inflow through the boundary. The power in the port (e∂ , f∂ ) represents the
nergy change due to the exchange of mass flow between the isentropic compressible flow system and its surroundings.
The overall Stokes–Dirac structure Dc,i for isentropic compressible flow that implements the power balance in (39) is

iven by

Dc,i = {(fs, f∂ , es, e∂ ) ∈ Bc,i|(
fṽ
fµ

)
=

(
deµ +

1
∗µ

ιêṽdṽ
deṽ

)
,(

e∂

f∂

)
=

(
0 1

−1 0

)(
eṽ|∂M
eµ|∂M

)
},

(41)

here the total storage port variables are given by fs = (fṽ, fµ) ∈ s∗ and es = (eṽ, eµ) ∈ s. The bond-space is
now given by Bc,i = Fc,i × Ec,i, with the flow space Fc,i = Ω1(M) × Ωn(M) × Ω0(∂M) and the effort space Ec,i =

Ωn−1(M) × Ω0(M) × Ωn−1(∂M).
The port-Hamiltonian dynamics for compressible isentropic flow is then recovered by setting ((−˙̃v, −µ̇), f∂ , (δṽ

Ht , δµHt ), e∂ ) ∈ Dc,i, which yields(
˙̃v

µ̇

)
=

(
−d(δµHt ) − ιvdṽ

−d(δṽHt )

)
, (42)

Ht (xt ) =Ht (ṽ, µ) =

∫
M

1
2
(∗µ)ṽ ∧ ∗ṽ + U(∗µ)µ. (43)

here the variational derivatives of Ht are given by (38), and the boundary conditions are specified by the boundary
ort-variables (e∂ , f∂ ) given by (40).
Finally we conclude by some remarks about the Dirac structure (41) derived in this section. First, this is exactly the

irac structure which was just defined as a fundamental object in [10]. Here the geometrical structure that underpins
his object has been rigorously explicated.

Second, the Dirac structure Dc,i given by (41) is modulated by the state variables (ṽ, µ). An interesting case occurs
when the 2-form dṽ =: ω ∈ Ω2(M) is zero ∀t . In such case, the term ι dṽ in (41) vanishes and the Dirac structure
v
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becomes a constant one in the bond space Bc,i. The 2-form ω is known as the vorticity form which is also advected with
the flow in ideal fluid flow [1, Pg. 596]. Therefore, if the vorticity form is zero at t = 0, it remains zero for all t > 0. Such
type of fluid flow is called irrotational flow.1

Third, compared to the Dirac structure of the kinetic subsystem in (6), the overall Dirac structure (41) is exactly the
same (if we exclude the distributed port). This equivalence is due to the fact that both systems have the same state
variables (ṽ, µ), but only differ in the Hamiltonian function which is independent from the underlying structure of the
system. This underlying structure composed of the external boundary port variables combined with the Lie–Poisson
structure which governs the evolution equations of (ṽ, µ) independent of the Hamiltonian energy function.

2.2. Adiabatic compressible flow

Following the same line of thought as for the isentropic case, we can also extend the kinetic energy port-Hamiltonian
system using the distributed port (ed, fd) to model adiabatic flow. The exact same procedure is applied for the internal
energy storage element but for the extended state variable xi = (µ, s) ∈ Xi = V ∗. Both the energy variables (µ, s) are
dvected quantities of the fluid. Thus the space of advected quantities in this case is V̄ ∗

= Ωn(M) × Ω0(M).
The internal energy Hamiltonian Hi : Xi → R is now given by

Hi(µ, s) =

∫
M
U(∗µ, s)µ, (44)

here the specific internal energy U(∗µ, s) = U(ρ, s) depends now on entropy as well.
The effort and flow variables of the internal energy storage element are given by

δxiHi =

(
δµHi
δsHi

)
∈ T ∗

xiXi ∼= V̄ = Ω0(M) × Ωn(M),

ẋi =

(
µ̇

ṡ

)
∈ TxiXi ∼= V̄ ∗

= Ωn(M) × Ω0(M).
(45)

The variational derivative of Hi with respect to µ is given by Proposition 2.1 while the variational derivative of Hi with
respect to s is given by

δsHi =
∂U
∂s

µ = Tµ, (46)

sing (10). The internal energy Hi satisfies now the power balance

Ḣi =
⟨
δxiHi

⏐⏐ ẋi⟩V̄∗ =
⟨
δµHi

⏐⏐ µ̇⟩V∗ + ⟨δsHi| ṡ⟩V∗ . (47)

With reference to Fig. 4, the Dirac structureDad used for connecting the internal energy port (δxiHi, ẋi) to the distributed
ort (ed, fd) is given by

Dad = {(fsi,f∂ i, fd, esi, e∂ i, ed) ∈ Bad|(
ed
fsi

)
=

(
0 ϕ̃∗

(µ,s)
−ϕ̃(µ,s) 0

)(
fd
esi

)
,(

e∂ i
f∂ i

)
=

(
1 0 0
0 0 ∗µ|∂M

)(eµ|∂M
es|∂M
fd|∂M

)
},

(48)

here fsi := (fµ, fs) ∈ V̄ ∗
= Ωn(M) × Ω0(M) and esi := (eµ, es) ∈ V̄ = Ω0(M) × Ωn(M), (f∂ i, e∂ i) ∈ Ω0(∂M) × Ωn−1(∂M),

nd (ed, fd) ∈ Ω1(M)×Ωn−1(M). The bond-space Bad is then given by the product of the aforementioned spaces of forms.
The map ϕ̃(µ,s) : g → V̄ ∗ and its dual ϕ̃∗

(µ,s) : V̄ → g∗ are defined, respectively, for any ω ∈ g and (eµ, es) ∈ V̄ as

ϕ̃(µ,s)(ω) :=

(
ϕ̃µ(ω)
ϕ̃s(ω)

)
, ϕ̃∗

(µ,s)(eµ, es) = ϕ̃∗

µ(eµ) + ϕ̃∗

s (es), (49)

which allows one to rewrite the first equation in (48) as(ed
fµ
fs

)
=

⎛⎝ 0 ϕ̃∗
µ ϕ̃∗

s
−ϕ̃µ 0 0
−ϕ̃s 0 0

⎞⎠( fd
eµ

es

)
. (50)

For the choice of µ and s as the advected parameters, the maps ϕ̃µ, ϕ̃s and ϕ̃∗
µ, ϕ̃∗

s are given in Table 1.
The power balance that the Dirac structure Dad encodes is given by the following result.

1 In [10] it is erroneously remarked that the term ι dṽ also vanishes in two-dimensional flow, which is not the case.
v
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Fig. 4. Compressible adiabatic flow on a general manifold with permeable boundary. Top figure shows how to augment the kinetic energy system
1) with the storage of internal energy, while the bottom figure shows a compact model with a combined storage element, Dirac structure, and
oundary port.

roposition 2.3. The Dirac structure Dad given by (48) is a power continuous structure, such that

⟨ ed| fd⟩g + ⟨ esi| fsi⟩V̄∗ +

∫
∂M

e∂ i ∧ f∂ i = 0. (51)

roof. Using (48)–(50), we have that

⟨ ed| fd⟩g =
⟨
ϕ̃∗

µ(eµ)
⏐⏐ fd⟩g +

⟨
ϕ̃∗

s (es)
⏐⏐ fd⟩g

=
⟨
eµ

⏐⏐ ϕ̃µ(fd)
⟩
V∗ +

∫
∂M

ηϕ̃µ (fd, eµ) + ⟨ es| ϕ̃s(fd)⟩V∗ +

∫
∂M

ηϕ̃s (fd, es)

=
⟨
eµ

⏐⏐− fµ
⟩
V∗ −

∫
∂M

(∗µfd)|∂M∧eµ|∂M+ ⟨ es| − fs⟩V∗ + 0,

= −⟨ esi| fsi⟩V̄∗ −

∫
∂M

e∂ i ∧ f∂ i,

hich follows from (8) and the interconnection map expressions (and their corresponding surface terms) in Table 1. ■

With reference to Fig. 4, the Dirac structure Dad is used to model adiabatic compressible flow by setting its ports to

((µ̇, ṡ), ιvµ|∂M , ωv, (δµHi, δsHi), h|∂M , fs) ∈ Dad.

Therefore, following exactly the steps shown in (32), the evolution of s is given by

ṡ = −ϕ̃s(ωv) = −Lvs, (52)

nd the evolution of µ is the same as the isentropic case in (32). Moreover, using (33) and the definition of ϕ̃∗
s we have

hat
fs = ϕ̃∗

µ(δµHi) + ϕ̃∗

s (δsHi) = −(∗µ)dh + ∗(δsHi)ds
= −(∗µ)dh + ∗(Tµ)ds = −(∗µ)dh + T (∗µ)ds = −dp,

(53)

here the fourth equality follows from the commutativity of the Hodge star with functions, and the final results follow
rom Gibbs equation (14). Therefore, both (52) and (32) correctly represent the evolution of the entropy s and the mass
orm µ as being advected with the flow, while (53) correctly represents the stress forces due to pressure consistent with
he thermodynamics of the system.
9
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Finally we conclude by a more compact port-Hamiltonian model for adiabatic compressible flow, as shown in Fig. 4.
he new storage element has its state variables x̄t := (ṽ, µ, s) and the total Hamiltonian H̄t given by

H̄t (ṽ, µ, s) =

∫
M

1
2
(∗µ)ṽ ∧ ∗ṽ + U(∗µ, s)µ, (54)

ith flow and effort variables

˙̄xt =

⎛⎝ ˙̃v

µ̇

ṡ

⎞⎠ , δx̄t H̄t =

⎛⎝δṽH̄t

δµH̄t

δsH̄t

⎞⎠ =

⎛⎝ ιvµ
1
2 ιv ṽ + h

Tµ

⎞⎠ . (55)

nterestingly, the new energy balance for H̄t is given by the same power balance as for the isentropic case as will be
roven in the following.

roposition 2.4. The rate of change of the total Hamiltonian H̄t , given by (54), along trajectories of its state variables
x̄t = (ṽ, µ, s) is expressed as

˙̄Ht =

∫
∂M

e∂ ∧ f∂ , (56)

here the same boundary port variables defined before in (40).

roof. The proof follows exactly the one of Proposition 2.2, where the pairing ⟨ ed| fd⟩g = ⟨ fs| ωv⟩g is substituted by the
ower balance given by Proposition 2.3. ■

emark 2.5. The reason why the energy balance (56) for adiabatic flow is equivalent to the one for isentropic flow in (39)
s mainly due to the vanishing of the surface term ηϕ̃s (fd, es) in the proof of Proposition 2.3, which follows from Table 1. The
hysical intuition behind this observation is the fact that adiabatic flow corresponds to conservation of entropy due to no
xchange of heat with the surroundings. Thus, it is natural that no increase of internal energy occurs due to heat exchange
hrough the boundary, and the only way for internal energy to increase is due to mass flow through the boundary.

The overall Stokes–Dirac structure Dc,a for adiabatic compressible flow that implements the power balance in (56) is
given by

Dc,a = {(ēs, f̄s, e∂ , f∂ ) ∈ Bc,a|(fṽ
fµ
fs

)
=

⎛⎝deµ +
1

∗µ
ιêṽdṽ−

∗es
∗µ

ds
deṽ

1
∗µ

ιêṽds

⎞⎠ ,

(
e∂

f∂

)
=

(
0 1 0

−1 0 0

)(eṽ|∂M
eµ|∂M
es|∂M

)
},

(57)

where the total storage port variables are given by f̄s = (fṽ, fµ, fs) ∈ Ω1(M) × Ωn(M) × Ω0(M) and ēs = (eṽ, eµ, es) ∈
n−1(M)×Ω0(M)×Ωn(M). The bond-space is given by Bc,a = Fc,a × Ec,a, with the flow space Fc,a = Ω1(M)×Ωn(M)×
0(M) × Ω0(∂M) and the effort space Ec,a = Ωn−1(M) × Ω0(M) × Ωn(M) × Ωn−1(∂M).
Finally, the port-Hamiltonian dynamics for compressible adiabatic flow is then recovered by setting ((−˙̃v, −µ̇,

−ṡ), f∂ , (δṽH̄t , δµH̄t , δsH̄t ), e∂ ) ∈ Dc,a, which yields⎛⎝ ˙̃v

µ̇

ṡ

⎞⎠ =

⎛⎝−d(δµH̄t ) − ιvdṽ+(∗δsH̄t/∗µ)ds
−d(δṽH̄t )

−ιvds

⎞⎠ , (58)

H̄t (x̄t ) =H̄t (ṽ, µ, s) =

∫
M

1
2
(∗µ)ṽ ∧ ∗ṽ + U(∗µ, s)µ, (59)

here the following equality was used

−ṡ = Lvs = dιvs + ιvds = ιvds =
1

∗µ
ιêṽds. (60)

he variational derivatives of H̄t are given by (55), and the boundary conditions are specified by the boundary port-
ariables (e , f ) given by (40).
∂ ∂
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3. Port-Hamiltonian modeling of incompressible flow

3.1. Conservation of volume

In the physical world, it is observed from experiments that the compressibility of a fluid could be neglected when the
peed of a body within the fluid is much lower than the speed of sound. In this case, the flow is approximated to be
ncompressible which is characterized mathematically by the conservation of the volume form g∗

t µvol = µvol.
Let the top-form given by g∗

t µvol have a density J(gt ) ∈ C∞(M) defined such that g∗
t µvol = J(gt )µvol. The

incompressibility condition implies that J(gt ) = 1 for all times and at all points x ∈ M .
By the Lie derivative rule, d

dt (g
∗
t µvol) = g∗

t (Lvµvol), an equivalent condition for incompressible flow is Lvµvol = 0.
herefore, in incompressible flow the time-independent volume form is also an advected quantity, or more correctly it is
rozen in the fluid.

Using properties of the Lie derivative, one also has that Lvµvol = div(v)µvol = 0 H⇒ div(v) = 0, as well
as Lvµvol = dιvµvol = dωv = 0. Therefore, the following are all equivalent conditions for incompressible flow:
(i) J(gt ) = 1, (ii) Lvµvol = 0, (iii) div(v) = 0, (iv) dωv = 0.

In the case of incompressible flow, the aforementioned conditions restrict the configuration space of the fluid flow to
a subgroup of D(M) defined by

Dvol(M) := {g ∈ D(M)|J(g) = 1}, (61)

This subgroup is known in the literature as the volume-preserving diffeomorphism group, which was shown in [3] to be a
Lie-subgroup of D(M). The corresponding Lie sub-algebra is given by the divergence-free vector fields Xvol(M) defined as
Xvol(M) := {v ∈ X(M)|div(v) = 0}. Condition (iv) also implies that the differential form representation of the Lie algebra
Xvol(M) corresponds to the closed n − 1 forms.

3.2. Port-Hamiltonian model

In incompressible flow, the fluid is characterized only by kinetic energy and no internal energy is present. The pressure
function in incompressible flow no longer has its thermodynamic nature as in compressible flow, but rather acts as a
Lagrange multiplier that enforces the incompressibility of the flow. Therefore, an incompressible flow system is classified
as a constrained mechanical system, not a thermodynamic system.

To represent incompressible flow in the port-Hamiltonian framework, the kinetic energy subsystem (1)–(3) already
contains all the energy stored, its energy variables, and its corresponding interconnection structure. The difference now
is that the system (1) no longer has the state space X = s∗

= g∗
× V ∗

= Ω1(M) × Ωn(M), but instead the constrained
tate space Xc defined by

Xc := g∗

c × V ∗
= C̃1(M) × Ωn(M), (62)

here g∗
c := C̃1(M) ⊂ Ω1(M) denotes the space of co-closed 1-forms defined by C̃1(M) := {ṽ ∈ Ω1(M)|d ∗ ṽ = 0}. The

ncompressibility constraint d ∗ ṽ = dωv = 0 is equivalent to the conservation of the volume form, as discussed in the
revious section.
For the port-Hamiltonian system (1) to correctly represent incompressible flow, the distributed port (ed, fd) = (fs, ωv)

eeds to be adapted to model stress forces that impose the incompressibility constraint. Following the exact same manner
s in the previous section, the key point that allows building the port-based model of incompressible flow is that the
olume form µvol is frozen in the fluid (i.e. an advected quantity).
With reference to Fig. 5, the interconnection to model incompressible flow is achieved by the Dirac structure Dinc given

y

Dinc = {(f∂ i,fdi, e∂ i, edi) ∈ Binc |(
edi
0

)
=

(
0 ϕ̃∗

µvol
−ϕ̃µvol 0

)(
fd
p

)
,(

e∂ i
f∂ i

)
=

(
1 0
0 1

)(
p|∂M
fdi|∂M

)
},

(63)

here the bond-space Binc = Finc ×Einc is the product space of the flow space Finc = Ωn−1(∂M)×Ωn−1(M) and the effort
pace Einc = Ω0(∂M) × Ω1(M).
The power continuity of Dinc is given by the following result.

roposition 3.1. The Dirac structure Dinc given by (63) is a power continuous structure, such that

⟨ edi| fdi⟩g +

∫
∂M

e∂ i ∧ f∂ i = 0. (64)
11
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Fig. 5. Incompressible inhomogeneous flow on a general manifold with permeable boundary. Top figure shows how to augment the kinetic energy
system (1) with the pressure as a Lagrange multiplier, while the bottom figure shows a compact model with a combined storage element, Dirac
structure, boundary port, and constraint distributed port.

Proof. Using (8) and (63), we have that

⟨ edi| fdi⟩g =
⟨
ϕ̃∗

µvol
(p)
⏐⏐ fd⟩g =

⟨
p| ϕ̃µvol (fd)

⟩
V∗ +

∫
∂M

ηϕ̃µvol
(fd, p)

= ⟨p| 0⟩V∗ −

∫
∂M

fd|∂M∧p|∂M= −

∫
∂M

e∂ i ∧ f∂ i,

which follows from the definition of ϕ̃∗
µvol

and ηϕ̃µvol
given in Table 1 with µvol instead of µ as the advected quantity. ■

Remark 3.2. A special feature of the Dirac structure Dinc is that it has three ports, one of which, namely (p, 0), does not
affect the power balance (64). The power flowing through the port (p, 0) is always zero such that the pressure function
acts as a Lagrange multiplier enforcing the incompressibility constraint. A direct consequence is that the Dirac structure
Dinc is defined as a subspace on the two ports (e∂ i, f∂ i) and (edi, fdi) only, as shown in (63).

The Dirac structure (63) is then used to model incompressible flow by setting its ports to (ιvµ|∂M , −ωv, p|∂M , fs) ∈ Dinc .
Therefore from (63) it follows that

0 = −ϕ̃µvol (−ωv) = Lvµvol = dιvµvol = d ∗ ṽ, (65)

and similarly

fs = ϕ̃∗

µvol
(p) = −dp. (66)

Thus, both the incompressibility constraint and the forces due to pressure are properly modeled in (65) and (66),
respectively.

Remark 3.3. From the power balance (64) it is worth noticing that if we neglect the surface term, the power flow through
distributed port (ed, fd) = (fs, ωv) is equal to zero, which is a consequence that the work done due to the pressure ⟨p| 0⟩V∗

is equal to zero. The pressure p acts as a Lagrange multiplier that only enforces the incompressibility constraint, and no
longer has its thermodynamic nature in incompressible flow, which is considered a limit case of the general compressible
flow.

To summarize, the explicit port-Hamiltonian dynamical model of (inhomogeneous) incompressible flow in terms of
the constrained state variable xc := (ṽ, µ) ∈ Xc = g∗

c × V ∗ is given by(
˙̃v
)

=

(
−d(δµHk) − ιvdṽ

)
−

( 1
∗µ

◦ d
)
p, (67)
µ̇ −d(δṽHk) 0
12
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(
d ◦

1
∗µ

0
)(

δṽHk
δµHk

)
, (68)

Hk(xc) =Hk(ṽ, µ) =

∫
M

1
2
(∗µ)ṽ ∧ ∗ṽ. (69)

here the variational derivatives are given by (4), and the pressure function p ∈ C∞(M) is a distributed Lagrange
ultiplier. The energy balance for Hk is given by the following result.

roposition 3.4. The rate of change of the total Hamiltonian Hk, given by (69), along trajectories of (67) is expressed as

Ḣk =

∫
∂M

e∂c ∧ f∂c, (70)

here the boundary port variables e∂c, f∂c ∈ Ω0(∂M) × Ωn−1(∂M) are defined by

e∂c :=δµHk|∂M+

(
p

∗µ

)
|∂M=

(
1
2
ιv ṽ +

p
∗µ

)
|∂M ,

f∂c := − δṽHk|∂M= −(ιvµ)|∂M .

(71)

roof. By starting from the energy balance for Ḣk in (5) and using the equality (64) with ⟨ edi| fdi⟩g = ⟨ fs| − ωv⟩g, we have
hat

Ḣk =

∫
∂M

e∂k ∧ f∂k +

∫
M
ed ∧ fd =

∫
∂M

1
2
ιv ṽ|∂M∧ − ιvµ|∂M− ⟨ fs| − ωv⟩g

=

∫
∂M

1
2
ιv ṽ|∂M∧ − ιvµ|∂M+

∫
∂M

e∂ i ∧ f∂ i

=

∫
∂M

1
2
ιv ṽ|∂M∧ − ιvµ|∂M+

∫
∂M

p|∂M∧−ωv|∂M

=

∫
∂M

1
2
ιv ṽ|∂M∧ − ιvµ|∂M+

∫
∂M

(
p

∗µ

)
|∂M∧−ιvµ|∂M

=

∫
∂M

(
1
2
ιv ṽ +

p
∗µ

)
|∂M∧ − ιvµ|∂M . ■

Finally, the Stokes–Dirac structure Di that encodes the power balance (70) is given by

Di = {(fsc, f∂c, esc, e∂c) ∈ Bi|(
fṽ
fµ

)
=

(
deµ +

1
∗µ

ιêṽdṽ
deṽ

)
+

( 1
∗µ

◦ d
0

)
p,

0 =

(
d ◦

1
∗µ

0
)(eṽ

eµ

)
,(

e∂c
f∂c

)
=

(
0 1

−1 0

)(
eṽ|∂M
eµ|∂M

)
+

( 1
∗µ

0

)
p|∂M},

(72)

here the boundary port variables e∂c, f∂c ∈ Ω0(∂M) × Ωn−1(∂M) and total storage port variables are given by fsc =

fṽ, fµ) ∈ C̃1(M) × Ωn(M) and esc = (eṽ, eµ) ∈ Cn−1(M) × Ω0(M), where Cn−1(M) ⊂ Ωn−1(M) is the space of closed n − 1
forms. The bond-space Bi is given accordingly by the product of the aforementioned spaces, as usual.

Remark 3.5. For inhomogeneous incompressible flow, one can derive the Lie–Poisson part of the Dirac structure (72)
by semi-direct product reduction (cf. [4]) starting from the configuration space Dvol(M) ⋉ V , where Dvol(M) represents
the volume preserving diffeomorphisms on M . However, in the modular approach we presented, a re-derivation of the
underlying structure is unnecessary as the open ports of the system (3) were used to constraint the state space to the
dual of the Lie algebra of Dvol(M) ⋉ V .

For the case of homogeneous incompressible flow, one no longer has the semi-direct product structure as the mass
form becomes constant in space and is no longer advected. In this case, the standard Hamiltonian reduction theorems
can be used to derive the Lie–Poisson structure as in [2,3,7].

4. Conclusion

In this two-parts paper, a systematic procedure to model a variety of fluid dynamical systems on general Riemannian
manifolds was presented. The procedure was demonstrated for developing decomposed and open port-Hamiltonian
models for (ideal) compressible and incompressible flow with variable boundary conditions. The models presented are
13
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Fig. 6. Graphical representation of compressible and incompressible Euler Equations on a closed manifold (∂M = ∅) showing modularity of the
port-Hamiltonian framework. For a general permeable manifold, the interconnection is achieved using Dirac structures.

all geometric and thus are globally defined independently of a choice of coordinates on the spatial manifold M , thanks to
the formulation of the equations using exterior calculus.

We have highlighted in this article series that the philosophy of port-Hamiltonian modeling is different from the classic
approach of deriving Hamiltonian equations using variational principles [2,5,6]. The philosophy of the latter approach
is a top-down procedure starting from the total energy (Hamiltonian) defined on the cotangent bundle of the system’s
configuration space and then deriving the total equations of motion governing the system. Whereas, the philosophy of the
port-Hamiltonian framework is a bottom-up procedure starting from subsystems that are interconnected together to form
the complex total system. The straightforward advantage compared to the variational approach, is that simply the model
is updated by adding a new subsystem without re-deriving the whole dynamical equations. This has been demonstrated
by extending the subsystem corresponding to kinetic energy storage to three different models, summarized in Fig. 6.

Another point that was highlighted in this work is that the well-established Hamiltonian theory can be used within
the port-Hamiltonian modeling procedure for deriving the equations of motion of the individual subsystems comprising
the complex physical system isolated from one another. With this procedure, a port-Hamiltonian model of a system can
be systematically derived and not constructed in an ad-hoc manner by manipulating equations as was done previously
in [9,10] for isentropic compressible flow.

One advantage of our presented decomposed models is that they are open models. Using the open boundary port or an
extra distributed port, the derived models can be extended to more complicated fluid systems with (potentially) other
physical domains, like e.g. structural mechanics or electromagnetism. The only constraint when coupling subsystems of
different nature is that one finds the physical reason for why they can be coupled in the first place. If systems of different
complexity are to be coupled (such as a fluid and a structure) a physical condition must be present that affects the
suitable complexity reduction of the ports of the more complex system (such as the no-slip condition for coupling fluids
and structures) so that they can be coupled.

Another advantage of our work is that our framework allows to decompose a fluid domain into several imaginary
subdomains whose equally imaginary boundaries of course do not prevent the flow between these subdomains. But
since the thus constituted subsystems must now be connected through a Dirac structure that routes the energy, between
adjoining domains, we obtain control over precisely this energy flow. This promises an avenue to ensure compatibility of
our energy-aware decomposition with correspondingly designed structure-preserving numerical schemes, e.g. [8,11,12]
that choose to discretize some parts of a fluid’s domain in a more refined fashion than others, as is often needed.
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