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Abstract
Metaheuristics are found to be efficient in different applications where the use of exact algorithms becomes short-handed.

In the last decade, many of these algorithms have been introduced and used in a wide range of applications. Nevertheless,

most of those approaches share similar components leading to a concern related to their novelty or contribution. Thus, in

this paper, a pool template is proposed and used to categorize algorithm components permitting to analyze them in a

structured way. We exemplify its use by means of continuous optimization metaheuristics, and provide some measures and

methodology to identify their similarities and novelties. Finally, a discussion at a component level is provided in order to

point out possible design differences and commonalities.

Keywords Metaheuristics design � Comparison methodology � Pool template � Algorithm similarity

1 Introduction

Challenging problems arising from different complex

applications often require solutions in a reasonable com-

putational time, usually because of their hardness and

practical relevance. This has resulted in the development of

a large number of optimization techniques. In this context,

when addressing an optimization problem, it can be tackled

by means of exact algorithms that guarantee the optimality

of the solution at the expense of execution time. Moreover,

computing a (globally) optimal solution may not be an

option in some cases, either due to the dimension of the

problem instances or due to user requirements in terms of

solving time and memory. This leads to the other main

possibility which consists of changing the optimality

advantage provided by the exact algorithms for the time

efficiency given by metaheuristics. This way, the guarantee

of finding an optimal solution is switched to a competitive

performance allowing decision-makers to get good solu-

tions with smaller computational effort.

A metaheuristic is ‘an iterative master process that

guides and modifies the operations of subordinate heuris-

tics to efficiently produce high-quality solutions. It may

manipulate a complete (or incomplete) single solution or a

collection of solutions at each iteration. The subordinate

heuristics may be high (or low) level procedures, or a

simple local search, or just a construction method’ (Voß

et al. 1999). More recently, Sörensen and Glover (2013)

define a metaheuristic as ‘a high-level problem-indepen-

dent algorithmic framework that provides a set of guide-

lines or strategies to develop heuristic optimization

algorithms’. Unlike classical or deterministic methods,
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these methods are not much affected by the structure of the

problem. This is because they try to improve the solution

set based on the experience or on a ‘trial and error’

approach using defined components (often stochastic)

throughout the process. Many of these algorithms start with

randomly or pseudo-randomly generated feasible solutions

and update them by conducting systematic changes by

means of a given solution structure or in a sampling

fashion. Even though they do not guarantee optimality,

they are found to be effective in different applications.

Since their development – starting from early meta-

heuristics in the middle of the 1960s – different research

has been conducted along a wide spectrum of journals

specifically dedicated to the presentation, application, and

analysis of them. In this context, the introduction and

application of emerging metaheuristics started to increase

slowly at the beginning of the seventies while nowadays

there is an alarmingly increasing rate.

Furthermore, within metaheuristics, there is a category

called nature-inspired (also known as bio-inspired) that

mimics natural processes and events from the universe to

develop a well-defined and structured procedure. In liter-

ature, this type of algorithms has attracted a lot of attention

from researchers and practitioners due to the appealing

association of their components with nature, e.g. a mos-

quito (solution) seeking for a host (objective). The afore-

mentioned advantage is commonly supported by a

competitive performance when tackling real-world prob-

lems. Among nature-inspired algorithms, those based on

the swarm organization, as well as the collective living and

traveling of animals, accumulate a considerable interest in

the scientific community (Xing and Gao 2014; Yang

2008). Thus, nowadays we are witnesses of a rapid growth

of new nature-inspired metaheuristics. This growth, with-

out rigorous in-depth analysis, may cause an overlap

between already proposed algorithms and prospective

novel ones in terms of components when extracting algo-

rithmic procedures from nature. This raises some questions

– from a methodological perspective – about their real

contribution and novelty. In this realm, Sörensen (2015)

remarks this trend in his influential paper, while indicating

that some algorithms besides adapting the used terminol-

ogy into a nature-inspired one, did not perform a proper

analysis of their ruling components. Additionally, Laguna

(2016) emphasizes the need to establish some policies in

order to ‘avoid the publication of articles that repackage

and embed old ideas in methods that are claimed to be

based on metaphors of natural or man-made systems and

processes’. He also criticizes the use of quirky names and

similes that do not match reality.

The previously observed circumstance is especially

noticeable in continuous optimization, where in the last

decade a considerable number of so-called ‘new’ nature-

inspired metaheuristics have been ‘invented’. This aroused

some critics from the scientific community related to the

novelty and contribution of those approaches. In fact, as

discussed in Weyland (2010, 2015), Sörensen (2015), and

Duarte et al. (2018) some of those new algorithms work in

a similar search paradigm but are presented, by mimicking

different processes, as new algorithms. Besides metaphor-

related metaheuristics, there are also variants or hybrid

metaheuristic approaches that are metaphor-less and whose

components are not clearly stated or delimited from their

original approaches. This might cause difficulty when

advancing on the investigation on a given technique or

hybridization scheme.

Considering the above discussion, the research contri-

butions of this work are listed as follows:

• As indicated in a short note by Swan et al. (2015), a

clear template dedicated to providing a purely func-

tional description of metaheuristics for separating any

metaphors from their defining components is necessary.

Hence, in the same spirit as the work by Watson et al.

(2006), we propose a classification method that supports

the identification, description, and analysis of a given

metaheuristic considering its defining components. The

above procedure constitutes a way for providing

insights about the contribution of their components as

well as increasing the transparency of their algorithm

design. It is worth noticing that this classification

method is aimed at a design level; therefore it does not

predict the performance of the algorithms nor substi-

tutes the empirical analysis to measure the contribution

of the components’ differences.

• Bearing the proliferation of nature-inspired algorithms

in mind, in this paper, we investigate the novelty of

some of them in terms of their algorithmic components.

The main goal of this selection is indicating and

providing additional insights on what previous authors

(Weyland 2010; Sörensen 2015) have already ques-

tioned, that is, their real ‘novelty’ from a methodolog-

ical viewpoint besides their friendly and popular nature

association. Thus, in doing so, by means of the selected

sample, we analyze and determine which algorithm

contributes with novelty to the field, and in which level

their components are similar or a special case of other

algorithms. The study can be extended to any other

group of metaheuristics by applying the same method-

ology covered in this work.

• Finally, to provide a degree of novelty of new

metaheuristics regarding older ones, we propose a

method for evaluating the novelty of the proposed

algorithm or determining if the studied algorithm

coincides in some components with others already

proposed in the literature. We exemplify the use of this
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measure by means of the algorithms studied in this

paper.

The rest of this paper is organized as follows. Section 2

describes the pool template which is later used to catego-

rize different metaheuristics according to their structure.

Afterwards, in Sect. 3, a selection of algorithms dealing

with continuous optimization problems is presented in

terms of the pool template components. Analysis and dis-

cussion of the selected metaheuristics are provided in Sect.

4. Finally, Sect. 5 draws the main conclusions extracted

from this work and provides some lines for further

research.

2 A pool template for metaheuristics
comparison

The functioning of most metaheuristics can be described

based on their intensification and diversification capabili-

ties as well as the manipulation of their starting conditions.

A dynamic balance between diversification and intensifi-

cation is crucial to obtain a good performance of these

optimization methods (Blum and Roli 2003).

As Greistorfer and Voß (2005) pointed out, some well-

known procedures such as simulated annealing, tabu

search, or genetic algorithms can be explained by means of

an established structure. With that idea, they proposed a

pool template as a solution framework that uses and reg-

isters solutions in a pool (or set) of solutions. Afterwards,

some are selected for further recombination and improve-

ment before putting them back to the pool in a feedback

fashion. Inspired by that work, in this paper, a pool tem-

plate as a framework for decomposing and analyzing

metaheuristics is proposed. The pool template structure is

presented in Fig. 1 and its components are described

below.

• Generation method (GM): This component defines the

method providing the initial solution/s by means of a

given procedure. Therefore, the produced solution/s is/

are the input of the pool later used by the metaheuristic.

• Pool (P): It is a set composed of solutions initially

constructed by means of the GM. The pool is

represented by P having a cardinality of p, i.e.,

jPj ¼ p. For example, for the case of single-based

approaches p ¼ 1, while in population-based

approaches p[ 1.

• Archive (P): This component serves as a memory to

guide the search by storing information about the

solution features which are promising. For example, in

some algorithms, elite solutions are stored and used to

direct the search of the algorithm. That idea is handled

by the archive which is like a memory of the algorithm.

The cardinality of P is p, which needs not to be constant

throughout the iterations.

• Selected pool (S): The selected solutions from the pool

(to be updated) and the archive (to guide the search) are

processed in this structure, being sorted if necessary and

adjusted for the updating mechanism.

• Updating mechanism (UM): This function handles the

solutions in the selected pool S. Thus, an updated

solution set referred to as updated pool S0 is produced
by means of different rules, algorithmic changes, and

procedures such that UM : S ! S0 with jS0j ¼ Supd.

• Updated pool (S0): The output solutions from the

updating mechanism compose the updated pool which

is later handled by the input function and by the

archiving function to update the solutions in P and P,

respectively.

• Archiving functions (AF): These functions add solu-

tions to the archive P. There are two archiving

functions. The first one, AF1ðPÞ, directly archives

solutions from the pool P without any manipulation

from other components. The second one, AF2ðS0Þ,
archives solutions from S0, the set of updated solutions

called updated pool obtained through the updating

mechanism1.

• Output functions (OF): These functions are responsi-

ble for selecting the solutions from the pool P and the

archive P to be handled by the updating mechanism.

Hence, from the pool P and the archive P, solutions in

S1 and S2 will be selected by using OF1ðPÞ and OF2ðPÞ,
respectively. The set of selected solutions is referred to

as the selected pool S, as explained below.

• Input function (IF): This function is involved in the

selection and addition of the resulting solutions from

the updating stage into the pool P. Hence, it takes the

processed set of updated solutions in the updated pool

S0 and uses its rule to determine how to update the pool

of solutions.

As can be observed in Fig. 1, there is a cyclical structure

starting from the pool P with initial solution/s and handling

them along the process by means of the defined functions.

Notation Pool, Poolsel and Poolupd is introduced in the

figure to ease the identification of the different sets of

solutions. Thus, a given metaheuristic can be decomposed

following this structure. It is important to note that the flow

process of the solutions along the pool frame is performed

1 We should note that the archiving function may be extended in the

sense of distinguishing long-term memory and short-term memory

functions, the first accounting for recent solutions or solution

attributes and the latter accounting for measures supporting to

memorize an overall history of a search, e.g., by using frequency-

based memory to count for occurrences of properties of solutions.
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until a termination criterion is met, and the output solutions

are selected from the final pool and/or the archive.

An example application of the pool template for a

genetic algorithm (GA) is illustrated in Fig. 2. This type of

algorithm usually works starting with a randomly gener-

ated set of N solutions (i.e., a population) and improving it

through iterations. In the context of the pool template, the

initial set of solutions is defined by a pool of size jPj ¼
N ¼ p with p[ 1. In this case, GM provides these initial

solutions either at random or through a given procedure.

According to Whitley (1994), no archive is used by this

metaheuristic and hence, S2 ¼ ;. Consequently archiving

functions (AF) and the second output function OF2 are not

needed (dashed lines in Fig. 2). Thus, the solutions that are

going to be used in the next search step, S, are selected only

by OF1ðPÞ, which in this case is an objective-function-

based (or, if modified to include other means of heuristic

measure, in GA language, fitness-based) process.

In the GA scope, the recombination of solutions (i.e.,

parents) producing other solutions (i.e., offspring) is known

as crossover. Moreover, the alteration process whereby

some existing solutions are changed is called mutation,

which is commonly defined as a procedure for introducing

diversity in the population in the form of new solutions.

These two methods are considered in the updating mech-

anism which provides updated solutions UMðSÞ ! S0. The
resulting solutions are stored in the updated pool S0 and
they are used by the input function IF for determining how

and in which quantity they will compose the updated

solutions belonging to P. In this step, strategies such as

replication (i.e., reproduction or keeping given solutions)

takes place. In general, a certain number of solutions with

the best objective function (or fitness) values (elite E 2 P)

in the current iteration are transferred to the next iteration.

Thus, the solutions belonging to the next pool of solutions

are those resulting from the recombination, replication, and

alteration.

From the previous example, it can be mentioned that

obtaining the pool template of the Harmony Search (HS)

algorithm will result in the same pool template structure

provided in Fig. 2, i.e., functions OF2, AF1 and AF2 are not

used. This is aligned, in terms of algorithm design, with the

indications provided by Weyland (2015) concerning simi-

larities between HS and evolutionary algorithms. More-

over, if the pool template components (i.e., GM, UM, IF,

and OF) from the algorithm provided in Weyland (2015)

are compared with those corresponding to HS, it can be

seen indeed that both approaches are the same2. Never-

theless, it is relevant to indicate that some degree of nov-

elty can be justified when two or more components from

different algorithms but not yet combined in one are pro-

posed in a new algorithm. In such cases, it is recom-

mendable to provide a systematic study (e.g., through the

pool template) to contextualize and support this

contribution.

Fig. 1 Pool template scheme

2 For this comparison, we rely on Algorithm 3 presented Weyland

(2015).
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3 Metaheuristics under analysis

Numerous and diverse metaheuristics have been proposed

in the literature. Thus, to maintain the longitude of this

work up to a comprehensive dimension without losing

details and considering the large number of metaheuristics

algorithms, our focus is restricted to several swarm-based

algorithms applied in continuous optimization. In doing so,

we have selected a sample of 15 algorithms, trying to get a

set of diverse algorithms which allows us to test the per-

formance and flexibility of our framework. On that selec-

tion, we have paid particular attention to some modern

nature-inspired algorithms with the aim of analyzing their

contribution and design besides their already provided

metaphor-based algorithmic scheme and definitions. For

maintaining the same studying baseline when analyzing the

selected metaheuristics, we consider their application to a

maximization problem as given in (1).

max
x

f ðxÞ

s:t: x 2 S � Rn
ð1Þ

where x is the decision variable, f(x) is the objective

function, and S is the feasible search space. Furthermore,

since we discuss the similarities and differences among the

metaheuristics, below we briefly describe the algorithms

based on the pool template components. The notation used

throughout the descriptions is summarized as follows:

• rand() represents a random vector of appropriate

dimension with entries of rand, where rand is a random

number between 0 and 1 generated from a uniform

distribution.

• r represents a random number between -0.5 and 0.5, i.e

r ¼ rand � 0:5, and similarly r() is a random vector

with entries of r.

• randn stands for a random number from a normal

distribution with a given mean and standard deviation.

• xti represents the ith solution at iteration t.

• xb is the best performing solution in the given iteration.

• xbesti refers to the best historic location of the solution xi
in previous iterations.

Finally, the procedure followed for collecting the works of

the selected metaheuristics was based on the selection of

the papers where the metaheuristics were initially pro-

posed. In this regard, a guideline for applying the pool

template is to include the citations of the seminal works

related to the metaheuristic(s). This permits, on the one

hand, to proper link the studied methods and, on the other

hand, to have an incremental analysis with regard to the

studied approaches. It is worth mentioning that in the case

the pool template is used when proposing a metaheuristic,

it is also relevant to include, besides traditional meta-

heuristics, those novel variants that might also be related to

the proposed method.

3.1 Random search (RS)

Random search is a direct search method introduced in the

1950’s (Brooks 1958; Rastrigin 1963). This approach

samples solutions from across the search space by using (2)

for a given number of iterations. The best solution known is

Fig. 2 Description of a GA

based on the pool template.

Dashed lines indicate that the

corresponding functions OF2,

AF1 and AF2 are not used

Similarity in metaheuristics: a gentle step towards a comparison methodology

123



updated if a sampled solution results in an improvement.

The corresponding pool structure details are the following.

The algorithm starts with random solutions, and a singleton

solution is allowed, i.e., GM(p) is random with p[ 0. No

archive is used and each solution is selected by OF1ðPÞ for
the updating mechanism, i.e., S ¼ S1 ¼ P. The updating

mechanism UM(S) is a random local search and is given by

(2).

xtþ1
i ¼ xti þ krðÞ ð2Þ

where k is an algorithm parameter for the step length of the

move. The output S0 obtained by this mechanism is used by

the input function IFðS0Þ, which updates the pool P using

the best solution from P [ S0.

3.2 Particle swarm optimization (PSO)

This metaheuristic, proposed by Kennedy and Eberhart

(1995), is inspired by the collective behavior of some

animal species. The algorithm randomly distributes solu-

tions along the search space that are moved (i.e., modified)

considering (3) and (4) until a given stopping criterion is

met. In terms of its pool structure, the algorithm starts with

a random set of paired solutions, i.e., GM(p, v) is random

with p ¼ v[ 1. Each solution xi has a corresponding

additional component vi to guide the search. Initially, the

first archiving function AF1ðPÞ saves all the p solutions as

the best performance of each individual solution and also

determines the best solution xb, i.e., P ¼ P. All the solu-

tions in P and P are selected by OF1ðPÞ and OF2ðPÞ for

updating, i.e., S1 ¼ P and S2 ¼ P. The updating mecha-

nism UM(S) is given in (3) and (4).

xtþ1
i ¼ xti þ vtþ1

i ð3Þ

where

vtþ1
i ¼ wvti þ k1 � rand � ðxbesti � xtiÞ þ k2 � rand � ðxb � xtiÞ

for the best solution xb, the best configuration of solution xi
represented by xbesti , and algorithm parameters w, k1, and
k2.

xtþ1
i ¼ xti þ k1 � rand � ðxbesti � xtiÞ þ k2 � rand�

ðxb � xtiÞ þ w
Xtþ1

k¼1

vki
ð4Þ

All the updated solutions go to the updated pool S0. From

there, the archive P is updated by using AF2ðS0Þ, i.e., if
better solutions are found, when applicable the best con-

figuration of solution xi so far (i.e., xbesti ) and/or the global

best xb are updated. The input function IFðS0Þ replaces the
solution in the pool P by the updated solutions.

3.3 Invasive weed optimization (IWO)

This metaheuristic was proposed by Mehrabian and Lucas

(2006) and mimics the colonizing behavior of weeds. Its

functioning consists of generating an initial population of

solutions at random. Then, each solution will generate a

number of randomly distributed solutions based on (5). The

number of new solutions that can be generated by each

solution is linearly determined considering the best and

worst solution in the population and the solution itself.

When the population exceeds an upper limit on the number

of solutions, the worst solutions are excluded. This process

is repeated until a termination criterion is met. Details of its

pool structure are the following. The generation method

GM(p) is random with p[ 1. No archive is used. The

output function OF1ðPÞ takes all the solutions from the

pool P, so S ¼ S1 ¼ P. The updating mechanism UM(S) is

given by (5).

xtþ1
i ¼ xti þ k ð5Þ

where k is drawn from a normal distribution with mean

zero and a standard deviation r which will decrease from

rmax to rmin through iteration. The input function IF con-

structs the new pool P by taking the best p solutions from

P [ S0.

3.4 Wolf pack search (WPS)

This is a metaheuristic proposed by Yang et al. (2007)

which abstracts the behavior of wolves when searching for

food. WPS starts with a number of randomly generated

solutions. Over iterations, new solutions are generated

using (6) while updating the best solution known. Its

translation into the pool structure is the following. The

initial solutions are generated randomly, i.e., GM(p) is

random with p[ 1. The best solution is archived, i.e.,

AF1ðPÞ takes xb from P. The output functions OF1ðPÞ and
OF2ðPÞ take all the solutions from the pool P and the best

solution from the archive P, i.e., S1 ¼ P and S2 ¼ xb. The

solutions are updated by using (6).

xtþ1
i ¼ xti þ k

xb � xti
jjxb � xtijj

ð6Þ

where k is an algorithm parameter for the step length.

The second archiving function AF2ðS0Þ updates the

archive P if an updated solution is better than an archived

one, and the input function IFðS0Þ replaces the solutions in
the pool P by the updated solutions.
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3.5 Firefly algorithm (FA)

This algorithm was introduced by Yang (2008) inspired by

the flashing behavior of lighting bugs also called fireflies.

FFA considers a set of solutions that are initially generated

at random and where each solution is updated according to

the below-described equation. Thus, its pool template is as

follows. The initial solutions are generated randomly, i.e.,

GM(p) is random with p[ 1. There is no archiving func-

tion as it is a memory-less algorithm, i.e., p ¼ 0. The first

output function OF1ðPÞ takes all the solutions in the pool

P, that is S ¼ S1 ¼ P. Since there is no archiving, S ¼ S1.

For each solution xi from S the updating mechanism UM(S)

uses (7).

xtþ1
i ¼

xti þ k2rðÞ; if 8k; f ðxtiÞ[ f ðxtkÞ;
xti þ k1ðxtj � xtiÞ þ k2rðÞ; 8jjf ðxtjÞ[ f ðxtiÞ; otherwise

(

ð7Þ

where k1 is a step length based on the performance of the

solution and the distance between the solutions, and k2 is

another step length.

The input function IFðS0Þ replaces the solutions in the

pool P by the updated solutions.

3.6 Oriented search algorithm (OSA)

This is a population-based algorithm proposed by Zhang

et al. (2008) that simulates the human random search

behavior. The set of solutions is generated at random and

solutions generate new ones by means of (8). At each

iteration the best solution found is updated in case of an

improvement. In the context of the pool template, random

multiple solutions are generated to construct the initial pool

P, i.e., GM(p) is random with p[ 1. No archive method is

used and hence S2 ¼ ;. The first output function OF1ðPÞ
takes all the solutions in the pool P for updating, i.e.,

S ¼ S1 ¼ P. The updating mechanism UM(S) is based on

(8).

xtþ1
i ¼ xti þ rand � ðxbð1þ w � randnÞ � xtiÞ ð8Þ

where randn is a random number from a normal distribu-

tion between zero and one, and w is an algorithm parameter

which will decrease from wmax to wmin during the per-

formed iterations.

Developing this equation we obtain

xtþ1
i ¼ xti þ rand � xb � rand � xti þ rand � randn � w � xb.
Hence the updating formula can be written as given in

Eq. (9).

xtþ1
i ¼ xti þ rand � ðxb � xtiÞ þ k2xb ð9Þ

where k2 is a step length equal to rand � randn � w. The
input function IFðS0Þ replaces solutions in the pool P by S0.

3.7 Roach infestation optimization (RIO)

This metaheuristic was proposed by Havens et al. (2008)

and emulates the behavior of cockroaches. Initial solutions

are generated at random and updated using a given equa-

tion for a certain number of iterations. In terms of the pool

structure, it starts with a random set of paired solutions,

i.e., GM(p, v) is random with p ¼ v[ 1. Each solution xi
has a corresponding component vi used for updating the

solution xi. The first archiving function AF1ðPÞ archives all
the solutions in P, i.e., initially P ¼ P. The first output

function OF1ðPÞ takes all the solutions in P. Similarly, the

second output function OF2ðPÞ takes all the solutions from
the archive P. The updating of each solution xi is conducted

using the equation given in (10).

xtþ1
i ¼ xti þ vtþ1

i ð10Þ

where

vtþ1
i ¼ C0v

t
i þ kmax � randðÞ: � ðxbesti � xtiÞ

þ kmax � randðÞ: � ðxlb � xiÞ

, xbesti is the best position of xi in previous iterations, xlb is

the best solution in the radius of d from xi, C0 and kmax are
algorithm parameters, and :� gives an element-wise mul-

tiplication of vectors of the same dimension, i.e.,

X: � Y ¼ ½xiyi�. A random update is also suggested after a

threshold.

Hence, the updating equation can be reduced to (11).

xtþ1
i ¼ xti þ kmax � randðÞ: � ðxbesti � xtiÞ

þ kmax � randðÞ: � ðxlb � xiÞ þ C0

Xt

k¼1

vki
ð11Þ

The second archiving function AF2ðS0Þ updates the archive
P by replacing the solutions if better performance is

recorded, and the input function IFðS0Þ replaces the solu-

tions in the pool P by the updated values.

3.8 Gravitational search algorithm (GSA)

This metaheuristic was proposed by Rashedi et al. (2009)

and it is based on the law of gravity. It considers an initial

set of solutions generated at random that generates new

solutions by means of (12) through iterations until a stop-

ping criterion is met. Its translation into the pool structure

is the following. Random initial paired solutions are used

as initial members of the pool, i.e., GM(p, v) is random

with p ¼ v[ 1. There is no archive, i.e., p ¼ 0. The output

function OF1ðPÞ takes every solution in P, i.e.,

S ¼ S1 ¼ P. The updating mechanism UM(S) is developed

in the same way as it is done in PSO by means of (3), i.e.,
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xtþ1
i ¼ xti þ vtþ1

i . Additionally, the solution component vi is

computed using (12).

vtþ1
i ¼ rand � vti þ

X

xtj2K;j 6¼i

kijðxtj � xtiÞ ð12Þ

where K is the set of best solutions with its cardinality

initially set to the algorithm parameter Kbest. This set K

decreases in cardinality during iterations with its last ele-

ment being xb. kij is a step length which depends on the

distance between the solutions and the performance of the

solutions. This can be reduced to (13).

xtþ1
i ¼ xti þ

X

xtj2K;j 6¼i

kijðxtj � xtiÞ þ
Xtþ1

k¼1

rand � vki ð13Þ

The input function IFðS0Þ replaces the solutions in the pool

P by the updated solutions.

3.9 Bee swarm optimization (BSO)

This metaheuristic, proposed by Akbari et al. (2009),

considers the foraging behavior of honey bees. It starts with

a set of solutions that is divided into three categories

according to the objective function value. The solutions

generate new solutions through iterations until a termina-

tion condition is met. Its pool structure is detailed as fol-

lows. It starts the pool with random solutions, i.e., GM(p) is

random with p[ 2. The first archiving function AF1ðPÞ
initializes the archive P with the best p solutions from the

pool P, for p\ p
2
. The first output function OF1ðPÞ copies

the solution in the pool P to S. The solutions in S1 are

categorized into three levels before the updating mecha-

nism: the best p solution as X1 (elite), the worst p� 2p

solutions as X3, and the rest as X2. The updating mecha-

nism UM(S) is then given in (14).

xtþ1
i ¼

xti þ k1ðxbesti � xtiÞ þ k2ðxb � xtiÞ; if xti 2 X1

xti þ k2ðxb � xtiÞ; if xti 2 X2

xti þ k3rðÞ; otherwise

8
><

>:

ð14Þ

The updating mechanism given in (14) can be written as

given in (15).

xtþ1
i ¼ xti þ k1ðxbesti � xtiÞ þ k2ðxb � xtiÞ þ k3rðÞ ð15Þ

where

k1 ¼
1; xti 2 X1

0; otherwise

�

,

k2 ¼
0; xti 2 X3

1; otherwise

�

and

k3 ¼
1; xti 2 X3

0; otherwise

�

.

The second archiving function AF2ðS0Þ updates the

archive P by replacing solutions if better ones have been

obtained. The input function IFðS0Þ replaces all the solu-

tions in the pool P.

3.10 Bat algorithm (BA)

This algorithm introduced by Yang (2010) mimics the

echolocation of bats. In this algorithm, for a set of ran-

domly generated solutions, two measures are defined for

each individual and later used in the generation of solu-

tions. The details of its pool structure are the following.

Multiple random-paired solutions construct the pool P, i.e.,

GM(p, v) is random with p ¼ v[ 1. There is no archive in

the algorithm. The first output function OF1ðPÞ takes every
solution in P, i.e., S ¼ S1 ¼ P. The updating of the solution

is conducted using (16).

xtþ1
i ¼ xti þ vtþ1

i ð16Þ

for vtþ1
i ¼ vti þ ðxti � xbÞki where ki ¼ kmin þ ðkmax �

kminÞb with the algorithm parameter b 2 ½0; 1� and prefixed

parameter values kmin and kmax. According to this updating

formula, the solution moves away from the best solution.

However, the author also mentions that it resembles par-

ticle swarm optimization under certain conditions (Yang

2010). Hence, vi should be vtþ1
i ¼ vti þ ðxb � xtiÞki. Then,

the updating formula can also be expressed as in (17).

xtþ1
i ¼ xti þ kiðxti � xbÞ þ

Xt

k¼1

vki ð17Þ

After this formula a random movement is also considered

under certain probability. The updated solutions replace all

the solutions in the pool P through the input function

IFðS0Þ.

3.11 Simple optimization algorithm (SOPT)

This algorithm is a population-based metaheuristic pro-

posed by Hasançebi and Azad (2012) for engineering

design optimization problems. It starts with a population of

random solutions and, through iterations, individuals are

generated considering (18). When generating the new

individuals, this approach considers the normal distribution

with a standard deviation calculated considering solutions’

structure. The details of its pool structure are the following.

Random multiple feasible solutions are generated to con-

struct the initial pool P, i.e., GM(p) is random with p[ 1.
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No archive is used. The first output function OF1 takes all

the solutions from the pool P, i.e., S ¼ S1 ¼ P. This

algorithm considers that the generation of new candidate

solutions is more probable in the vicinity of the best

solution. Thus, the updating is done using the mechanism

given in (18).

xtþ1
i ¼ xb þ kR ð18Þ

where k is a step length, R is a vector of random numbers

from a normal distribution of mean zero and standard

deviations calculated considering the corresponding solu-

tion component for all solutions.

The updating mechanism of this algorithm is a two-

phase approach that iterates updating the pool S0. Thus, an
additional formula for the second phase is used by doubling

k as given in (19)

xtþ1
i ¼ xb þ 2kR ð19Þ

In the input function IFðS0Þ, only the best solutions among

the pool P and the updated solutions S0 are used to update

the solutions in the pool P while preserving the pool size,

i.e., the best p solutions are selected from P [ S0.

3.12 Collective animal behavior (CAB)

This algorithm was proposed by Cuevas et al. (2012) and

emulates a group of animals which interact with each other

based on the biological laws of collective motion. The set

of solutions are sorted and used to update two memory

structures through iterations. The generation of individuals

considers (20), (21) and (22). In the context of the pool

template the generation method uses a random procedure,

i.e., GM(p) is random with p[ 1. Some of the best solu-

tions are archived, i.e., B of the p solutions from the pool P

using the first archiving function AF1ðPÞ. The output

functions take all the solutions in the pool P and in the

archive P, thus, S1 ¼ P and S2 ¼ P. As a result, |S| is

pþ p ¼ pþ B. The updating mechanism of this algorithm

is a three-phase approach that uses (20), (21) and (22) in

the given sequence order.

xtþ1
i ¼ xh þ krðÞ ð20Þ

where xh is the solution from the archive (P) with the

objective value closest to xti, and k is an algorithm

parameter.

xtþ1
i ¼

xti � k1ðxh � xtiÞ; rand\H

xti � k2ðxb � xtiÞ; otherwise

�
ð21Þ

where H is an algorithm parameter in [0,1], xh is the

solution from the archive with objective value closest to xti,

xb is the best solution among the current solutions, and k1
and k2 are the other algorithm parameters in [-1,1].

xtþ1
i ¼

xminðÞ þ randðÞ � ðxmaxðÞ � xminðÞÞ; rand\threshold

xti; otherwise

�

ð22Þ

where threshold is an algorithm parameter, and xminðÞ and
xmaxðÞ are vectors containing the lower and upper bounds

for each component of a solution. After this, the archive p

is updated by AF2ðS0Þ using the rule of replacing weak

solutions (by means of the quality of the objective func-

tion). The updated solution replaces the solutions in the

pool P.

3.13 Artificial tribe algorithm (ATA)

This metaheuristic presented by Chen et al. (2012) operates

by simulating the existent skill of natural tribes. In the

algorithm, a set of solutions is generated at random and

updated through iterations based on (23). Regarding the

pool structure, the algorithm starts with random multiple

solutions, i.e., GM(p) is random with p[ 1. The archive P

is initialized with the solutions from the pool P using the

first archiving function AF1ðPÞ. The output functions use

the solutions from the pool P and the archive P, hence

S ¼ P [ P. The updating mechanism UM(S) uses the

equation given in (23).

xtþ1
i ¼

xti þ rand � jxbesti � xtij þ k � rand � jx� � xtij; if Df ðx�Þ\Tol

rand � xti þ ð1� randÞxj; otherwise

(

ð23Þ

where x� is the best solution found so far, xj is a solution

randomly selected, and, in each iteration, Df ðx�Þ is the

change in the best functional value from the previous

iteration, and k and Tol are algorithm parameters.

The second archiving function AF2ðS0Þ updates the

archive P replacing the solutions by better solutions from

S0. Finally, the input function IFðS0Þ replaces the pool

solutions by the updated solutions.

3.14 Black hole (BH)

This optimization method proposed by Hatamlou (2013) is

inspired by the black hole phenomenon occurring in the

universe. It starts with an initial set of candidate solutions

with their corresponding objective function value calcu-

lated. At each iteration, the best candidate is selected to be

the guiding solution. Then, solutions are perturbed

according to (24). If a solution is below a given ratio

provided by the guiding solution and the perturbed solu-

tion, then a new solution is randomly generated. In terms of

the pool structure, the algorithm can be described as fol-

lows. Multiple random solutions are generated to be the

members of the initial pool P, i.e., GM(p) is random with
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p[ 1. The best solution xb is archived using the first

archiving function AF1ðPÞ. S is composed of S1 ¼ P and

S2 ¼ fxbg. The p solutions are updated using (24).

xtþ1
i ¼

xti þ rand � ðxb � xtiÞ; if dðxti; xbÞ�
f ðxbÞ

PN

k¼1

f ðxtkÞ

generate random sol otherwise

8
>><

>>:

ð24Þ

where dðxi; xjÞ is a distance measure between xi and xj,
f ðxbÞ

PN
k¼1

f ðxt
k
Þ
is the ratio determining if a solution is used or a new

one has to be generated, and f represents the objective

function value. The archive is updated if a better solution is

found, and the updated solutions in S0 replace all the

solutions in the pool P.

3.15 Animal migration optimization (AMO)

This metaheuristic proposed by Li et al. (2014) mimics the

animal migration behavior. The algorithm can be described

as follows. Random multiple solutions are generated as

initial solutions, i.e., GM(p) is random with p[ 1. The best

solution is archived using the first archiving function

AF1ðPÞ. S is composed of S1 ¼ P and S2 ¼ fxbg. Then, all
the solutions in S are used by a two-phase updating

mechanism following 25 and 26.

xi ¼ xi þ kðxj � xiÞ ð25Þ

for a solution xj in the neighborhood of xi, and an algorithm

parameter k.

xi ¼ xj1 þ rand � ðxb � xiÞ þ rand � ðxj2 � xiÞ ð26Þ

for two random solution xj1 and xj2 , with j1 6¼ j2 6¼ i from S.

In this process only improving updates are accepted. If a

solution better than the stored best is found, then it will

replace the archived solution using the second archiving

function AF2ðS0Þ. Finally, the updated solutions replace the

solutions in the pool P by means of the input function

IFðS0Þ.

4 Analysis and discussion on the selected
algorithms

This section is devoted to analyzing the algorithms listed in

Sect. 3, in terms of their pool template components.

Moreover, a similarity index aimed at providing a measure

of the likeness among the updating mechanism component

of the different approaches is proposed. Finally, a discus-

sion regarding the relation and grade of similarity among

algorithms is presented.

4.1 Analysis of the components constituting
the algorithms

In order to develop this analysis, each algorithm compo-

nent is studied and categorized according to its definition

and function. For instance, an updating mechanism

involving that a solution is randomly moved is categorized

as random move. Moreover, it should be noted that,

excluding the random search metaheuristic, all the algo-

rithms considered in this work are population-based.

The first component to consider is the generation

method GM(p), i.e., the starting conditions of the algo-

rithms. Although it can be classified as random, pseudo-

random or deterministic, all the algorithms described in

this work generate the initial set of solutions at random.

The number of solutions p in the pool P depends on the

algorithm and its implementation, but p[ 0, p[ 1, and

p[ 2 are the most common constraints. Additionally, the

archive size p ranges from 0 (when no archive is used) to p.

When the archive P is considered, the first archiving

function AF1ðPÞ might take the whole set P, or a subset of

P, such as the best solution xb, or the p best solutions from

P.

The first and second output functions of the algorithms

usually take all the solutions in P and P, respectively, to

create S. Sometimes a categorization of solutions is per-

formed before starting the updating mechanism, distin-

guishing between elite and non-elite solutions.

Regarding the updating mechanism component, the

following classification can be obtained considering the

algorithms provided:

• Random move: This strategy moves the solution from

its current position within a given neighborhood to

another one depending on k. That is, for a given

solution xi and a step length k, the random movement is

defined by (27).

xi ¼ xi þ krðÞ ð27Þ

This random movement can also be written as xi ¼
xj þ randðxi � xjÞ for a random solution xj, or equiva-

lently, it can also be expressed by rand � xi þ ð1�
randÞxj as given in (23).

• Follow the best: This updating mechanism promotes

moving towards the best solution found so far, xb. (28)

expresses its updating formula.

xi ¼ xi þ kðxb � xiÞ ð28Þ

• Follow elite: This movement promotes that new

solutions move towards a solution or a set of solutions

having a better objective function value. This is defined

in (29).
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xi ¼ xi þ kðxj � xiÞ; 8j 2 p s:t: f ðxjÞ� f ðxiÞ ð29Þ

Notice that along this work, the term ‘elite solutions’ is

used to refer to the subset of solutions with best

objective values, but other strategies can be considered

as well.

• Follow its own best: Each solution keeps track of its

best configuration through iterations. By means of it,

this strategy takes into account that position termed as

xbesti when performing the movement. The updating

mechanism is formally expressed in (30).

xi ¼ xi þ kðxbesti � xiÞ ð30Þ

• Follow the neighbor: This updating mechanism heads

the movement towards a solution xj in the neighborhood

of xi. (31) expresses the updating formula.

xi ¼ xi þ kðxj � xiÞ ð31Þ

• Alteration: Different kinds of alteration operators can

be introduced and used. For the algorithms discussed

above, the alteration operators can be classified into

two: (i) replacing: a solution xi or a part of it is replaced

by a newly generated one, (ii) randomly moving: the

solution is moved towards randomly selected solu-

tion(s). Although it is not present in the studied

algorithms, other alteration strategies can be defined

such as partially changing a solution as done in the

mutation process in genetic algorithms.

• Guided move: In this updating mechanism the current

solution is influenced by a certain direction; it could be

the sum of previous updating directions as in the case of

PSO, RIO, GSA, and BA, or based on the location of

the best or better solutions and in their neighborhood

like in the case of OSA.

Once the updating mechanism finishes, the input function

IFðS0Þ component of the pool template updates P using the

set of updated solutions in S0. Particularly, for the algo-

rithms considered in this work, this function updates P

selecting the best p from P [ S0, or the complete set S0. On
the other hand, the archiving function AF2ðS0Þ component

replaces solutions in the archive P using some rules. These

rules can be different: replace if better, replace with a

given probability, or replace all. However, the complete set

of selected algorithms uses the same rule, which is replace

if better.

Considering the previous algorithm descriptions,

Table 1 provides a summary of the studied metaheuristics

based on the pool template (see Section 2). Notice that S

and S0 are not specified, since these pools are always

constituted by the outputs of the first and second output

function and by the updating mechanism, respectively.

Additionally, the sizes of P and P are considered.

4.2 Analysis of similarity

With the aim of analyzing the similarity between the

metaheuristics described above, a comparison of their pool

template components is considered. This analysis is divi-

ded into three parts:

• The first part is devoted to obtaining a one-to-one

relationship comparison of the 15 algorithm compo-

nents in terms of the proposed pool template. This is

done by using a binary code, where 0 means that those

components are different, while 1 means that they are

equal.

• Considering Table 1 information, it can be seen that the

updating mechanism plays a defining role in the

functioning of the selected metaheuristics. Therefore,

in the second part, a similarity index enabling to

compare this component among the different algorith-

mic approaches is proposed.

• Finally, the last part of this analysis discusses the

algorithms case by case and provides overall insights

considering all metaheuristics components. This last

part provides a degree of novelty that besides pool

template components also considers the time frame

when the different approaches have been proposed.

4.2.1 Relationship between metaheuristics’ pool template
components

For eight of nine components of the pool template depicted

in Table 1 this similarity index is quite simple to obtain,

since we just contemplate if they are different (0) or equal

(1). Tables 2, 3, 4, 5, 6 depict these indexes for p, p,

AF1ðPÞ, AF2ðS0Þ, and IFðS0Þ. Each of these tables is sym-

metric, and to improve readability we only show the upper

part. Notice that tables for GM(p), OF1ðPÞ, and OF2ðPÞ are
not shown since all the selected algorithms use the same

strategies, and therefore each element in these tables is 1.

However, in contrast to the previous pool template com-

ponents, the updating mechanism can be composed by a

different number of elements, hence, a more elaborated

index needs to be considered. Thus, an updating similarity

index aimed at measuring the degree of similarity between

algorithms’ updating mechanism is provided below.

4.2.2 Quantifying the updating mechanism similarity

This section aims at determining how the degree of simi-

larity between metaheuristic updating mechanism is. In

doing so, an updating similarity index is proposed.

Definition 1 Updating similarity index, v
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The updating similarity index of a metaheuristic i with

respect to another metaheuristic j is the number of elements

in the updating mechanism used in i which are similar to

the elements in the updating mechanism used in j divided

by the total number of elements in the updating mechanism

used in i.

For instance, if an algorithm A1 uses n elements in its

updating mechanism and another algorithm A2 uses m

elements, then the similarity index of A1 compared with A2

is given by (32).

vA1A2
¼ jCA1 \ CA2j

n
ð32Þ

where CAi is a set of elements in the updating mechanism

used by Ai for i ¼ 1; 2 and jCA1 \ CA2j is the number of

common elements for the two algorithms. Note that vA1A2
is

not necessarily equal to vA2A1
, it is not commutative. Fur-

thermore, if vA1A2
¼ 1 it means all the updating elements of

algorithm A1 exist in the second algorithm; hence it is

possible to say A1 is at least a special case of A2.

Theorem 1 If A1 is a special case of A2 and vA1A2
¼ vA2A1

,

then the two algorithms have the same updating

mechanism.

Proof Suppose the number of updating elements in A1 and

A2 are n and m, respectively.

Since vA1A2
¼ vA2A1

) jCA1\CA2j
n ¼ jCA2\CA1j

m

) n ¼ m, intersection of sets is a commutative operator.

However, since A1 is a special case of A2,
jCA1\CA2j

n ¼ 1

implying jCA1 \ CA2j ¼ n

Hence, the two algorithms have the same number of

updating elements and these elements are the same.

Therefore, the algorithms have the same updating

mechanism. h

Theorem 2 The special case relation is transitive.

Proof Suppose A1 is a special case of A2 and A2 is a

special case of A3.

A1 is a special case of A2 ) vA1A2
¼ jCA1

T
CA2j

jCA1j ¼ 1.

) jCA1

T
CA2j ¼ jCA1j, hence A1

T
A2 ¼ A1.

A2 is a special case of A3 ) vA2A3
¼ jCA2

T
CA3j

jCA2j ¼ 1.

) jCA2

T
CA3j ¼ jCA2j, hence A2

T
A3 ¼ A2.

From these A1

T
A3 ¼ A1, this implies

vA1A3
¼ jCA1

T
CA3j

jCA1j ¼ 1. h

Note that commutativity of the updating similarity index

holds for two algorithms if they have the same number of

updating elements.

The updating similarity index helps to see the degree of

similarity on the updating mechanism of a given algorithm

compared to another algorithm. Table 7 shows the updatingTa
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similarity index of the algorithms studied. For instance, if

we compare WPS against PSO, WPS has one updating

element which is following the best solution and that

updating element is the one used on PSO. Hence the sim-

ilarity index is 1. However, if WPS is compared with RS,

the similarity index will be 0. Similarly, when comparing

RIO against BSO, RIO uses three updating elements from

which one is in common with BSO, hence the similarity

index of RIO compared to BSO is 0.33. Then, if we

compare BSO with RIO, BSO has also three elements from

which one is in common with RIO, so the updating simi-

larity index of BSO regarding RIO is 0.33 again.

The last step consists of condensing every single index

corresponding to a component of the pool template and

obtaining a composed similarity index that depicts the

similarity of every pair of metaheuristics. With this aim,

the nine indexes can be summed and normalized. However,

it is worth mentioning that the performance of any meta-

heuristic is highly influenced by its diversification and

intensification capabilities. That in turn depends on the

updating mechanism as it is the component involved in the

movement and treatment of a solution resulting into a new

one. Hence, in our analysis, we consider the similarity

among metaheuristics when more weight is put on the

updating mechanism of the algorithms than in the

remaining components of the pool template. In this regard,

the updating mechanism has been weighted with about a

half of the total weight (55.5%) and the remaining com-

ponents with the remaining weight (5.5% each one). Thus,

Table 8 has been obtained to define the similarity of the set

of metaheuristics.

Based on the reported values, three different similarity

ranges can be defined. Values belonging to the range [0.7,

0.8) have been marked with boldunderlined, values in the

range [0.8, 0.9) with italic, and values in the range [0.9, 1]

with boldoverlined. Notice that we have rounded numbers

to one decimal to make this classification. These ranges

ease the visual identification of relevant, quite relevant, and

very relevant similarities, respectively. Values below these

ranges are not considered enough relevant to extract reli-

able conclusions, and the diagonal values are not consid-

ered since they represent the relation between each

algorithm and itself.

Like in the individual indexes tables, in Table 8 the

algorithm in the row is compared with the algorithm in the

column. Note that, the algorithms are ordered in their year

of introduction starting from RS introduced in 1958, and

finalizing with AMO, introduced in 2014. Also, it is worth

indicating that when a new metaheuristic method needs to

be incorporated afterwards, the current values does not

change. Only a new row and column related to the method

to be incorporated have to be added. With regards to the

table entries, a value close to 1 in row p and column q

implies that the algorithm in the row is similar or a special

case of the algorithm in the column. On the other hand, if

the entry in row q and column p is also close to 1, the two

algorithms can be considered practically equal. The higher

the values, the more similar they are. For example, looking

at the 3rd row and the 1st column the value is 0.94 and also

at the 1st row and column 3. Hence, the two algorithms (RS

and IWO) are practically the same. If we look at row 4 and

column 2 the entry is 0.89 but in row 2 and column 4 the

Table 2 Similarity index regarding the size of the pool of solutions P (i.e., p)

RS PSO IWO WPS FA OSA RIO GSA BSO BA SOPT CAB ATA BH AMO

RS 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PSO 1 1 1 1 1 1 1 0 1 1 1 1 1 1

IWO 1 1 1 1 1 1 0 1 1 1 1 1 1

WPS 1 1 1 1 1 0 1 1 1 1 1 1

FF 1 1 1 1 0 1 1 1 1 1 1

OSA 1 1 1 0 1 1 1 1 1 1

RIO 1 1 0 1 1 1 1 1 1

GSA 1 0 1 1 1 1 1 1

BSO 1 0 0 0 0 0 0

BA 1 1 1 1 1 1

SOPT 1 1 1 1 1

CAB 1 1 1 1

ATA 1 1 1

BH 1 1

AMO 1
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entry is 0.52. Thus, WPS is a special case of PSO but PSO

is different from WPS.

In order to ease the drawing of conclusions regarding the

relationship among the algorithms, Figs. 3, 4 and 5 repre-

sent them. The first focuses on the highest similarity val-

ues, i.e., very relevant similarities. The second depicts the

next range of values considering quite relevant similarities,

and the third represents the last range of values, i.e., the

relevant similarities. Pointed arrows represent that one

algorithm is a special case of the other. Double pointed

arrows indicate that both algorithms are special cases of

each other with the same degree of similarity. Moreover, if

the degree of similarity is near to one, then we can consider

them equivalent or almost. This is the case of IWO and RS

as shown in Fig. 3.

Considering Fig. 3, it is possible to come to the fol-

lowing conclusions:

• SOPT is a special case of the OSA

• WPS is a special case of PSO, ATA, BH, and CAB

• BH is a special case of ATA

Table 3 Similarity index regarding the size of the archive P (i.e., p)

RS PSO IWO WPS FA OSA RIO GSA BSO BA SOPT CAB ATA BH AMO

RS 1 0 1 0 1 1 0 1 0 1 1 0 0 0 0

PSO 1 0 0 0 0 1 0 0 0 0 0 1 0 0

IWO 1 0 1 1 0 1 0 1 1 0 0 0 0

WPS 1 0 0 0 0 0 0 0 0 0 1 1

FA 1 1 0 1 0 1 1 0 0 0 0

OSA 1 0 1 0 1 1 0 0 0 0

RIO 1 0 0 0 0 0 1 0 0

GSA 1 0 1 1 0 0 0 0

BSO 1 0 0 0 0 0 0

BA 1 1 0 0 0 0

SOPT 1 0 0 0 0

CAB 1 0 0 0

ATA 1 0 0

BH 1 1

AMO 1

Table 4 Similarity index regarding the first archiving function (i.e., AF1ðPÞ)

RS PSO IWO WPS FA OSA RIO GSA BSO BA SOPT CAB ATA BH AMO

RS 1 0 1 0 1 1 0 1 0 1 1 0 0 0 0

PSO 1 0 0 0 0 1 0 0 0 0 0 1 0 0

IWO 1 0 1 1 0 1 0 1 1 0 0 0 0

WPS 1 0 0 0 0 0 0 0 0 0 1 1

FF 1 1 0 1 0 1 1 0 0 0 0

OSA 1 0 1 0 1 1 0 0 0 0

RIO 1 0 0 0 0 0 1 0 0

GSA 1 0 1 1 0 0 0 0

BSO 1 0 0 1 0 0 0

BA 1 1 0 0 0 0

SOPT 1 0 0 0 0

CAB 1 0 0 0

ATA 1 0 0

BH 1 1

AMO 1

Similarity in metaheuristics: a gentle step towards a comparison methodology

123



• IWO can be considered nearly equivalent to RS, and

they are special cases of FA and BA

It can be observed from the resulting relationship

scheme that PSO and BH are not strongly related. This may

be seen contradictory with regards to the findings provided

by Piotrowski et al. (2014), where PSO and BH were

compared to investigate the novelty of the second. In that

regard, it can be firstly remarked that we considered the

first PSO presented by Kennedy and Eberhart (1995), while

Piotrowski et al. (2014) analyzed a later one with inertia

weights included. Moreover, for the restarting procedure

considered in BH, Piotrowski et al. (2014) referenced other

PSO variants that considered restart but no direct com-

parison is provided. Since the pool template heavily relies

on complete algorithms in terms of components, it can be

said that although both algorithms PSO and BH share some

similarities, they are not the same as can be distinguished

from Table 1. In this sense, a further study including the

PSO variants components mentioned in Piotrowski et al.

(2014) should be conducted for being able to quantitatively

Table 5 Similarity index regarding the second archiving function (i.e., AF2ðS0Þ)

RS PSO IWO WPS FA OSA RIO GSA BSO BA SOPT CAB ATA BH AMO

RS 1 0 1 0 1 1 0 1 0 1 1 0 0 0 0

PSO 1 0 1 0 0 1 0 1 0 0 1 1 1 1

IWO 1 0 1 1 0 1 0 1 1 0 0 0 0

WPS 1 0 0 1 0 1 0 0 1 1 1 1

FA 1 1 0 1 0 1 1 0 0 0 0

OSA 1 0 1 0 1 1 0 0 0 0

RIO 1 0 1 0 0 1 1 1 1

GSA 1 0 1 1 0 0 0 0

BSO 1 0 0 1 1 1 1

BA 1 1 0 0 0 0

SOPT 1 0 0 0 0

CAB 1 1 1 1

ATA 1 1 1

BH 1 1

AMO 1

Table 6 Similarity index regarding the input function (i.e., IFðS0Þ)

RS PSO IWO WPS FA OSA RIO GSA BSO BA SOPT CAB ATA BH AMO

RS 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0

PSO 1 0 1 1 1 1 1 1 1 0 1 1 1 1

IWO 1 0 0 0 0 0 0 0 1 0 0 0 0

WPS 1 1 1 1 1 1 1 0 1 1 1 1

FA 1 1 1 1 1 1 0 1 1 1 1

SOPT 1 1 1 1 1 0 1 1 1 1

RIO 1 1 1 1 0 1 1 1 1

GSA 1 1 1 0 1 1 1 1

BSO 1 1 0 1 1 1 1

BA 1 0 1 1 1 1

SOPT 1 0 0 0 0

CAB 1 1 1 1

ATA 1 1 1

BH 1 1

AMO 1
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comment on BH novelty and its relationship with other

PSO variants components.

Considering the next level of relevance regarding sim-

ilarity (Fig. 4), it is possible to come to the following

conclusions:

• IWO and FA are special cases of CAB

• WPS is a special case of OSA, BSO and BA

• GSA is a special case of RIO

• PSO is a special case of ATA and vice-versa

• PSO is a special case of RIO and vice-versa

Finally, if the last level of relevance regarding similarity

is considered (Fig. 5), it is possible to come to the fol-

lowing conclusions:

• RS is a special case of CAB and BSO

• IWO is a special case of BSO

• CAB is a special case of BSO and vice-versa

• AMO is a special case of BH and vice-versa

• ATA is a special case of BH

Table 7 Updating similarity index

RS PSO IWO WPS FA OSA RIO GSA BSO BA SOPT CAB ATA BH AMO

RS 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0

PSO 0 1 0 0.33 0 0.33 0.67 0.33 0.67 0.67 0 0.33 0.67 0.33 0

IWO 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0

WPS 0 1 0 1 0 1 0 0 1 1 0 1 1 1 0

FA 0.50 0 0.50 0 1 0 0.50 0.50 0.50 0.50 0 1 0 0 0

OSA 0 0.50 0 0.50 0 1 0 0 0.50 0.50 0.50 0.50 0.50 0.50 0

RIO 0 0.67 0 0 0.33 0 1 0.67 0.33 0.33 0 0.33 0.33 0 0

GSA 0 0.50 0 0 0.50 0 1 1 0 0.50 0 0.50 0 0 0

BSO 0.33 0.67 0.33 0.33 0.30 0.33 0.33 0 1 0.67 0 0.67 0.67 0.33 0

BA 0.33 0.67 0.33 0.33 0.33 0.33 0.33 0.33 0.67 1 0 0.67 0.33 0.33 0

SOPT 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

CAB 0.33 0.33 0.33 0.33 0.67 0.33 0.33 0.33 0.67 0.67 0 1 0.33 0.33 0

ATA 0 0.67 0 0.33 0 0.33 0.33 0 0.67 0.33 0 0.33 1 0.67 0.33

BH 0 0.50 0 0.50 0 0.50 0 0 0.50 0.50 0 0.50 1 1 0.50

AMO 0 0 0 0 0 0 0 0 0 0 0 0 0.50 0.50 1

Table 8 Final similarity index with weights. Boldunderlined corresponds to values belonging to the range [0.7, 0.8), Bold to values in the range

[0.8, 0.9), and Boldoverlined to values in the range [0.9, 1], identifying relevant, quite relevant, and very relevant similarities, respectively

RS PSO IWO WPS FA OSA RIO GSA BSO BA SOPT CAB ATA BH AMO

RS 1 0.17 0:94 0.17 0:89 0.33 0.17 0.33 0.72 0:89 0.39 0.72 0.17 0.17 0.17

PSO 0.17 1 0.22 0.52 0.28 0.46 0.82 0.46 0.65 0.65 0.22 0.52 0.82 0.52 0.33

IWO 0:94 0.22 1 0.22 0:94 0.39 0.22 0.39 0.72 0:94 0.44 0.78 0.22 0.22 0.22

WPS 0.17 0:89 0.22 1 0.28 0.83 0.33 0.28 0.83 0.83 0.22 0:89 0:89 1 0.44

FA 0.61 0.28 0.67 0.28 1 0.44 0.56 0.72 0.50 0.72 0.39 0.83 0.28 0.28 0.28

OSA 0.33 0.56 0.39 0.56 0.44 1 0.28 0.44 0.50 0.72 0.67 0.56 0.56 0.56 0.28

RIO 0.17 0.82 0.22 0.33 0.46 0.28 1 0.65 0.46 0.46 0.22 0.52 0.63 0.33 0.33

GSA 0.33 0.56 0.39 0.28 0.72 0.44 0.83 1 0.22 0.72 0.39 0.56 0.28 0.28 0.28

BSO 0.35 0.65 0.35 0.46 0.39 0.41 0.46 0.22 1 0.59 0.17 0.71 0.65 0.46 0.28

BA 0.52 0.65 0.57 0.46 0.63 0.63 0.46 0.63 0.59 1 0.39 0.65 0.46 0.46 0.28

SOPT 0.39 0.22 0.44 0.22 0.39 0:94 0.22 0.39 0.17 0.39 1 0.22 0.22 0.22 0.22

CAB 0.35 0.52 0.41 0.52 0.65 0.46 0.52 0.46 0.71 0.65 0.22 1 0.52 0.52 0.33

ATA 0.17 0.82 0.22 0.52 0.28 0.46 0.63 0.28 0.65 0.46 0.22 0.52 1 0.71 0.52

BH 0.17 0.61 0.22 0.72 0.28 0.56 0.33 0.28 0.56 0.56 0.22 0.61 0:89 1 0.72

AMO 0.17 0.33 0.22 0.44 0.28 0.28 0.33 0.28 0.28 0.28 0.22 0.33 0.61 0.72 1
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• BH is a special case of WPS

• GSA, FA, and OSA are special cases of BA

• FA is a special case of GSA and vice-versa

As can be observed in Figs. 3, 4 and 5, a global view of the

similarity among algorithms permits determining which

algorithms are related to which. This could be interesting

when deciding the algorithm to solve a particular problem.

For instance, if a given algorithm has been tried on an

optimization problem without success, applying equivalent

or a sub-type of a it may not lead to better results (unless

there are random components with different seeds).

Furthermore, these algorithms have been proposed at

different dates and it is relevant to assess the novelty of

newer proposals. Therefore, the year of publication has

also been put into consideration. Thus, each algorithm is

compared against older ones considering the lower half

(under the diagonal) of the table and using the other half to

check either the algorithm is a special case or the same

with the algorithm in the column. Figures 6, 7 and 8 depict

the relationships between newer and older algorithms,

which are summarized as follows:

• BH is a special case of ATA with a very relevant

similarity

• IWO can be considered equivalent to RS

• WPS is a special case of PSO with a very relevant

similarity

• SOPT is a special case of OSA with a very relevant

similarity

• ATA and RIO are a special cases of PSO with a quite

relevant similarity

• GSA is a special case of RIO with a quite relevant

similarity

• GSA is a special case of FA with a relevant similarity

• AMO is a special case of BH with a relevant similarity

• BH is a special case of WPS with a relevant similarity

• CAB is a special case of BSO with a relevant similarity

According to the very relevant similar cases, BH, IWO,

WPS, and SOPT did not contribute (in terms of bringing

novelty) to a high degree considering the previously pro-

posed algorithms. If quite relevant similarities are consid-

ered, then we can extend the list of algorithms not

contributing to a high degree with ATA, GSA and RIO.

Finally, if relevant similarities are taken into account,

AMO and CAB can be aggregated in the list. Details are

discussed in the next section.

4.3 Case-by-case discussion

Considering the previous analysis and the algorithms’

development along time from old to recent, it is possible to

assess their novelty in terms of their components. In this

sense, besides the novelty of considering a nature process

inspiration, some approaches are similar to older ones and,

hence, not so algorithmically novel.

From the set of discussed algorithms, the oldest proposal

is RS. This uses a random move to update solutions. Later,

PSO introduced follow its own best and follow the best

operators, and a guided move in which previous updating

directions are considered. Additionally, it introduced the

use of memory, i.e., the archive component and their

management functions.

IWO proposed a random move as updating component

which was used previously in RS and the remaining pool

template components do not differ from previous ones.

This is the reason why IWO is considered nearly equivalent

to RS. In the case of the WPS algorithm, it reused the

follow the best updating mechanism previously used by

PSO. The difference regarding previous algorithms was the

size of the memory, which is always a unique solution (the

best solution) and its initialization to the best solution

obtained by the generation method component.

FA reused the random move and introduced the follow

elite solutions operator, involving a certain novelty (within

continuous optimization and the described set of swarm-

based metaheuristics) as this was the first time to be pro-

posed. The remaining pool template components are not

new, although the combination of not using memory and

the updating of the solutions in the pool with all the new

Fig. 3 Algorithms’ relationship

based on the very relevant

similarity indexes
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solutions is distinctive (regarding previously presented

algorithms) at the publication date.

OSA uses follow the best solution and guided move in

the direction of the best solution from the origin. This is a

new updating movement while the remaining pool template

components are combinations of previous algorithms. In

this sense, this metaheuristic seems to introduce some

degree of novelty. However, the guided search introduced

does not have a strong motivation and is not clear if it is

helping for intensification or diversification. Furthermore,

the suitability of the move depends on the relative location

of the current best solution from the solution which is

going to be updated, xi. Hence, we should consider care-

fully the novelty of this algorithm. If we consider the

introduced guided search marginal, then OSA will be a

special case of PSO.

The RIO algorithm uses a similar updating mechanism

to the one used by PSO, but changes follow the best

operator by following elite solution in the neighborhood.

The remaining pool template components are equal to PSO

components. Moreover, the following elite solution move-

ment has been applied before by FA, hence, to some extent,

RIO could be considered as a hybrid of PSO and FA.

Another algorithm with a similar updating mechanism is

GSA. This uses follow elite solutions and guided move.

However, it does not use an archive. As indicated in Fig. 7,

it is a special case of RIO and therefore, also can be con-

sidered a hybrid of PSO and FA. Actually, it has a relevant

similarity with FA as shown in Fig. 8.

BSO uses a data structure where solutions are put into

different categories. The minimum number of solutions in

P, the size of the archive, and the way it is initialized are

different from the previous algorithms. However, its

updating mechanism elements are random move, follow its

own best and follow the best solution, which are move-

ments previously proposed. Hence, it introduced some

novelties regarding P, P, and AF1ðPÞ, although its updating

mechanism elements are a combination of the ones in PSO

and RS.

BA uses a guided move based on previous updating

directions and follow the best, like PSO, although it also

applies a random move and does not use any memory.

Thus, its pool template components are previously pro-

posed by PSO and RS.

Regarding SOPT, it moves the solution to the neigh-

borhood of the best solution. This is a guided move based

on the best solution, previously used in OSA. Actually, it is

a special case of OSA with a very relevant similarity and

does not introduce any novelty considering the previous

algorithms proposed.

Fig. 4 Algorithms’ relationship

based on quite relevant

similarity indexes

Fig. 5 Algorithms’ relationship based on relevant similarity indexes
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Later, CAB was proposed, which is a particular case of

BSO with relevant similarity because their updating

mechanism implementations are based on similar concepts

and also their archiving and input functions are the same.

Nevertheless, the size of the archive is different from

previous algorithms, so it introduced a very slight novelty.

In ATA, an additional alteration operator is introduced

for relocating the solution to another neighborhood. This is

a novelty, although the remaining pool template compo-

nents are equal to PSO, reason why it has a quite relevant

similarity index with PSO. Like ATA, BH is an algorithm

with alteration operator in the updating mechanism.

Actually, it is considered a special case of ATA with a very

relevant similarity index since they share the remaining

pool template components and also the follow the best

element of the updating mechanism. Alteration aside, BH

is a special case of WPS.

Algorithm AMO also uses an alteration operator and

introduces a new element in the updating mechanism,

follow the neighbor. That is the difference regarding BH,

which uses a follow the best element instead of alteration.

This makes AMO a special case of BH with a relevant

similarity.

4.4 Overall insights

Despite the similarities found and presented, the number of

works proposing these metaheuristics and citing the cor-

responding similar algorithm is quite reduced. Only BA,

ATA and RIO cite PSO.

In order to establish a factual measure of the novelty

introduced by each algorithm along the publication years, a

degree of novelty can be defined. Notice that we are always

in the framework of the 15 metaheuristics selected and,

therefore, the novelty is with respect to this set of algo-

rithms. Thus, for each algorithm and each pool template

component, we check if the elements used within those

components are novel. If any other previous algorithm has

used it before, then the component is set to 0. Otherwise, a

1 is assigned. For the updating mechanism, the proportion

of new movements is considered (see Table 9). Finally, for

each algorithm, the same weights used in Sect. 4 are

assigned to its components, i.e., 55.5% to the updating

mechanism and 5.5% for the remaining components. Thus,

a final degree of novelty can be calculated as the weighted

sum. Figure 9 depicts this degree for each algorithm.

Because of the reuse of existing algorithms under new

names, the field has been invaded with many proposals

where useful studies can be conducted instead. Interesting

research issues, like the description or definition of the

metaheuristic components have not been explored enough

whereas the focus of many researchers has been put on

mimicking a given scenario to introduce a ‘new’ algorithm.

One of the reasons is that the researchers who proposed

new algorithms did not do sufficient literature study.

Fig. 6 Algorithms’ relationship

considering publication year

and the very relevant similarity

indexes

Fig. 7 Algorithms’ relationship considering publication year and the

quite relevant similarity indexes
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Hence, if a researcher wants to introduce a new meta-

heuristic, a good bibliography study of existing approaches

needs to be done. Additionally, the use of appropriate or

standard terminology for explaining and describing a

metaheuristic is advisable.

Different applications used these ‘new’ algorithms suc-

cessfully. However, a good performance on benchmark

problems does not necessarily demonstrate the novelty of a

given algorithm. If an algorithm is composed of other

algorithms’ elements it may outperform others, but that

makes it a hybrid algorithm, not a new one.

5 Conclusions

The novelty introduced by a new metaheuristic or a variant

is a research issue that requires relating and analysing its

(possibly incremental) contribution with regards to the

state-of-the-art. Despite of this observation, many new

algorithms are proposed and used persistently but lack of

design analysis. Even though a new metaheuristic can be a

good contribution, researchers should be able to define its

components appropriately. In order to do that, they should

consider previous related approaches in the literature while

assessing the algorithmic novelty of their contribution.

Thus, in this paper, a pool template is proposed for

Fig. 8 Algorithms’ relationship

considering publication year

and the relevant similarity

indexes

Table 9 Novelty of each pool

template component for each

algorithm considering year of

proposal

Algorithm p p GM(p) OF1ðPÞ OF2ðPÞ UM(S) AF1ðPÞ AF2ðS0Þ IF(S’)

RS 1 1 1 1 1 1 1 1 1

PSO 1 1 0 0 0 1 1 1 1

IWO 0 0 0 0 0 0 0 0 0

WPS 0 1 0 0 0 0 1 0 0

FA 0 0 0 0 0 0.50 0 0 0

OSA 0 0 0 0 0 0.50 0 0 0

RIO 0 0 0 0 0 0.33 0 0 0

GSA 0 0 0 0 0 0 0 0 0

BSO 1 1 0 0 0 0 1 0 0

BA 0 0 0 0 0 0 0 0 0

SOPT 0 0 0 0 0 0 0 0 0

CAB 0 1 0 0 0 0 0 0 0

ATA 0 0 0 0 0 0.33 0 0 0

BH 0 0 0 0 0 0 0 0 0

AMO 0 0 0 0 0 0.50 0 0 0
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identifying, classifying, and analyzing metaheuristics at a

component level.

To exemplify its use, several recent swarm-based

metaheuristics applied in continuous optimization have

been compared and analysed by means of our approach.

The results confirm that indeed there is an issue of novelty

at a design level where the majority of these algorithms are

similar in terms of components and some of them can be

defined as a special case of previous algorithms. Thus,

future algorithms regardless of their inspirational source

can be accompanied by a proper algorithmic breakdown

study that permits identifying the design contribution of

them. Moreover, in cases where two or more algorithms

present a design difference already identified through the

pool template, an empirical study can be developed to

measure the contribution of such design difference.

A methodology is proposed to measure the similarity

and relationship among algorithms. This is useful when

deciding and designing the algorithm to solve a particular

problem. Additionally, the novelty of an algorithm

regarding previously proposed metaheuristics is quantified

using some terms and approaches based on the pool tem-

plate. This methodology and analysis can be extended to

any other group of metaheuristics.

Furthermore, it is also noteworthy to indicate that some

novelty can come by the combination of already defined

components in other algorithms but not yet put together in

an algorithm. In this regard, it is necessary to analyse if that

novelty is enough to justify a new name for the algorithm

(nature-inspired or not) instead of a variant from the other

algorithms where the components exist. For example,

Camacho Villalón et al. (2020) compare the Grey Wolf

Algorithm, Firefly Algorithm, and Bat Algorithm with

different parts of different algorithms (PSO, variants of

PSO, and Simulated Annealing). This way, they indicate

that the analyzed algorithms can be built by taking com-

ponents of already existing algorithms and putting them

together. This, therefore, motivates (as in Piotrowski et al.

(2014)) the use of a methodology, like the pool template

proposed in this work, to systematically analyse and

compare metaheuristic algorithms in terms of their defining

components, as well as quantify, in case there is a com-

bination, how each algorithm component contributes/re-

lates to the new proposed algorithm.

In the same vein, some possible future works include:

• Developing a similar study for metaheuristics applied to

discrete optimization problems or for specific types of

metaheuristics such as single-point-based ones, among

others.

• Preparing a compiled set of updating mechanism

elements categorization needs to be done. Based on

that it will be easy for researchers to see what

mechanisms exist (especially for learners).

• A mathematical analysis of updating mechanism imple-

mentations based on algorithms’ convergence and

similarity.
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