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ABSTRACT
Fully integrated CMOS frequency-modulated continuous-wave
radar ICs are under development, in which computing FFTs cost a
significant amount of energy.

In this paper we introduce a power-efficient FFT solution which
exploits that intermediate results of FFT computations typically
have small amplitudes in FMCW radar systems. We propose using
the sign-magnitude number representation combined with a cus-
tom, unsigned Booth multiplier that does not generate negative
numbers internally, significantly decreasing switching activity.

RTL power-simulation results show up to 46.45% less power
usage with our sign-magnitude radix-2 FFT implementation com-
pared to a two’s complement design, while only having a 6.67%
lower maximum clock speed.

CCS CONCEPTS
• Hardware → Digital signal processing; Circuits power is-
sues; Application specific integrated circuits.
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1 INTRODUCTION
Frequency-modulated continuous-wave (FMCW) radar CMOS ICs
are being developed to be used in autonomous cars as cheap dis-
tance and speed sensors. In such ICs, the distance and speed of
targets are calculated by applying Fast Fourier Transforms (FFT) on
the digitized data coming from an RF front-end. Attaining usable
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accuracy requires a high amount of digital signal processing (DSP),
leading to a high power usage and thus excessive heat dissipation.
An important issue is that in cars, these ICs are placed in difficult
to cool places, and therefore have to be duty-cycled to reduce heat
dissipation.

In this paper we present techniques that reduce the power usage
of FFTs in FMCW radar systems. We analyze several key properties
of FMCW radar, the FFT, and number representations. By combining
these properties, we implement a fixed-point, radix-2 hardware FFT
using sign-magnitude encoding resulting in much lower power
usage than comparable two’s complement implementations. These
power savings occur despite needing extra hardware for converting
between number formats to efficiently add and subtract numbers.
We also apply several architectural optimizations to reduce the
critical path. In our gate level power simulations, our proposed
design of the FFT butterfly logic has an up to 46.45% lower power
usage.

The paper is organized as follows. In Section 2 we first give a
brief overview of FMCW radars. Then in Section 3 we describe
the basic idea of our proposed solution. In Section 4 we analyze
how numbers are processed in FFTs, and give an overview of the
two’s complement and sign-magnitude number formats. We also
describe the structure of array and modified Booth multipliers. In
Section 5 we propose several solutions and describe our imple-
mentations. Next, in Section 6, we evaluate all implementations,
perform static power analysis, and list the power usage, area, and
maximum frequencies. Finally, we conclude the paper in Section 7.

2 FREQUENCY-MODULATED
CONTINUOUS-WAVE RADAR

Radar systems transmit a signal, receive it reflecting off of objects,
and measure the delay between transmission and reception of the
signal (∆t ) which is proportional to the distance between the radar
and those objects. FMCW radar systems transmit signals with in-
creasing frequency over time (a chirp), which in addition to mea-
suring ∆t , also allows measuring ∆f . This is shown in Fig. 1(a).
Demodulation is performed by mixing the transmitted and received
signals, resulting in a sinusoidal signal called the beat signal. This
signal contains components with different frequencies, correspon-
ding to the different reflections of each object and their distance R.
The FFT is then applied to extract these frequencies.

The proportion of the transmitted and received signal powers is
[6]:
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Figure 1: Basic workings of FMCW radar, and the obtained
radar data cube with range, Doppler, and angle information.

Prx ∝
1
R4

Ptx (1)

where Prx is the power of the received signal, Ptx is the peak
transmission power, and R is the target range. Although Prx has
a high dynamic range, one important aspect is that the power of
the received signal is usually much smaller than the transmitted
signal due to the sharp decrease in signal power when increasing
the distance.

2.1 Radar Data Cube
Range, Doppler, and angle information can be obtained by applying
a 3D FFT on the beat signals as shown in Fig. 1(b). First we take the
FFT of a single beat signal bi which yields a column with the ranges
of objects. Since beat signals consist of sums of sinusoidal signals,
they are typically not small in amplitude. The input to the range FFT
can be large when for example there are always strong reflections
due to the radar dome or a bumper. Despite this, the output of the
range FFT is sparse and yields low signal power in most bins as
they contain noise and very small input signals (indicated by a grey
color in Fig. 1(b)). Close examination reveals that this also holds for
the internal values of FFTs, even when the amplitude of the input
signal is large.

Next, we repeat this for allN beat signals and then take the FFT of
each row, resulting in the range-Doppler plot. Finally, we compute
the range-Doppler plot for each receiver antenna and take the FFT
in the Z direction to obtain angle information. Both the Doppler
and angle FFTs mostly process very small signals, especially for
range bins that correspond to targets at a large distance from the
radar.
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Figure 2: Normalized bin amplitudes after each stage of a
128-bin FFT. Real and imaginary parts are drawn separately.

3 BASIC IDEA
To decrease dynamic power usage, we choose to exploit the sign-
magnitude number format to reduce the switching activity. We
justify our choice due to the following observations.

First, a wide data path is necessary because the input signals have
a high dynamic range and we want to exploit the processing gain
of the FFT to extract very small signals that are hidden in the noise.
The range FFTs produce sparse outputs with most bins containing
noise and very small signals. The Doppler and angle FFTs therefore
process mostly small inputs. Additionally, the internal values of
all FFTs overwhelmingly have small amplitudes. Fig. 2 shows the
normalized bin amplitudes after each stage for a 128-bin FFT. In
this example, the input consists of the sum of Gaussian noise and
two cosine waves with amplitudes 0.25 and frequencies that do not
fall exactly in the center of a bin, smearing the signal power over
multiple bins. We see that the amount of bins with large amplitudes
decreases quickly, meaning that many internal values are small.
This effect increases with larger FFTs.

Second, using the sign-magnitude number format for low-power
designs is not new, but is often discouraged for arithmetic appli-
cations, as addition/subtraction is more complex [3] compared to
two’s complement. The overhead of converting to and from two’s
complement often nullifies the gains of a lower switching activity.
Instead, other number formats [10], mixed number representations
[16], and sign bit reduction techniques [12][15] are much more
studied. However, evaluation of using the sign-magnitude num-
ber format in the FMCW radar FFT context is new, and as our
results show in Section 6.1, can lead to significant power-efficiency
improvements despite the conversion overhead.

Third, since multipliers are usually the source of the highest
switching activity in FFT implementations, power-efficiency im-
provement is dependent on the used multiplier type. In the case of
array multipliers, there is a large difference in switching activity
between just multiplying small unsigned numbers compared to
small, signed two’s complement numbers. This difference however
is much smaller when using a modified Booth multiplier [9], be-
cause even if all inputs are unsigned numbers, it can still generate
negative numbers internally, switching most higher bits. However,
Booth multipliers are typically used because of the lower delay
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(a) Basic radix-2 FFT butterfly unit.

x(0)

x(4)

X(0)

X(1)

W
0

8
x(2)

x(6)

X(2)

X(3)
W

2

8

W
0

8

W
1

8

W
2

8

W
3

8

x(1)

x(5)

X(4)

X(5)

W
0

8
x(3)

x(7)

X(6)

X(7)
W

2

8

W
0

8

W
0

8

W
0

8

W
0

8

(b) Structure of an 8-bin radix-2 FFT.

Figure 3: Overview of a radix-2 FFT butterfly unit, and an
8-bin radix-2 FFT example.

resulting in a higher maximum clock frequency. We therefore pro-
pose an unsigned Booth multiplier that does not generate negative
numbers internally, and thus significantly decreases the switching
activity.

4 BACKGROUND
In this section we first give a brief description of the discrete Fourier
transform (DFT) and the fast Fourier transform (FFT), the inherent
processing gain, and how numbers are processed internally. We
then describe the two’s complement and sign-magnitude number
formats, and elaborate on their advantages and disadvantages.

4.1 Discrete Fourier Transform
For N -periodic discrete signals, the DFT extracts the discrete fre-
quency components and their respective amplitudes. It can be seen
as applying a band-pass filter for each output [8] which represents
a bin for a specific frequency range. It is defined as:

X [k] =
N−1∑
n=0

x[n] ·W kn
N (2)

where x[n] is the nth complex input sample, X [k] is the kth
transformed sample, andW kn

N = e−i
2πkn
N is called the twiddle factor

[5] and is the principal N th complex root of unity.

4.2 Fast Fourier Transform
The most famous FFT uses the Cooley-Tukey algorithm [4] which
reduces the complexity of the DFT from O(N 2) to O(Nloд2(N )),
by exploiting the symmetry of the twiddle factors and recursively
decomposing the DFT into smaller parts. Given two complex input
samples x[i] and x[j], the radix-2 FFT is defined as:

X [i] = x[i] + x[j] ·W
X [j] = x[i] − x[j] ·W

(3)

Fig. 3(a) shows the radix-2 FFT butterfly unit, which performs
(3) and results in a 2-bin FFT. Larger, N -bin FFTs can be calculated
by applying (3) in loд2(N ) stages. An example of an 8-bin FFT is
shown in Fig. 3(b).

4.3 Bit-widths, Rounding, and DC-Bias
The number of bits of the data path determines how accurate num-
bers can be represented, where wider data paths also require more
hardware and generally consume more power.

Results of multiplications require the added sizes of the input
operands to guarantee that the result is accurate. To prevent a costly,
ever growing data path, truncation is applied after operations to
keep the data path width constant.

Truncation typically has two negative effects. First, depending
on the used number representation, it can introduce a bias and
affect the accuracy of the results. In an FFT, this bias appears in the
first bin as it represents the DC-bias in the input signal. In such
cases, unbiased rounding is required. Second, truncation can also
introduce quantization noise due to the finite precision of fixed
point representations.

4.4 Processing Gain
The magnitude of a bin containing the signal is proportional to
the FFT length N , whereas the magnitude of noise is proportional
to

√
N . This interesting property, known as the processing gain, is

defined as [8]:

SNRN = SNRN ′ + 10 · loд10
(
N

N ′

)
(4)

where N and N ′ are FFT lengths. To increase the SNR, we simply
choose a bigger FFT length, i.e. N > N ′.

When processing beat signals, far away objects have a higher
frequency and as such are placed into higher bins. As a consequence
of (1), their magnitudes are therefore much smaller, and can even
be smaller than noise. The processing gain aids in extracting those
small signals.

However, exploiting the processing gain comes at a cost as it
requires more input samples and more operations to be executed.
Also, the data path needs to be wide enough to store the larger
values to not lose accuracy, increasing the number of logic gates
and area of the implementation.

4.5 Number Encodings
4.5.1 Two’s Complement. An N -bit two’s complement number has
a range of [−(2N−1), 2N − 1]. A negative number is encoded by
applying the two’s complement operation on the positive value,
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i.e. inverting all bits and adding one. This causes a high switching
activity when changing signs. They also inherently round towards
−∞, so truncation introduces a bias therefore requiring rounding
for sensitive applications.

4.5.2 Sign-Magnitude. For an N -bit sign-magnitude number, the
MSB represents the sign, and the remaining bits represent the
magnitude. The range is [−(2N−1) − 1, 2N−1 − 1]. This encoding
has low switching activity when changing signs of small values.
However, two downsides are the two encodings of 0, namely +0
and −0, and the complexity of adding two numbers with opposite
signs [3]. The latter requires converting between the two number
representations by only applying the two’s complement operation
for negative numbers.

4.6 Multipliers
In this section we describe the basic structures of array and Booth
multipliers. We then give a general approximation of how values
with different magnitudes for the multiplier and multiplicand affect
the power usage.

4.6.1 Sign-Magnitude Multiplication. Multiplication of sign-magni-
tude numbers involves an unsigned multiplication of the magni-
tudes and an XOR of the sign bits.

4.6.2 Array Multiplier. An AxB array multiplier is used for un-
signed numbers. It generates rows of partial products for each bit
Bi . When Bi is 1, the partial product of row i is the value ofA shifted
left by i bits, and is zero otherwise. Each partial product pyx is the
logical AND of Ax and By . Fig. 4(a) shows the basic structure of
an 8x8-bit array multiplier. The Baugh-Wooley multiplier [1] modi-
fies this multiplier such that it also works with two’s complement
numbers.

4.6.3 Booth Multiplier. The modified Booth multiplier [9] is used
for two’s complement numbers, and uses a radix-4 scheme to gene-
rate half the partial products of array multipliers. It encodes control
signals for each overlapping group of three bits of B. Each group
of control signals is then decoded to generate one partial product,
which ranges between A · [−2,−1, 0, 1, 2]. For our reference design,
we use the modified Booth multiplier as proposed by Kuang, Wang,
and Guo in [7]. Fig. 4(b) shows the basic structure of an 8x8-bit

modified Booth multiplier. Using higher radices decreases the num-
ber of partial products further, but their implementations can end
up being slower than radix-4 [13].

4.6.4 Power Usage. An example of power usage approximation
of array and modified Booth multipliers is shown in Fig. 4. Both
multipliers perform 1 × 3, but generate p0 + (p1 × 21) = 1 + (1 × 2)
and p0 + (p1 × 22) = −1+ (1× 4) for the array and Booth multiplier
respectively. Even though both inputs are positive, the latter gen-
erates a negative number internally and causes carry signals to be
propagated, leading to a much higher switching activity.

5 SOLUTIONS
Our proposals are two-fold. First we propose an unsigned Booth
multiplier which, for sign-magnitude numbers, has a much lower
switching activity than the modified Booth multiplier. Second,
we show a hybrid radix-2 FFT butterfly unit that uses both sign-
magnitude and two’s complement numbers for multiplication and
addition/subtraction respectively.

5.1 Unsigned Booth Multiplier
The modified Booth multiplier can internally generate negative
numbers even if the inputs are positive, resulting in a high switching
activity of the higher bits. We therefore propose an unsigned Booth
multiplier that internally only generates positive numbers, thereby
decreasing the switching activity when small amplitude numbers
are used.

We implemented a radix-4 unsigned Booth multiplier whose
partial products can generate 0, A, 2A, and 3A. The latter is a hard
multiple because it is not trivial to generate with just shifting.

One way to calculate 3A is to add A and 2A. Although optimized
adders for this purpose exist [11], it still increases the critical path.
We chose an alternative method, and implemented a simplified
version of a redundant binary multiplier [2], where we instead
generate two partial products per encoder. The first partial product
generates A · [0, 1, 2] and the second one generates A · [0, 1]. While
this almost doubles the number of partial products, the depth of the
Wallace tree only increases from six to eight with a 32x32multiplier,
limiting the increase to the critical path.

5.2 Hybrid Butterfly Unit
The basic structure of our hybrid radix-2 butterfly unit is shown in
Fig. 5(a). To efficiently add and subtract, it converts between the
two number encodings by XORing all bits with the MSB (except
the MSB itself), and then adding the MSB to the XORed result. This
implementation also correctly treats +0 and −0 as 0.

The pre-computed twiddle factors use sign-magnitude encoding,
and the input samples use two’s complement encoding. The x(1)
inputs are converted to sign-magnitude, and converted back to
two’s complement after multiplication. The 62-bit results of the
multipliers are added and subtracted, and then truncated to 33 bits.
The rounding hardware (RND) adds the MSB of the truncated bits
to the final result if it is negative, effectively rounding towards zero
and removing bias.
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Figure 5: High-level overview of the basic and optimized ver-
sions of our hybrid radix-2 sign-magnitude butterfly unit.

5.3 Optimizations
In this section, several optimizations are described, and their impact
on power and latency can be found in Section 6.1.

5.3.1 Sign-Change. Subtracters are adders, where the B input is
inverted and the carry-in is asserted. We invert the sign bit of the
twiddle factor going to the multiplier that computes x(1)im · twim ,
and change the subtracter that follows to an adder. This eliminates
all the inverters of the B input of the following subtracter.

5.3.2 Retiming. XOR gates are known to cause glitches [14]. The
converters can therefore also cause glitches throughout the multi-
pliers and adders, increasing unwanted switching activity. To avoid
this, we retimed and pipelined the design. Both the twiddle factors
and input data now use sign-magnitude encoding.

The retimed and pipelined hybrid radix-2 butterfly unit is shown
in Fig. 5(b). These implementations have the same four converters
after the multipliers, and six conditional converters indicated by the
dashed lines around them (Cin , Cout0, and Cout1). The conditional
converters are similar to the other converters, except the MSB
is replaced with a logical AND of the MSB and a selector signal.
Pipeline registers are placed after the converters of the multipliers.

Conversion is only needed when a sample needs to be multiplied.
Cin will only convert all x0 inputs in the first round as all x1 inputs
are always multiplied. Cout0 and Cout1 only convert back to sign-
magnitude if the next stage will have a multiplication. Therefore,
three control signals (Cin , Cout0, and Cout1) have to be generated
for each butterfly.
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Figure 6: Detailed view of conversion to two’s complement,
rounding, and conditional conversion to sign-magnitude.

5.3.3 Output Stage Adders. Instead of using a 62-bit CLA after
multiplication, we use CSAs for the most significant 32 bits and a
30-bit CLA for the lower bits as shown in Fig. 6(a). The MSB of the
this CLA is the fraction bit F that is used for unbiased rounding.
In our proposed implementation, the +1 adders of the converters
after the multipliers are replaced with CSAs as well. Incorporating
the +1 addition into the CSAs shortens the critical path.

5.3.4 Rounding and Conversion. Both the rounding and conditional
converter blocks contain a conditional +1 adder, and the activation
of both adders is mutually exclusive. Therefore one adder can be
removed, which is shown in Fig. 6(b), whereCout0 is the conditional
conversion signal.

6 EVALUATION
In this section we evaluate the two’s complement reference and our
proposed implementation using synthetic data and a full frame from
an actual FMCW radar. The reference two’s complement design
uses the modified Booth multiplier as proposed by Kuang, Wang,
and Guo in [7], and an output stage with Carry-Save (half)adders
similar to our proposed design as described in Section 5.3.3. We
demonstrate that our proposed design has a significantly lower
power usage. Both the reference design and our proposed design
use Q2.30 fixed-point numbers, 12-bit input samples, and divide
the output by two every two stages, effectively performing

√
N

division on the final results of the FFT. This limits the dynamic
range of processed data by keeping the noise amplitude constant,
and keeping the growth of signals limited to

√
N .

We have synthesized both implementations using the TSMC
40nm LP standard cell library and Synopsys tools with high syn-
thesis and mapping effort. A typical-typical corner was used with
a supply voltage of Vdd = 1.1 V.

Furthermore, we wrote software implementations that model
both of the FFT designs, and have verified the correctness of our

56



DASIP ’21, January 18–20, 2021, Budapest (initially), Hungary Meteer and Bekooij

Table 1: Synthesis results for circuit area and maximum frequency.

Max. Freq. Area @ Max. Freq. Area @ 500 MHz
Butterfly Implementations MHz (∆) 𝜇m2 (∆) 𝜇m2 (∆)
Reference (2C Booth) 714.3 (-) 43532 (-) 33420 (-)
Proposed (SM Booth) 666.7 (-6.67%) 64815 (+48.89%) 45356 (+35.72%)

software FFTs with the built-in FFT implementation in Matlab. Our
software FFTs also generate files for stimulus and expected values
which was then used by the test bench to verify that our hardware
implementations produce the exact same output, and that the results
are correct.

Both implementations were tested with two synthetic input
signals, by applying a 1024-bin FFT using a single radix-2 butterfly
unit in a sequential manner. Both signals contain two bits of noise
with normal distribution:

(1) Weak: sine wave with amplitude 1
4096 ≈ 2.44 · 10−4.

(2) Strong: sine wave with amplitude 4000
4096 ≈ 9.7 · 10−1.

All implementations were also tested with a full radar frame from
an actual FMCW radar by applying a 2D FFT to obtain a range-
Doppler frame. The input consists of 512 chirps of 1024 samples
each, and therefore the range FFTs perform 512 1024-bin FFTs. Since
the input is a real-valued signal, the upper half of range FFT results
were discarded because of symmetry, meaning that the Doppler
FFTs consist of 512 512-bin FFTs.

6.1 Results
The synthesis results are shown in Table 1. In terms of maximum
clock frequency, our proposed design is 6.67% slower than the refe-
rence design. There are two reasons that cause the lower maximum
clock frequency. First, the Wallace tree in our proposed unsigned
Booth multiplier has two more levels compared to the modified
Booth multiplier in the reference design. Second, the multiplier re-
sults have to be converted to two’s complement. This requires one
level of XOR gates and one level of half adders to incorporate the
+1 addition that is necessary for conversion after multiplication.

Our proposed design typically is 35.72% larger compared to the
reference design, and 48.89% larger when both designs are syn-
thesized at maximum clock frequency. This is mostly due to our
unsigned Booth multiplier having more partial products, a larger
Wallace tree, and hardware for converting to two’s complement.
However, in a fully integrated CMOS chip where the analog front-
end is much larger, this increase in area is typically not an issue.

The power results for both designs using synthetic data can be
seen in Fig. 7. Compared to the reference design using only two’s
complement numbers, our proposed design shows a substantial
decrease of 58.18% and 57.18% in power usage for our weak and
strong synthetic inputs respectively. Fig. 8 shows power results for
both designs when processing a real radar frame. Our proposed
design shows a significant decrease of 40.84% and 46.45% in power
usage for the range and Doppler inputs when performing a 2D FFT.

Fig. 9 shows the power usage of just themultipliers when process-
ing the same radar frame. Our proposed unsigned booth multiplier
shows a substantial decrease in power usage of up to 66.27%. The
difference in power usage can be mostly attributed to the higher bits

of the modified Booth multiplier having a much higher switching
activity compared to our proposed unsigned Booth multiplier.

To demonstrate the source of this difference in power usage,
we simulated both designs with uniformly distributed 12-bits and
32-bits of random data instead of sinusoidal signals, and the results
are shown in Fig. 10. Since the FFTs process uncorrelated data and
we use

√
N scaling, the signal power will be smeared out over all

bins, and the dynamic range of the intermediate and output data
will more or less stay the same as that of the input. Therefore the
multipliers will process values with the same dynamic range in
every stage.

When given 12-bits of random data, the multipliers of our pro-
posed design use up to 42.68% less power than those of the reference
design, despite our proposed multiplier generating almost double
the amount of partial products. The only other source that can
cause a higher switching activity in the multipliers is that of the
higher bits when using two’s complement numbers. This effect
is clearly reflected in the power results when 32-bits of random
data is given to both designs. In this scenario, the multipliers of
our proposed design now use up to 35.41% more power than the
multipliers of the reference design.

When comparing eachmultiplier with 12-bits and 32-bits random
data, then our proposed unsigned Booth multiplier uses between
88.00% and 114.31%more power with 32-bits random data compared
to 12-bits random data. For the modified Booth multiplier this
difference is between 1.53% and 3.15%. These results confirm the
overwhelming sparsity of the internal values and outputs of FFTs
when processing FMCW radar signals.

7 CONCLUSION
In this paper we have proposed a low-power FFT implementa-
tion for FMCW radars. Our proposed, hybrid design uses sign-
magnitude encoding for multiplication and two’s complement en-
coding for addition and subtraction. This design uses our proposed,
unsigned Booth multiplier that does not generate negative numbers
internally.

Evaluation shows that our proposed design uses up to 46.45%
less power than a comparable two’s complement implementation
when processing data from a real FMCW radar. Area and maximum
clock frequency wise, the design is 35.72% larger and only 6.67%
slower. The results clearly demonstrate the significant benefits of
using sign-magnitude numbers in FFTs for FMCW radar systems in
terms of power-efficiency, with a very small increase in the critical
path.
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