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Abstract— We present an error-correcting code which merges
error-correction and modulation. The code is an extension of a
Low-Density Parity-Check (LDPC) code, and can be viewed as
a multi-edge type LDPC code. The symbols of the codewords
are from a ternary alphabet, and have a different probability
of occurrence. When the code is used on the complex Additive
White Gaussian Noise (AWGN) channel, the spectral efficiency is
2 bit/s/Hz. Therefore, the code is suitable for bandwidth-efficient
communication. Simulations on the AWGN channel show that
the code outperforms several other coded modulation schemes
proposed in literature.

I. INTRODUCTION

The use of iterative decoding techniques enables near ca-
pacity performance by acceptable computational effort [1], [2],
[3]. Low-density parity-check (LDPC) codes are decoded by
iterative techniques and can be optimized for performance and
complexity [4], [5], [6].

For high spectral efficiencies, coding has to be combined
with modulation. Several approaches are reported in literature
of which examples are trellis-coded modulation (TCM) [7],
bit-interleaved coded modulation (BICM) [8], BICM with
iterative decoding [9] and multilevel coding [10]. LDPC codes
can aso be combined with conventional modulation methods
such as quadrature amplitude modulation (QAM). In this case,
modulation and coding are more or less considered separately,
but there are methods to match the code and detector in order
to improve the performance [11].

We use another approach in which we define a code which
combines error-correction and modulation. The code can be
viewed as an extension of the graph of a LDPC code to
include modulation. Hence it can be described by the multi-
edge type LDPC code formalism [12]. The two problems
of modulation and coding are not solved separately, but
jointly. This gives additional performance/complexity trade-
offs and may eventually lead to better performance with less
computational complexity.

This paper is organized as follows. In section 1l we de-
scribe how encoding of the proposed code is performed. The
derivation of bitwise MAP decoding and an iterative message-
passing algorithm for decoding are given in section Ill. The
performance of two specific graph structures is ssmulated for
transmission over the additive white Gaussian noise (AWGN)
channel and the results are shown in section 1V. We end the
paper with conclusions in section V.

Il. ENCODING

The family of codeswe consider are encoded as follows. Let
s denote a vector of K source bits, s € GF(2)% . The encoding
operation proceeds in three stages. First, s is multiplied by a
generator matrix G of a LDPC code:

X = GTs, 1

where G € GF(2)5*N. The design rate of the LDPC code
is denoted by r and the block length by N. A parity-check
matrix associated to G is denoted by H.

Second, each of the elements of x is mapped to the real
numbers R by a binary phase-shift keying (BPSK) mapping:

t=0o(x) =¢(G"s), )

where ¢(...) denotes the BPSK mapping and acts on the
components of x. For a bit 2; the BPSK mapping is defined
as.
1 Tr; = 0
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In the final stage of encoding, the codeword z is obtained
by a linear transformation:

z = At, 4

where A € RN=*N s a sparse matrix consisting of 0s and
1s. We denote the length of the codewords by N, and the set
of all codewords by C. We limit ourselvesto A matrices with
d, onesin each row and in this paper d, = 2. Hence the ith
coordinate of z, which is denoted by z;, is equal to the sum
of two BPSK mapped hits:

zi = ¢(xj1) + d(x;2), ®)

where z;; and x;, are two different elements of x. Thus, z;
is equal to an element of the following set:

X ={-20,2}. (6)

Since a LDPC code is used and the prior distribution of the
source bitsis assumed to be uniform, two different elements of
x are approximately independent of each other. Consequently,
we can assign the following probabilities to the elements of
X



Tj1 Tj2 Zi P(Zz)
0 0 0.25
0/1]1/0| 0| 05
1 1| -2 0.25

Note that two combinations of z;; and x;, map to the same
z;, which implies that it is possible that two different source
vectors map to the same codeword. However, to guarantee
a good performance, it is sufficient that the probability that
this happens decays rapidly for increasing N.. The distance
properties of the LDPC code will play arole in this. In [13]
we show that equation 5 can be interpreted in a different way,
which shows that the problem does not have to be relevant for
transmission over the AWGN channel.

A signal constellation for the complex AWGN channel can
be generated by a summation of different pairs of BPSK
mapped bits for each dimension. As mentioned before, we
limit ourselves to d, = 2 and the resulting constellation is
shown in figure 1. Each constellation symbol is labeled with
its probability.
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Fig. 1. The signa constellation for d, = 2.

We conclude this section with a summary of the parameters
of the code. The rate R of the code is defined as:

K rN

A

where r and N are the design rate and block length of the

LDPC code, respectively. The energy expended per channel
use is defined as:

(")

Es = 5{212}7 (8)

where £ denotes the expectancy operator. Finally, the energy
expended per information bit is given by:
N, Ej
E, = 7
[11. DECODING

(9)

We consider the transmission of a codeword z over the
extended AWGN channel:
y=2z+n, (10)

wherey isthe channel output corresponding to IV, consecutive
channel uses and n is a Gaussian noise vector.

A. Bitwise MAP decoding

The bitwise maximum a posteriori (MAP) decision rule of
a bit x; associated to a codeword is given by:

#; = argmax P(z; = 2'|y). (11)
z’€0,1
P(z;|y) can be obtained by marginalization:
Pluly)= ). Plxzly), (12)

Z,~T;:
z€C,Hx=0
where ~ z; denotes the summary or not-sum operator. With
Bayes law, we rewrite this equation as:

P(zily) = > P(x|y,z)P(zly)

Z,~T;:

z€C,Hx=0

)

Z,~Tqt

zeC,Hx=0

=—5— Y, Pxlz)P(ylz)P(z),
zE?,Hi::O

where we have used that P(x|y,z) = P(x|z). P(x|z) is
equal to 0 in case A¢(x) # z. Next, consider a particular
z and assume that there is only one x for which A¢(x) = =z.
In this case P(x|z) = 1 which means that P(x|z) can be
dropped in equation 13. Under the summation sign there are
two conditions that have to be satisfied. First, z € C, which
implies that for a vector x, z = A¢(x). Second, x must be
a codeword of the LDPC code, which implies that Hx = 0.
These two conditions can be dropped under the summation
sign by use of the so-called truth function:

1(4) = 0 A!sfalse
1 Aistrue

P(y|z)P(z)
P(y)

(13)

(14)

We rewrite eguation 13 as:
P(zily) =

Z P(y|z)P(z)1 (A(b(x) = z)]l(Hx = 0). (15)

z,~

1
P(y)

Since the AWGN channel is memoryless, P(y|z) is a separa-
ble function. Furthermore, the remaining terms in equation 15
are also separable functions. We rewrite:

N
Paily) = 57 2 (1T Pwla
k=1

Z,~T;

2
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N-K N
T a(vtx=0) T 1(aho00 = 2n)), )
m=1 m=1

where hI and al, denote the mth row in H and A, respec-
tively.



B. Factor graphs and the sum-product algorithm

A factor graph [14] is a convenient graphical representation
of an equation which is factored in several parts. In our case,
the variable nodes correspond to the elements of x and z. We
refer to the variable nodes associated to x and z as hit nodes
and z nodes, respectively. Each factor node corresponds to one
of the terms in equation 16. An example of a factor graph of
the proposed code is shown in figure 2. The parameters of the

bit nodes

z nodes

Fig. 2. An example of afactor graph of the proposed code.

code are N, =8, N = 16 and K = 8. In the figure we have
drawn a single factor node for P(yy|z;) and P(z;). Note that
the part on the right corresponds to the Tanner graph [15] of
the LDPC code.

In case the factor graph has atree structure, the sum-product
algorithm can be applied to compute exact bitwise MAP
probabilities in a finite number of iterations. The principle
behind the sum-product algorithm is a massive application of
the distributive law [16].

In our case, the factor graph is not a tree, which aso
applies to the factor graph of LDPC codes. We can till
apply an iterative version of the sum-product algorithm and
obtain approximate bitwise MAP probabilities. The algorithm
is defined on the factor graph and proceeds by an exchange of
messages similar to the decoding of LDPC codes. We refer to
[17], [5] and [18] for an overview of the decoding of LDPC
codes.

C. Message-passing algorithm

The message-passing algorithm we use to decode consists
of three phases: an initialization, a factor node update and
a variable node update. The latter two are repeated until
convergence of the algorithm. In the next subsections, we
describe these three phases. We use the following notation

for the messages passed. Each message to or from a variable
node in the Ith iteration consists of a set defining a probability
mass function (p.m.f.) associated to the variable node. The
messages that are sent from variable nodes to factor nodes are
denoted by mS}c) and messages that are sent from factor nodes
to variable nodes are denoted by m). We use []x to index
the kth element in a set. For a bit node z;, we have:

m{)y = P(zx =0]...)

[mid)s = Plax = 1]...), (17)
and for a z node z;, we have:

[ = P(ze = —2|..)

[m{2lz = P(zx = 0]...)

m{]s = Pz, = 2|...). (18)

The following messages are passed during the three phases of
the algorithm:

1) Initialization: The algorithm is initialized by a message
pass from variable nodes to factor nodes. A z node zj
computes the a posteriori p.m.f. associated to the z node
conditioned on the channel output:

P(zk|yx) o< P(yk|2r) P(2k),

where P(yx|zx) is the likelihood of z;, and P(zy) is the prior
on zj. For d, = 2, we have shown in section Il that P(zy) is
given by:

19

0.25 ZE = -2
P(z) =405 2,=0 (20
0.25 2z =+42.

For transmission over the AWGN channel P(yy|z;) is given
by:

vr—21)2
1 _ (yg 2L,>

P 2K) = e 200
(yk| k) \/m

where o2 is the noise variance. Summarized, the z nodes send
the following messages during initialization:

(21)

mP]; = Pz, = [X]ilyr),

ve

fori=1,2and 3 (22

where X was defined in section I1.
Since the prior bit probabilities are assumed to be uniform,
the bit nodes send the following messages during initialization:

[m®)); = Pz =0) = 0.5 M9y = P(x), =1) = 0.5.
(23)

2) Factor node update: At a z factor node, we send
messages to the bit nodes based on the other connected bit
nodes and the connected z node. Since we are only interested
in the bit nodes, the messages send to the z nodes are not
described. Let x; be a bit node for which we compute a
message, z; the other connected bit node and z; the connected

z node. The message is computed as:



m{)s = 2 Pla} = 0)P(z = 0) + P(a} = 1)P(z = ~2),

(24)

where the probabilities on the right handside are obtained

from the messages received from variable nodes =} and z;.

Furthermore, Z is a normalization constant which is chosen
in such a way that:

[mW]; + [mY]y = 1.

cv cv

(25)

We note that at the z factor nodes, there is an efficient way
to compute the messages for d > 2. Details are described in
[13].

At the bit factor nodes we use Gallager's form to compute
the outgoing messages [18]. The outgoing message send to a
bit node x; is computed as:

14T, (1 = 2[mig ')
1 =
2
1 =TT, (1 = 2[mi']a)
2 )
where j loops over each connected bit node excluding z;.

3) Variable node update: The outgoing message send to a
bit node x; is computed as:

1 _
m = 5 TTmt
J#i
m{], = L | IC
ve Z 1 . cv ?
J#i
where Z is a normalization constant which is chosen in such
a way that:

(m{))s =

cv

(26)

(27)

mB]1 + [m{]2 = 1. (28)

Again j loops over each connected bit node excluding ;.

IV. RESULTS

In this section we present simulation results for two code
structures. In the first subsection, we give some specific
details about the construction of the codes and in the second
subsection we present simulation results for transmission over
the AWGN channel.

A. Code construction and parameters

So far, we have not specified any details about the structure
of the graph. We define a family of graphs by specification
of the component LDPC code. Furthermore, each bitnode is
connected to one z factor node and each z factor node has
degree d, + 1 = 3. Degree distributions are a convenient
way to specify an ensemble of LDPC codes and we use the
normalized degree distributions from a node perspective [19]:

L(z) = Z Liz*  R(z)= Z Rz’ (29)

where L; and R; are the fraction of variable nodes of degree i
and check nodes of degree i, respectively. In this paper we use
one regular degree distribution and one irregular degree dis-
tribution. We have not used an optimization technique such as

10° T T T

: ~&- Nz=16000
—- Nz=8000
—- Nz=4000

10k

107k

107k

BER

107k

107k

107k

10° I I I I I I I I I

Eb/NO [dB]

Fig. 3. The BER of code | for transmission over the AWGN channel

density evolution, but selected two pairs of distributions with
low variable node degrees by trial and error. The polynomials
and other code parameters are given in the following table:

Code| r |R L(z) R(x)
I 05 | 1 | 0.352%2 +0.652° | 0.822* + 0.18z!!
I 05| 1 z? z?

The A matrix is constructed at random, but we made sure that
each row has two ones and all rows are different.

B. Results for transmission over the AWGN channel

We consider transmission over the AWGN channel for code
| first. Transmission takes place at a rate of 1 bit/channel use.
Figure 3 shows the bit error rate (BER) for severa signal
to noise ratios (E,/Ny) with N, equal to 16000, 8000 and
4000. We have set the maximum number of iterations to
800, but stop whenever a word x is found which satisfies
Hx = 0. For BERs < 103, convergence usually takes place
within 40 iterations. Code | achieves a BER of 107> at an
Ey/Ny of 3.2 dB for N, = 16000. The Shannon limit for
the unconstrained AWGN channel is at 1.76 dB and if we
consider a BER of 1075 reliable, the distance to the Shannon
limit is 1.4 dB. When we compare the results to other coded
modulation schemes we observe the following. In [9] a BICM
scheme with iterative decoding and a 8-PSK congtellation is
used. For 4000 information bits a BER of 10~° is achieved
at 4.5 dB. From figure 3 we see that code | with N, = 4000
requires an E;, /Ny of 3.65 dB to achieve the same BER. Our
signal constellation contains one extra symbol in comparison
to a 8-PSK constellation, but the results are better. In [20] a
turbo trellis-coded modulation scheme is used with a 8-PSK
congtellation. This method has a similar performance as the
coded modulation method described in this paper.

The smulation results for code Il are shown in figure
4. Since the degree of all bit nodes is two, the code has
many low-weight codewords. This causes the message-passing
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Fig. 4. The BER of code Il for transmission over the AWGN channel

algorithm to converge to low-weight codewords, which results
in undetected errors. Code | performs much better. However,
due to the low degrees of the variable nodes and check nodes,
the complexity of code Il is lower. Furthermore, the threshold
of code Il is lower (2.6 dB).

V. CONCLUSIONS AND FUTURE RESEARCH

We have proposed a multi-edge type LDPC code which
combines modulation and error-correction. A message-passing
algorithm is derived, which computes approximate bit proba-
bilities. We have constructed codes with different block lengths
from two different pairs of degree polynomials. The empirical
performance for transmission over the AWGN channel was
simulated and results compare well against other schemes
described in literature. We have not used any optimized degree
distributions, but plan to do this in future research. Finaly,
we would like to point out that the use of larger d, could be
beneficial to obtain a signal shaping gain.
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