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Abstract— Joint synthesis of dynamic state feedback is con-
sidered together with dynamic disturbance feedforward. First a
novel parameter transformation is introduced to derive a new
LMI condition for synthesis in the case of LTI systems. This
condition forms the basis of a new synthesis method, which
can easily be specialized to combination of static or dynamic
sate feedback with static or dynamic disturbance feedforward.
Moreover, it can also be used to synthesize LTI or scheduled
controllers for systems that depend on uncertain time-varying
parameters, some of which are not measurable online.

I. INTRODUCTION

Control systems in various domains are usually designed
with an ingenious combination of feedback (for stability
and robustness) and feedforward (for improved tracking
and disturbance rejection). Linear matrix inequality (LMI)
optimization forms a convenient setting for a unified syn-
thesis of feedback and feedforward controllers for single as
well as multiple (H2, H∞ etc.) performance objectives [2],
[21], [15]. LMI based synthesis can also be used to design
scheduled (or linear parameter-varying - LPV) controllers
for systems that depend on online-measurable parameters
(see [16] and the references therein). Synthesis becomes
more challenging in the case of uncertain and unmeasurable
parameters, nonlinearities and dynamic uncertainties.

Luckily though, robust controller synthesis (in the pres-
ence of unmeasurable parameters) can be rendered convex
in a number of specific cases and typically by admitting to
some unknown degree of conservatism. In particular, one can
perform robust syntheses based on LMI optimization in the
cases of static state feedback [19], dynamic disturbance feed-
forward [7], [23], [5], [3], [12], output filtering/estimation
[13], [6], [1], [25], [22] and dynamic output feedback with
uncertainty solely in the disturbance filter [4], [11]. From a
technical point of view, it is the specific structure that makes
robust synthesis possible for a particular problem. A generic
structure is identified in [20] for which robust synthesis is
possible within the setting of dynamic IQCs (see also [26]).

In this paper, we are concerned with the synthesis of
dynamic state feedback jointly with dynamic disturbance
feedforward especially for uncertain systems. A joint dy-
namic feedback/feedforward synthesis is straightforward for
known linear time-invariant (LTI) systems based on the LMI
approach of [21], which would typically deliver controllers
with an order that is equal to the order of the generalized

This work was supported by University of Twente, Faculty of Engineering
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plant. It is, however, not possible to apply this method to un-
certain systems with unmeasurable parameters. On the other
hand, it is possible to synthesize static state feedback jointly
with static disturbance feedforward for uncertain systems as
presented in [17]. To the best of the author’s knowledge,
there exists no LMI method in the literature that one can use
for a concurrent synthesis of dynamic state feedback with
dynamic disturbance feedforward for uncertain systems. One
can though first perform a robust static state feedback and
then complement it with dynamic disturbance feedforward.
Such a sequential approach might lead to suboptimal design
for uncertain systems as pointed out by [27] and would be
quite inconvenient especially when the goal is to synthesize
a parameter-dependent controller. A joint synthesis of static
feedback with dynamic feedforward was considered in the
previous work [9].

We develop in this paper a novel LMI approach that
makes it possible to synthesize dynamic state feedback
concurrently with dynamic disturbance feedforward. The
method can also be specialized easily to all types of combi-
nations (static/dynamic) of state-feedback and disturbance-
feedforward. In the next section, we first consider the joint
synthesis problem for LTI systems and introduce a new vari-
able transformation as the key to the proposed approach. We
then extend the method to uncertain systems in Section III
through an application of the full-block S-procedure [18].
The paper is concluded after a simple example that illustrates
in which interesting ways the new approach can be used.

II. JOINT SYNTHESIS FOR LTI SYSTEMS

In this section, we formulate the problem for an LTI
system and derive a new LMI condition for joint synthesis.

A. Problem Statement

Let us consider an LTI plant as
ẋ(t) = Ax(t)+Bu(t)+Hw(t), x(0) = 0,
z(t) = Cx(t)+Du(t)+Ew(t),

(1)

where x(t) ∈Rnx denotes the state, while u(t) ∈Rnu , w(t) ∈
Rnw and z(t) ∈ Rnz represent the control input, the distur-
bance and the performance signals respectively. The sys-
tem realization (A, [B H] ,C, [D E]) ∈ Rnx×nx ×Rnx×(nu+nw)×
Rnz×nx×Rnz×(nu+nw) is fixed and known. We assume that the
states are available for feedback without any measurement
noise. We also consider for feedforward a (reference or
disturbance) signal r(t) ∈ Rnr that relates to w as

r(t) = Γw(t), (2)

where Γ ∈ Rnr×nw is a fixed and known matrix.
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In this section, we consider the joint synthesis of dynamic
state feedback and dynamic feedforward with an LTI con-
troller. The control input is hence generated as

ξ̇ (t) = A f ξ (t)+B f r(t)+Bsx(t), ξ (0) = 0,
u(t) = C f ξ (t)+D f r(t)︸ ︷︷ ︸

u1

+Dsx(t)︸ ︷︷ ︸
u2

, (3)

where (A f , [ B f Bs ],C f , [ D f Ds ]) ∈Rnξ×nξ ×Rnξ×(nr+nx)×
Rnu×nξ ×Rnu×(nr+nx) represents a controller realization.

By combining equations (1)-(3), we obtain the closed-loop
dynamics (with suppressed time dependence) as follows:

κ̇ =

[
A+BDs BC f

Bs A f

]
︸ ︷︷ ︸

A

[
x
ξ

]
︸ ︷︷ ︸

κ

+

[
H +BD f Γ

B f Γ

]
︸ ︷︷ ︸

B

w,

z =
[

C+DDs DC f
]︸ ︷︷ ︸

C

κ+(E +DD f Γ)︸ ︷︷ ︸
D

w.

(4)
The LTI joint synthesis problem then reads as follows:
Problem 1: Given the LTI plant of (1)-(2), find an LTI

controller as in (3) such that the closed loop system in (4)
is stable and satisfies the following L2-gain condition:

‖z‖2 ,

√∫
∞

0
zT(t)z(t)dt < γ‖w‖2, ∀w(·) : 0 < ‖w‖2 <∞. (5)

B. A New LMI Condition for Joint Synthesis

In this section, we derive an LMI solution to the joint
synthesis problem in the case of a full-order controller (i.e.
nξ = nx). We start by recalling the well-known matrix in-
equality condition for stability and L2-gain performance (see
e.g. [21]), expressed in terms of a positive-definite matrix
X ∈ S

nx+nξ

+ , {X = X T ∈ R(nx+nξ )×(nx+nξ ) : X � 0} as

He

 X A X B 0
0 − γ

2 I 0
C D − γ

2 I

≺ 0, (6)

where He(M ), M +M T .
We now consider a specific parametrization for X and

then introduce a congruence transformation to arrive at an
LMI condition for joint synthesis. The specific choice of
X is expressed compatibly with the closed-loop of (4) with
nξ = nx and in terms of Y,X ∈ Snx

+ as follows:

X =

[
Y−1 −Y−1

−Y−1 Y−1 +X−1

]
=

[
Y +X X

X X

]−1

. (7)

We stress that this parametrization is without loss of gener-
ality, since we can always bring X and its inverse into the
specific forms in (7) by a suitable state transformation. A
specific congruence transformation translates (6) to

He

 Y T X AY Y T X B 0
0 − γ

2 I 0
C Y D − γ

2 I

≺ 0, (8)

where Y is an invertible matrix. The suitable choice of Y
for our derivations is identified as

Y =

[
Y X
0 X

]
. (9)

With this choice, we obtain

Y T X =

[
I −I
0 I

]
. (10)

By now introducing new matrix variables as

K , (A f +Bs)X , L,BsY, M , (C f +Ds)X , N ,DsY, (11)

we arrive at the following solution of Problem 1:
Theorem 1: There is a solution to Problem 1 if and only

if there exist X ,Y ∈ Snx
+ ; K,L ∈Rnx×nx ; M,N ∈Rnu×nx ; B f ∈

Rnx×nr and D f ∈ Rnu×nr that satisfy

He


AY+BN−L AX+BM−K H+(BD f−B f )Γ 0

L K B f Γ 0
0 0 − γ

2 I 0
CY+DN CX+DM E+DD f Γ − γ

2 I

≺ 0. (12)

The controller can then be constructed from a solution as[
A f B f Bs
C f D f Ds

]
=

[
KX−1−Bs B f LY−1

MX−1−Ds D f NY−1

]
. (13)

Remark 1: Theorem 1 is specialized to different cases of
joint synthesis as in Table I. The controller can be ensured
to be strictly proper simply by choosing D f = 0 and N = 0.

no SFB static SFB dynamic SFB

no DFF none only N,Y B f = 0
D f = 0

static DFF only D f only D f ,N,Y D f = 0

dynamic DFF L = 0
N = 0 L = 0 all

TABLE I
SPECIAL CASES OF JOINT SYNTHESIS (SFB: STATE FEEDBACK,

DFF: DISTURBANCE FEEDFORWARD)

The controller obtained via the approach of [21] would
depend explicitly on the system data and thus any uncertain
parameter as well. On the other hand, Theorem 1 is based on
a computation of the controller as in (13) without any explicit
dependence on system matrices. Thanks to this property, it
becomes possible to extend the synthesis of Theorem 1 to
uncertain systems with unmeasurable parameters.

III. JOINT SYNTHESIS FOR UNCERTAIN SYSTEMS

In this section we consider the joint synthesis problem for
a system that depends on uncertain parameters. A solution is
then presented for the synthesis of a robust controller with
no dependence on unmeasurable parameters.

A. Problem Statement for an Uncertain Plant

Let us recall the plant model in (1) and assume that the
system matrices are uncertain. This uncertainty is expressed
in the form of a linear fractional transformation (LFT)[

A(∆(δ )) B(∆(δ )) H(∆(δ ))
C(∆(δ )) D(∆(δ )) E(∆(δ ))

]
=

[
A0 B0 H0
C0 D0 E00

]
+

[
H1
E01

]
∆(δ )(I−E11∆(δ ))−1 [ C1 D1 E10

]
, (14)

where ∆(δ ) represents a matrix that has affine dependence
on an uncertain (and possibly time-varying) parameter vector
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δ . As is well known, such a system can also be represented
as the following LFT interconnection:

 ẋ(t)
z(t)
q(t)

 A0 B0 H0 H1
C0 D0 E00 E01
C1 D1 E10 E11




x(t)
u(t)
w(t)
p(t)


and p(t) = ∆(δ (t))q(t). (15)

The uncertainty is described by

δ (t) ∈U δ , ∀t ≥ 0, (16)

where U δ represents a compact uncertainty set. In order to
provide conditions for a concrete case, we restrict our interest
to polytopic uncertainty sets described as the convex hull of
a set of known vertices {δ 1, ..,δ η} as

U δ = conv
(
{δ 1, ..,δ η}

)
,

{
η

∑
i=1

αiδ
i :

η

∑
i=1

αi = 1,αi ∈ [0,1],∀i

}
. (17)

We also assume that the uncertain parameter vector is
composed of measurable and unmeasurable components as

δ =

[
µ

ψ

]
;

µ : vector of measurable parameters
ψ : vector of unmeasurable parameters (18)

In this paper, we do not consider any specific upper bounds
on the entries of ϕ , ψ̇(t) ∈ Rnψ , while the elements of
ν(t), µ̇(t) ∈Rnµ are assumed to satisfy |νi(t)| ≤ νmax

i . We
hence characterize the uncertainty for δ̇ as

δ̇ (t) ∈U
δ̇
=

{[
ν

ϕ

]
∈ Rnµ+nψ : ν ∈U ν

}
, ∀t ≥ 0, (19)

where the uncertainty set for ν is identified as a hyper-
rectangular region with κ = 2nµ corners:

U ν = {ν ∈ Rnµ : νi =±ν
max
i }= conv

(
{ν1, ..,νκ}

)
. (20)

In this section, we consider the synthesis of an LPV
controller (with suppressed time dependence) as

ξ̇ = A f (µ)ξ +B f (µ)r+Bs(µ)x, ξ (0) = 0,
u = C f (µ)ξ +D f (µ)r+Ds(µ)x.

(21)

The problem formulation then reads as follows:

Problem 2: Given an uncertain plant described by (15)-
(20), find a scheduled controller of the form (21) such that
the closed loop system described by (4) and (14) is stable and
satisfies the L2-gain condition of (5) for all δ (·) trajectories
that are admissible according to (16) and (19).

B. LMI Conditions for Joint Synthesis for Uncertain Systems

To derive a solution for Problem 2, we first recall the L2-
gain performance condition for parameter-dependent systems
(see e.g. [28]). With X and the controller realization allowed
to depend on the measurable parameters, the only modifica-
tion needed in (6) would be the addition of a differential term
to the (1,1) block. The same lines of derivation then lead to
(12) with µ-dependent matrix variables and with differential
terms added to (1,1)-(2,2) blocks.

We now restrict our interest to the case in which the
problem variables are chosen to have affine µ-dependence: Y (µ) X(µ) 0

N(µ) M(µ) D f (µ)
L(µ) K(µ) B f (µ)

=

 Y0 X0 0
N0 M0 D f 0
L0 K0 B f 0


+

µT ⊗ Inx 0 0
0 µT ⊗ Inu 0
0 0 µT ⊗ Inx


︸ ︷︷ ︸

Λ(µ)

 Y1 X1 0
N1 M1 D f 1
L1 K1 B f 1

 . (22)

Here we have organized the variables and introduced Λ(µ)
in a way that is convenient for our future derivations. The
notation is better understood by an expression of X as

X(µ) = X0 +
[

µ1Inx · · · µnµ
Inx

]︸ ︷︷ ︸
µT⊗Inx

 X11
...

X1nµ


︸ ︷︷ ︸

X1

. (23)

The subscript notation (·)1i will thus be assumed for all prob-
lem variables in (22). Since X and Y need to be symmetric,
we also require X0,Y0,X1i,Y1i ∈ Snx , {X = XT ∈ Rnx×nx}.

Let us next derive for this choice of problem variables
the modification needed in the L2-gain condition for LPV
systems. We first recall again that a derivative term would
emerge in the (1,1) block of the matrix in the left hand side
of (6) if X has time-dependence. With X chosen to have
µ dependence, this would indeed be the case when µ is a
time-varying parameter. In particular, when X and Y have
affine µ dependence, we would have in the (1,1) block of
the matrix in the left hand side of (8) a term as

Y T dX

dt
Y =−Y T X

dX −1

dt
X Y =

[ dY
dt 0
0 dX

dt

]
=

nµ

∑
i=1

[
∂Y (µ)

∂ µi
νi 0

0 ∂X(µ)
∂ µi

νi

]
=

nµ

∑
i=1

[
νiY1i 0

0 νiX1i

]
. (24)

The matrix in the left hand side of (12) should hence be
modified by adding 0.5∑

nµ

i=1 νiY1i to the (1,1) block and
0.5∑

nµ

i=1 νiX1i to the (2,2) block. In order develop a synthesis
method, we will hence have to derive finitely many (and
typically sufficient) conditions for the LMI of (12), which has
rational/affine dependence on δ ∈U δ /ν ∈U ν respectively.

As a first step towards the derivation of finitely many LMI
conditions for synthesis, we first deal with ν dependence.
Recall that the dependence on ν emerges due to (24) and
is affine. Moreover, the associated uncertainty set U ν is a
hyper-rectangular region as in (20). Hence condition (12) will
be satisfied for all ν ∈U ν if and only if it is satisfied for all
ν = νk, k = 1, . . . ,κ . This brings us to 2nµ LMI conditions
which all have rational dependence on δ ∈U δ .

We now consider applying the full-block S-procedure
by [18], which is a convenient way to resolve rational
parameter dependence. We use a version of this procedure

3965



that considers parameter-dependent LMIs of the form

He
(
M k

00+M01Θ(I−M11Θ)−1M10

)
︸ ︷︷ ︸

M k(Θ)

≺ 0,∀Θ ∈U Θ, (25)

where U Θ represents a compact set, which is formed by
all admissible values of the uncertain parameter matrix Θ.
Condition (12) can indeed be expressed in the generic form
of (25) with a suitably defined Θ and with the superscript k

referring to the LMI obtained with ν = νk. The structure of
Θ and the associated uncertainty set are identified as

U Θ ,

{
Θ(δ ),

[
Λ(µ) 0

0 ∆(δ )

]
: δ ∈U δ

}
. (26)

When the uncertainty set for δ is assumed to be as in (17),
the uncertainty set for Θ can be expressed as

U Θ = conv
(
{Θ1, . . . ,Θη}

)
, where Θ

i , Θ(δ i). (27)

As a major ingredient of the full-block S-procedure, we also
introduce the scaling matrices P = PT via the condition[

ΘT

I

]T [ Q S
ST R

]
︸ ︷︷ ︸

P

[
ΘT

I

]
< 0, ∀Θ ∈U Θ. (28)

The set of scaling matrices is thus defined by

PU Θ
,

{
P =

[
Q S
ST R

]
: Q ∈ Snq+nµ (2nx+nu),

R ∈ Snp+2nx+nu,S ∈ R(nq+nµ (2nx+nu))×(np+2nx+nu) :(28)
}
. (29)

We can now cite the version of the full-block S-procedure
that is convenient for our derivations from [8] as follows:

Lemma 1: [8] The LFT of M k(Θ) is well-posed, i.e. (I−
M11Θ) is nonsingular for all Θ ∈U Θ and (25) holds if and
only if there exists a Pk ∈PU Θ

that satisfies

He

[
M k

00 0
M10 0

]
+

[
0 M01
I M11

][
Qk Sk
ST

k Rk

]
︸ ︷︷ ︸

Pk

[
0 M01
I M11

]T

≺ 0. (30)

The full-block S-procedure resolves the issue of rational
parameter dependence by introducing extra matrix variables.
These matrix variables should however satisfy the LMI of
(28), which in fact has quadratic parameter dependence.
Finitely many and typically sufficient conditions hence need
to be derived for (28) by employing a suitable relaxation
scheme for the considered uncertainty set. For the polytopic
set of (27), a simple approach would be to ensure concavity
by requiring Q 4 0 and then to impose (28) only at the
vertices Θ = Θi. A potentially less conservative approach
would be based on Pólya’s method. Referring the reader
to [10] for further details, we provide here the sufficient
conditions based on zeroth order Pólya relaxation as

Ωii(P) < 0, i = 1, ..,η , (31)
He(Ωi j(P)) < 0, i = 1, ..,η ; j = i+1, ..,η , (32)

where Ωi js are defined by

Ωi j(P),
[
(Θi)T

I

]T

P
[
(Θ j)T

I

]
. (33)

An inner approximation of the set of scaling matrices is thus
characterized by η(η +1)/2 LMIs as follows:

P0 = {P : (31) and (32)} ⊆PU Θ
. (34)

Higher order Pólya relaxations might reduce conservatism at
the cost of increased computational complexity.

In order to arrive at a tractable synthesis procedure after
the application of the full-block S-procedure, we also need
to be able to express (30) as an LMI. To achieve this
without introducing additional conservatism, we need to find
a representation of (12) as in (25) where M01 and M11 have
no dependence on matrix variables. We are indeed able to
obtain such a representation and state the second main result
of this paper as follows:

Theorem 2: There is a solution to Problem 2 if there exist
X0,Y0,X1i,Y1i ∈ Snx ; i = 1, . . . ,nµ with

X0 +
nµ

∑
i=1

µ
j

i X1i � 0, j = 1, . . . ,κ, (35)

Y0 +
nµ

∑
i=1

µ
j

i Y1i � 0, j = 1, . . . ,κ, (36)

and K0,K1i ∈ Rnx×nx ; B f 0,B f 1i ∈ Rnx×nr ; M0,N0,M1i,N1i ∈
Rnu×nx ; D f 0,D f 1i ∈ Rnu×nr ; i = 1, . . . ,nµ and Pk ∈P0; k =
1, . . . ,κ that satisfy (30) for all k = 1, . . . ,κ , with ingredients
of M k as in (37). The controller can be constructed as in
(13) with the parameter-dependent terms obtained from (22).

Proof: Omitted for reasons of space.
Remark 2: Robust LTI controllers would be obtained with

constant matrix variables. The LMI condition in this case
can be expressed by removing the fifth, sixth and seventh
row/column blocks in (37) and by setting ∑

nµ

i=1 νk
i Y1i =

∑
nµ

i=1 νk
i X1i = 0. Since we then have Θ = ∆, the set of scaling

matrices should be defined compatibly. If, moreover, the
system has affine parameter dependence (E11 = 0), the use of
the full-block S-procedure causes no additional conservatism.
Indeed the set of scaling matrices could then be defined
as in (34) based solely on (31) and would be identical to
PUΘ

. Nevertheless, we can also consider a solution without
applying the full-block S-procedure. We would then directly
ensure (12) simply by imposing it at the extreme points
δ = δ j. In this case, now new matrix variable is introduced,
but several LMI conditions of a large size are imposed.

IV. ILLUSTRATIVE EXAMPLE

In this section, we illustrate the proposed synthesis method
in a cooperative adaptive cruise control (CACC) system. The
dynamics of this system are expressed via

ė(t)= v(t)−ha(t), v̇(t)= a0(t)−a(t), ȧ(t)=ϖ (u(t)−a(t)) .
(38)

In these equations, e and v= v0−v1 represent the spacing er-
ror and the velocity of the leader relative to the follower. On
the other hand, a0 = v̇0 and a = v̇1 represent the acceleration
signals of the leading and the following vehicles respectively.
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[
M k

00 M01
M10 M11

]
=



A0Y0 +B0N0−L0 +
1
2 ∑

nµ

i=1 νk
i Y1i A0X0 +B0M0−K0 H0 +(B0D f 0−B f 0)Γ 0 A0 B0 −I H1

L0 K0 +
1
2 ∑

nµ

i=1 νk
i X1i B f 0Γ 0 0 0 I 0

0 0 − γ

2 I 0 0 0 0 0
C0Y0 +D0N0 C0X0 +D0M0 E00 +D0D f 0Γ − γ

2 I C0 D0 0 E01
Y1 X1 0 0 0 0 0 0
N1 M1 D f 1Γ 0 0 0 0 0
L1 K1 B f 1Γ 0 0 0 0 0

C1Y0 +D1N0 C1X0 +D1M0 E10 +D1D f 0Γ 0 C1 D1 0 E11


. (37)

The headway time h is typically fixed to a constant value.
On the other hand, we consider an uncertain bandwidth as

ϖ(t) = ϖ◦(1+ψ(t)), ψ(t) ∈ [ψmin,ψmax]⊂ (−1,∞), (39)

where ϖ◦ is fixed and known, while ψ(t) ∈ [ψmin,ψmax] is
uncertain. The acceleration signal hence evolves as

ȧ =−ϖ◦a+ϖ◦u−ϖ◦ ·ψ ·
q1︷︸︸︷
a︸ ︷︷ ︸

p1

. (40)

The goal of a CACC system is to maintain small e.
Though this is to be achieved with a reasonable acceleration
a, we focus on a single objective with z = e to make a
fair comparison of two alternative syntheses. Thanks to the
simple vehicle model, acceleration signals turn out to be
quite acceptable as well. We assume that e, v and a are
available, while the leader acceleration a0 is communicated
with some minor distortion (due to a small delay or noise).

We now build a state-space model to be used for controller
synthesis. To this end, we first express the leader acceleration
as a weighted sum of two signal components:

a0 = (1−ρ) · ar︸︷︷︸
r

+ρd (Model-1), (41)

= (1−ρ) ·

p2︷ ︸︸ ︷
sign(ar)︸ ︷︷ ︸

µ

· |ar|︸︷︷︸
q2=r

+ρd (Model-2). (42)

In these expressions, ar represents the signal that is received
by the following vehicle, while d captures communication
inaccuracies. The desired level of robustness against com-
munication problems can hence be adjusted by the scalar
ρ ∈ [0,1]. In Model-1 based on (41), ψ would be the single
uncertain and unmeasurable parameter. For the purpose of
our illustration, we introduce Model-2 based on (42), where
µ(t) ∈ [−1,1] can be treated as an additional uncertain and
yet online-measurable parameter. For reasons of space, we
provide the state-space description of only Model-2 as

ė
v̇
ȧ
z

q1
q2

=


0 1 −h 0 0 0 0 0
0 0 −1 0 0 ρ 0 1−ρ

0 0 −ϖ ϖ 0 0 −ϖ 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0





e
v
a
u
r
d
p1
p2


and

[
p1
p2

]
︸ ︷︷ ︸

p

=

[
ψ 0
0 µ

]
︸ ︷︷ ︸

∆

[
q1
q2

]
︸ ︷︷ ︸

q

,
ψ ∈ [ψmin,ψmax]
µ ∈ {−1,0,1} . (43)

Scheduling on µ would in fact mean using a switching
controller. Since the energies of the disturbance inputs would
be identical for Model-1 and Model-2, it would also be
meaningful to compare the performance levels achieved with:
(i) a robust LTI controller designed for Model-1; and (ii) a
scheduled (switching) controller designed for Model-2.

In various design and simulation exercises, we have
observed that the scheduled synthesis can indeed lead to
improved performance levels and hence smaller spacing
errors. Perhaps more interestingly, we have also noticed
that scheduled synthesis can also be used to obtain robust
LTI controllers. Though this might be coincidental for our
rather simple example, it nicely exemplifies in what ways
the joint synthesis method developed in this paper can be
used. We hence present the results for a joint synthesis
exercise in which two robust LTI controllers are compared:
(i) Controller-1 synthesized as a robust LTI controller for
Model-1; and (ii) Controller-2 derived from a scheduled
synthesis for Model-2 in a way that will be explained shortly.
In both syntheses, L is set to zero to have only static state
feedback, i.e. Bs = 0. We also set N1 = 0 in the scheduled
synthesis for Model-2 to avoid µ dependence in the static
state feedback gain. Since µ would assume only three values,
we could compute and compare the corresponding feedfor-
ward filters (i.e. the transfer function from r to u1 in (3)).
Perhaps not so surprisingly, the filters obtained for µ =−1
and µ = +1 turned out to be the same except for a sign
change, while the filter for µ = 0 happened to be practically
zero. Motivated by this observation, we considered the filter
obtained with µ = 1 and the associated (µ-independent)
static state feedback as a candidate robust LTI controller
(i.e. Controller-2) that can be compared with the robust
LTI controller synthesized for Model-1 (Controller-1). An
analysis based on (6) indeed confirmed that Controller-2
ensures a better level of performance than Controller-1, as
presented in Table II. This is also verified by a set of
simulation results presented in Figure 1. In this scenario,
the leading vehicle first performs a harsh braking and then
accelerates persistently to get back to the initial velocity as
seen in the middle plot. As is visible from the top plot,
Controller-2 maintains a significantly smaller spacing error.
This is achieved even in the face of a sharp change in the
bandwidth parameter of the vehicle around a speed of 15m/s,
as can be observed from the bottom plot. The acceleration
profile of the following vehicle is visibly identical to the
acceleration profile of the leader. With a more realistic
vehicle model, the following vehicle will have a delayed
acceleration profile and hence increased spacing errors.
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Fig. 1. Simulation results with Controller-1 (red-dash-dotted) and
Controller-2 (blue-dashed) (ϖ◦ = 0.8rad/s, h = 0, ρ = 0.1).

DFF Filter - 1 0.015635(s−2.9·106)(s2+68.32s+3792)
(s+1229)(s2+83.34s+2853)

SFB Gain - 1
[

4.34 ·106 1.0 ·105 −1.0 ·103
]

Performance γ - 1 2.3 ·10−4

DFF Filter - 2 −0.0027414(s+2.0·108)(s2+45.28s+8786)
(s+3100)(s2+96.16s+3846)

SFB Gain - 2
[

4.66 ·107 8.0 ·105 −6.9 ·103
]

Performance γ - 2 1.4 ·10−4

TABLE II
CONTROLLER-1 AND CONTROLLER-2 (OBTAINED IN MATLAB R© VIA

YALMIP [14] AS THE PARSER AND SEDUMI [24] AS THE SOLVER)

V. CONCLUDING REMARKS

A novel LMI-based approach is developed for the syn-
thesis of dynamic state feedback concurrently with dynamic
disturbance feedforward. In addition to facilitating various
specialized syntheses, the method extends easily to systems
that depend on uncertain time-varying parameters. Potential
conservatism needs to be reduced especially in the case
when unmeasurable parameters have bounded derivatives.
Conditions based on dilated LMIs might be useful in this
respect as well as for improved multi-objective synthesis. It
possibly requires more investigation to extend the method in
a way to consider more general uncertainties via dynamic
integral quadratic constraints.
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